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Density functional theory (DFT) is a (in principle exact) theory of electronic structure, based on the electron
density distribution n(r), instead of the many-electron wave function Ψ(r1,r2,r3,...). Having been widely used
for over 30 years by physicists working on the electronic structure of solids, surfaces, defects, etc., it has
more recently also become popular with theoretical and computational chemists. The present article is directed
at the chemical community. It aims to convey the basic concepts and breadth of applications: the current
status and trends of approximation methods (local density and generalized gradient approximations, hybrid
methods) and the new light which DFT has been shedding on important concepts like electronegativity,
hardness, and chemical reactivity index.

1. Introduction and Basics

Density functional theory (DFT) is primarily a theory of
electronic ground state structure, couched in terms of the
electronic density distribution n(r). Since its birth, about three
decades ago, it has become increasingly useful for the under-
standing and calculation of the ground state density, n(r), and
energy, E, of molecules, clusters, and solidssany system
consisting of nuclei and electronsswith or without applied static
perturbations. It is an alternative, and complementary, approach
to the traditional methods of quantum chemistry which are
couched in terms of the many-electron wave function
Ψ(r1,...,rN). Both Thomas-Fermi and Hartree-Fock-Slater
methods can be regarded as ancestors of modern DFT. But
whereas those theories are intrinsically approximate, modern
DFT is in principle exact.

Over the past 30 years, density functional theory has become
the physicists’ method of choice for electronic structures of
solids. More recently chemists also use it extensively, by itself
or joined to other methods. This article is aimed primarily at
chemists. It is necessarily very incomplete, and we apologize
for somewhat arbitrary choices, influenced by the authors’ own
interests.

Let us state right away the strengths and weaknesses of DFT,
when compared with traditional methods. The latter are
ordinarily preferable when dealing with few-atom systems, Nat

j 5-10 and when high accuracy is required. DFT is preferable
when Nat J 5-10 and a more modest accuracy is acceptable.
Apart from this quantitative complementarity, DFT and tradi-
tional methods are also conceptually complementary. The chief
building blocks of traditional methods are single-electron
orbitals, ψj, and many-electron wave functions, Ψ, constructed
from them. The chief element of DFT is the electron density
n(r) and, in the Kohn-Sham version (below), the fictitious

single-particle orbitals, æj
KS.

Finally, let us state an intrinsic limitation of “pure” DFT. In
traditional methods, an arbitrary level of accuracy can in
principle be obtained for any system, given a sufficiently
powerful computer. DFT depends on the adequate knowledge
of the exchange correlation energy functional Exc[n(r)] (below),
and although more and more accurate forms are constantly being

developed, there is no known systematic way to achieve an
arbitrarily high level of accuracy.

We shall now sketch the fundamentals of DFT. For details
we refer to refs 1 and 2. We limit ourselves here to the simplest
class of systems, N nonrelativistic, interacting electrons in a
nonmagnetic state with Hamiltonian

where (in atomic units)

Notice that, for mathematical reasons, we are considering a
broad class of Hamiltonians with electrons moving in an
arbitrary external potential V(r), not only the physically relevant
Coulomb potentials due to point nuclei.

The starting point of DFT is the rigorous, simple lemma of
Hohenberg and Kohn (HK):3 The specification of the ground
state density, n(r), determines the external potential V(r) uniquely

(to within an additive constant C),

Since n(r) also determines N by integration, it determines the
full Hamiltonian H and thence, implicitly, all properties
determined by H. Examples are the full N-particle ground state
wave function Ψ(r1,...,rN), the electrical polarizability, the nth
excitation energy, vibrational force constants, and potential
energy surfaces for chemical reactions.

With the help of this lemma, a minimal principle for the
energy as functional of n(r) can be derived.3 For given V(r)
one defines the following energy functional of n(r):

where

is a functional of n(r), since Ψ is.4 The minimal principle is
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n(r)f V(r) (unique) (1.3)

E
V(r)[n(r)] ≡ ∫V(r) n(r) dr + F[n(r)] (1.4)

F[n(r)] ≡ (Ψ[n(r)],(T+U)Ψ[n(r)]) (1.5)

E
V(r)[n(r)] g E

V(r)[n0(r)] ≡ E (1.6)
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where n0(r) and E are the density and energy of the ground
state. The equality in (1.6) holds only if n(r) ) n0(r).

