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Abstract. One of the vital ingredients in the theoretical tools useful in materials modeling at all the length 

scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has 

played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. 

In the intermediate mesoscopic length scale, an appropriate picture of the equilibrium and dynamical pro-

cesses has been obtained through the single particle number density of the constituent atoms or molecules. A 

wide class of problems involving nanomaterials, interfacial science and soft condensed matter has been 

addressed using the density based theoretical formalism as well as atomistic simulation in this regime. In the 

macroscopic length scale, however, matter is usually treated as a continuous medium and a description using 

local mass density, energy density and other related density functions has been found to be quite appropriate. 

A unique single unified theoretical framework that emerges through the density concept at these diverse 

length scales and is applicable to both quantum and classical systems is the so called density functional theory 

(DFT) which essentially provides a vehicle to project the many-particle picture to a single particle one. Thus, 

the central equation for quantum DFT is a one-particle Schrödinger-like Kohn–Sham equation, while the 

same for classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninter-

acting particles in the field of a density-dependent effective potential. Selected illustrative applications of 

quantum DFT to microscopic modeling of intermolecular interaction and that of classical DFT to a meso-

scopic modeling of soft condensed matter systems are presented. 
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1. Introduction 

Materials modeling and simulation form important areas 
of research aiming at designing materials with tailored 
properties for desired applications. Although at the fun-
damental level, the properties of materials are dictated by 
the basic laws of quantum mechanics, their prediction 
through a direct ab initio electronic structure calculation 
is often too ambitious even with the state of the art com-
putational resources. One can, however, view the materi-
als through the windows of different length scales and 
develop modeling in three broad domains, viz. micro-
scopic, mesoscopic and macroscopic regimes covering 
the length scales of 0⋅1–1 nm, 1–100 nm and larger than 
100 nm, respectively. 
 In the macroscopic length scales, matter is considered 
as a continuous medium and the theoretical tools used are 
the conventional approaches of continuum mechanics and 
hydrodynamics of classical physics. The property para-
meters needed in this approach as input can be obtained 
from a consideration of the so called mesoscopic length 
scale with an atomistic description using classical and 
statistical mechanics of interacting particles (atoms and 
molecules), their movements and distributions. The major 

input parameters in this intermediate length scale are the 
interparticle interactions which can be generated through 
a quantum mechanical investigation within the micro-
scopic length scale. In this shorter length scale, one can 
deal with the interacting electrons and the nuclei, emp-
loying a complete ab initio electronic structure descript-
ion within the framework of available approximate 
theories. 
 Although the electronic, atomistic and continuum desc-
riptions for materials modeling at the three respective 
length scales appear to be quite diverse, there lies a uni-
fied theoretical framework which can encompass all of 
them and the present work aims at presenting a glimpse 
of this area of research. The concept that plays the role of 
a common underlying thread in this endeavour is the con-
cept of density and the associated theoretical approach is 
the so called density functional theory (DFT) (Hohenberg 
and Kohn 1964; Kohn and Sham 1965; Mermin 1965; 
Parr and Yang 1989, 1995). 
 In the microscopic length scale, the DFT based descri-
ption of a many-electron system employs the single-par-
ticle electron density (Ghosh and Deb 1982; March and 
Deb 1987) as the basic variable bypassing the many-
electron wavefunction, providing thereby tremendous 
simplification, computational economy and foundation of 
widely used chemical concepts. DFT has also been for-
mulated (Henderson 1992) for the mesoscopic length 
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scale, with the density distribution of the atomistic parti-
cles as the basic variable, leading to wide applications in 
the field of soft condensed matter (deGennes 1992, 1999) 
physics. The recent upsurge in nanomaterials research 
has also led to greater opportunities for materials model-
ing in this mesoscopic size regime. The effective inter-
particle interaction potentials needed for the mesoscopic 
DFT can be obtained through the microscopic or quan-
tum DFT either through a detailed electron density cal-
culation or a modeling of chemical binding using DFT 
based atomic parameters. One can also couple the inter-
atomic potential calculation based on quantum DFT for 
electrons with the classical mesoscopic DFT for the 
atomistic particles in the spirit of the well known Car and 
Parrinello (1985) approach for DFT based ab initio 
simulation. For simplicity, one can also employ empirical 
pair potentials in the mesoscopic DFT as is often done in 
usual classical simulation. In the domain of macroscopic 
length scale, a density based continuous medium descri-
ption is possible using the mass, current, energy and 
other property densities as the basic variables, reminis-
cent of the classical hydrodynamics. 
 Thus, in DFT as applied to materials modeling in the 
short, intermediate and large length scales, the respective 
basic variables are the electron density, the single particle 
density and the property density, corresponding to the 
electron, atom and the volume element as the respective 
building blocks. A central common feature in DFT is the 
collection of building blocks with an inhomogeneous 
density distribution arising due to the field of an external 
potential. However, there are many phenomena such as 
freezing, nucleation, crystallization etc where the density 
inhomogeneity arises through stabilization of thermal 
density fluctuations even in absence of external poten-
tials. 
 Besides the DFT corresponding to different individual 
length scales, many of the areas of materials science and 
engineering dealing with the material properties needs a 
bridging of the microscopic, mesoscopic and macro-
scopic length scales. Building such bridges can enhance 
the possibility of opening new windows to view the 
details of the microstructure which determines the prop-
erties of different forms of matter that matters in many 
applications of interest. 
 In what follows, we aim at presenting a unified view of 
DFT encompassing all these diverse situations and length 
scales dealing with quantum as well as classical systems 
and electronic, atomistic and macroscopic density con-
cepts (Ghosh 2002). Thus, in §2, we first discuss the 
basic theoretical formalism of quantum and classical 
DFT as used in different regimes of length scales and 
then consider in §3, a specific application of quantum 
DFT for the modeling of chemical binding to obtain the 
interatomic potential that can be used in the mesoscopic 
DFT. The DFT based modeling in classical complex flu-
ids or soft matter is presented in §4. Extension beyond 

