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Density functional theory of freezing for hexagonal symmetry: Comparison 

with Landau theory 

Brian B. Laird, John D. McCoy, and A. D. J. Haymet 
Department of Chemistry, University of California, Berkeley, California 94720 

(Received 7 August 1987; accepted 10 December 1987) 

Density functional theory, studied recently by us [J. Chem. Phys. 87, 5449 (1987)] is used to 

study the freezing of hard disks and hard spheres into crystals with hexagonal symmetry. Two 

different numerical techniques are used, namely a Gaussian approximation to the crystal 

density and a more general Fourier expansion of the crystal density. The results from these 

methods are compared with each other, more approximate versions of density functional 

theory, and computer simulations. In addition, we compare density functional theory with 

Landau theories of first order transitions, in which the free energy is expanded as a power 

series, usually in just one order parameter. We find that traditional Landau theory has little 

validity when applied to the freezing transition. 

I. INTRODUCTION 

Classical density functional methods 1-6 have described 

successfully the freezing of monatomic, spherically symmet

ric systems,7-9 and more recently the freezing of mix

tures,IO·11 molecular liquids which have orientational de
grees of freedom, 12.13 and even water. 14 

In a previous paper,8 hereafter denoted paper I, the pres

ent authors examined in detail two computational tech

niques for implementing the density functional theory of 

freezing. One method assumes that the crystal phase density 

can be approximated by Gaussians. The other, more general 

method expands the crystal density as a sum of Fourier com

ponents which are allowed to vary independently, subject 

only to the symmetry constraints of the crystal lattice under 

investigation. In paper I we corrected inconsistencies in ear

lier versions of the Fourier expansion method, and examined 

carefully the freezing of the hard sphere and Lennard-Jones 

liquids into face-centered-cubic (fcc) crystals using both the 

Gaussian approximation and the corrected Fourier expan

sion method. Both methods predict similar thermodynamic 

properties for the freezing transition, but the Fourier meth

od results exhibit significant crystal density anharmonicities 

and anisotropies which are excluded a priori in the Gaussian 

approximation. 

In this paper we compare the density functional theory 

of freezing with Landau theory, which is extremely impor

tant in the theory of second order phase transitions, but 

which turns out not to be a useful theory of first order transi

tions such as freezing. In addition, we extend the analysis of 

Paper I to the freezing of hard particles into structures with 

hexagonal symmetry, in both two dimensions (d = 2) to the 

triangular lattice, and in three dimensions (d = 3) to the 
hexagonally close-packed (hcp) lattice. The freezing of hard 

spheres into the hcp structure has been examined previously, 
by YuSSOUffl5 and by Igloil6 using the Fourier method, and 

by Baus and Colot l7 using a variant of the Gaussian approxi

mation. However, according to paper I, both Fourier meth

od studies used an inconsistent version of the Fourier expan

sion, and too few order parameters. In addition, Yussouffl5 

used an unnecessarily complicated and, from our analysis, 

incorrect representation of the hcp order parameters. Ra
makrishnan,18 Tarazona and co-workers I9,2o and Colot and 

Baus21 have all examined the freezing of hard disks using 

approximate versions of the density functional theory, and 

we compare our predictions with their calculations and ear
lier computer simulations.22,23 

In Sec. II we summarize the freezing formalism for both 

Gaussian and Fourier methods. In Sec. III we use simple 

mathematical approximations to derive Landau theory from 

density functional theory, and use the Landau free energy to 

try to predict the relative stability of crystal phases. Landau 

expansions have become quite popular recently for studies of 

first order transitions, and a comment on their inconsisten

cies and pathologies is in order. In Secs. IV and V we collect 

our predictions for two and three dimensional hard particles, 

and compare them with other methods, and collect our con

clusions in Sec. VI. Since the hcp Fourier freezing formalism 

is more difficult to implement, and seems to have confused 

some workers, we describe complete technical details in the 

Appendix. 

II. DENSITY FUNCTIONAL THEORY OF FREEZING 

Consider a system of classical particles with tempera

ture T, volume V, chemical potential/L, and interaction po

tential U(r l ,r2, ... ). The goal of density functional theory 

is to construct a free energy functional from which the struc
tural and thermodynamic properties of a spatially inhomo

geneous phase (in this case, the crystal) can be determined. 

This could be accomplished in a variety of ways. Following 

paper I, we choose to expand the functional about a well 

characterized reference state, in this case the equilibrium 

uniform liquid, using thermodynamic perturbation theory. 

The details of how to do this in the grand canonical ensemble 

are given in paper I, and are recapitulated here. 
The equilibrium density per) of the inhomogeneous 

(crystal) phase is the density which minimizes the func

tional 
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apai[p(r) ] 

= _1_ f dr({p(rl)ln[p(rl)/PL] 
PL V 

- [p(rl) -pd} 

--1-fdrldr2c(lrl-r2I)[p(rl) -pd 
2pL V 

X[p(r2)-pd, (2.1) 

where p - 1= kT, P L is the density of the coexisting, uniform 

bulk liquid phase, and c(r) is the Ornstein-Zernike direct cor

relation function of the bulk liquid. Note that the dependence 

of the theory on the interaction potential U is contained impli

citly in c(r), and there is not necessarily a restriction to pair

wise additive forces. The value of the functional !::$(ij at the 

minimizing density per) is 

POcrystal - PO liquid • A a- [ ( )] = mm ~{J) p r , 
NL p(r) 

(2.2) 

where 0 is the grand thermodynamic potential and N L is the 

average number of liquid particles. 

The central approximation of the theory is that the corre

lation functions of the crystal are expanded as functional Tay

lor series about the reference liquid, and truncated after second 

order. The effect of these approximations is discussed in paper I 

and by Haymet and Oxtoby. 24 Various versions of density func

tional theory differ principally in the choice of reference liquid. 