By making simple approximations for F[n(r)], one can easily
rederive the Thomas-Fermi approximation and its refinements.
However, for most purposes a different approach has proved to
be more useful.5 We extract from F[n] its largest and
elementary contributions, by writting

where Ts[n(r)] is the kinetic energy of a noninteracting system
with density n(r) (in the appropriate Ṽ(r)), and the next term is
the classical expression for the interaction energy. The remain-
ing Exc, the so-called exchange correlation energy, is defined

by eq 1.7.6

If Exc is ignored, the physical content of the theory becomes
identical to that of the Hartree approximation. It is then no
surprise that the Euler-Lagrange equation associated with the
stationarity of EV[n] can be transformed into a new set of self-
consistent (so-called Kohn-Sham or KS) equations

which differ from the Hartree equations only by the inclusion
of the exchange correlation potential Vxc(r). The local equations
(1.8) must be solved self-consistently, like the Hartree equations,
calculating Vxc in each cycle from eq 1.8c, with an appropriate
approximation for Exc[n(r)] (see below). The extra computa-
tional work, compared to a Hartree calculation, is very minor.
However, we point out that, in spite of the appearance of simple,
single particle orbitals, the KS equations are in principle exact

provided that the exact Exc is used in (1.8c). In other words,
the only error in the theory is due to approximations of Exc.
The ground state energy is given by

where the ǫj and n are the self-consistent quantities.
The individual eigenfunctions and eigenvalues, æj and ǫj, of

the KS equations (1.8) have no strict physical significance, with
one exception: For isolated systems with V(∞) ) 0, the highest
eigenvalue, ǫN, controls the asymptotic decay of |æN|

2 and of
the total physical density n(r) and hence can be shown to be
the negative of the exact, many-body, ionization potential.

At the same time, all ǫj and æj are of great semiquantitative
value, much like Hartree-Fock energies and wave functions,
often more so, because they reflect also correlation effects, and
are consistent with the exact physical density, n(r).

To put this theory to practical use, we need good approxima-
tions for Exc[n], of which the simplest, and at the same time
surprisingly serviceable, is the local density approximation
(LDA):5

where exc(n) is the exchange-correlation energy per particle of
a uniform interacting electron gas of density n. This quantity
is known to a very high accuracy (∼0.1%). The LDA becomes
exact when the length scale l over which n(r) varies is large, in
the sense

where d and a0 are respectively the mean particle spacing
(≈n-1/3) and the hydrogen radius. However, for fairly well-
understood reasons, it also gives useful results for most physical
and chemical applications, in which (1.11) generally is not

satisfied. The KS orbitals in the LDA are usually very close
to Hartree-Fock orbitals.

A next level of approximations are the so-called generalized
gradient approximations

in which f(n,|∇n|) is a suitably chosen function of its two
variables. These and other approximations and illustrative
applications are discussed section 2.

The computing time in DFT, for a system of many atoms
with no geometric symmetries, grows roughly like Nat

2 or Nat
3.

This is much better than traditional methods, where computing
time grows as eRNat (R ≈ 1). As previously remarked, this makes
DFT attractive for many-atom systems; still, the present upper
bound is Nat ∼ 100-200, which excludes many interesting
systems (macromolecules, solutions, many glasses, etc.). It is
therefore significant that, in principle, DFT can be reformulated
so that computing time grows only linearly in Nat (so-called
O(N) methods). The practicality of these methods is currently
being explored.7

Although for simplicity we have limited our remarks to the
simplest class of electronic systems, DFT has, since its inception,
been applied to many other systems: spin-polarized ground
states, magnetic and electric susceptibilities, relativistic correc-
tions, finite temperature ensembles, excited states, superconduc-
tors, time-dependent phenomena, etc. However, so far its main
usefulness has been in applications to spin-unpolarized or
-polarized ground states. Much work remains to be done in
the other areas.

