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Theoretically the Kohn-Sham band gap differs from the exact quasiparticle energy gap by the
derivative discontinuity of the exchange-correlation functional. In practice for semiconductors and
insulators the band gap calculated within any local or semilocal density approximations
underestimates severely the experimental energy gap. On the other hand, calculations with an
“exact” exchange potential derived from many-body perturbation theory via the optimized effective
potential suggest that improving the exchange-correlation potential approximation can yield a
reasonable agreement between the Kohn-Sham band gap and the experimental gap. The results in
this work show that this is not the case. In fact, we add to the exact exchange the correlation that
corresponds to the dynamical �random phase approximation� screening in the GW approximation.
This accurate exchange-correlation potential provides band structures similar to the local density
approximation with the corresponding derivative discontinuity that contributes 30%–50% to the
energy gap. Our self-consistent results confirm substantially the results for Si and other
semiconductors obtained perturbatively �R. W. Godby et al., Phys. Rev. B 36, 6497 �1987�� and
extend the conclusion to LiF and Ar, a wide-gap insulator and a noble-gas solid. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2189226�
I. INTRODUCTION

Kohn-Sham �KS� density-functional1,2 ground-state cal-
culations on a periodic system give as a by-product the one-
electron band structure. Because of the efficiency and the
simplicity of the KS density functional method it is desirable
to use the KS one-electron band structure for estimating ex-
citation energies �quasiparticle dispersion� and in particular
energy gaps in solids. However, the KS band gap �gap

KS , given
by the difference of the lowest unoccupied and the highest
occupied KS orbital energies of an N-electron system

�gap
KS = �N+1�N� − �N�N� �1.1�

differs theoretically3–6 from the real energy gap
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Egap = I − A �1.2�

that is obtained from the difference between the electron af-
finity A and the first ionization potential I. While for systems
with a finite number of electrons, e.g., atoms and molecules,
the energy gap can be evaluated efficiently from the total
energy difference,

Egap = E�N + 1� + E�N − 1� − 2E�N� . �1.3�

This technique cannot be directly applied to systems with an
infinite number of electrons and one has to resort to other
types of calculation to access this quantity.

The difference between Egap and �gap
KS is due7 to the de-

rivative discontinuity �xc in the exchange correlational
functional,3–6

Egap = �gap
KS + �xc. �1.4�

The question is then how large is the contribution �xc to the
Egap, or, in other words, whether or not it is still possible to
estimate Egap from �gap

KS in real systems. The answer to this
question is of paramount relevance for devising new ap-

proximations to the exchange-correlation potential and ker-
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nel in time-dependent density-functional theory. Indeed,
there are well-known problems in calculations of response
properties of extended systems directly related to the KS gap
underestimation: the downward shift in energy of the optical
absorption spectra of semiconductors and solids, the under-
estimation of long-range charge-transfer excitations8–10 and
the overestimation of the �hyper�polarizabilities of polymeric
chains.11,12 In fact the KS energy differences enter the time-
dependent calculations as the “zero-order approximation” for
the excitation energies, while the “corrections” that shift the
KS energy differences to the excitation energies should come
from the exchange-correlation kernel. Therefore, determin-
ing the relative contribution of the derivative discontinuity
�xc and the KS band gap �gap

KS to the energy gap Egap �Eq.
�1.4��, and more in general to the excitation energies, would
help to assess not only the approximation for the potential,
but eventually also the approximation for the kernel. In par-
ticular, it would help to understand whether the downwards
shift in the optical absorption spectra of semiconductors and
insulators is due to deficiencies of the exchange-correlation
potential or of the corresponding kernel.

For semiconductors and insulators the KS band gap cal-
culated with the local density approximation �LDA� for the
exchange-correlation potential are about 30%–100% lower
than the experimental energy gap.13,14 Adding gradient cor-
rections to the exchange-correlation potential does not im-
prove the results for the band gaps. A longstanding
discussion15–18 is whether this large underestimation is an
artefact of the LDA �and similar approximations� or is due to
the �xc.

A definitive answer can be given only when the exact KS
potential is known for real systems. For atoms and small
molecules the exact, or very accurate, KS exchange-
correlation potential has been obtained from the density cal-
culated by quantum Monte Carlo or other accurate wave-
function methods �see, e.g., Refs. 19 and 20�. However, for
extended systems this technique has been applied only to a
model semiconductor.21

An alternative way to obtain an accurate exchange-
correlation potential that can be feasible both for finite and
for extended systems is the optimized effective potential
�OEP� approach.22 Recent calculations for semiconductors
employing the OEP method at the exchange-only level �the
exact exchange potential� provided very good agreement be-
tween the KS and the interacting energy gap Egap.