the equilibrium situations covering some of the dynami-
cal aspects is discussed in §5 and finally we offer a few 
concluding remarks in §6. 

2. Density functional theory of quantum and 

classical systems: a unified view 

The single-particle density ρ(r), which is the basic vari-
able in DFT, is defined, for an N-particle quantum or 
classical system, by integrating the full distribution func-
tion, P(r1, r2, ..., rN) over N – 1 variables, as 

∫ ∫= ).,...,,(ddd)( 21321 NN PN rrrrrrr LLρ  (1) 

For a quantum system, the distribution function, P(r1, 
r2, ..., rN) is given by |ψ(r1, r2, ..., rN)|2, where ψ is the 
many-electron wavefunction. The density variable which 
is a function in three-dimensional space and represents 
locally the number density clearly satisfies the normali-
zation ∫ρ(r)dr = N. For interacting particles, the possibi-
lity of describing a quantum or classical many-particle 
system completely in terms of the single-particle density 
is not obvious and has been established rigorously 
through the theorems proved by Hohenberg and Kohn 
(1964) and Mermin (1965) (HKM). 
 Although the birth of a formal DFT is rather recent, 
approximate versions of DFT have existed for a very 
long time in the forms of the Thomas Fermi (TF) (Tho-
mas 1927; Fermi 1928) and Debye-Huckel (DH) (1923) 
theories for quantum and classical systems, respectively 
dealing with the distribution of electrons around the 
nuclei in atoms and that of ions in electrolyte solutions. 
Inspite of a wide difference in the nature of these sys-
tems, the two approximate theoretical descriptions have 
close similarities. Thus, in both cases, the electrostatic 
potential, φ(r), is defined through the Poisson equation 

).(4)( 22 rr ρπφ e−=∇  (2) 

The TF theory corresponds to the additional relation bet-
ween the potential and the electron density as given by 
the TF equation, viz. 
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corresponding to the Fermi–Dirac statistics of quantum 
systems, while in DH theory, this relation is the classical 
Boltzmann distribution for the ions given by  

)],(exp[)( 0
0 rr φβρρ ααα q−=  (4) 

where β0(=1/kBT) represents the inverse temperature with 
kB as the Boltzmann constant. The charge density in the 
second case is defined from the component densities 
ρα(r) as  
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∑=
α αα ρρ ),()( rr q  

with qα denoting the ionic charge of the α th component. 
Both these theories can, however, be obtained as well 
defined approximations of the exact HKM versions of 
DFT. 
 For a many-particle system characterized by an exter-
nal potential v(r) (arising due to the nuclei in the case of 
electrons and due to the walls or pores in the case of con-
fined classical fluid particles), the proofs of HKM follow 
by establishing a one to one mapping between the density 
and the potential. In the resulting formal DFT, the ground 
state energy, E

v

[ρ] (for a many-electron quantum system) 
or, the grand potential Ω

v

[ρ] (for a many-particle classi-
cal system) is treated as the unique functionals of density, 
given respectively by  