Our choice avoids consideration of hypothetical liquids with 

densities intermediate between equilibrium liquid and crystal, 

and also extra terms involving the chemical potential differ

ence. To a given order in perturbation theory, the equilibrium 

freezing transition is located when the pressures (as well as the 

temperatures and chemical potentials) of the crystal and liquid 

are equal, that is, 6/3m = O. 

To date, the functional (2.1) has been minimized by two 

different methods. In one method, the crystal density is as

sumed to be Gaussian and expanded in the form, 

per) = (7T~)-3/2)' exp[ -IRn _rI2/~], (2.3) 
~} 

where the vectors {Rn} are the real space crystal lattice vectors 

and E is a measure of the width of the Gaussian peaks. If the 

Gaussian peaks are assumed to be nonoverlapping, this choice 

of density25leads to a simple evaluation of the p In P term in Eq. 

(2.1). The integral over c(r), which is thepc(r)p term in Eq. 

(2.1), is evaluated most easily by converting the real space 

integration into a Fourier sum over reciprocal lattice vectors 

(RL V s) {kn }. The Fourier transform of the direct correlation 

function c(k) is related to the experimentally measured struc

ture factor S(k) via, 

c(lkl) =pfdrelk.rc(r) = 1 __ 1_. (2.4) 
S(k) 

The functional (2.1) for the special case of Gaussian crystal 

density may then be written 

6/3m = 1 - (1 + 7]>[ ~ + InpL + 11n( 7T~)] 

-! 7]2C(0) -! )' c( Ikn I )p2( Ikn I) 
2 2 tt'l 

-i 7]3C(3) (0,0) , (2.5) 

where 'I] is the fractional density change on freezing 

'I] = (Ps - PL )/PL , (2.6) 

andpLPn (kn) is the Fourier component of the crystal density 

corresponding to the (nonzero) RLV kn' 

per) =PL [1 + 7] + J;p(kn )e1kn"r] . (2.7) 

For the Gaussian density (2.3), this component is 

PG(kn ) = (1 +7])exp( -lknI2~/4). (2.8) 

The last term in Eq. (2.5) is the zero wave vector contribution 

to the third order term in the perturbation expansion of !:J.f3(;j, 

not explicitly shown in Eq. (2.1). This term involves the three 

particle direct correlation C 3(rl> r 2 , r3 ), of which the zero 

wavevector component is given by 

2(0,0) = pi V-I Iv drl dr2 dr3 C\rl,r2,r3) 

= PL ac(o) - c(O) . 

apL 
(2.9) 

The reasons for including this term are discussed in paper I. 

At a fixed liquid density and in the Gaussian approxima

tion, Eq. (2.5) is a function of two parameters only, the Gaus

sian width E and the fractional density change '1]. Minimization 

with respect to these two quantities is straightforward. 

The second method uses the Fourier expansion (2.7) but 

allows each nonsymmetry related Fourier component to vary 

independently. This greater generality enables this method to 

seek possible anharmonicities and anisotropies in the crystal 

density. As discussed in paper I, in the absence of information 

about the correlation functions for point defects such as inter

stitials and vacancies, it is reasonable to assume that the crystal 

( of whatever symmetry) is "perfect" in the sense that there is 

exactly one particle per lattice site, 

i drl p(rl) - Nt> = 0, (2.10) 

where Nt> is the number of atoms per unit cell of volume A.. 
Minimizing Eq. (2.1) subject to the constraint (2.10) 

yields, as shown in paper I, 

In[p(rl)/pd =,1 + Iv dr2c(lrl -r21)[p(r2) -pd ' 

(2.11 ) 

where A is the Lagrange multiplier which enforces the con

straint (2.10). Inserting the Fourier decomposition (2.7), we 

obtain a set of coupled nonlinear equations for the order pa

rameters and the Lagrange multiplier, 

p(kj ) + ~j.o = f ~ e-
lkj

'
r 

exp{A +c(O)'I] 

+ ~ C(3) (0,0)7]2 

Equation (2.12) is solved together with the constraint equation 

PL (1 + 77) = Nt>/A. (2.13) 
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to yield the crystal density. In principle, the sum in the inte

grand ofEq. (2.12) is over an infinite set ofRLVs, but this sum 

is eventually self-truncating because the coefficients e(kn ) tend 

to zero for large amplitude wave vectors. Misleading results are 

obtained if too few vectors are retained in this sum.8 

At the minimum value, the value of the functional is the 

grand thermodynamic potential difference, 

~min = [c(O) - 1]1/ + He(O) + e(3) (0,0)] 1/2 

+ ~e3(0,O)1/3 

+ ~ }' e( Ikn I ),u2(kn ) + A( 1 + 1/). (2.14) 
2t.O 

In this form Af3iij min is minimized with respect to the cell vol

ume fl., to give the perfect crystal minimum of the functional. 

Using either method, the value of the liquid density is varied 

until the difference in grand potential between the crystal and 

liquid is zero. This means that the pressures of the two phases 

are equal, and since the temperatures and chemical potentials 

of the two phases are equal by construction, this identifies the 

freezing point. These theories are applied to hard particles in 

two and three dimensions in Sees. IV and V below. 

III. COMPARISON WITH LANDAU THEORY 

The simplest theories of phase transitions are those based 

on the free energy expansion introduced by LandaU.26 Within 

this approximation, a set of order parameters {tPn} are chosen 

and the free energy is expanded in a polynomial series about the 

transition point, 

00 

F= L L Am(al,··.,an)tP~'tP~2···tP:n, (3.1) 
m= 1 Q. +a2 '" +q,=m 

where F is the free energy relative to the disordered phase in 

which the order parameters vanish. Equation (3.1) is then 

truncated at low order, typically m = 4 or m = 6, and the 

physics determined by minimizing the resulting expression for 

the free energy. 