23,24 How-
ever, for noble-gas solids25 the exact exchange �EXX� poten-
tial, even though yielded larger KS band gap than the LDA
potential, heavily underestimate the experimental gaps.

These results may suggest that a more sophisticated ap-
proximation for the exchange-correlation potential could
provide a good estimate for the energy gap. In particular, an
accurate correlation potential could further open the KS band
gap for wide-gap insulators. On the other hand, the experi-
ence based on many-body perturbation theory �MBPT� sug-
gests that Coulomb interaction tends to close the bare ex-
change band gap �see, e.g., Ref. 26�.

In the present work we address this issue by deriving

within the OEP approach the exchange-correlation potential
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corresponding to a given many-body energy functional
�Sec. II A�. In contrast to previous works23–25 we do not add
a posteriori the correlation part of the LDA potential, but we
treat the exchange and correlation at the same level of ap-
proximation. Sections III A and III B present the results for
the band gaps and the derivative discontinuity of bulk Si,
LiF, and Ar obtained with the potential corresponding to the
GW exchange-correlation self-energy.27,28 By comparison
with the exchange-only Hartree-Fock �HF� results we show
how the long-range correlation—included in the GW self-
energy—affects the band gap and the derivative discontinu-
ity. In fact, the long-range correlation reduces the exchange-
only band gap, and, in agreement with previous perturbative
analyses,15,17 the band gaps we obtain are similar to the LDA
band gaps.

II. THEORETICAL FRAMEWORK

A. Density functionals from many-body perturbation
theory

Finding a reasonable approximation for the total energy
as a functional of the electronic density is still a challenge in
density-functional methods. The traditional way to derive
density functionals is to use model systems, such as the ho-
mogeneous electron gas, where the energy is an explicit
functional of the density. A different approach valid in gen-
eral is to use energy expressions that are only implicit func-
tional of the density, such as orbital-dependent functionals.
For example, the orbital-dependent Hartree-Fock energy
written in terms of KS orbitals is an implicit density func-
tional, since the KS orbitals depends on the density �this
procedure leads to the exact-exchange approach�. Using an
implicit density functional has the advantage that the physics
of the electron-electron interaction is described via a nonlo-
cal expression of the orbitals and the orbitals energy. With
the OEP equation local potentials are derived from these
nonlocal orbital/energy-dependent expressions.

In this work we follow the approach in Ref. 29 to derive
the OEP equation from MBPT. Starting from ��G�—the uni-
versal functional of the Green’s function G that describes the
nonclassical electron-electron interaction effects—different
variational energy functionals are derived by adding func-
tionals of the Green’s function G in a way that the total
functional becomes the exact total energy of the system at
the stationary point. This approach automatically implies the
conservation laws for the number of particles, total energy,
momentum, and angular momentum.30

The ��G� universal functional can be obtained from dia-
grammatic techniques of MBPT.31 Examples of � functional
obtained in this way are the Hartree-Fock, the second-order
Møller-Plesset �MP2�, or the GW approximations for the to-
tal energy. The functional derivative of � with respect to the
Green’s function gives the self-energy operator �xc

�xc�G� =
���G�

�G
. �2.1�
In the Dyson equation for the Green’s function,
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G = G0 + G0�xcG . �2.2�

The self-energy operator �xc contains the electron-electron
interaction effects that leads the Hartree Green’s function G0

into the interacting Green’s function G. In the Green’s func-
tion framework, Eq. �2.2� should be solved self-consistently
with similar equations for �xc and for the screened interac-
tion W �Hedin’s equations27�. This approach is computation-
ally unbearable and usually one approximates �xc with the
first order of Hedin’s equations expanded in powers of the
screened interaction W.

The variational nature of this formalism introduces some
degree of arbitrariness in the derivation of the total energy
functional. Indeed, there is not a unique way to construct
variational energy functionals, and there exist different func-
tional expressions, such as the Luttinger-Ward31 or the
Klein32 functionals. All these expressions satisfy Eq. �2.2� at
the stationary point and give for this G the same total
energy.33

While this completes the general introduction to MBPT-
based total energy functionals, in the present work we are
interested in using these functionals within the KS density
functional scheme, i.e., we are looking for local potentials
from which the electronic properties are derived by solving
the standard KS equations.34

A KS scheme from a variational MBPT energy func-
tional is derived by restricting the variational freedom to KS
one-electron Green’s function Gs, that is, the noninteracting
Green’s function corresponding to the KS effective local po-
tential vs

vs�r� = vext�r� + vH�r� + vxc�r� , �2.3�

given by the sum of the external potential vext, of the classi-
cal Coulomb �Hartree� potential vH, and of the exchange-
correlation potential vxc. Reference 29 showed that different
choices for the variational energy functional lead to different
OEP equations, in contrast to the full MBPT variational
framework where the final Green’s function is unique for all
functionals. In this work we adopt the variational total en-
ergy functional proposed by Klein that leads to the “stan-
dard” and simplest form for the OEP equation and allows us
to make a connection with previous works �in particular, it
leads to the linearized Sham-Schlüter equation5 or equiva-
lently, to the potential derived from the adiabatic connection
formula using the RPA energy functional35�.