,)()(d][][ ∫+= rrr v
v

ρρρ FE  (5) 

and 

∫ −+=Ω ],)()[(d][][ µρρρ rrr v
v

F  (6) 

with µ denoting the chemical potential. The true equili-
brium densities in both cases are determined by the 
Euler–Lagrange equation corresponding to the minima of 
the respective energy density functionals, as given by 
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For many-electron systems, the functional F[ρ] is univer-
sal and can be expressed as 

],[][][][ xccouls ρρρρ EETF ++=  (8) 

where Ts[ρ], Ecoul[ρ] and Exc[ρ] represent the noninter-
acting kinetic energy, classical Coulomb energy and the 
exchange-correlation (XC) energy density functionals, 
respectively. 
 For a classical fluid with inhomogeneous density dis-
tribution, the functional F[ρ] representing the intrinsic 
Helmholtz free energy is universal only for a specified 
interparticle interaction and can be expressed as  

F[ρ] = Fid[ρ] + Fex[ρ], (9) 

where Fid[ρ] represents the ideal-gas free-energy func-
tional corresponding to absence of internal interactions 
and is the analogue of the noninteracting kinetic energy 
functional, Ts[ρ] of (8) for quantum systems, while Fex[ρ] 
representing the excess free-energy for the classical sys-
tem is analogous to the interaction energy functional 
(Ecoul[ρ] + Exc[ρ]) of a quantum system. 
 For quantum systems, a minimization of the energy 
functional E

v

[ρ] with the known exact expression of 
Ecoul[ρ] given by 
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with neglect of Exc[ρ] and the so called local density app-
roximation for the kinetic energy functional as Ts[ρ] = 
CF(h2/m)∫drρ(r)5/3, leads to the TF theory for the electron 
density given by (3). On the other hand, using the known 
exact expression for Ts[ρ] as given by 
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in the energy functional E
v

[ρ], one obtains, on minimiza-
tion, the effective one-particle Kohn–Sham (1965) equa-
tion, viz. 
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where the orbitals {ψi(r)} define the density ρ(r) as the 
sum ρ(r) = ∑i|ψi(r)|2 and the effective potential is given 
by the density functional as 
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Analogously, for a classical system, on using the exact 
expression for the ideal-gas free-energy functional, Fid[ρ], 
as given by  

∫ −Λ= },1])(){ln[(d
1
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with Λ being the thermal de-Broglie wavelength, the 
Euler–Lagrange equation (7) leads to the density equation 
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representing essentially a Boltzmann-like distribution  
of an ideal gas in the field of an effective potential 
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0 rr c−− βv  Here the first order direct 

correlation function (DCF) c(1)(r) defined as 
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is the first member of the nth order DCF defined as the 
functional derivative of the excess free energy, Fex[ρ], as 
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and provides the extra contribution to the effective pote-
ntial, arising from interparticle interactions and correla-
tions in analogy to the exchange-correlation contribution 
to the Kohn–Sham potential for quantum systems. The 
DH theory can be obtained from an extension of this 
exact classical DFT to a two-component ionic system 
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with an approximation of the excess free energy func-
tional as the pure Coulomb contribution analogous to 
(10). 
 It is thus clear that DFT provides a formally exact sin-
gle-particle framework for many-particle systems, pro-
viding the density distribution through that of a system of 
noninteracting particles, viz. the one-particle Schrödinger 
equation for a quantum system and Boltzmann-like dis-
tribution for classical particles. This has emerged through 
an exact mapping of the actual system of N interacting 
particles in the field of an external potential, v(r) to 
another model system of N noninteracting particles of the 
same density, ρ(r) but moving in an effective potential 
veff(r;[ρ]), itself depending on the density, thus requiring 
a self-consistent iterative procedure for solving the resul-
ting equations. 
 Although the DFT framework is exact, the crux of the 
problem lies in the fact that the exact form of the density 
functionals is not known for an inhomogeneous density 
distribution and hence approximations are needed for the 
XC energy functional, Exc[ρ] for quantum systems, and 
the excess free energy functional Fex[ρ] or its derivatives 
for classical systems. 
 The approximate procedures usually are based on the 
knowledge of the functionals for the corresponding sys-
tems with homogeneous density. The simplest approximat-
ion scheme is the so called local density approximation 
(LDA) where the expression for the energy functional of 
the homogeneous system is directly evaluated using the 
inhomogeneous density. For quantum systems, the XC 
energy functional is thus approximated as  