We have discussed DFT as a computational tool for the study
of electronic structure. However, it has also helped to illuminate
important chemical concepts. This is the subject of section 3.

2. Density Functional Computational Chemistry

Real progress in the application of Kohn-Sham theory to
chemistry was not realized until the early 1980s. There is
considerable older literature on atomic systems, but initial
molecular applications were clouded by numerical uncertainties.
The first applications of DFT to chemistry (late 1960s) utilized
scattered-wave or “muffin tin” numerical techniques adapted
from the solid state repertoire.8 These proved inadequate to
describe finite molecules. One-electron spectroscopic properties
could be usefully estimated, but potential energy curves and
accurate densities could not. Through the 1970s, various basis
set methodologies were combined with numerical integration
techniques to handle the nonanalytical exchange-correlation
problem, and by 1980 reliable computational technologies for
DFT chemistry were finally in place.9

With computational difficulties under control, assessments
of the theory itself in chemical applications were possible. The
old Xa model, a parametrized exchange-only DFT variant much
popularized in the scattered-wave era, proved erratic in its

F[n(r)] ) Ts[n(r)] +
1

2
∫

n(r) n(r′)
|r - r′| dr dr′ + Exc[n(r)] (1.7)
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Exc
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Exc
GGA

)∫f(n(r),|∇n(r)|) dr (1.12)
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predictions of molecular properties. Bond energies, in particular,
deviated from experiment by electronvolts in many cases and
showed no obvious overbinding or underbinding trend. Early
molecular tests of the local spin-density approximation (LSDA),
the spin-dependent generalization of eq 1.8, also revealed large
deviations from experiment.10 Later, a clear oVerbinding

tendency emerged. The O2 molecule, for example, is overbound
in the LSDA by an enormous 55 kcal/mol, with average
deviations of order 20-30 kcal/mol per bond. Nevertheless,
other important properties such as bond lengths, bond angles,
vibrational frequencies, charge moments, etc., tend to agree
surprisingly well with experiment11,12 in “ordinary” chemical
bonds (i.e., H bonds and van der Waals interactions excepted).
The LSDA is therefore a remarkably useful structural, though
not thermochemical, tool.

The severe overbinding character of the LSDA is disappoint-
ing. A clear trend such as this, however, suggests that
fundamental lessons and accompanying remedies are not far
away. Extension of the LSDA to include local spin-density
gradients is the next logical step. The lowest-order gradient
correction of exchange type

had been well-studied by the mid-1980s.13 It does not,
unfortunately, offer improved chemistry, though evidence of
this fact is sparse in the literature.14 As reported in 1986,
however,15 a simple modification of eq 2.1 yields excellent DFT
bond energies (rms error of only 0.3 eV or 7 kcal/mol) in first-
and second-row homonuclear diatomic tests. This modification
addressed the unacceptable asymptotic behavior of eq 2.1 far
from a finite system: namely its divergent functional derivative,
eq 1.8c. In the process, absolute atomic exchange energies
themselves were significantly improved.15

This path to improved DFT chemistry attracted the interest
of computational and theoretical researchers alike. Computa-
tional chemists found substantial applications in areas unreach-
able by traditional wave function methods (notably Ziegler in
organometallic chemistry16), and theoreticians were encouraged
by the promising practical dividends of exchange-correlation
functional development. Several alternative gradient-corrected
exchange and correlation functionals rapidly followed and are
now known collectively as generalized gradient approximations
(GGAs) as in eq 1.12.