Within the KS scheme the Klein functional looks like the
standard expression for the KS total energy,

EKlein
KS = Ts +

1

2
� drvH�r�n�r� +� drvext�r�n�r� + i��Gs� ,

�2.4�

where Ts is the kinetic energy of the KS independent par-
ticles, while the � is the exchange-correlation energy func-
tional. One obtains the OEP integral equation by minimizing
the KS-Klein density-functional energy expression with re-

spect to the electron density,
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� d�� dr2� dr3Gs�r,r2,���vxc�r2���r2 − r3�

− �xc�r2,r3;���Gs�r3,r,�� = 0. �2.5�

The OEP integral equation �Eq. �2.5�� allows us to derive the
local exchange-correlation potential vxc corresponding to a
�-derived approximation of the self-energy operator �xc

�Eq. �2.1��.
Note that the vxc derived in this way satisfies conserva-

tion laws for the particle number, the energy, the momentum,
and the angular momentum �see Ref. 29 and references
therein�. Moreover the possibility of controlling the level of
approximation of the potential by choosing the approxima-
tion for the � functional opens the way towards a systematic
treatment of exchange-correlation effects in the KS density-
functional scheme. For the exchange-only Hartree-Fock ap-
proximation Eq. �2.5� gives the OEP equation for the EXX
potential,23,36 however, one can include correlation at—for
example—the GW or MP2 level by choosing the correspond-
ing � functional in Eq. �2.4�.

Besides ��G�, another class of variational energy func-
tionals can be constructed following Ref. 37 by starting from
the universal functional ��G ,W� of the Green’s function and
the screened interaction W. The advantage of the ��G ,W�
functional is that W is treated as an independent variable, in
particular, not dependent on G, and therefore it is possible to
consider approximations that use simple model W0 instead of
solving the Dyson equation for W. Within this framework the
simplest choice for the ��G ,W� �Ref. 29� functional leads to
the OEP equation in Eq. �2.5�. However, different from the
�-derived OEP equation, the self-energy operator � is a
functional of both G and W.

In this work we consider the local potentials correspond-
ing to the Hartree-Fock �HF� and to the GW0 approximations
via the OEP equation �Eq. �2.5��. Section II B presents the
details of the solution of Eq. �2.5� in these two cases.

Finally, in contrast to local or semilocal density approxi-
mations for the energy functionals that give a zero derivative
discontinuity, the exchange-correlation functionals derived
from MBPT have a finite derivative discontinuity,

�xc�r� = lim
�→0

���Exc�n�
�n�r�

�
N+�

− ��Exc�n�
�n�r�

�
N−�

� . �2.6�

It has been shown38 that for solids the derivative discontinu-
ity �xc of the potential corresponding to the GW self-energy
operator can be evaluated from the N-electron eigenvalues
and eigenfunctions as

�xc = 	�N+1
�xc
GW��N+1� − vxc
�N+1�

− 	�N
�xc
GW��N� − vxc
�N� . �2.7�

Note that this equation is similar to the standard perturbative
solution of the Dyson equation in the GW approximation
besides the fact that it is evaluated at the KS eigenvalues
instead of the quasiparticle energies. For a discussion of this
point we refer the reader to Ref. 38. Thus, we can calculate
within the same approach the KS band gap, the derivative
discontinuity and, via Eq. �1.4�, the energy gap. Similarly the

complete quasiparticle levels can be inferred. The exchange-
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only case can be derived from Eq. �2.7� using �xc=�x
HF and

the vxc=vx.
23,38 In what follows atomic units are used unless

otherwise stated �	=m=e=1�.

B. Practical implementation of the OEP equation and
computational details

We discuss the implementation of the OEP method �Eq.
�2.5�� for the HF self-energy �x

HF and for the GW approxi-
mation for the correlation part of �xc

GW, where

�x
HF�r,r�� =

i

2

� d��ei���Gs�r,r�,���v�
r − r�
� �2.8�

and

�xc
GW�r,r�,�� =

i

2

� d��Gs�r,r�,� + ���W�r,r�,��� . �2.9�

Consistently with the discussion in Sec. II A, �x
HF and �xc

GW

are evaluated at the KS Green functions Gs. We apply the
OEP formalism to periodic systems only and consequently
we expand the KS wave functions using a plane wave basis
set G in the reciprocal space.