,))((~)(d)]([ xc
LDA
xc ∫= rrrr ρερρE  (18) 

where xc
~ε  denotes the XC energy per electron for the 

homogeneous electron gas. The LDA, however, cannot 
be employed for approximating the excess free energy of 
the classical systems such as liquids where the particle 
sizes are finite. For these systems, the excess free energy, 
Fex or the first order DCF, c

(1) are approximated by 
evaluating the corresponding expressions for ex

~
f  or )1(~

c  
of the homogeneous fluid as 

∫= )),((
~

)(d)]([ exex rrrr ρρρ fF  (19) 

)),((~)])([;( )1()1( rrr ρρ cc =  (20) 

by using an effective density )(rρ  obtained by coarse 
graining of the actual density distribution, ρ(r), with a 
suitable weight function, ))(;,( rrr ρ′w  as 

)).(;,()(d)( rrrrrr ρρρ ′′′= ∫ w  (21) 

This procedure forms the basis of the so called weighted 
density approximation (WDA) (Tarazona 1984, 1985; 

Denton and Ashcroft 1989; Evans 1992) where the 
slowly varying nature of the effective density takes care 
of the difficulties arising in applying LDA directly to 
these systems (particularly regions where the densities 
might exceed the density of close packing). Other proce-
dures include improvements of LDA by including the 
gradient corrections for quantum systems (Lee et al 
1988; Becke 1993) and functional perturbation tech-
niques (Choudhury and Ghosh 1998a, 1999) in the theory 
of fluids. 
 Although the discussion so far has been restricted to a 
single density quantity, it may be noted that the spin-
polarized quantum systems and the classical two-compo-
nent fluid mixtures can also be treated through analogous 
unified DFT descriptions by considering the two-spin 
components of the density and the individual component 
densities as the respective basic variables. In the follow-
ing sections, we consider specific applications of these 
generalized DFT for two-component systems for quan-
tum as well as classical systems. 

3. Quantum DFT and microscopic modeling of 

interatomic interaction potential 

The electron density based quantum DFT has been highly 
successful in the electronic structure calculation of 
atoms, molecules, clusters and solids. The interatomic or 
intermolecular interaction potential obtained through 
such an ab initio calculation using suitable XC energy 
functionals can be used in the study of mesoscopic DFT 
or computer simulation in the atomistic length scale. In 
this work, however, we discuss a simpler and appealing 
alternative model which is based on the conceptual 
aspects of quantum DFT, the basic foundation of which 
lies in the chemical potential equalization (Parr et al 
1978) within a many-electron system as indicated in (7) 
which can be generalized to the spin-polarized situation 
(Ghosh 1994; Ghanty and Ghosh 1994a) as  
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where µα and µβ are the up- and down-spin chemical pot-
entials which correspond to the spin-polarized version of 
the energy functional of (5) expressed as functionals of 
the two densities, ρα(r) and ρβ(r), as 

∫ ++= ).()]()([d],[],[ rrrr vβαβαβα ρρρρρρ FE  (24) 

We propose to obtain the energy change in a many-elec-
tron system arising from a reorganization of its electron 
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density (York and Yang 1996; Wadehra and Ghosh 2002) 
through a functional Taylor expansion (up to second 
order) in terms of the density changes, δρν(r) (for 
ν = α, β), as 
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The corresponding changes in the two chemical poten-
tials, 0

