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Abstract. An unexplained discrepancy exists between the experimentally measured and 
theoretically calculated magnetic moments of Mn in -Fe. In this study, we use density 
functional theory to suggest that this discrepancy is likely due to the local strain 
environment of a Mn atom in the Fe structure. The ferromagnetic coupling, found by 
experiment, was shown to be metastable and could be stabilised by a 2% hydrostatic 
compressive strain. The effects of Mn concentration, vacancies and interstitial defects on 
the magnetic moment of Mn are also discussed. It was found that the ground state, anti-
ferromagnetic (AFM) coupling of Mn to Fe requires long range tensile relaxations of the 
neighbouring atoms along <111> which is hindered in the presence of other Mn atoms. 
Vacancies and Fe interstitial defects stabilise the AFM coupling but are not expected to 
have a large effect on the average measured magnetic moment.  

Keywords: density functional theory; ferrite; manganese; iron; RPV steels 
 

I. INTRODUCTION 

Steels are ubiquitous in technological applications due to the abundance and low cost of Fe and 

its highly desirable mechanical and corrosion properties with alloying additions. Manganese is second 

only to C in its importance and use in steels. Historically, Mn has been included as both a minor and 

major alloying addition. The former to increase workability by supressing FeS formation and latter to 

increase ductility, through twinning induced plasticity, in the fairly recently developed, so-called TWIP 

steels. The state-of-the art theoretical description of Mn in Fe has a large impact on our understanding 

of phenomena such as solute clustering1 and vacancy-solute clustering2, which compromise the 

structural integrity of the steels during operation. The former occurs in the ferritic phase of duplex steels 

as a result of thermal ageing (573 – 773 K for >1000 h)3–5 and in low-alloy steels6–8 resulting from long-

term (> 1 year) elevated temperature (~550 K); the latter, occurs due to neutron irradiation damage, 



2 
 

which is of interest to life extension of nuclear fission reactors and for fast neutron damage of steels to 

be used in future fusion reactors.  It is therefore important for atomic scale processes such as binding, 

substitution and migration to be understood at a fundamental level, to be used in high order methods 

and analyses9–13 to model these phenomena in industrial settings. 

Mn has long been regarded as one of the most troublesome transition metals in terms of predicting 

its magnetic behaviour and electronic interaction with other elements14. In its elemental ground state, it 

adopts a 58 atom cubic unit cell of spacegroup 𝐼4̅3𝑚, and exhibits a non-collinear (NC) magnetic 

structure, whereby atoms located in 2a, 8c and two 24g sites (in Wyckoff notation) exhibit different spin 

vectors15,16. This magnetic structure undergoes a transition to paramagnetic (PM) structure at the Néel 

temperature of ~95 K17. In contrast, Fe is one of the most well studied transition metals18–20. In its 

ground-state, Fe adopts a ferromagnetic (FM) BCC structure21, which it maintains until its Curie 

temperature at ~1043 K22.  

With minor alloying additions of Mn to Fe the crystal structure will remain BCC as a solid 

solution. The solubility limit is reached at ~3 at. % at ~600 K23, at equilibrium; however, increased 

additions are reported to be stabilised using cold working24. The magnetic structure of Fe-Mn alloys is 

highly variable and is thought to be affected by many different factors; namely, the Mn concentration25, 

the local atomic environment26, lattice parameter14 and temperature24. This behaviour is observed to a 

much lesser extent for Fe-Cu, Fe-Ni and Fe-Si solid solutions27. It is therefore no surprise that 

discrepancies exist between experimental observations and theoretical frameworks. In the current study, 

we use density functional theory (DFT) to study the effect of concentration, local environment, strain 

and point defects on the magnetic moment and stability of Mn in α-Fe. 

II. METHODOLOGY 

A plane-wave density functional theory method was used, as implemented in the Vienna Ab initio 

Simulation Package (VASP)28. The  Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional29, 

based on the Generalised Gradient Approximation (GGA), is used with the projector augmented wave 

(PAW) method30. Pseudopotentials provided with the VASP distribution were used, where 14 electrons 

(3p6 3d7 4s1) for Fe and 13 electrons (3p6 3d5 4s2) for Mn are considered as valence electrons. 
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The k-points, energy cut-off and lattice parameters the perfect lattice of both elements (α-Fe and 

α-Mn) were converged. It was determined that a real space k-point density of 0.03 Å-3 and energy cut-

off of 500 eV provided accurate results and were kept consistent for all calculations (resulting in 6×6×6, 

4×4×4 and 2×2×2 k-point grids for the 54, 128 and 250 atom supercells). Constant pressure, full 

relaxations with Methfessel-Paxton31 smearing (with a width of 0.1 eV) were used to obtain the ground-

state configurations. The tetrahedron smearing method with Blöchl corrections32 was used on fixed 

dimension/volume calculations to generate the electronic density of states (DOS). Spin polarisation 

effects were also included; non-collinear and collinear theory was used for the α-Mn structure. The 

electronic energy and ionic relaxation convergence criteria were set to 10-6 and 10-4 eV, respectively, 

for all calculations. 