These th~ries have been extremely successful for second 

order transitions, both in meanfield theory and as the starting 

point for renormalization group analysis, because often the 

higher order terms in the expansion (3.1) can be shown to be 

"irrelevant" in the formal sense.27,28 

It is a much more risky proposition to use this expansion 

for first order transitions such as freezing. Often the choice of 

order parameters deemed to be relevant (in any sense) is moti

vated by convenience rather than physical reality. Usually the 

density change on freezing is completely ignored, although it 

often dominates the physics of first order phase transitions. 

Furthermore, we show here that the higher order terms in the 

expansion (3.1) are just as large as, say the m = 4 term, and 

omitting them leads to qualitatively incorrect physics. 

In an important paper, Alexander and McTague29 used a 

Landau free energy, with the fourth order term approximated 

by the square of the second order term, to study the freezing 

transition. They concluded that for systems which have small 

density changes on freezing, and small latent heats, freezing to 

a bee phase is favored over fcc. Their argument, which we 

claim is incorrect, both quantitatively and qualitatively, may be 

summarized as follows. Let the free energy of the inhomogen

eous phase relative to the bulk liquid be given by 

F=F2 +F3 +F4 +"', (3.2) 

where Fn is the nth order term in the Landau expansion, and 

the order parameters are the Fourier components of the crystal 

density, just as in See. II above. The quadratic term has the 

form 

F2 = L A2(k)AP-k , (3.3) 
k 

where A (k) depends only on the magnitude of the wave vector 

since the liquid is isotropic. Alexander and McTague argue 

that as the transition is approached, A2 (k) has a minimum at 

some wave vector Ikl = q, and that at the freezing point it 

becomes favorable to form a crystal with reciprocal lattice vec

tors of this magnitude. Neglecting all other Fourier compo

nents, they assume that the order parameter 

P~ = }' P~ (3.4) 
Ikl=q 

dominates the transition, and proceed to evaluate the possible 

third order terms which can be constructed from this order 

parameter. The third order term has the form 

F3 = A 3 (q) Ik# q Ik~ q Ik~ q c5(k l + k2 + k3 )A,Pk,Pk3 ' 

(3.5) 

where the c5 function constrains the three RL Vs to form an 

equilateral triangle of side length q, as required by the invar

iance properties of F3 • Thus, if one identifies q as the amplitude 

of the nearest neighbor RLVs in a crystal, only certain lattice 

symmetries (such as bee, but not fcc) have nonzero third order 

contributions to the free energy. 

The simplest such symmetry is six vectors which form a 

hexagon. This is the first RL V set for the d = 2 triangular 

lattice as well as for d = 3 hexagonal lattices such as hcp. The 

next such symmetry is 12 vectors forming an octahedron, 

which is the first RL V set of the bee real space structure. The 

only other case is 30 vectors forming an icosahedron, which of 

course is not a subset of any periodic lattice but which has 
obvious appeal for the study of icosahedral quasicrystals.30,31 

Simple geometric analysis shows that the third order coeffi

cient is most negative for the octahedron case, leading Alex

ander and McTague to conclude that the bee structure is fa

vored uniquely by the third order term. 

Inspired by Alexander and McTague,29 a number of auth

ors have used a similar analysis to study the stability of quasi

crystals in single30 and multicomponenf l systems. Klein and 

Leyvraz32 have studied nucleation near the meanfield spinodal 

line, and Shih et al.33 have constructed a Landau theory of the 

bee crystal-liquid interface, studied earlier with density func

tional theory by Oxtoby and Haymet. 34,35 Despite the many 

approximations detailed below, some authors have tried to 

claim a generality of results from Landau theory, similar to 

second order phase transitions. We show explicitly that this is 

incorrect. 

We attempt to summarize here the problems with the tra

ditional Landau analysis of first order transitions. Alexander 

and McTague want their analysis to be valid for transitions 

where the first-order character is "not too pronounced". This is 
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the only possible justification for neglecting the zero-wave

vector-order parameter, the fractional density change on freez

ing, yet even this is incorrect. Even for alkali metals this term 

makes a large contribution to the properties of the transition. In 

the incompressible limit,36 the fractional density change does 

vanish but the zero-wave-vector coefficient c(O) tends to nega

tive infinity in such a way that the product 1]c(O) is finite, and 

this term contributes to the free energy. 

The Landau analysis would also predict that the hcp struc

ture is much more stable than the fcc structure, since its RL V s 

contribute to a third order term. This is obviously false, since 

for simple substances such as the inert elements, the fcc and hcp 

structure are known to be separated by tiny free energy differ

ences. For hard spheres there is no significant difference in free 

energy according to full density functional theory, as shown in 

Sec. V. 

The appeal of the Alexander-McTague approach is that it 

reduces the seemingly unmanageable dependence of the free 

energy upon all the Fourier components of the single-particle 

density to a dependence upon a single component. Indeed, 

when the freezing transition is investigated experimentally, 

only a single Fourier component of the density PK need be 

observed in order to locate the transition point. From the 

standpoint of density functional theory, it is possible to reduce 

the free energy functional C 2.1 ) to a function of any givenp K by 

partial minimization with respect to all other Fourier compo

nents. However, because the other Fourier components playa 

great role in determining the form of this single parameter free 

energy, the shape of the resultant functional cannot be predict

ed on the basis of the symmetry of the given P K alone, as is 

assumed by Alexander and McTague. It is this assumption 

(unjustified, in our opinion) which is removed by density func

tional theory. The reciprocal lattice is not made of just nearest 

neighbor RLVs, but an interlocking network ofRLVs which 

obey the symmetry constraints of the crystal. Some Fourier 

components of the crystal density lower the free energy with 

respect to the uniform liquid, but others raise it, and the actual 

transition represents a delicate balance between these compet

ing effects. In other words, some Fourier components which 

are necessary to form the crystal actually cost free energy, but 

this is compensated by other Fourier components which lower 

the free energy. Usually the zero wave vector component low

ers the free energy, but in some substances such as water l4 

which expand on freezing, it disfavors the crystal, and the 

network of nonzero vectors must compensate for this. 