αµ  and ,0
βµ  of the unperturbed system can be 

expressed as 
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ν
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rrrr  (26) 

with a similar expression for µβ obtained by replacing α 
with β. Here the hardness kernel (Berkowitz et al 1985; 
Ghosh 1990), ηµν(r, r′), represents the energy functional 
derivative 
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We now specialize to the case of a set of atoms (say, M 
in number) located at the fixed positions {Ri} corre-
sponding to a particular (say, equilibrium) configuration 
and express the density change, δρν(r) for ν = α, β due to 
the interaction between the atoms by partitioning as a 
sum of the atomic contributions as 

∑∑ ==
i

ii

i

i ),()()( ,, rrr ννν δρδρδρ  

with ri denoting the atomic region around the ith atomic 
site location, Ri. Without loss of generality, for simpli-
city, we assume the density components, δρν,i(r), to 
vanish outside this region, ri belonging to the ith site. 
The objective is to develop a lattice model of the 
interacting atoms under consideration with the lattice 
sites given by their locations for which the expression of 
the chemical potential given by (26) recast to obtain the 
same for the ith atomic site is given by 

∑∑∫ ′′′+=
ν
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j

jjijii ).(),(d)()( 0
rrRr  (28) 

This expression can be further simplified by approximat-
ing the hardness kernel as ≡′≈′ ),(),( jiji RRrr µνµν ηη  

),( jiµνη  to obtain 
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with a similar expression for µβ(i) given by 

∑∑+=
ν

νβνββ ηµµ
j

jqjiii ),(),()()( 0  (30) 

where qν(j) = ∫drjδρν(rj) denotes the jth atomic site 
charge. The energy change as given by (25) can be reex-
pressed in terms of these charges as 

∑∑∑∑∑∑ +=∆
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The lattice model of the set of interacting atoms thus cor-
respond to a set of point charges (zeroeth moment of the 
density) located at the M lattice sites. An equalization of 
the effective chemical potential corresponding to each 
spin as given by (29) and (30) for all the M atomic sites 
leads to M – 1 linear equations in the charge variables for 
each spin which along with the charge conservation con-
dition, ∑jqν(j) = 0, yield the individual site charges. It 
may be noted that while the conventional chemical 
potential equalization schemes which usually consider 
only the net charges on atomic sites predict only zero 
charge and interaction among identical atoms, the present 
scheme which considers spin dependent charge can pre-
dict the interaction energy even for similar atoms if the 
atoms concerned are open shell ones. This scheme can be 
further generalized by considering the bond sites (say P 
in number) between the bonded atoms in addition to the 
atomic sites. While the form of the final equations 
remains the same, the number of sites becomes M + P 
resulting into M + P–1 linear equations for obtaining the 
site and bond charges for each spin. 
 The energy expression of (31) is reminiscent of the 
binding energy of molecules as obtained by semiempiri-
cal quantum chemistry and calculations based on this 
procedure lead (Ghosh 1994; Ghanty and Ghosh 1991, 
1992, 1994a,b) to binding energies and partial atomic 
charges of simple molecular systems in good agreement 
with more detailed ab initio calculations. The present 
formalism also resembles the Miedema (1973) model 
(Pettifor 1987) for predicting the heat of formation of 
simple alloy systems. 
 The input parameters in the present approach are the 
chemical potentials of the atomic (and bond) sites and 
also the diagonal and off-diagonal elements of the hard-
ness matrix, ηµν(i, j), corresponding to different spins and 
sites. The atomic chemical potentials, )(0 iαµ  and )(0

iβµ  
and the corresponding hardness parameters, ηαα(i, i), 
ηββ(i, i) and ηαβ(i, i) of the ith atom can be obtained 
(Ghanty and Ghosh 1994a) from spin polarized DFT cal-
culations. If bond sites are used, the corresponding 
chemical potential and hardness parameters can be appr-
oximated (Ghanty and Ghosh 1991, 1992, 1994c, 1996) 
by suitable averaging of the corresponding values for the 
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bonded atoms. The off-diagonal (i ≠ j) elements of the 
hardness kernel, ηµν(i, j), can be modeled by using the 
atom-in-molecule hardness matrix concept of Nalewajski 
et al (1996) generalized to spin-polarized situation fol-
lowing an electrostatic analogy (Wadehra and Ghosh 
2002). The Coulomb potential approximation, 
ηµν(i, j) = 1/εRij, with ε as a dielectric constant, is suit-
able for a nonbonded pair of sites, while for bonded sites, 
a better modeling along the lines of semiempirical 
quantum chemistry as given by 

)),()(/(2with)/(1),( jiaaRji ijijij ννµµ
µνµν

µν ηηη +=+=  

is found to be suitable. The simplified DFT framework 
presented here provides a simple scheme for predicting 
the interatomic interaction potential and hence the forces 
which can be used in computer simulation as well as in 
mesoscopic DFT to be discussed in the next §. 