Supercells of 54 (3×3×3), 128 (4×4×4) and 250 (5×5×5) Fe atoms were relaxed at constant 

pressure. To understand the behaviour of a dilute concentration of Mn in the -Fe lattice, a single Mn 

was substituted for an Fe atom in each of the supercell sizes. For higher concentrations of Mn and Mn-

Mn interactions within the Fe matrix, a Mn content of 4.69 at. % was achieved by pseudo-randomly 

selecting six lattice sites for Mn atom substitution in the 128 atom supercell. As this method is stochastic 

in nature, this was repeated to produce 20 unique supercells (120 Mn atoms in total) to achieve a good 

statistical understanding of the system. Cohesive, binding, substitutional, vacancy and interstitial 

formation energies were calculated following standard procedures, outlined in the supplementary 

material. 

Linear elastic theory, as implemented within the ANETO framework33 for calculating the dipole 

tensor using the strain method34,35, was used calculate the relaxation volume and interaction energies for 

Mn in BCC ( Fe in the. 

III. RESULTS AND DISCUSSION 

A. Pure Mn and Fe 

Table 1 reports the calculated values of cohesive enthalpies (Ec) and lattice parameters (a0), 

presented for the ground-state (), cubic (, FCC ( and BCC (δ) Mn structures. Values for -Fe are 
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also provided, together with past literature values for Mn and Fe structures for comparison. The 

following magnetic structures within -Mn were considered: Non-magnetic (NM), collinear anti-

ferromagnetic (AFM), non-collinear anti-ferromagnetic (NCL). 

Table 1. Cohesive energy (Ec) and lattice parameter (a0) of structural and magnetic allotropes of pure Mn 
and -Fe. 

Crystal Structure Magnetic Structure Ec (eV/atom) a0 (Å) 

  Current Literature Current Literature 

-Mn 

NCL 3.87 - 8.61 

8.61c, 8.91d AFM 3.86  - 8.64 

NM 3.82 - 8.56 

-Mn AFM 3.79 - 6.32 6.32e 

-Mn NM 3.76  3.73a, 2.92b 3.50 3.49f 

-Mn FM 3.69 - 2.79 2.78g 

-Fe FM 4.88  4.78a
, 4.28b

 2.83 2.86b 

References – theoretical: a36, c14, f37, g38; experimental: b39, d40, e41 

In accordance with past literature, and the observed equilibrium behaviour of pure Mn, the -Mn 

phase is the most energetically favourable at 0 K42. This is then followed by  and  phases, which 

are temperature stabilised. The different known magnetic arrangements of -Mn were simulated, again 

predicting the behaviour as found in past literature14,16. The magnetic moments of each atomic site can 

be found in Table S1 (supplementary material). The overestimation of the cohesive enthalpies compared 

to the experimental values can be attributed to the approximation of the exchange-correlation 

functional36,43.  

B. Mn in α-Fe 

1. Magnetic moment and stability 

After gaining confidence in the theoretical representation of pure Fe and Mn, we move to the case 

in which a single Mn solute atom is placed in the -Fe matrix. The substitutional energy (Esub) provides 

an indication of the stability of Mn in the BCC FM Fe lattice. This value should converge with system 

size. Past literature has utilised 54 and 128 atom supercells where it was concluded that a convergence 

of ±0.05 eV was achieved with the 128 atom supercell44. However, there is little agreement between the 



5 
 

magnetic moment of Mn and substitutional energy among theoretical literature27,44. In the publication 

by Olsson et al. 201027, it was shown that the substitutional energy can vary ±0.3 eV between the 

ultrasoft pseudopotential (USPP)45 and PAW method and that there is a large discrepancy between the 

magnetic moment. This was attributed to the inability of the USPP method to correctly represent the 

semi-core d electrons.  In this section we investigate the effect of magnetic moment of Mn on Esub. It is 

known that the magnetic moment of Mn is particularly difficult to converge in -Fe as a shallow energy 

landscape exists between local FM and AFM states46 (where all magnetic states are henceforth 

described, locally, in reference to the Fe matrix). Within this study it was found that the AFM state of 

Mn is the ground state in -Fe and that it is also possible to model the FM state in 128 and 250 atom 

supercells, provided a sufficiently high initial magnetic moment is set prior to energy minimisation, see 

Table 2. The average magnetic moment of Fe remained relatively consistent at 2.26(1) B for all 

calculations within this section. 

Table 2. Influence of initial spin on final spin state of Mn (relative to Fe) and the corresponding substitutional 

energies (Esub). 