More explicitly, one can calculate from first principles the 

coefficients in the Landau expansion, and show that the coeffi

cients in the quadratic term are comparable for many wave 

vectors. Expanding the crystal density as 

per) =PL(1 +1])[1 + ~'tPkelk.r], (3.6) 

where the prime indicates that only nonzero vectors are includ

ed in the sum, we may expand the functional [Eq. (2.1)] to 

quadratic order to obtain 

1 
t:.{3iiJ = 2, [1 - C(0)]1]2 

1 
+- L' n j [1-cClkj l)]tP:+ .. ·, (3.7) 

2 j 

where i labels a set of symmetry related RLVs and nj is the 

number of elements in RL V set i. Notice that the Fourier ex

pansion (3.6) differs from expansion (2.7) in that the order 

parameters are scaled by the solid density rather than the liquid 

density. This change greatly simplifies the Landau expansion of 

Eq. (2.1). For hard spheres near the freezing point (PL 

= 0.95), the quadratic coefficients for the first five RL V sets of 

a hypothetical bee hard sphere crystal are 

A 2 (OOO) =![ 1 - c(O)] = 31, 

A 2 (11O) = 6[ 1 - c(k l )] = 2.46 , 

A2(200) = 3[ 1 - c(k2 )] = 5.01 , 

A 2 (211) = 12[ 1 - c(k3 )] = 8.52, 

A2 (220) = 6[ 1 - c(k4 )] = 6.05, 

(3.8) 

where A 2 (hkl) is the quadratic coefficient corresponding to the 

RL V set containing the RL V (hkl). 

In fact, Landau theory with just one order parameter is 

unable to predict freezing at all! Expanding the functional 

(2.1) in terms of the fractional density change 1] and the order 

parameter for the first nonzero RLV 1,61 gives 

I 
~(1],tP) = 2, [I - c(O)] 1]2 -1] + (1 + 1])ln(1 + 1]) 

-! (1 + 1])2c(k l )!(2)t,6i 
2 

+ (1 + 1]) f (- !)n!(n) tP~, (3.9) 

n=2 n - n 

where the function! (n) is defined as the number of different n

gons which can be formed from members of the first RL V set. 

The values of! (n) for n equals two to six are displayed in Table 

I for both the bee (1,61 = 1,6110) and fcc (1,61 = 1,6111) cases. The 

terms involving 1] can be further expanded as 

00 ( I )n 
-1] + (1 + 1])ln(1 + 1]) = L ; 1]". (3.10) 

n=2 n -n 

For the two-order parameter theory, the bee expansion (fourth 

order in both order parameters) yields only the liquid mini
mum unless the coefficient c(k l ) is allowed to assume a com

pletely unphysical value c(kl ) > 14/15 = 0.933, which corre

sponds to a liquid structure factor S(k l ) > 15. At this 

unphysical minimum the fractional density change vanishes, 

1] = O. There is no change in this result even if the 1,6110 expan

sion is taken to sixth order and the 1] expansion is taken to 

infinite order. For the fcc expansion there is only the liquid 

minimum, for any values of the coefficients c(O) and c(k l ), 

and this remains true even if all higher order terms in both 

order parameters are included. 

We conclude that analysis of freezing transition must in

clude all relevant order parameters. Fortunately there is at least 

one way to do this, as shown in Sec. II, and there is absolutely 

no need to apply unnecessary mathematical approximations, 

such as expanding the logarithms in Eq. (2.1) to obtain a pow

er series, when the full functional is tractable. We note further 

that some analyses which appeal to Landau theory confuse the 

grand functional (2.1) with the canonical (Helmholtz) free 

energy which always contains linear terms in 1]. There is little 

point in correcting these problems since theories which rely on 

polynomial expansions have little validity, even qualitatively. 
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IV. FREEZING OF HARD DISKS 

We have applied the Gaussian and Fourier space methods 

of freezing to the hard disk system despite the absence of a 

"true" two-dimensional crystal. The equations used by the two 

methods in two dimensions are essentially the same as used in 

three dimensions and will not be reproduced here. In this pa

per, we are concerned only with hard particles, hard disks in 

this section and hard spheres in the next. The interaction poten

tial for these systems is given by 

u(r) = too, r< 1, (4.1) 
0, r>1 

where the particle diameter u has been used as the length scale 

both here and through out this paper. The liquid direct correla

tion function, which is the principal input to the calculation, 

has been obtained both from an ansatz developed by Leuth

eussei37 and from an ansatz developed by Colot and Baus.21 

Both ansatzes are developed to fit solutions of the Ornstein

Zernike equation with aPercus-Yevick closure. Figure 1 com

pares the deviations of the two approximate expressions, evalu

ated at k = 0, from the exact solution as given by Lado.38 It is 

worth restating that in even dimensions the Percus-Yevick 

equation of hard particles has not been solved analytically. 

While both ansatzes behave well at low to moderate densities, 

the Colot-Baus c(k) is superior at solidlike densities. 