The term GGA means, essentially, going beyond the lowest-
order gradient correction of eq 2.1. Indeed, the large gradient
limit,

where ø is the appropriate dimensionless measure of local
inhomogeneity, is nicely amenable to theoretical analysis in
finite systems. Large ø corresponds in coordinate space to
distances far from a finite system. There, the exchange energy
takes the simple asymptotic form

as the density itself becomes exponential. An exchange GGA
has been found17 that exactly reproduces this asymptotic
exchange energy behavior. We reproduce it below to display
what a typical GGA looks like (σ is a spin-label):

where

and

With one semiempirical fitted parameter, b ) 0.0042 au,
exchange energies of atomic systems are remarkably accurate.
This functional is effectively an interpolation formula between
the small- and large-ø limits of the exchange energy density.
Also noteworthy is the 1986 exchange GGA of Perdew.18 Based
on a parameter-free coordinate-space model of inhomogeneous
systems, it gives chemical results very similar to those of eq
2.4.

Correlation GGAs (that is, for “dynamical”, electron-gas-like
correlation) have also received considerable attention. The
chemical consequences of gradient corrections for correlation
are relatively small compared to their exchange counterparts,19

and we shall therefore limit our discussion of correlation GGAs
accordingly. The most popular dynamical correlation function-
als presently are those of Lee, Yang, and Parr20 (based on the
model of Colle and Salvetti21), Perdew 1986,22 and Perdew and
Wang 1991.23 The latter is a logical generalization of Perdew’s
parameter-free coordinate-space model for exchange18 and is
entirely free of empirical parameters as well. Of the many
possible exchange-correlation combinations, several are cur-
rently in use. As long as both are of the same class (i.e., LSDA,
GGA, or perhaps some future explicitly nonlocal variety), the
specific choice of exchange and correlation functional is much
less important than the differences between the LSDA and GGA
themselves.

To summarize, the LSDA generally gives good molecular
structures, vibrational frequencies, and charge densities11,12 in
strongly bound systems (i.e., H bonds and van der Waals
interactions excepted). It is not useful, however, for thermo-
chemistry. GGAs, on the other hand, yield good thermochem-
istry, with average errors of order 6 kcal/mol in standard
thermochemical tests.19 Their domain extends even to the
energetics and structures of hydrogen-bonded systems.24 It is
at the level of the weakest chemical interactions, namely van
der Waals interactions, that GGAs apparently fail.25 Also, both
the LSDA and the GGA leave much room for improvement in
predicting reaction barrier heights.26,27

We cannot end this overview of LDA and GGA chemistry
without mentioning the dramatic impact of Kohn-Sham theory
in the field of ab initio molecular dynamics. An elegant
suggestion by Car and Parinello28 in 1985, and related theoretical
and computational developments,29 have made large-scale
simulations of molecules and materials a reality. Ongoing
attempts to linearize the scaling of these methods promise even
greater things. Let us mention as well that DFT treatment of
excited states and multiplet structure has also progressed. The
early model of Ziegler, Rauk, and Baerends30 is now group
theoretically automated,31 and recent formal advancements32

offer additional scope for further work. DFT predictions of
electromagnetic properties are also under test,33 and much awaits
to be learned in this area.
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Nonlocality. Both the LSDA and the GGA are based on
localized model exchange-correlation holes. Only local density
information (or local density gradient information) is utilized
at each reference point. The fact that LSDA and GGA model
holes satisfy the same normalization constraints as “real” holes
accounts for much of their success. Their intrinsic locality
further implies that real exchange-correlation holes in molecular
systems are also relatively localized. This conclusion, though
largely true, is certainly not absolute. Special situations, such
as H2

+ at large separation, simply cannot be modeled by
localized holes. Even in ordinary chemical bonds, exchange-
correlation holes undoubtedly have a small nonlocal component.

Very recently, proposals to incorporate nonlocality into DFT
chemistry34 have spawned a new class of hybrid Hartree-Fock/
GGA theories with precision surpassing that of pure GGAs.
They are motivated by the following centrally important formula,
the adiabatic connection or coupling strength integration

formula35 for the exchange-correlation hole in Kohn-Sham
DFT:

where the hole generates Exc through the following double
integration:

Spin decomposition of these formulas is possible, but will not
concern us here.36 Equation 2.5 literally “connects” the Kohn-
Sham independent-particle reference system (λ ) 0) with the
real, fully interacting system (λ ) 1) through a coupling strength
parameter λ. The parameter λ smoothly turns on interelectronic
Coulomb repulsion while an appropriate one-body potential (also
λ dependent) holds the total electronic density fixed. Notice,

however, that hxc
λ (r,r′) has nonlocalized character at λ ) 0,

because the hole in this independent particle limit is the pure
and exact exchange hole of the Kohn-Sham Slater determinant
(i.e., no correlation whatsoever). This hole is poorly represented

by localized LSDA or GGA models in molecular bonds, and
hence the small-λ region of the coupling strength integration is
problematic.34,36

A simple but effective cure for the λ ) 0 problem is
replacement of the model GGA hole at λ ) 0 with the exact
hole, resulting in the following exchange-correlation expression:
34,36

The parameter a0 reflects the importance of nonlocality in the
real exchange-correlation hole. In current practice, it is fit to
experimental thermochemical data, taking values of 20% or
higher depending on the choice of correlation GGA. This kind
of exact-exchange mixing reduces average bond energy errors
from about 6 kcal/mol for pure GGAs to roughly 2 kcal/mol.
Improvements are particularly striking in nonhydride and
multiple bonds, where pure GGAs suffer overbinding errors as
high as 20 kcal/mol. Reaction barrier heights are also improved
by exact-exchange mixing,27 though a thorough study of this
important area remains to be undertaken.

In the past few years, modifications of well-established and
powerful Hartree-Fock programs to include density functional
computations12,37 have stimulated an explosion of interest in
DFT. All the features of Hartree-Fock technology, including
energy second derivatives, are now available for DFT applica-

tions in convenient and widely distributed software packages.
Critical assessment of popular functionals on a scale heretofore
unseen is thus under way in all areas of computational chemistry.
It is an exciting time for density functional theory. Furthermore,
these recent technical advances have beautifully facilitated the
testing and application of the exact-exchange mixing scheme
described above. A true marriage of density functional and
Hartree-Fock ideas and technologies has emerged, and a
potentially very beneficial cross-fertilization between DFT and
traditional wave function methods has begun.

3. Chemical Concepts

A great strength of the density functional language is its
appropriateness for defining and elucidating important universal
concepts of molecular structure and molecular reactivity. In
traditional quantum chemistry this has, of course, also been a
major goal, but it is tortuous to try to conceptualize how many-
body wave functions are related to structure and behavior. In
DFT not only is the electron density itself very easy to visualize,
but there is the big advantage that the electron number N has a
central place in the theory. After all, much of chemistry is about
the transfer of electrons from one place to another.

Consider an electronic ground state for a system of N

electrons moving in an external potential V(r), usually just the
potential due to the nuclei. Solution of the minimization
problem of eq 1.6 will give the electron density and energy.
The minimization in the first instance is constrained to be at
fixed N. However, we can enlarge the domain of the minimiza-
tion principle to include all N if we append the constraint
condition with a Lagrange multiplier, the value of which is to
be determined. So we have, as an important extension of eq
1.6,

where µ is the chemical potential of the system, a function of
N and a functional of V(r), N[n] ) ∫n(r) dr, and the subscript
V on E has been suppressed. One must imagine solving (3.1)
for every µ and then selecting the µ value which gives the correct
number of electrons for the system of interest.

From the fundamental theory of Lagrange multipliers, µ
measures how sensitive the extremum E is to a change in N,

Here E is assumed to be a smooth function of N, an assumption
to which we return at the end of this section.38 This result
contains considerable chemistry µ ) µ[N,V] characterizes the
escaping tendency of electrons from the equilibrium system.39

Systems (e.g., atoms or molecules) coming together must attain
at equilibrium a common chemical potential. This chemical
potential is none other than the negative of the electronegativity
concept of classical structural chemistry. For, the finite-
difference approximation to µ for a system with ionization
potential I and electron affinity A is

and one half of I + A is just the original Mulliken formula for
electronegativity. The idea that electronegativity is a chemical
potential originates with Gyftopoulos and Hatsopoulos.40