Supercell 
dimensions 

Mn concentration 
(at. %) Initial spin Mn (B) 

Final 
spin Mn 

(B) 

Final  
spin-state  

Mn 
Esub (eV) 

3×3×3 1.85 

2.00 

1.89 AFM 0.20 
0.00 

2.00 

4.00 

4×4×4 0.78 

2.00 

 AFM 0.19 0.00 

2.00 

4.00 0.54 FM 0.29 

5×5×5 0.40 

2.00 

2.08 AFM 0.20 0.00 

2.00 

4.00 0.74 FM 0.25 

These results demonstrate that it is possible to converge to both the FM and AFM state of Mn when 

its initial magnetic moment is 4 or ≤ 2, respectively, for supercell sizes ≥128 atoms. The corresponding 



6 
 

substitutional energies highlight the importance of the resultant magnetic moment of Mn to its stability 

in the -Fe matrix. When it is in the FM state the Esub becomes less favourable by 0.10 eV and 0.05 eV 

for the 4×4×4 and 5×5×5 supercell, respectively. Since it is predicted that the AFM state is the more 

stable of the two, it is recommended that it is used as the reference state for the calculation of binding 

energy calculations.  

When assessing the local density of states (LDOS) of Mn in -Fe, the FM and AFM spin-states are 

distinct, see Fig. 1. The difference in states is observed as the shift in the anti-bonding peak of the 

majority spin channel, from above the Fermi level for the AFM, to below the Fermi level in the FM 

magnetic coupling of Mn. The occupation of the anti-bonding peak explains the relative stability 

difference between the two states47.  

 

Fig 1. Local density of states of the d-band of (A) FM and (B) AFM  spin coupling in -Fe for a 128 

atom supercell. 
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2. Calculated vs experimental magnetic moment 

In this section we compare the DFT calculated magnetic moments in the current study to the past 

experimental studies that used diffuse neutron scattering. For the former, the Mn concentration was 

varied by using the three different supercell sizes 250, 128 and 54 atoms correspond to 0.40, 0.78 and 

1.85 at. %, respectively. A higher concentration of 4.69 at. % (above the expected solubility limit) was 

obtained by randomly populating the 128 atom supercell with 6 Mn atoms, repeated in 20 supercells; 

the average of all the magnetic moments were taken and the standard error is plotted as error bars.  

Figure 2 shows that there is little agreement among the experimental data and that the ground state 

theoretical values, obtained in this work, over-predict the magnitude of the magnetic moment below 

5 at. %. However, it should be emphasised that the solubility of Mn in -Fe is at maximum ~3 at % at 

600 K23. In the studies that surpass this solubility, Nakai et al.24 reportedly stabilises the -phase by cold 

working and the study by Radhakrishna et al.26 does not provide such information. Formation of 

secondary phases such as -(Mn,Fe) is likely to occur at equilibrium for Mn concentrations >3 at. %. 

Nevertheless, the results in the current study are in better agreement with experimental findings for Mn 

in excess concentrations.  

  

Fig. 2. Magnetic moment of Mn in -Fe as calculated using DFT in the current study for AFM Mn 
(closed squares) and FM Mn (open squares) compared to the experimental magnetic moments using diffuse 
neutron scattering, as measured by Nakai 1975 (coloured triangles), Radhakrishna 1978 (coloured inverted 
triangles), Kajzar 1976 (coloured hexagons), Child 1967 (coloured circles) and Collins 1965 (coloured 
diamonds) where the colours represent the temperature of the sample upon measurement. 



8 
 

In the following sections, the possible factors that lead to the discrepancies between experiment and 

theoretical calculations and how these differences can be captured through a mechanistic understanding 

of the Fe-Mn system are explored. 

3. Atomic relaxations 

By taking the difference between the atomic coordinates of the relaxed and unrelaxed supercells, the 

vectors corresponding to the atomic relaxations upon substitution of Fe with Mn can be calculated.  

Figure 3 provides an illustrative representation of the vectors (×100) in a 250 atom supercell. Although 

these relaxations are small (~10-2 Å) they are markedly different between FM and AFM states. For the 

AFM relaxation, the first nearest neighbour (1st nn) Fe was repelled by the Mn atom. The repulsion 

propagated along the <111> over relatively long distances (~10 Å), while Fe atoms along the the <100> 

and <201> from the Mn experience a shorter-range attraction (~5 Å). In the FM case, only displacements 

of Fe towards Mn are observed (compressive), with the largest magnitude of 1.3×10-2 Å in the 1st nn Fe. 

 

Fig. 3. Atomic relaxation vectors ×100 in compression (red) and tension (green) of Fe atoms around a Mn 
substitution (purple) for the AFM and FM magnetic moment of Mn in the 250 atom supercell. 

For the smaller supercells (54 and 128 atoms) the long-range movement is more constrained and 

may explain the slight variance in magnetic moment and absence of FM moment for the 54 atom case. 

Figure 4 shows the elastic self-interaction energy48,49. It can be seen that the supercells are well 

converged by 128 atoms. 
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Fig 4. Self-interaction energy of the substitutional Mn defect in -Fe when in the FM and AFM magnetic 

state. 