In two dimensions (d = 2), we considered two lattice 

types: the square and the triangular. For the square lattice, the 

unit real space vectors are 

a1 =di 

and 

a2 =dj; 

and, for the triangular case: 

a1 =di 

and 

~ = - (d 12)i + (..j3d 12)j, 

(4.2) 

(4.3) 

where i and j are the Cartesian unit vectors in the orthogonal x 

and y directions, respectively. The average nearest neighbor 

separation is given by d. A crystal is said to be perfect if the 

t\I 

o 
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o ......., 
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FIG. 1. The deviation of the zero wave vector hard disk direct correlation func

tion c( k = 0) for the ansatz of Colot and BallS (Ref. 17) (circles) and for the 

ansatzofLeutheusser (Ref. 37) (squares) from the exact (numerical) solution 

of the Percus-Yevick equation by Lado (Ref. 38), as a function of liquid den

sity. 

density is constrained so that the number of particles is equal to 

the number of particle sites; otherwise, the crystal is said to be 

"imperfect". The degree to which a crystal is imperfect can be 

indicated by the quantity A which is defined as the number of 

particles divided by the number of particle sites. The Suther

land-Lindemann39 ratio L is defined to be the average root

mean-square deviation of a crystal particle from its average 

equilibrium position divided by the nearest neighbor distance, 

d. 

We were unable to find solutions for the square lattice over 

a wide range of density using the Gaussian method. This indi

cates, as expected, that the square lattice is unstable, and that 

this is a positive feature of our density functional theory. For 

the triangular crystal, stable solutions do exist, and in Table II 

we present the equilibrium densities, Gaussian width E, imper

fect crystal parameter A, and Sutherland-Lindemann ratio L, 

along with the results of more approximate density functional 

theories,I8-21 which will be discussed in Sec. V. 

We present results for both Gaussian and Fourier methods 

and, although the formalism outlined in Sec. II deals only with 

the perfect crystal case, we include both perfect and imperfect 

cases for comparison. We do not recommend the imperfect 

crystal calculation because it does not include any input con

cerning the vacancies it claims to describe.40 We also include 

the perfect crystal Gaussian result for the Leutheusser direct 

correlation function. We have used 40 order parameters for the 

Gaussian method and 50 for the Fourier space method. The 

Gaussian approximation with the Baus-Colot c(k) predicts a 

liquid coexistence density of 0.8961, a Gaussian width of 

0.08603, and a fractional density change of 0.0588. The Fourier 

method with the same c(k) predicts a liquid coexistence den

sity of 0.8784 and a fractional density change of 0.0878. The 

predicted liquid coexistence densities are very close to the simu

lation resulf2 of 0.88. The predicted fractional density changes 

are somewhat larger than the value of 0.05 measured by the 

simulation, but considering the neglect of fluctuations inherent 

in any mean field theory, this is as one would expect. 

One of the advantages of the Fourier method is its ability 

to give nonisotropic densities; hence, we show in Fig. 2 the 

Jacobian weighted density, 21Trp(r), in the (1,0) and (1,1) 

directions for both Fourier and Gaussian solutions. 

V. FREEZING OF HARD SPHERES: HCP VS FCC 
CRYSTALS 

In this section, we discuss the results of our calculations 

(both Gaussian and Fourier) for the freezing of the hard 

sphere liquid into an hcp crystal and compare them to our 

previous results for the fcc crystal in paper I. We also compare 
our results to those of other researchers8.13.16,19,40,44.45,48 who 

TABLE I. Values of the functionf(n) in Landau theory. 

n fbcC(n) free (n) 

2 12 g 

3 48 0 

4 540 216 

5 4320 0 

6 42240 8000 
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15.0 1'1 = (1/3)a1 + (2/3~ + (1/4)a3' 
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FIG. 2. The Jacobian weighted hard disk crystal density from the Gaussian 

approximation, which assumes an isotropic density (dashed line), and from 

the Fourier expansion method (solid lines) along the (1,0) direction (upper 

solid line) and along the (1, 1) direction (lower solid line). 

have investigated the hard sphere liquid to crystal transition 

with density functional theories. 

The technical details of applying both the Gaussian and 

Fourier space methods to the hcp lattice are contained in the 

Appendix. A few definitions are necessary for our subsequent 

discussion. The hcp unit cell is defined by 

8z = - (a/2)i + (.j3a/2)j, (5.1 ) 

and 

a3 =ck, 

where i, j, and k are the Cartesian unit vectors in the orthogonal 

x, y, and z directions, respectively. The average nearest neigh

bor separation is given by d = a; the separation of neighboring 

hexagonal planes, by c/2. In an ideal hcp lattice, the ratio of c to 

a is (8/3) 1/2 • Each unit cell of this lattice contains two particle 

sites displaced from the origin of the unit cell by 

TABLE II. Freezing of hard disks. 

Liquid Solid Gaussian 

density density width 

Density 
Functional theory 

Gaussian-B21 0.8961 0.9488 0.08603 
Fourier space_B21 0.8784 0.9555 
Gaussian-L37 0.9250 0.9839 0.06062 
eolot et al.2 1 0.908 0.928 0.1302 
Tarazona19 0.8016 0.8042 
Mederos et al.2O 0.8062 0.8070 

Simulation 

Alder et al.22 0.880 0.9121 
Hoover et aU3 0.878 0.9218 

Imperfect crystal 

Gaussian-B21 0.868 0.9000 0.0627 
Fourier space_B21 0.8622 0.9077 

Fractional 

density 

change 

0.0588 

0.0878 
0.0637 
0.0220 

0.0032 

0.0015 

0.0365 
0.0499 

0.0369 
0.0528 

and (5.2) 

1'2 = (2/3)a1 + (1/3~ + (3/4~. 
In this work we use the analytic solution by Wertheim41 and by 

Thiele42 of the approximate Percus-Y evick43 integral equation 

for the liquid direct correlation function, 

_ {(1 + !sr)A I + 6SrA20 r< 1, (5.3) 
c(r) - 0, r> 1, 

where the packing fraction, S = (1T/6)pv Al = (1 + 2S)2/ 

(1 - S)4, A2 = - (1 + s /2)2/(1 - S)4. 