The chemical potential µ of the DFT variational principle of
eq 3.1 is a small one-electron energy much less than the total
electronic energy E which enters the variational principle of
traditional quantum chemistry. DFT thus promises relief from

hxc(r,r′) )∫0

1
hxc

λ (r,r′) dλ (2.5)

Exc )
1

2
∫∫

n(r)

r12

hxc(r,r′) dr dr′ (2.6)

Exc ) Exc
DFT

+ a0(Ex
Exact

- Ex
DFT) (2.7)

δ{ E[n(r)] - µ[N[n(r)]} ) 0 (3.1)

µ ) (∂E/∂N)
V

(3.2)

µ ) -
I + A

2
(3.3)
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the old curse of needing to difference large numbers in making
chemical predictions.

Long ago, Sanderson postulated that there was a principle in
chemistry that electronegativity tends to equalize. Electrone-
gativity being synonymous with chemical potential, the cor-
rectness of Sanderson’s principle immediately follows from the
fact that the chemical potential of DFT is a property of an
equilibrium state. The chemical potential (electronegativity) is
expected to be sensitive to the external potential and may not
be necessarily easy to calculate, but it is a concept securely
rooted in DFT. Semiempirical electronegativity equalization
methods now are widely used.41

E versus N plots are not straight lines but are generally convex
upward. Their curvatures define another property of substantial
importance, the hardness.42

The finite-difference approximation for this is

The inverse of hardness is softness.43

Accordingly, one may write, if only N changes,

and one can verify that to second order the number of electrons
transferred between A and B induced by a difference in chemical
potentials between A and B is given by

where µA
0 ) µA(NA

0), etc. The hardness can be thought of as
a resistance to charge transfer. The softness measures ease of
transfer; softness is associated with high polarizability.44

The hardness and softness defined in eqs 3.4 and 3.6 are the
“hardness” and “softness” that enter two well-known principles
in chemistry: the HSAB principle and the maximum hardness
principle. The hard and soft acids and bases principle states
that hard acids “prefer” hard bases and soft acids prefer soft
bases, thermodynamically and kinetically.45 The maximum
hardness principle asserts that molecular systems usually tend
to states of high hardness.46 Though it is not easy to deduce
these principles rigorously or completely, they are consequences
of eq 1.6 and/or its generalization to states at finite temperature.47

From (1.6) energy decreases in going from nonequilibrium to
equilibrium. From its finite-temperature extension, the grand
potential decreases. The problem with cleanly deriving the
HSAB principle is to simply but properly model the system of
approaching entities.48 The problem with proving the maximum
hardness principle is to find the right constraints to guarantee
its validity.49 One strategy for proving the HSAB principle is
to first establish the maximum hardness principle. The constant
chemical potential constraint often is pertinent for chemical
problems.50 For the latest on these various subtle matters, one
may consult the contemporary literature.51,52

It can be seen that the finite-difference expression for
hardness, eq 3.5, is no more no less than the band gap that
plays such an important role in solid state physics and solid
state chemistrysthe difference between the HOMO and LUMO
orbital energies in a simple orbital theory. When the gap is

large (other things being equal), one expects high stability and
low reactivity. When it is small, one expects low stability and
high reactivity. These predictions are well borne out in the good
correlation that exists between HOMO-LUMO gap and the
organic chemists’ concept of aromaticity.

Now let us turn to changes in N and V. The most general
differential energy change will be given by

where the second term follows from conventional first-order
perturbation theory. Note how apt this equation is for chemistry,
where the main action so often is addition or subtraction of
electrons. There is no reason to restrict eq 3.9 to an isolated
system. It can be applied to atoms or weakly coupled functional
groups in a molecule, which are open systems53 to which a
generalized density functional theory will apply. (Compare the
great Gibbs extension of closed-system thermodynamics to
open-system thermodynamics.)

Second-order energy changes will be covered by integration
of eq 3.9 provided that we can master the N and V dependencies
of the quantities µ and V(r). The first needed differential
coefficient is the hardness η of eq 34, already discussed. The
second is a quantity long familiar and much discussed in
chemical physics, the linear response function (polarizability
kernel)

Finally, we have the Fukui function54

This quantity integrates to unity. Note the use here of Maxwell
reciprocal relations. Combining these results gives the funda-
mental equation

in which all quantities have the greatest chemical and physical
interest.