The “exact” exchange potential vx corresponding to �x
HF

�Eq. �2.8�� is obtained from the OEP equation �Eq. �2.5�� by
substituting the representation of the KS Green’s function Gs

in terms of the KS wave functions and eigenvalues

Gs�r,r�,�� = �
n
�

BZ

dk

�2
�3

�nk�r��nk
* �r��

� − �nk + i� sgn ��nk − ��
,

�2.10�

where the integration runs over the first Brillouin zone �BZ�
and the sum includes both occupied and empty states. By
performing the integration on the frequencies in Eq. �2.5� we
get

vx�G� = �
G�

̃s
−1�G,G��

�4�
BZ

dk

�2
�3�
vc

	vk
eiG�·r
ck�	vk
�x
ck�
�ck − �vk

� ,

�2.11�

with v and c valence- and conduction-band indices. The ma-
trix elements of the exchange self-energy operator are given
by

	vk
�x
ck� = − �
v�
�

BZ

dq

�2
�3�
G

4


�
	vk
ei�q+G�·r
v�k − q�	v�k − q
ei�q+G�·r
ck�


q + G
2

�2.12�

with the integral in q discretized on a uniform grid and the
1/ 
q+G
2 integrals evaluated on a small volume centered
around each point in the discrete grid.39 ̃s

−1�G ,G�� in

Eq. �2.11� is the inverse of the reduced independent KS
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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response function ̃s�G ,G��,

̃s�G,G�� = 4�
BZ

dk

�2
�3�
vc

	vk
eiG·r
ck�	ck
eiG�·r
vk�
�ck − �vk

,

for G,G� � 0

̃s�G,G�� = 0, for G or G� = 0. �2.13�

This redefinition of s is necessary because the effective po-
tential is defined up to a constant and consequently the KS
response function is linear dependent. Therefore we have to
project out the null space of the s before undergoing the
matrix inversion. A similar constraint is used in molecular
calculations where the potential is fixed to be zero at infinite
distance.

In the GW approximation the dielectric function �−1

reads

�−1�r,r�,�� = 1 +� dr1v�
r − r1
��r1,r�,�� , �2.14�

that gives, when used in the expression for the screened in-
teraction W,

W�r,r�,�� =� dr1v�
r − r1
��−1�r�,r1,�� . �2.15�

The  appearing in Eq. �2.14� is the full response function
that we evaluate in the random phase approximation �RPA�
�i.e., �−1= �1−vs�−1�. The frequency-dependent part of the
�−1 function is evaluated by considering a single plasmon-
pole model,

�GG�
−1 �q,�� � �G,G� +  RGG��q�

� − �̃GG��q� + i�

−
RGG��q�

� + �̃GG��q� − i�
� , �2.16�

that is, it is assumed that there is only one excitation that
takes all the oscillator strength at the frequency �̃ with
weight R.40

With these simplifications we can perform the integral in
the frequency in Eq. �2.5� analytically for the correlation part

of the exchange-correlation OEP potential vc,
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vc�G� = �
G�

̃s
−1�G,G���

BZ

dk

�2
�3�
vc

	vk
eiG�·r
ck�	vk
�e��ck� + �h��vk�
ck�
�ck − �vk

+ �
vv�

	vk
eiG�·r
v�k�	vk
�h��v�k� + �h��vk�
v�k�

�v�k − �vk
+ �

v
	vk
eiG�·r
vk�� ��h

��
�

�=�vk

+ �
cc�

	ck
eiG�·r
ck�	ck
�e��ck� + �e��c�k�
c�k�

�ck − �c�k
+ �

c

	ck
eiG�·r
ck�� ��e

��
�

�=�ck

. �2.17�

As the correlation effects included in the standard GW0 self-energy operator stems from the RPA for the screening we will refer
to this potential as RPA. In Eq. �2.17� the mn matrix elements of �e and of �h are

	mk
�e
nk� = − �
v�
�

BZ

dq

�2
�3 �
GG�

4

RGG��q�

� + �̃GG��q� − i�
�

	mk
ei�q+G�·r
v�k − q�	nk
ei�q+G�·r
v�k − q�

q + G
2

, �2.18�

	mk
�h
nk� = − �
c�
�

BZ

dq

�2
�3�
G

4

RGG��q�

� − �̃GG��q� + i�
�

	mk
ei�q+G�·r
c�k − q�	nk
ei�q+G�·r
c�k − q�

q + G
2

. �2.19�
Note that the solution of Eq. �2.17� is computationally very
expensive due to the double summation on conduction
bands. Indeed the computational cost can be noticeably re-
duced by using a common-energy denominator type of
approximation.41–44 We perform here the full solution of the
OEP equation in order to clarify the impact of the self-energy
corrections on the KS-OEP band gap.