In the Gaussian method, a constrained minimization of 

the functional (2.5) is performed. For the fcc crystal, thefunc

tional is minimized with respect to the Gaussian width E and 

the fractional density change, 'TJ. The hcp lattice requires the 

additional minimization of the functional with respect to the 

distortion of the hcp c/ a ratio from its ideal value of (~) 1/2. 

Our hcp results are identical to our fcc lattice results with

in numerical accuracy and are summarized in Table III along 

with fcc results of other researchers. The c/ a ratio for the low

est free energy crystal is found to be exactly the ideal lattice 

value. 

We also allow the Gaussian density to have a different 

width parameter in the z direction than in the x and y direc

tions. Unlike fcc, this anisotropy is not forbidden within the 

hcp symmetry. The minimum value of the free energy occurs 

when the two width parameters are equal (that is, for a spheri

cal Gaussian density). The equations necessary for this modifi

cation are straightforward generalizations of the Gaussian 

equations derived in Sec. II. 

In addition to the hcp and fcc lattices, we investigated the 

stability of the body centered cubic (bee) lattice. We were not 

able to find any stable or metastable solutions for this lattice 

over a wide range of densities. This is physically correct, and an 

encouraging feature of density functional theory. 

Based on physical intuition, one expects that both lattices, 

Lindemann 

ratio 

0.0780 
0.0923 
0.0560 

0.117 

"Defect 

density" 

0.0579 0.914 
0.0701 0.922 
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3906 Laird, McCoy, and Haymet: Theory of freezing 

hcp and fcc, will give very similar results. On the other hand, 

the lattice sums in the two functionals, ll.fJ(jj fcc and ll.fJ(jj heI' 

converge in different ways and, from this point of view, it is 

rather surprising that numerically indistinguishable results are 

obtained. Figure 3 shows the value of ll.fJ(jj as terms are added 

in the lattice sum in Eq. 2.5 plotted against the magnitude of the 

lattice vector of the last term added, k1ast• Note that if the two 

summations are truncated at some wave vector before they 

have converged, the resulting free energies, and hence relative 

stabilities, would not necessarily be equal for the two lattice 

types. 

The crystal density is periodic in nature, and hence, is rep

resented by a discrete Fourier sum. Thus, the Fourier trans

form of the direct correlation function c(k) is sampled at dis

crete magnitudes of the reciproca11attice vectors in the lattice 

sums, as shown in Fig. 4. Note that the hcp sum selects differ

ent wave vector magnitudes than the fcc sum. Consequentially, 

errors in the input liquid structure c (k) which would go unno

ticed when considering one lattice type could cause serious er

rors in the free energy of a different lattice type. Figures 3 and 4 

also show that, due to the lower symmetry of the hcp lattice, 

calculations of free energy for this lattice require many more 

sets of reciproca1lattice vectors in the lattice sum than would be 

necessary in the fcc case. In our calculations, 500 sets were used 

in the hcp case and 200 sets in the fcc case. 

The justification for assuming a Gaussian form for the 

crystal density is the knowledge that the full (Fourier) solution 

is nearly Gaussian, as is the case for fcc hard spheres (Table 

III). Using the minimized Gaussian density as an initial guess, 

we have attempted to solve the Fourier method equations 

(2.12)-(2.14) (also see the Appendix), using the Newton

Raphson method. For a fixed bulk solid density we find a well

defined minimum in the ground potential. However, we have 

not completed the minimization with respect to the bulk crystal 

density. 

At the coexisting liquid and crystal densities (p L 

= 0.9836,ps = 1.1242) of the fcc Fourier method calculation, 

the hcp Fourier method yields a (dimensionless) grand poten

tial of - 0.12. Given the approximations in our theory, we 

3.0 
) 

" 

2.0 
t:l 

·s 
13 1.0 
Q:l. 
<l 

0.0 

-1.0 
40. 80. 
k/a 

FIG. 3. The value of the grand thermodynamic potential dilference ll/ku as 
more terms are added to the lattice sum, for both the fcc lattice (solid line) and 
the hcp lattice (dashed line). Note that the fully converged results at the ex
treme right-hand side of the figure contain 200 and 500 RL Vs, respectively. 

0.5 

.......... 
CO.O 

CJ 

-0.5 

5 10 15 20 

k/a 

FIG. 4. The Fourier transform of the hard sphere liquid direct correlation func
tion near freezing (p L = 0.985). The vertical lines show the magnitudes of the 

fcc and hcp reciprocal lattice vectors (RL Vs). The length of the lines is propor
tional to the weighting factor nJ"" where n, is the degeneracy of the RLV sym

metry set .. i .. and/. is the corresponding geometric structure factor defined in 

the Appendix (A 2). Note that/. = 1 for all fcc RLVs, and that/. forthehcp 

vectors can be negative. 

conclude that the two close-packed structures, of hard spheres 

fcc and hcp, have approximately the same stability. 

There have been a number of predictions of the hard 

sphere liquid to crystal transition by other researchers who 

have produced a variety of results as seen in Table III. It is of 

interest to see how variations on the techniques used in this 

paper change the predicted coexistence point. We have restrict

ed the entries in the table to results which seem well converged; 

for instance, we have avoided early papers where the Fourier 

series was truncated at a small number of order parameters. 