From linear elastic theory, the relaxation volumes of FM and AFM Mn are calculated for the 

different supercell sizes, see Fig. 5. The volume change due to the tensile relaxations of the AFM Mn 

and compressive relaxations of the FM Mn can be seen clearly. The effect of the FM Mn on the Fe 

lattice is much more localised than the AFM, where the former has self-interaction energies three orders 

of magnitude smaller than the latter. These results suggest that the increased stability of the AFM state 

over FM state of Mn is due to electronic rather than elastic effects. 

 

Fig 5. Relaxation volume of the substitutional Mn defect in -Fe when in the FM and AFM magnetic 

state. 
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4. Mn concentration 

The interaction between neighbouring Mn species in -Fe is not well understood. Past theoretical 

studies that report the binding energies between two Mn atoms are not in accord27,44,50. Within this study, 

a stochastic behaviour was found in the resultant magnetic moments of the Mn. When two Mn atoms 

were placed in the 54, 128 and 250 atom supercells, in different nn positions, each adopted FM or AFM 

moments with varying magnitudes and no clear trend (reported in Figure S1 of the supplementary 

material). The binding energies between the two Mn atoms varied by ±0.05 eV between supercells and 

did not correlate with their magnetic moment. Figure 6 reports the binding energies calculated for the 

250 atom supercell, and provides a comparison with past literature. The calculation of the binding energy 

was done using the AFM and FM reference state, which results in a significant difference (0.14 eV) in 

energy. 

  

Fig. 6. Mn-Mn nn binding energy for the 250 atom supercells using the AFM (open square) and FM (closed 
square) reference state. Comparison to Olsson (green star) and Vincent’s (blue cross) work is included. 

 When comparing to the work of Olsson et al.27, the average binding energies calculated from the 

FM Mn in -Fe reference state are somewhat in agreement. However, the FM state is metastable 

therefore the AFM state should be taken as reference. This offset does not explain the discrepancy with 
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respect to the work of Vincent et al. 44. It is more likely that the difference stems from the use of USPPs 

and other theoretical parameters.  

 When considering the difference in atomic relaxations for AFM and FM isolated Mn atoms, it is 

perhaps no surprise that there is a large variation in magnetic moment between nearest neighbour Mn 

with varying supercell size. If Mn does indeed prefer to exhibit AFM behaviour, then a more complex 

atomic relaxation is required. However, at certain geometries of nearest neighbour Mn and without 

sufficient long-range movement allowed, it will be more favourable for AFM and FM Mn atoms to 

coexist.  

A more concentrated system, in which 6 Mn atoms are randomly distributed on a 128 atom BCC 

lattice replacing Fe, corresponding to a Mn concentration of 4.69 at. %, is now considered. Previous 

theoretical work on concentrated Fe-Mn systems conclude that there is a uniform switch from AFM to 

FM moment in Mn between 2 at % and 3 at. %51,52. In the current study, without sufficient statistical 

precision, this conclusion could mistakenly be made; of the 20 supercells studied, 15% displayed 

exclusively FM moments for Mn. However, the magnetic moment of Mn within the other 85% of the 

supercells were a mix of AFM and FM where the average moments across all supercells ranges from 

0.8 B to 0.9 B. Figure 7 shows the distribution of the magnetic moments of each Mn atom plotted 

against supercell energy. When taking the average of all 120 Mn atoms simulated, the magnetic moment 

equates to 0.06 B (dotted line). The enthalpy of formation (Eform) of the system displays a general trend 

whereby the systems with lower average magnetic moment (large dashes) are more energetically 

favourable. No correlation was found (correlation coefficient = 0.013) between the nearest neighbour 

species and the resultant magnetic moment of Mn, which vary between -2.2 B and 1.1 B, see Fig. S2. 
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Figure 7. Magnetic moment of each Mn atom (small dashes), across the 20 supercells (grey shading), versus 
the enthalpy of formation per unit (3Mn:51Fe). The average magnetic moment per supercell and mean magnetic 
moment across all supercells is denoted by the large dashes and dotted line, respectively.  

The environmental effect that is thought to influence the magnetic moment of Mn26 cannot be 

predicted by the nearest neighbour species or concentration of Mn in -Fe. Further, the presence of other 

Mn species does not stabilise a particular spin state. Rather, a more complex effect, likely due to the 

relaxation vectors around each Mn, is observed; resulting in an average moment close to zero (and 

median of ~0.70 B). The interaction volumes used in diffuse neutron scattering vary greatly with 

experimental parameters53; it is expected that these volumes are of the m length scale (although not 

explicitly stated) in references from Section III(B)(2). Therefore, the overall average magnetic moment 

is an important result for comparison to literature. 

5. Effect of strain 

In the past, it has been demonstrated that the lattice parameter of -Mn has a large effect on its 

magnetic structure14. To-date this effect has not been investigated in the Fe-Mn system, however 

pioneering work by Cable et al. has explored this effect in Ni- and Co- Mn alloys54. Two methods of 
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straining the environment around the Mn atom were used in this study, both using 128 atom supercells: 

Applying tension and compression (1) hydrostatically and fixing the volume and shape of the supercell 

while allowing internal relaxation of the atoms and (2) locally in the 1st nn Fe, fixing supercell shape 

and atomic positions of atoms. The latter performed to investigate the influence of only the 1st nn. 