The name Fukui function is appropriate for f(r) because it
clearly is a chemical reactivity index in the sense of “frontier
orbital” theories of reactivity. The HOMO and LUMO orbital
densities are known to be decisive for determining chemical
reactivity: high or low frontier density at a molecular site often
confers high chemical reactivity to that site. This, in essence,
is what the Fukui function is measuring. For the finite-
difference formula for f(r), when electrons are added to a species
S, will be n(S-) - n(S) ) nLUMO, when electrons are subtracted
n(S) - n(S+) ) nHOMO. So, clearly, f(r) is a proper chemical
reactivity measure. A difference between “right derivative” and
“left derivative” is predicted in DFT.55 A variational principle
for direct determination of f(r) and band gap is known.56

Local softness is an important quantity which combines the
site reactivity index f(r) with the global softness measure S:

There is an interesting fluctuation formula for this quantity in
finite-temperature DFT, where the averages are over all
members of a grand ensemble at temperature T.43 This formula
and other similar DFT fluctuation formulas57,58 may provide a
basis for fluctuation theories of catalysis. s(r) is measurable
using scanning tunnel microscopy. For an infinite system, s(r)
is approximately the local density of states at the Fermi level
and S the total density of states at the Fermi level.43,60

η ) (∂2
E/∂N

2)
V
) (∂µ/∂N)

V
(3.4)

η ) I - A g 0 (3.5)

S ) (∂N/∂µ)
V

(3.6)

E ) E° + µ(N - N°) + 1/2η(N - N°)2
+ ... (3.7)

∆N )
|µB

0
- µA

0
|

ηB
0
+ ηA

0
(3.8)

dE ) µ dN +∫n(r) dV(r) dr (3.9)

[δn(r)/δV(r′)]N ) [δn(r′)/δV(r)]N (3.10)

f(r) ) [∂n(r)/∂N]
V
) [δµ/δV(r)]N (3.11)

dµ ) ηdN +∫f(r) dV(r) dr (3.12)

s(r) ) [∂n(r)/∂µ]N ) f(r)S (3.13)
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There is no unique simple inverse of s(r). However, there
can be usefully defined two-variable hardness and softness
kernels, from which can be generated local softness, global
softness, Fukui function, a local hardness, and global hardness.61

Defining u(r) ) V(r) - µ, we have the softness kernel

s(rr′) ≡ -δn(r)/δu(r′) (3.14)

and the hardness kernel

η(r,r′) ) -δu(r)/δn(r′) - δ2
F/δn(r) δn(r′) (3.15)

These satisfy

∫s(r,r′) η(r′,r′′ ) dr′ ) δ(r-r′′ ) (3.16)

Then we find

s(r) )∫s(r,r′) dr′ (3.17)

and if we define62

η(r) )∫f(r) s(r,r′) dr′ (3.18)

we obtain

∫s(r) η(r) dr ) 1 (3.19)

and

S )∫s(r) dr (3.20)

and

η )∫∫f(r) η(r,r′) f(r′) dr dr′ (3.21)

We also find

η(r) ) η (3.22)

which would be very good if it were not for the fact that it
appears to eliminate η(r) as a candidate for a physically
meaningful local hardness. An alternative definition has recently
been suggested.58

We have here put emphasis on the effects of N change and
V change on the electron density. There also are shifts in the
nuclear positions, of course, which ultimately must be incor-
porated in a complete theory. Very recently, there has been a
vigorous start in this direction.60,63 Modeling of the hardness
kernel of eq 3.15 has been an active field for some time.64

The Problem of Discontinuities in N. Historically, DFT
had its antecedent in the so-called “statistical” theory of Thomas,
Fermi, Dirac, and Slater. Also, the first good approximate
functionals in DFT, the family of LDA functionals, came out
of the “uniform gas” model, and modern improved functionals
largely arose from modifications of LDA (as described in section
2). It might seem that large N would be the condition for DFT
to work well. This is not correct, however; DFT works just
finesat least in principleseven from systems with as few as
one or two electrons. The reason is that DFT is a proper
transcription of the Schrodinger equation for any number of
electrons.