Notice that the bulk of these entries employ the Gaussian ap

proximation which, although lacking in generality, is much 

easier to apply. 
13 • •• 

The work of McCoy, Singer, and Chandler IS most SImI-

lar to our own differing only in that they do not include the 

C(3)(0,0) term. Following the Fourier space methodology of 

paper I, they found coexistence in the fcc lattice and, by using 

the Gaussian method, found coexistence in both the fcc and 

hcp lattices. Again, fcc and hcp crystals are found to have virtu

ally identical stability. Jones and Mohanty40 had previously 

applied the Gaussian method to the imperfect crystal fcc and 

bee lattices [also without the c(3)(O,O) term]. As in our calcu

lation, they failed to find a solution corresponding to a bee 

solid. Notice that omission of the c(3)(O,O) term lowers the 

liquid density and increases the fractional density change to 

nearly twice the experimental value. 

In addition to omitting the c(3)(O,O) term, Baus and Co-

10t17 make use of a hypothetical reference liquid, with a uni

form density intermediate between the liquid and crystal den

sity. This reference density is chosen arbitrarily by requiring 

that the first peak of its c (k) coincide with the smallest recipro

cal lattice vector of the crystal lattice. The resulting density is 

much higher than equilibrium liquid densities. The corre

sponding direct correlation function is found by extrapolating 

conventional liquid state theory to these higher densities. This 

procedure gives adequate predictions for the coexistence prop

erties, but it is not clear how the method can be applied to 
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TABLE III. Freezing of hard spheres 

Fractional 

Liquid Solid Gaussian density Lindemann Defect 

density density width change ratio density 

Density 

Functional theory 

Laird et al.(F)" 0.9836 1.1241 0.1429 0.065 

Laird et al.(G)" 0.9850 1.1258 0.0520 0.1430 0.059 

McCoy et al.(G) 13 0.9676 1.150 0.04508 0.189 0.052 

McCoy et al.(F) 13 0.965 1.148 0.190 
Igloi etal.(F)16 0.975 1.076 0.104 0.070 
Tarazona(G)19 0.9433 1.0609 ::::::.13 0.125 ::::::.14 
Baus et al. (G )4~ 0.993 1.083 0.066 0.091 0.074 
Curtin et al.(G)47 0.892 1.025 0.0598 0.149 0.104 

Simulation 

Hoover et al.44 0.94-0.96 1.04-1.05 0.08..{).11 0.14 

Imperfect crystal 

McCoy et al. (F) 13 0.944 1.0501 

Jones etal.(G)40 0.9461 1.0525 0.0415 

systems which do not have accurate liquid state theories that 

can be extrapolated to such high densities. This method pre

dicts correctly that the square lattice is unstable. Crystal-like 

solutions for the bee symmetry were found only at unphysically 

high densities. However, the fcc lattice was found to have coex

istence properties identical to the ones found for the hcp lattice, 

and the preferred hcp lattice was found to be ideal. 

Igloi and Hafnerl6 expand the free energy functional in a 

Taylor series about a hypothetical reference liquid rather than 

about the equilibrium liquid. Their reference density is chosen 

to give the lowest liquid coexistence density. They claim that 

this choice reduces the effect of higher order terms in the Tay

lor series. The most recent results ofIgloi 16 on both the fcc and 

hcp lattices using a Fourier space method show no significant 

difference between the two lattices. It will be interesting to test 

this method using the correct k = 0, perfect crystal Fourier 

space method. 

Finally, Tarazona l9 has introduced a method, related to 

methods used in the theory of the inhomogeneous electron gas, 

which incorporates higher order terms in the density expan

sion. Curtin, Ashcroft, and Runge46
,47,48 have refined this the

ory. Here the liquid and solid chemical potentials are not re

quired to be equal at all points in space. Instead, only the 

spatially averaged chemical potentials are equal. It is interest

ing that their coexistence densities tend to be lower than the 

simulation results, while the previously discussed theories tend 

to give densities which are higher than simulation. Another 

difference is that the direct correlation function used in a Tara

zona type theory is that of a very low density liquid. As dis

cussed by the authors, a surprising feature of this theory is that 

it predicts a stable hard sphere bee crystal, which is known 

never to be stable. 

In summary, we believe that density functional theory can 

predict accurately the freezing transition in a simple liquid, and 

that the version presented in paper I and developed here is 

consistent and well founded. 

0.112 0.897 

0.112 0.0477 0.898 

VI. CONCLUSIONS 

In this paper we have shown that the density functional 

theory developed in paper I can be used to predict the freezing 

of hard particles in two and three dimensions. In contrast, tra

ditional Landau theory does not predict the quantitative or 

qualitative features of the transition. 

The implementation of the full, Fourier space freezing the

ory for crystals with a basis of more than one atom is more 

intricate, but as shown in the Appendix, it may be accom

plished by using standard crystallographic methods. We have 

established a technique for comparing the relative stability of 

different crystal structures, and further applications are under

way. 
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APPENDIX 

Performing the Fourier analysis to minimize Eq. (2.1) is 

relatively straightforward for systems with one particle per 

Bravias lattice site (such as fcc, bee, simple hexagonal, etc.). 

When there is more than one particle associated with a lattice 

site the procedure becomes more complicated. For such sys

tems, the Fourier expansion of the solid density can be written 

(AI) 

where the atomic structure factors ILk are determined by the 

shape of the density peak about each particle site and the geo

metric structure factors Ik are determined by the n .. atomic 

basis vectors Ti (i = I,n .. ) associated with each Bravias lattice 

site: 
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(A2) 

Two reciprocal lattice vectors (RLV s) k n and k m are said 

to be in the same symmetry set if their corresponding atomic 

structure factors are required to be equal by symmetry. All 

vectors kn in a symmetry set have the same magnitude. If we 

order the symmetry sets by magnitude (some sets will have the 

same magnitude, in which case the order is arbitrary) and in

dex them by the integer i, we can write the expansion (AI) as 

per) =PL[l +1]+ L,u;/;r;(r)], (A3) 
;#0 

where,u; is the value of the atomic structure factor shared by 

the members of the set i and /; is the value of the geometric 

structure factor for a specific RL V k; chosen to represent the 

set i, and 

~ Aj 11< .• r 
r;(r)=£...-e> . 