4. Mesoscopic DFT: Application to soft condensed 

matter 

The DFT in the mesoscopic regime involves atomistic 
length scale and uses the single-particle number density 
as the basic variable. An important application that is 
considered here is in the area of soft condensed matter 
where the collective interaction and correlation effects 
are known to play an important role and thus the DFT 
formalism is a highly effective tool for the study of these 
many-body systems. The building blocks in this interme-
diate mesoscopic length scale are the atomistic particles 
and thus a typical system that is considered here is a two-
component fluid mixture, with specified interparticle 
interaction (uµν(r12) with µ, ν = α, β denoting the two 
components) which can be obtained either through a 
microscopic DFT calculation or by using simple model 
potentials such as hard sphere or Lennard–Jones for neu-
tral species, charged hard sphere for ionic fluids, dipolar 
hard sphere for polar fluids, DLVO screened Coulomb 
interaction for colloids etc. In particular, our interest is in 
the equilibrium arrangement of the fluid particles at inter-
faces due to confinement of the fluid mixture, for exam-
ple, in a planar slit, spherical cavity or cylindrical pore. 
The fluid components are subjected to the external 
potentials, vα(r), vβ(r), which lead to the inhomogeneous 
density distributions, ρα(r), ρβ(r), and are considered to 
be in equilibrium with the corresponding bulk phase of 
component densities, 00 , βα ρρ  and chemical potentials, 
µα, µβ. 
 The grand potential Ω[ρα, ρβ] for this system as obtai-
ned by a two-component generalization of (6) and (14), is 
given by 

∑∫ −Λ+

=Ω

ν
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which on minimization followed by an equalization of 
the chemical potentials of the individual components with 
those of the bulk phases, leads to the Euler–Lagrange 
equations given by 
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   ,,)},,(~ 00)1( βανρρ βαν =− c  (33) 

where the symbol c~  corresponds to the bulk phase. The 
density equation (33) is of the Maxwellian form corre-
sponding to an ideal gas subjected to an effective one-
particle potential contributed by the first order DCF 
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βαν ρρrc  defined as the functional derivative 

,
)(

],[
]),[;(

ex
0

)1(

r
r

ν

βα
βαν δρ

ρρδ
βρρ

F
c −=  (34) 

where the excess free energy, Fex[ρα, ρβ] contributed by 
interparticle correlation also defines the second order 
DCF ),( 21

)2(
rrνν ′c  through a two-component generalization 

of (17) as 

.
)()(

],[
]),[;,(

21

ex
2

021
)2(

rr
rr

νν

βα
βανν δρδρ

ρρδ
βρρ

′
′ −=

F
c  (35) 

In absence of knowledge of exact form of the functional 
]),[;()1(

βαν ρρrc  for an inhomogeneous density distribu-
tion, we consider its functional Taylor expansion in 
powers of the density inhomogeneity, =∆ )[(rνρ ρν(r) – 

],0
νρ  as 

),()(]),([~]),[;( 00)1()1(
rrr ννβανβαν γρρρρ ccc ∆++=  (36) 

with γν(r) representing the second order contribution 
given by 

∑∫
′

′′ ∆=
ν

νβαννν ρρργ ),(]),[;,(~d)( 2
00

2
)2(

2 rrrrr c  (37) 

and ∆cν(r) representing all higher order contributions. 
With this prescription, the density equation (33) can be 
reexpressed as 

.,)],()()(exp[)( 0
0 βανγβρρ ννννν =∆++−= rrrr cv  

 (38) 