In our implementation, the �−1 function �Eq. �2.14�� and
therefore W �Eq. �2.15�� are not updated during the self-
consistent loop, but evaluated once from LDA wave func-
tions and band energies. This approximation is justified
within the � functional framework mentioned in Sec. II A.
In Sec. III A we test the impact of this approximation by
using different wave functions and band energies for the
screening.

As the practical implementation concerns, the ABINIT

�Ref. 45� code has been used to perform LDA calculations
for bulk Si, LiF and Ar �face-centered-cubic lattice at experi-
mental lattice constant�. Troullier-Martins46,47 norm conserv-
ing LDA pseudopotentials have been used and for Si, LiF,
and Ar the plane wave cutoff in the LDA �Refs. 48 and 49�
calculations is respectively 18, 80, and 70 Ry. For all sys-
tems the Brillouin zone is sampled with a 4�4�4
Monkhorst-Pack50 grid.

The OEP-KS potentials have been implemented in the
pseudopotential plane-wave code SELF.51 In the solution of
the KS equations we used the LDA wave functions as basis
set. In the EXX calculations we tested also the EXX self-
consistent norm conserving pseudopotentials52 The descrip-
tion of the core-valence interaction turns out to be not very
important for the band structures of the systems considered
in this work.

The solution of the OEP equations must be converged
with the number of unoccupied states and G vectors in the
summations appearing in Eqs. �2.11�, �2.17�, �2.13�, and

�2.12�. In the case of the vc potential �Eq. �2.17��the number
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje
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the G vectors in the summation of the �−1 function must be
converged as well. For Si we used 100 unoccupied bands,
169 G vectors in the OEP equation and 59 G vectors for the
�−1 function. For LiF and Ar we used 200 unoccupied bands
331 G vectors in the OEP equation, and 113 G vectors in the
�−1 function. All the parameters entering the calculations
have been carefully converged to yield a 0.1 eV mean nu-
merical uncertainty in the final band gaps.

III. RESULTS AND DISCUSSION

Previous calculations for semiconductors using the EXX
�Eq. �2.11�� plus LDA correlation potential �EXX+LDA�
suggest that this approximation can be used to predict the
energy gap.24 In this section we discuss the effect on the KS
band structure of adding either the LDA or the RPA for the
correlation �Eq. �2.17�� to the EXX potential. Then we inves-
tigate the contribution of the derivative discontinuity to the
energy gap in the EXX and the EXX+RPA approximations.
For the prototype semiconductor Si, and two wide-gap insu-
lators, LiF and Ar, we show that the EXX band gap is re-
duced by the addition of the RPA correlation and that the
contribution of the derivative discontinuity cannot be ne-
glected.

A. The KS band gaps with EXX+LDA and EXX+RPA

Table I compares the effect on the KS band gaps for Si,
LiF, and Ar using either the RPA or the LDA correlation for
the potential. The KS band gaps are calculated at high sym-
metry points in the Brilliouin zone, and compared with the
experimental, the GW and the LDA gap. In Fig. 1 we com-
pare the full KS band structures calculated with EXX
+LDA, EXX+RPA, and LDA. All the results presented in

Table I and Fig. 1 are consistently obtained within the same
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methodological framework described in previous section.
This prevents spurious numerical effects due to different pos-
sible implementations.

For Si the EXX band gaps are in quite good agreement
with the GW results and the experimental data.53,54 The LDA
correlation opens rigidly the EXX band gaps �EXX+LDA
column� by only 0.1 eV and therefore the results are still in
satisfactory agreement with GW and experimental energy
gaps as it was found already in Ref. 23. Conversely, adding
RPA correlation to EXX �EXX+RPA� closes strikingly the
band gap and also modifies the overall band structure. With
the EXX+RPA potential the band gap is smaller by
0.6–0.9 eV than the EXX band gaps and the results are very
close to those obtained within the LDA. This result confirms
substantially the results for Si found in Ref. 15 obtained with
the EXX+RPA potential by the perturbative solution of the
KS equations using the unperturbed LDA wave functions
and eigenenergies. In fact, we found that the LDA wave
functions are very close to the EXX+RPA wave functions
and this justifies the success of the perturbation approach
used in Ref. 15.

For LiF the EXX band gaps are about 2 eV larger than
the LDA, still underestimating by more than 2 eV the GW

TABLE I. Calculated Kohn-Sham �KS� band gaps
correlation potentials as discussed in the main text: E
abbreviation�. The results are compared with the ca
ments.