At the dilute limit, the effect of strain on the magnetic moment of Mn is clear; compression 

(negative strain) induces the FM moment and tension induces the AFM moment, see Fig. 8(A). The 

results from the hydrostatic method show a transition from AFM to FM moment between 0 and 2% 

strain. For the locally strained case, the transition occurs at higher compressive strains and to a lesser 

degree. This discrepancy is considered to be the result of the influence of the neighbouring atoms, other 

than the 1st nn, which remain fixed. The difference in internal energy is calculated as: 𝛥𝐸 = 𝐸𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑−𝐸𝑔𝑠𝑛𝑑       (1) 

where 𝐸𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑  and 𝐸𝑔𝑠 are the total internal energy of the strained and ground state supercell, 

respectively, normalised to the number of displaced atoms (nd). The results follow the expected parabolic 

distribution where deviation from the ground state configuration leads to less favourable energies 

(Fig. 8(B)). 

 

Fig. 8. Magnetic moment of Mn (A) and difference in internal energy of strained and ground-state supercell, 
E, normalised by the number of strained atoms (B) with a comparison between hydrostatic strain (open 

squares) and local 1st nn strain (closed circles). 
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These results suggest that the disagreement between observed experimental magnetic moment of 

Mn is likely due to the different conditions of the samples. Non-equilibrium features such as increased 

defect concentrations and residual stress, due to quenching or cold-working, are expected to have a large 

impact on the measured magnetic moment of Mn in Fe. A lattice parameter change of 0.03 Å equates to 

a strain of 1%. Experimentally, an increase in temperature of ~250 K leads to lattice parameter increase 

of 0.01 Å for -Fe55. Without considering phonon interactions and other temperature effects, it is 

postulated that it is entirely possible to observe both AFM and FM average moments in samples with 

the same concentration of Mn providing the temperature is varied sufficiently or is under sufficient 

elastic strain, as seen by Child et al.56  and Nakai et al.24. However, caution must be used when making 

direct comparisons to experiment. This is because the approximation of the exchange-correlation 

functional used by DFT introduces discrepancies to both the lattice parameter and magnitude of 

magnetic moment57. Therefore, this result should be taken qualitatively and an experimental relation 

between strain and magnetic moment is required to establish a quantitative relationship.  

6. Effect of vacancies 

Vacancies are ubiquitous in crystalline systems and vary in concentration depending on the 

condition and processing of the sample58. Vacancy-solute clusters are a documented phenomenon59,60 

and the binding of solute atoms to vacancies in -Fe is important for understanding solute partitioning, 

diffusivity and precipitation61–63. In Figure 9(A-C), the resultant magnetic moment, binding energy and 

vacancy formation energy of Mn substitution are shown as a function of distance from a vacancy from 

1st  6th nn. 
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Fig. 9. (A) Mn local magnetic moment, (B) Mn-vac binding energy and (C) vacancy formation enthalpy in the -Fe 
matrix for 1st – 6th nn for a 3×3×3 (blue square), 4×4×4 (red circle) and 5×5×5(green triangle) dimension supercell, dashed 
lines with the same colours in panel (C) represent the vacancy formation enthalpies of pure Fe. (D) The volumes of the 
polyhedron created by the 1st and 2nd nn around the Mn solute atom. When the Mn was in 1st and 2nd nn proximity to the 
vacancy the polyhedron was extended to the 3rd nn in that direction (pictorial representations). The equilibrium volume for a 
single Mn in the -Fe matrix is provided for reference (dashed line). 
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The magnitudes and trend of the binding energies are in accordance with past theoretical 

findings27,44,64. It is predicted that it is favourable for Mn to bind to an Fe vacancy, with a relatively long-

range attraction compared to other 3d transitional metals27,65,66. There is a clear stabilisation of the AFM 

moment of Mn when in the 1st nn position and the binding energy between Mn and vacancy follows a 

similar trend of the magnetic moment for all supercell sizes. This behaviour is different to many of the 

other transition metals, which show little variance in magnetic moment with vacancy position27. The 

vacancy formation enthalpies (Evac) follow the same trends seen in the magnetic moment and binding 

energies. Compared to pure Fe, there is a significant lowering in Evac in the 1st and 2nd nn to the Mn. 

Again, it must be emphasised that, when calculating the binding energy, the use of the metastable FM 

Mn reference state in -Fe leads to a difference in binding energy of 0.06 eV (more favourable) to the 

ground-state AFM reference state. 