Since the second order DCF is often known for some 
model pair potentials, the corresponding contribution, 
γν(r), can easily be evaluated, but in absence of know-
ledge of the higher order DCFs, appropriate prescriptions 
are to be proposed for the quantity, ∆cν(r). One of the 
simplest schemes is to approximate it as a third order 
contribution for which a knowledge of the third order 
DCF is needed. In absence of an exact form, this quantity 
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has recently been approximated (Choudhury and Ghosh 
1999) in terms of two-body terms in the spirit of Kirk-
wood’s superposition approach, and also as a two-com-
ponent generalization of the one-component result of 
Rickayzen and Augousti (1984). The parameters intro-
duced in the approximation are evaluated by demanding 
the approximate density functional to yield the correct 
bulk partial pressures in the homogeneous limit. An 
alternative route has also been proposed (Choudhury and 
Ghosh 2001a) for evaluating ∆cν(r) using the bridge 
function concept of integral equation theory of homoge-
neous fluid mixtures. Besides these perturbative appro-
aches, one also has nonperturbative WDA based methods 
as generalization of (19) or (20) to mixtures, i.e. by using 
suitable effective weighted densities to evaluate the 
excess free energy or the first order DCF as an approxi-
mation to contributions from all orders. There are also 
partially nonperturbative approaches (Choudhury and 
Ghosh 1996a, b), where the short range contribution is 
evaluated using WDA, while the long range contribution 
is obtained through functional perturbation. 
 There have been many applications of these appro-
aches dealing with the structure of fluids at interfaces and 
in cavities of planar, spherical or cylindrical shapes. The 
numerical calculations become simpler in all these cases 
since the density variation is along only one coordinate, 
leading to only one-dimensional integrations. As exa-
mples, the structure of electrode–electrolyte interface for 
the restricted primitive model as well as the hard sphere 
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Figure 1. Plot of density profiles for a hard sphere mixture 
near a hard wall with packing fraction = 0⋅3435, diameter 
ratio = 1/3 and mole fraction = 0⋅7144 (Bottom curves: small 
diameter component (α); upper curves: larger diameter compo-
nent (β). Solid line: Scheme of Choudhury and Ghosh (1999); 
dashed line: WDA of Denton and Ashcroft (1989); circles: 
simulation). 

solvent model has been predicted (Patra and Ghosh 
1993a,b, 1994a,b) in good agreement with the simulation 
results. The long range Coulomb contribution is evalu-
ated here through an electrostatic potential similar to that 
used in many-electron quantum systems, while it is only 
the short range correlation for which the WDA or 
functional perturbative method is used. The layered stru-
cture of the inhomogeneous density distribution at the 
interfaces (for typical plots, see figures 1 and 2) has been 
known to give rise to the so called solvation or structural 
force which is experimentally measurable. An interaction 
between the overlapping electric double layers is mani-
fested into the interaction between colloidal particles in a 
suspension. DFT has been employed (Patra and Ghosh 
1994c) to predict the solvation force for neutral as well as 
ionic model liquids in good agreement with simulation 
results as well as to reproduce (Patra and Ghosh 1994d) 
the experimental interaction energies between two mica 
walls confining a real liquid using only the hard sphere 
diameter as parameter. DFT has also been successfully 
applied to the study of sedimentation phenomena 
(Choudhury and Ghosh 2002) as well as adsorption iso-
therm (Choudhury and Ghosh 2001b) in porous medium. 
The effect of surface induced density inhomogeneity and 
the surface forces on the dynamics in condensed phase 
has also been of current interest. 
 Besides these cases of density inhomogeneities char-
acteristic of confined fluids as a result of the corre-
sponding external potentials, the spontaneous density  
 
 
 

 