EXX EXX+LDA EX

Si
�→� 3.2 3.3
�→X 1.5 1.6
�→L 2.2 2.3

LiF
�→� 11.2 11.5
�→X 16.9 17.2
�→L 13.0 13.3

Ar
�→� 9.7 10.1
�→X 12.1 12.5
�→L 12.2 12.6

aReference 53.
bReference 54.
cReference 55.
dReference 56.

FIG. 1. Band structure of bulk Si, LiF, and Ar calculated with the EXX
+LDA �continuous line�, EXX+RPA �dashed line�, and LDA �circles� ap-

proximations. The top of the valence band is set to 0 eV for all the systems.
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and experimental55 values. The LDA correlation opens rig-
idly the EXX band gap by 0.3 eV. The effect of LDA corre-
lation is small and therefore the EXX+LDA still largely un-
derestimates the energy gap. As for Si, adding RPA
correlation to EXX closes the band gap and brings the results
close to the LDA results. The band gaps found with EXX
+RPA and LDA differs in fact by approximately 0.3 eV.

Bulk Ar shows a trend similar to LiF. The EXX potential
improves the agreement with the experimental gap56 with
respect to LDA, but the band gap is still underestimated by
more than 4 eV. The LDA correlation in the EXX+LDA
slightly opens the band gaps �0.4 eV�, while the RPA corre-
lation closes the gap by 0.7–0.9 eV.

As discussed in Sec. II B, the screened Coulomb inter-
action W �entering Eqs. �2.14� and �2.15�� is calculated with
LDA eigenvalues and eigenfunctions and is not updated dur-
ing the self-consistent loop. To estimate the effect of this
approximation we have repeated the calculations using a
screened interaction calculated with EXX eigenfunctions and
eigenvalues. In fact, compared with LDA, EXX represents
qualitatively the other extreme in the range of approximated
KS eigenfunctions and eigenvalues. Table II shows that the
screening calculated from EXX wave function is weaker and
gives larger band gaps, but the effect is only of 0.1–0.2 eV.
Since W calculated from the EXX eigenfunctions and eigen-
values yields a band structure close to LDA as well, we
conclude that W can be safely approximated at the non-self-
consistent level with little effect on the final result.

To summarize, in all the systems we have studied, EXX
gives a larger band gap than LDA, even if only for Si, the
EXX�+LDA� band gap agrees with the experiment. As al-
ready observed in Ref. 25 the EXX�+LDA� scheme works
well for sp semiconductors,24 but heavily underestimates en-
ergy gaps in wide-gap insulators. The LDA correlation in-
duces only a small rigid opening of the band gap: in Ref. 24

ulk Si, LiF, and Ar using the following exchange-
EXX+LDA, EXX+RPA, and LDA �see Sec. III for
ed energy gap in the GW method and with experi-

RPA LDA GW Exp.

6 2.6 3.2 3.37
6 0.7 1.2 1.25
5 1.5 2.1 2.1,a2.4b

3 8.9 13.5 14.2c

3 14.8 20.1
1 10.6 15.3

8 8.2 13.1 14.19d

4 10.6 16.0
5 11.0 16.3
for b
XX,
lculat

X+

2.
0.
1.

9.
15.
11.

8.
11.
11.
this result yielded to the conclusion that correlation was un-
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important for band gap with respect to the exchange. How-
ever, as emphasized in Refs. 57 and 58, the partitioning of
exchange and correlation in the approximated �semi�local
density functionals does not correspond to the partitioning in
MBPT. The LDA for exchange contains long-range correla-
tion effects that are missing in the LDA for correlation in-
stead. As a consequence combining EXX, the “pure” ex-
change term, with the LDA correlation leads to an
unbalanced approximation that misses long-range correlation
effects.

The RPA correlation, on the other hand, embodies the
long-range correlation effects �see, e.g., Ref. 59 and refer-
ences therein� as confirmed by the results in Table I showing
that RPA correlation has a crucial effect on the band struc-
ture. It corrects the exaggerated tendency of EXX potential
to flatten the bands and it strikingly closes the band gap. The
latter effect due to long-range correlation is already known:
in the GW method the long-range correlation induces the
screening of the bare exchange and shrinks the gap. Similar
results within the KS approach have been obtained in Ref. 60
with the potential corresponding to the screened exchange-
Coulomb hole approximation for the self-energy, and in Ref.
15 with the EXX+RPA, but solving the KS equation pertur-
batively.