The non-linear trend in binding energies is interesting especially because it is expected that the 

binding energy should tend to zero with increasing distance. Here, it is found that the Friedel-like 

perturbations of the Fe around the vacancy dominate over those around the Mn substitution. By assessing 

the volume of the polyhedron created by the 1st and 2nd nn around the Mn atom, a negative correlation 

to the binding energies and magnetic moment is found, see Fig. 9(D). When Mn is in the 1st and 2nd nn 

(to the vacancy) the polyhedron is extended to the 3rd nn (from Mn) in the direction of the absent site. 

These findings follow the trend identified within this study i.e. the FM moment is stabilised by 

compressive and AFM by tensile lattice strain. At equilibrium, without a vacancy, the 2nd nn polyhedron 

volume containing Mn is calculated to be 45.60 Å3, which corresponds to the ground-state magnetic 

moment of 2 B. When only using 1st nn polyhedron volumes no correlation was found. 

From an applied perspective the equilibrium vacancy concentration is quite small in Fe ≤10-6  

below the melting temperature2,67.  However, when subject to displacive radiation damage these 

concentrations can become non-trivial. It is possible that the increased stability when Mn is under local 

tensile strain, in the presence of a vacancy, is the basis for solute-vacancy stabilisation seen 

experimentally2 or hypothesised to occur due to nucleation of solutes from defects in RPV steels6. 
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7. Effect of the <110> Fe interstitial 

Unlike the majority of BCC metals, the most stable self-interstitial configuration in -Fe is the 

<110> dumbbell68. Although Mn has been shown to also have a strong binding to the <111> Fe dumbbell 

interstitial, it is expected that the <110> will be the most prevalent interstitial in -Fe27. For this reason, 

only the <110> orientation was considered with Mn at three positions around the Fe interstitial: Mixed 

(M), Compressive (C) and Tensile (T), see Fig. 10. Within this study these denotations are arbitrary, 

however, to remain consistent to past literature where the names are given in reference to their respective 

Voronoi polyhedra volumes12,  we continue their use. From our current work, it is identified that the 

2nd nn displacement has a non-negligible effect on the magnetic moment of Mn (Section B(5)), therefore 

a Voronoi analysis is not expected to correlate with the resultant magnetic moment of Mn. 

 

Fig. 10. <110> interstitial dumbbell configuration in -Fe. Labels M (mixed), C (compressed), and T 
(tensile) denote the position of the Mn substitution with respect to a dumbbell. 

 In agreement with past work, the binding energies between Mn and an Fe <110> interstitial were 

favourable in all three sites, see Fig. 11. A difference in binding energy between FM and AFM Mn 

reference state was found to be 0.08 and 0.06 eV for 4×4×4 and 5×5×5 supercells, respectively. 

Interestingly, the relative magnetic moments do not follow the same trend as seen with the vacancy 

defects. Analysis of the 2nd nn polyhedra volumes again display a negative correlation with the magnetic 

moments, as seen with the vacancies. 
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Fig. 11. (A) Mn local magnetic moment, (B) binding energy and (C) <110> interstitial formation enthalpy in the -Fe 
matrix for T, M and C sites for a 3×3×3 (blue), 4×4×4 (red) and 5×5×5 (green) dimension supercell, dashed lines with the 
same colours in panel (C) represent the interstitial formation energies of pure Fe. (D) The volumes of the polyhedron created 
by the 1st and 2nd nn around the Mn solute atom. 
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In the absence of Mn, the magnetic moment of the two Fe atoms in the <110> dumbbell 

configuration, exhibit a weak AFM coupling to the matrix 0.27(2) B. Further, the 1st nn Fe atoms to 

the dumbbell display a significant deviation in magnitude of their magnetic moment from the matrix. 

The 4 Fe atoms in the geometrically equivalent C and T sites yield magnetic moments of ~1.72(7) and 

~2.42(1) B, respectively, which vary only slightly with Mn substitution. It is likely that the introduction 

of a self-interstitial atom sufficiently changes the atomic and magnetic structure so that the magnitudes 

of the 2nd nn polyhedron volume vs magnetic moment relationship, determined for the undefective and 

vacated cases, no longer holds true. Nevertheless, the coupling of Mn to Fe is consistently AFM. 

IV. CONCLUSIONS 

• The discrepancy in magnetic moment of Mn in -Fe, that exists between theory and experiment, 

is likely due to susceptibility of the magnetic moment to change with strain. Here, it was found 

that a hydrostatic compressive strain of 2% (0.06 Å) stabilised the FM state of Mn atoms 

(relative to Fe). Strains imposed by quenching, cold working or thermal expansion are expected 

to dominate over the effect due to Mn concentration, vacancies and Fe interstitial atoms. 

Therefore, it is extremely important to provide experimental details pertaining to the lattice 

parameter and sample conditions in future assessment of the magnetic moment of Mn in Fe. 

• In the dilute case, it is possible to simulate both FM and AFM states of Mn, where the former 

is metastable, by initialising the spin state on Mn to 4 and ≤ 2 B, respectively. The relaxations 

of the Fe atoms around the FM and AFM Mn differ significantly. A long range tensile relaxation 

in the <111> and compression in the <100> and <201> occur for the AFM case and strictly 

compressive relaxations for the FM. The AFM state is the ground state for dilute Mn defects in 

-Fe should be used as a reference state to calculate the binding energies of defect complexes 

in future work. 