kj /; 

(A4) 

Using expansion (A4) together with the fact that the geo

metric structure factors for two RL V s in the same symmetry 

set can differ only by a phase factor, the Gaussian method 

expression for the functional (2.1) becomes 

llf3iij = 1 - (1 + 1])[~ + InpL + ~ In(11'E
2

)] 

--2
1
1]2C(O) --2

1 L n;c(lk;I)f~,u~ 
;#0 

(AS) 

where n; is the number of RL V s in set i. The Fourier method 

equations (2.12) become 

,u; + 6;,0 = _1_ f drr; (r)exP{A + c(O)1] 
n;/;!1 Ja 

+ !C(3l(O,O)1]2 + L C(lkjl),ujijrj(r)}, 
2 yo 

(A6) 

where the equations for each member of the symmetry set i 

have been combined into one equation for ,u;. 

The hcp lattice is a simple example of crystal structure 

with a multipartic1e atomic basis. The hcp unit cell is defined by 

the real space vectors aI' a2, and a3 defined in Eq. (5.1). The 

volume of the unit cell !1hcP is given by 

!1hcp = ~ a2e. (A7) 

The ideal hcp crystal has a e/ a ratio equal to (8/3) 1/2 although, 

in general, this value is not constrained by symmetry. The 

atomic basis set contains two vectors: 

71=G,-~,D 
and (A8) 

where the fractional coordinate (x,y,z) = xa l + ya2 + Z83 • 

The reciprocal lattice vectors are 

(hkl) =haT + ~ + lar (A9) 

with 

and 

'" _ 211' (. + {3 .) a l -- I -J , 
a 3 

'" 411'{3. 82 =--J, 
3a 

ar = 211' k, 
c 

(AlO) 

where i, j, and k are the standard Cartesian unit vectors. The 

magnitude of the RLV (hkl) is given by 

Ikhkll= 2: [~(h2+hk+k2)+(~/rr/2. (All) 

Equation (A2), together with the atomic basis (A8), gives the 

following expression for the geometric structure factor for 

RLV (hkl): 

{ [
2(h-k) I]} 

hkl = cos 11' 3 + "2 . (A12) 

Note that the geometric structure factors vanish for RL Vs with 

h - k = 0 (mod 3) and lodd. These vectors are called system

atic absences and do not contribute to the Fourier sums. 

There are three real space symmetry elements that deter

mine the hcp reciprocal space symmetry sets. The first is a 

center of inversion at the origin: 

p(x,y,z) =p( - x, - y, - z) . (A13) 

The effect of this symmetery on the reciprocal space is that the 

atomic and geometric structure factors associated with RL V 

(hkl) are equal to the corresponding quantities for the vector 

(h,k,7) (the symbol h is standard crystallographic notation for 

"minus" h). Since in general 

(A14) 

where the'" denotes complex conjugation, the center of inver

sion at the origin guarantees that the structure factors are real. 

The center of inversion involves only a simple point group 

operation (inversion). The other two elements involve com

pound symmetry operations that are combinations of point 

group operations and spatial translations. To see how such 

symmetries of the real space crystal affect the structure factors 

consider a hypothetical compound operation S = TP, where P 

is a point group operation (rotation, inversion, reflection or 

improper rotation) and T represents a translation by a vector t. 

The real space symmetery S implies a relation between the 

structure factors corresponding to RL V (hkl) and the RL V 

formed by applying the inverse of P to the vector (hkl), p- I 

(hkl). The atomic structure factors for the two vectors are 

equal; 

,u(hk/) = ,ur'(hkl) . (A15) 

The geometric structure factors for RL Vs (hkl) and P -\ (hkl) 

differ by a phase factor determined by the translational compo

nentofS: 
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(AI6) 

The two other symmetery operations needed to define the 

symmetry sets are (I) a sixfold screw axis corresponding to a 

rotation by 1T'13 radians about the z axis followed by a transla

tion by half a unit cell in the z direction: 

p(x,y,z) = p(x - y,x,z + 112) , (AI7) 

and (2) a glide plane corresponding to a reflection across the 

plane x = y also followed by a translation by half a unit cell in 

the z direction: 

p(x,y,z) = p(y,x,z + 112) . (AI8) 

Using relation (A16), the sixfold screw axis implies that 

h.kl = ic. k,h + k,l) e
i1r1 

, 

=ic.k,h+ k,l) ( - Ii. (AI9) 

Similarly, the presence of the glide plane implies that 

ic.hkl) = ic.khl) ( - Ii. (A20) 

It is important to note that another choice of origin besides the 

one used to define the atomic basis vectors (A8) would un

necessarily complicate the relations between the structure fac

tors in a symmetry set due to the lack of one or more of the 

above symmetry elements. 

As a consequence of the above symmetries, the RL Vs 

(hkl) such that O<.h<.k, k> I and 1>0 each represent a unique 

symmetry related set of vectors. The entire reciprocal lattice 

can be derived from this set by application of the above three 

symmetery operations. Ordered by magnitude these vectors 

represent the sets summed over in Eq. (A3). 

Because of the symmetry of the crystal, the integrations 

contained in Eq. (A6) do not have to be performed over the 

entire unit cell. A region of minimum volume which can be 

integrated over to yield correct results is called an asymmetric 

unit. For hcp, the asymmetric unit is the volume defined by the 

triangular prism with verticies: (0,0,0), (113,213,0), 

(2/3,113,0), (0,0,114), (1/3,2/3,114), and (2/3,113,114). 

The volume of this region is 1I24th of the volume of the unit 

cell. 
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