Finally, we stress that like in the exchange-only case, the
EXX term in EXX+RPA energy cancels the self-interaction
contribution due to the Hartree energy. The RPA correlation,
even though introduces a minor error because of the self-
polarization effects in the screening, does not spoil this prop-
erty. In spite of that, the EXX+RPA provides results for the
band structure very close to the LDA whose exchange part is
heavily affected by the self-interaction error. In fact the self-
interaction error in the LDA has been pointed out as the
responsible for the underestimation of the band gaps �e.g.,
Refs. 23 and 24�. We argue that the LDA results are close to
the EXX+RPA since the self-interaction error in the LDA
exchange accounts in part for long-range effects57 that are
not counted, as mentioned above, in the LDA correlation.

TABLE II. Comparison between the KS band gaps for bulk Si, LiF, and Ar
calculated with the EXX+RPA exchange correlation potential using for the
screened Coulomb interaction W0 either the LDA or the EXX eigenfunctions
and eigenvalues.

EXX+RPA�LDA� EXX+RPA�EXX�

Si
�→� 2.6 2.6
�→X 0.6 0.8
�→L 1.5 1.5

LiF
�→� 9.3 9.5
�→X 15.3 15.6
�→L 11.1 11.3

Ar
�→� 8.8 8.9
�→X 11.4 11.5
�→L 11.5 11.6
The resulting LDA potential is therefore similar to the sum
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of the EXX and the RPA correlation. On the other hand
EXX�+LDA� is self-interaction free �in exchange�, but does
not contain the long-range correlation effects and induces
larger band gaps than the EXX+RPA.

The RPA potential constitutes just the first step in the
MBPT series to include consistently correlation in the func-
tionals and it is not the definitive answer to the problem. For
example, it is still unclear how important it is to have a fully
self-interaction free correlation potential.

B. The derivative discontinuity and energy gap
with EXX and EXX+RPA

In the previous subsection we compared the KS band
gap �gap

KS with the GW and experimental energy gap Egap.
However, as mentioned previously, the energy gap Egap

KS

within KS density-functional theory includes a contribution
from the Exc derivative discontinuity �xc �Eq. �1.4��. In con-
trast to the �semi�local density approximations for the energy
functionals, the EXX and EXX+RPA have a finite derivative
discontinuity that can be calculated from Eq. �2.7�. Figure 2
compares the energy gap, for EXX, EXX+RPA �Eq. �1.4��,
and for the HF and GW approximations.

For Si, the EXX derivative discontinuity �x is 4.5 eV,
almost three times the EXX band gap �gap

EXX. The latter, as
discussed in Sec. III A, is a good estimate of the experimen-
tal energy gap for Si. However, the addition of �x to �gap

EXX

gives an energy gap Egap
EXX of �6 eV, very close to the HF

value, that severely overestimates the experimental value of
1.17 eV. On the other hand, the derivative discontinuity �xc

corresponding to the EXX+RPA functional is much smaller
than �x, in fact the RPA correlation reduces the discontinuity
from 4.5 to 0.7 eV. The discontinuity �xc summed to the
EXX+RPA band gap �gap

EXX+RPA gives an energy gap of
1.2 eV in very good agreement with the experimental value.
For LiF the EXX derivative discontinuity �x is 9 eV, almost
80% of the �gap

EXX, and as a consequence Egap
EXX overestimates

the experimental energy gap by 6 eV. The derivative discon-
tinuity �xc

EXX+RPA corresponding to EXX+RPA is instead
about 5 eV and Egap

EXX+RPA is 14.4 eV, a good estimate for the

FIG. 2. Minimum-energy gap for bulk Si, LiF, and Ar as calculated with the
EXX and EXX+RPA approximations within the KS density-functional
framework �the white bar is the band-gap contribution, the striped bar is the
derivative discontinuity contribution�, and with the HF and GW methods.
The dashed line indicates the experimental value.
experimental value of 14.2 eV. Similarly, for Ar the EXX
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derivative discontinuity �x is about 8 eV and its addition to
�gap

EXX leads to an energy gap Egap
EXX of 18 eV that overesti-

mates the experimental energy gap by 4 eV. The correlation
reduces the exchange-only derivative discontinuity by 40%:
�xc

EXX+RPA is about 5 eV. The Egap
EXX+RPA is then 13.7 eV and

slightly underestimates the experimental value of 14.2 eV.
For all the systems the results for the energy gap within

the EXX-KS and HF approach are close to each other. In fact
Egap

HF is obtained from the self-consistent solution of the HF
equation while the Egap

EXX is calculated by adding to the KS
band gap the derivative discontinuity: the latter can be inter-
preted as the first-order perturbation correction to the EXX
energies due to the perturbation that leads the KS into the HF
equation. Note that the addition of LDA would not help to
reduce the EXX energy gap. In fact, the LDA correlation
increases slightly the band gap �see Table I� and it could
contribute to the discontinuity only through the changes in
the wave functions since there is no derivative discontinuity
in the energy functional within the LDA. The total effect
would be therefore negligible compared with the error on the
energy gap.