• At higher Mn concentrations, Mn exhibits AFM and FM spin states in a stochastic manner with 

an average moment of ~0.06 B and median of ~0.70 B. By providing a statistically significant 

dataset, we show that the previous theory of a uniform switch from AFM to FM between 



20 
 

2 – 3 at. % Mn, is an artefact of inadequate statistical sampling. This randomness is likely due 

to a combination of shallow energy landscape between AFM and FM spin-states and the 

inability for relaxations of the surrounding atoms to occur for specific geometries and 

concentrations of Mn, as to allow for exclusively one state to exist.  

• A vacancy and <110> Fe interstitial were both found to stabilise the AFM moment of Mn. The 

atomic relaxations due to the defects dominate over those around the Mn substitution. 

Polyhedron analysis of the atoms within the 2nd nn to Mn show a negative correlation between 

volume and magnetic moment with varying nn distance to the vacancy/interstitial. This result 

suggests that the relationship between magnetic moment and local strain still exists when in the 

presence of a vacancy or interstitial. 

Acknowledgements 

Mark Wenman and Daniel King were funded by EPSRC grant no. EP/P005101/1. Thomas Whiting 

acknowledges support through the CDT in nuclear energy grant no. EP/L015900/1 and funding from 

Rolls-Royce Plc. This research was undertaken with the assistance of resources provided by the EPSRC 

Tier 2 allocation on CSD3 (Skylake and KNL) HPCs, Australian National Computational Infrastructure 

provided by UNSW (Raijin) and Imperial College Tier 2 computing (Cx1 and Cx2). We would also like 

to thank Dr. G. Malcolm Stocks for this discussion and contribution to the work. 

 

 

 

 

 

 

 



21 
 

References 

1 R. Ngayam-Happy, C.S. Becquart, C. Domain, and L. Malerba, J. Nucl. Mater. 426, 198 (2012). 
2 Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, and M. Hasegawa, Phys. Rev. B 67, 
224202 (2003). 
3 H.J. Beattie and F.L. VerSnyder, Nature 178, 208 (1956). 
4 J.M. Vitek, Metall. Trans. A 18, 154 (1987). 
5 Y. Matsukawa, T. Takeuchi, Y. Kakubo, T. Suzudo, H. Watanabe, H. Abe, T. Toyama, and Y. Nagai, Acta 
Mater. 116, 104 (2016). 
6 G.R. Odette and G.E. Lucas, JOM 53, 18 (2001). 
7 R. Chaouadi and R. Gérard, J. Nucl. Mater. 345, 65 (2005). 
8 P.B. Wells, T. Yamamoto, B. Miller, T. Milot, J. Cole, Y. Wu, and G.R. Odette, Acta Mater. 80, 205 (2014). 
9 L. Malerba *, C.S. Becquart, M. Hou, and C. Domain, Philos. Mag. 85, 417 (2005). 
10 C.S. Becquart, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 228, 111 
(2005). 
11 N. Soneda, in Mater. Issues Gener. IV Syst. (Springer, 2008), pp. 245–262. 
12 D.J. Hepburn, G.J. Ackland, and P. Olsson, Philos. Mag. 89, 3393 (2009). 
13 G. Bonny, D. Terentyev, A. Bakaev, E.E. Zhurkin, M. Hou, D. Van Neck, and L. Malerba, J. Nucl. Mater. 
442, 282 (2013). 
14 D. Hobbs and J. Hafner, J. Phys. Condens. Matter 13, L681 (2001). 
15 T. Yamada, N. Kunitomi, Y. Nakai, D.E. Cox, and G. Shirane, J. Phys. Soc. Japan 28, 615 (1970). 
16 J. Hafner and D. Hobbs, Phys. Rev. B 68, 14408 (2003). 
17 F. Boakye, K.G. Adanu, and A.D.C. Grassie, Mater. Lett. 18, 320 (1994). 
18 V.L. Moruzzi, P.M. Marcus, K. Schwarz, and P. Mohn, Phys. Rev. B 34, 1784 (1986). 
19 H.C. Herper, E. Hoffmann, and P. Entel, Phys. Rev. B 60, 3839 (1999). 
20 M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Philos. Mag. 83, 3977 (2003). 
21 D. Bagayoko and J. Callaway, Phys. Rev. B 28, 5419 (1983). 
22 M. Pajda, J. Kudrnovsky, I. Turek, V. Drchal, and P. Bruno, Phys. Rev. B 64, (2001). 
23 V.T. Witusiewicz, F. Sommer, and E.J. Mittemeijer, J. Phase Equilibria Diffus. 25, 346 (2004). 
24 Y. Nakai and N. Kunitomi, J. Phys. Soc. Japan 39, 1257 (1975). 
25 H. Yamauchi, H. Watanabe, Y. Suzuki, and H. Saito, J. Phys. Soc. Japan 36, 971 (1974). 
26 P. Radhakrishna and F. Livet, Solid State Commun. 25, 597 (1978). 
27 P. Olsson, T.P.C. Klaver, and C. Domain, Phys. Rev. B 81, 54102 (2010). 
28 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 169 (1996). 
29 J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 
30 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 
31 M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989). 
32 P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994). 
33 C. Varvenne, F. Bruneval, M. Marinica, and E. Clouet, Phys. Rev. B 88, 1 (2013). 
34 E. Clouet, S. Garruchet, H. Nguyen, M. Perez, and C.S. Becquart, Acta Mater. 56, 3450 (2008). 
35 R. Nazarov, J.S. Majevadia, M. Patel, M.R. Wenman, D.S. Balint, J. Neugebauer, and A.P. Sutton, Phys. Rev. 
B 94, 241112 (2016). 
36 P.H.T. Philipsen and E.J. Baerends, Phys. Rev. B 54, 5326 (1996). 
37 J. Häglund, A.F. Guillermet, G. Grimvall, and M. Körling, Phys. Rev. B 48, 11685 (1993). 
38 S.A. Fuji, S., S. Ishida, J. Phys. Soc. Japan 60, 1193 (1991). 
39 C. Kittel, Introduction to Solid State Physics (Wiley, 2005). 
40 J.A. t Oberteuffer and J.A. Ibers, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 26, 1499 (1970). 
41 C.B. Shoemaker, D.P. Shoemaker, T.E. Hopkins, and S. Yindepit, Acta Crystallogr. Sect. B Struct. 
Crystallogr. Cryst. Chem. 34, 3573 (1978). 
42 E. Rapoport and G.C. Kennedy, J. Phys. Chem. Solids 27, 93 (1966). 
43 K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Crit. Rev. Solid State Mater. Sci. 39, 1 
(2014). 
44 E. Vincent, C.S. Becquart, and C. Domain, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with 
Mater. Atoms 228, 137 (2005). 
45 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 
46 B. Drittler, N. Stefanou, S. Blügel, R. Zeller, and P.H. Dederichs, Phys. Rev. B 40, 8203 (1989). 
47 V.I. Anisimov, V.P. Antropov, A.I. Liechtenstein, V.A. Gubanov, and A. V Postnikov, Phys. Rev. B 37, 5598 
(1988). 
48 C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle, Rev. 