The total number of electrons in any particular system we
are interested in is an integersthe variable N possesses only
integral values. Does this cause a problem? Certainly not when
we are calculating on an actual problem of interest. We need
only have good enough functionals for a given N to calculate
at that N. For moving from one N to another (which, as we
have emphasized, is highly relevant for chemical processes),
no error is introduced if we arrange to connect all the correct
integral N functionals by applying suitable interpolation meth-
ods, to give functionals that are continuous in N. The

interpolations can, but need not, use finite-difference methods,
producing finite-difference formulas for properties of interest
for systems of integral N.65 In this way, we can imagine finite-
difference formulas for all derivatives and functional derivatives
that enter the formal theory in which N is treated as a continuous
variable. The literature on the band gap (HOMO-LUMO gap)
well illustrates the subtleties in these matters.66,67

There is a quite different situation in which N enters as a
continuous, nonintegral variable. Chemists perforce must be
much concerned with atoms or functional groups in molecules,
that is, with what are subsystems of a system with an integral
number of electrons. Consider, for example, the hydrogen atom
in the series HH, HF, HCl, HI, HBr. It varies, essentially
continuously, from one molecule to the next, and it bears exactly
one electron only in the first. If one accepts Bader’s definition
of the atom,53 its charge distribution is precisely calculable, for
example by DFT, and it constitutes a subsystem which in general
has a nonintegral number of electrons. The same is true for an
early DFT definition of an atom in a molecule.39 For such
subsystems there are no discontinuities in N, and the conceptual
ideas we have described in this section ought to apply.
Neighboring atoms in a molecule are strongly interacting,
however, and a correct detailed theory of their interaction is
very difficult to achieve.68,69

4. Concluding Remarks

In addition to the two reference texts which have been
mentioned,1,2 there have been published many reviews and
edited volumes on DFT. We note in particular the book by
Norman March70 and a volume in the NATO ASI series.71

Thousands of papers have appeared in this subject area, and
interest in it is accelerating. Furthermore, not only is the
methodology for calculation steadily improving, but the content
of the theory is still evolving. Mathematical problems remain,
and the precise directions in which the subject will be moving
are not clear. One should remember that conventional quantum-
chemical methods have taken 70 years to develop. The present
account is thus neither definitive nor complete.

The calculational promise of DFT is, to a certain degree,
already achieved. As described in section 2, current methods
of calculation are of an accuracy that is approaching what
quantum chemists call “chemical accuracy”: a few percent of
a chemical binding energy.

On the more purely theoretical side of the subject, we briefly
note two important contemporary lines of investigation. First,
much can be learned from examining the scaling properties of
the various functionals.72 Second, one now knows how to
efficiently determine very accurate exchange-correlation po-

tentials, Vxc(r), when an accurate electron density is known, and
this furnishes data and discipline to the search for better
approximate exchange-correlation potentials and energies.73,74

Continued research is needed on the problem of finding the
various unknown exchange-correlation functionals. Much of
the progress to date is rooted in the original LDA paper,5 where
one builds on what is known about the uniform electron gas.
But a different route is possible: to take advantage of the
considerable knowledge of the density-matrix transcription of
wave function theory. Here one starts from a proper description
of the electron-electron repulsion when electrons are close
together and the empirical fact that the Hartree-Fock or Kohn-
Sham electron density is nearly correct. Hopefully, work on
improving functionals will eventually lead to a procedure to
improve DFT calculations systematically, from one approxima-
tion to the next.
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Finally, in our opinion the vocabulary of DFT ought to, indeed
will, more and more permeate the description of electronic
structure of atoms, molecules, clusters, surfaces, and solids. DFT
is a convenient and universal language for electronic structure
theory, which substantially helps unify organic chemistry,
inorganic chemistry, surface chemistry, and materials science.
It helps unify chemistry and physics.
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