Figure 2. Plot of density profile for a model colloidal suspen-
sion in a planar slit for wall separation of 30 d, packing frac-
tion = 0⋅00042, screening length = 0⋅15, wall-particle coupling 
parameter = 190, particle–particle coupling parameter = 580 
(Thin solid line: perturbation theory results from Choudhury 
and Ghosh (1998a); dashed line: hypernetted chain approxima-
tion; thick solid line: simulation). 
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inhomogeneity as arising, for example, in phase transi-
tions, through stabilization of thermal density fluctua-
tions at suitable temperature or density parameters, has 
also been successfully dealt with by DFT. The original 
pioneering work of Ramakrishnan and Yussouff (1979) 
which laid the foundation of the DFT of freezing has now 
grown into a vast field of research. The basic theme of 
this DFT based approach is to consider the free energy or 
grand potential as density functionals and locate the 
physical parameters for which the ordered phase with an 
inhomogeneous periodic density distribution is energeti-
cally more stabilized in comparison to the fluid phase of 
uniform density. The Ramakrishnan and Yussouff (1979) 
theory has now been extensively applied to phase transi-
tion to ordered phase for a large class of soft condensed 
matter systems. The ordering of colloidal suspensions as 
predicted by DFT (Sengupta and Sood 1991; Choudhury 
and Ghosh 1995a) has been shown to agree quite well 
with experimental results. The structure of a crystal–melt 
interface has also been predicted (Choudhury and Ghosh 
1998b) by a DFT approach by proposing a new layerwise 
modified WDA along with a simple modeling of the 
interfacial density to be periodic in the parallel plane, but 
decaying oscillatory in the perpendicular direction (see 
figure 3 for a plot of the planar-averaged density profiles 
for different interfacial layers). The surface energy pre-
dicted by this approach as a function of the number of 
interfacial layers (shown in figure 4) is found to be in 
good agreement with the simulation results. The DFT of 
freezing has also been extended to quantum systems and 
used, for example, for the study (Choudhury and Ghosh 
1995b) of Wigner crystallization. Application of DFT to 
various other phase transitions, nucleation and a large 
class of equilibrium phenomena has also been quite suc-
cessful. 

5. Density functional theory of time-dependent 

systems 

Although as already discussed, DFT has been immensely 
versatile to deal with a wide class of time-independent 
problems, its applicability has been further enhanced 
through a generalization to cover dynamical phenomena 
in both quantum and classical domains. Besides density, 
ρ(r, t) being time-dependent (TD), the additional basic 
variable that plays an important role in TD DFT is the 
single-particle TD current density, j(r, t). For quantum 
systems, the TD DFT involves (Deb and Ghosh 1982; 
Runge and Gross 1984; Ghosh and Dhara 1988) the TD 
one-particle Kohn–Sham like equations 

,
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it
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∂
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ψ h
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v  (39) 

corresponding to a system of noninteracting particles 
moving in a TD effective potential, veff(r, t), determined 

by the density (and also often the current density) obtai-
ned from the orbitals. There is also an equivalent quan-
tum hydrodynamic formulation (Deb and Ghosh 1987) 
which consists of the continuity equation and an Euler 
type equation corresponding to the time evolution of the 
density and current density given respectively by 
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These equations are reminiscent of the conventional hydro-
dynamic equations except that the classical force has 
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Figure 3. Plot of planar-averaged interfacial density profile 
for the (111) fcc–liquid interface of hard sphere fluid for sev-
eral values of the interfacial width (Choudhury and Ghosh 
1999). 
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Figure 4. Plot of calculated surface free energy as a function 
of number of interfacial layers for (111) fcc–liquid interface of 
hard sphere fluid (Choudhury and Ghosh 1999). 
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been augmented here by an additional force of quantum 
origin. 
 The TD DFT for classical systems also consist of the 
same continuity equation (40), but the equation for the 
current density evolution is given by  









+∇−=

∂
∂

δρ
δρ F

t
),();(

),(
trtr

trj
v  

    ,
),(

);,(dd
0∫ ∫ ′

−′′−
t F

τδ
δ

ττ
rj

trrr ΓΓ  (42) 

where Γ(r, r′; t) represents the dissipation kernel. 
 Thus, it is clear that the TD DFT for quantum and cla-
ssical systems consist of closely analogous theoretical 
frameworks, which are suitable for bridging the micro-
scopic and mesoscopic length scales. Extensions to spin-
polarized situations for quantum TD DFT and multicom-
ponent fluid mixtures for classical TD DFT have found 
wide applications to TD phenomena. A unification and 
interconnection of classical TD DFT with mode coupling 
theories (Ali et al 2001; Samanta et al 2001) of diffusion 
in fluid mixtures have also been demonstrated recently. 

6. Conclusions 

The picture of quantum and classical DFT encompassing 
the microscopic, mesoscopic as well as macroscopic 
length scales, has been portrayed here emphasizing the 
unified nature of the framework and its applicability in 
diverse interdisciplinary areas of materials modeling 
research. This is, however, only a brief and illustrative 
review and many important developments might not have 
been covered at all. DFT is a fast growing field of 
research and further theoretical developments along with 
the advancement of computational techniques are likely 
to play an important role in the DFT based research on 
multiscale materials modeling. 
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