22 
 

Mod. Phys. 86, 253 (2014). 
49 P.A. Burr and M.W.D. Cooper, Phys. Rev. B 96, 94107 (2017). 
50 A. Bakaev, D. Terentyev, X. He, and D. Van Neck, J. Nucl. Mater. 455, 5 (2014). 
51 A.A. Mirzoev, M.M. Yalalov, and D.A. Mirzaev, Phys. Met. Metallogr. 101, 341 (2006). 
52 N.I. Medvedeva, D.C. Van Aken, and J.E. Medvedeva, J. Phys. Condens. Matter 23, 326003 (2011). 
53 D.L. Price and K. Skold, in Neutron Scatt., edited by K. Sköld and D.L.B.T.-M. in E.P. Price (Academic 
Press, 1986), pp. 1–97. 
54 J.W. Cable and Y. Tsunoda, Phys. Rev. B 50, 9200 (1994). 
55 Z.S. Basinski, W. Hume-Rothery, and A.L. Sutton, in Proc. R. Soc. London A Math. Phys. Eng. Sci. (The 
Royal Society, 1955), pp. 459–467. 
56 H.R. Child and J.W. Cable, Phys. Rev. B 13, 227 (1976). 
57 P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, (2009). 
58 R.W. Siegel, J. Nucl. Mater. 69, 117 (1978). 
59 M. Doyama, J. Nucl. Mater. 69–70, 350 (1978). 
60 M.L. Fullarton, R.E. Voskoboinikov, and S.C. Middleburgh, J. Alloys Compd. 587, 794 (2014). 
61 T. Garnier, M. Nastar, P. Bellon, and D.R. Trinkle, Phys. Rev. B 88, 134201 (2013). 
62 L. Messina, Z. Chang, and P. Olsson, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with 
Mater. Atoms 303, 28 (2013). 
63 L. Messina, L. Malerba, and P. Olsson, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with 
Mater. Atoms 352, 61 (2015). 
64 T. Ohnuma, N. Soneda, and M. Iwasawa, Acta Mater. 57, 5947 (2009). 
65 L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson, Phys. Rev. B 90, 104203 (2014). 
66 L. Messina, M. Nastar, N. Sandberg, and P. Olsson, Phys. Rev. B 93, 184302 (2016). 
67 H.-E. Schaefer, K. Maier, M. Weller, D. Herlach, A. Seeger, and J. Diehl, Scr. Metall. 11, 803 (1977). 
68 C.-C. Fu, F. Willaime, and P. Ordejón, Phys. Rev. Lett. 92, 175503 (2004). 
 