As in the GW method, in the EXX+RPA the dynamical
screening of the Coulomb interaction reduces the energy gap
with respect to the bare interaction case and provides a good
estimate for the experimental band gap. The closeness of the
EXX+RPA and GW results for the energy gap is not surpris-
ing: the GW energy gap is obtained by adding to the LDA
band gap the quasiparticle corrections that are calculated
with an expression analogous to Eq. �2.7� with the difference
that the self-energy operator is evaluated not at the KS, but at
the quasiparticle energies. In fact, as shown in the previous
subsection, the LDA and EXX+RPA band gap are very simi-
lar and the same holds for the wave functions of the highest
occupied and the lowest conduction band. The difference be-
tween the GW and EXX+RPA energy gap stems mostly
from the energy dependence of the self-energy operator.

Considering EXX+RPA as an accurate approximation
for the KS exchange-correlation potential we can conclude
that, at least for the systems considered in this work, the Exc

derivative discontinuity contributes by 30%–50% to the en-
ergy gap and cannot be neglected when comparing the KS
band gap with the real energy gap of a system. Note that for
Si, the difference between the EXX+RPA and EXX band
gaps ��gap

EXX+RPA−�gap
EXX� is, with opposite sign, approximately

equal to the derivative discontinuity �xc
EXX+RPA and as a result

�gap
EXX�Egap. Nevertheless this cancellation is fortuitous �even

though it seems to hold in general for sp semiconductors� as
demonstrated by the results for LiF, for Ar, and other noble-
gas solids.25

IV. CONCLUSIONS

In this work we have addressed the bandgap problem in
the standard KS scheme for sp semiconductors �Si�, wide-
gap insulators �LiF�, and noble-gas solids �Ar�. The KS band
gap differs from the energy gap by the derivative discontinu-
ity of the exchange-correlation functional. For real systems it
is still not assessed how large this quantity is. In particular,

recent calculations for semiconductors with EXX+LDA re-
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newed the hope that the derivative discontinuity could be
small and that the KS density-functional method could be
used in band-structure calculations.

Conversely, the results in this paper obtained with the
accurate EXX+RPA potential, show that the derivative dis-
continuity contributes by as much as 30%–50% to the energy
gap. Therefore the large difference between the LDA band
gap and the experimental or quasiparticle energy gap is not
due to an artefact of the approximation, but is mostly due to
the derivative discontinuity. On the other hand, we have
found that the good agreement of the EXX+LDA for Si is
“fortuitous” due to neglecting both the correlation in the KS
potential and contribution of the derivative discontinuity.

Both the EXX+RPA and EXX have been derived from
the energy expression of the Klein functional of MBPT via
the OEP method. The EXX+RPA corresponds to the GW0

approximation for the self-energy, with the W0 calculated
within the RPA. In contrast to the EXX+LDA where the
exchange is treated at OEP-MBPT level while the correlation
is taken from the homogeneous electron gas model, in the
EXX+RPA both exchange and correlation are treated at the
same level of approximation. In fact the energy gap of
EXX+LDA—calculated by adding the corresponding de-
rivative discontinuity to the band gap—is hugely overesti-
mated, highlighting the imbalance of the approximation for
exchange �large derivative discontinuity� and for the correla-
tion �no derivative discontinuity�. The energy gap calculated
for EXX+RPA, on the other hand, is in quite good agree-
ment with the experimental data once the exchange-
correlation derivative discontinuity is summed to the KS
band gap.

The accuracy of the EXX+RPA potential could be im-
proved by choosing a better approximation than GW for the
� functional, or by using a better approximation than RPA
for the polarization, or by starting from a different energy
functional �the one of Luttinger-Ward expression, for ex-
ample, that leads to a different OEP equation61�. However,
the fact that EXX+RPA energy gap �band gap plus deriva-
tive discontinuity� provides a good estimate for the experi-
mental gap makes us confident of the quality of this approxi-
mation. Moreover, even for improved approximations it
remains valid that adding long-range correlation closes the
EXX band gap. Since the EXX band gap already underesti-
mates the energy gap for wide-gap insulators, we infer that it
is not possible to find an approximation for the exchange-
correlation potential that successfully estimates the energy
gap of wide-gap insulators and semiconductors.

For time-dependent calculations of optical absorption
spectra, and in general of extended systems, the results we
found indicate that the KS energy differences differ substan-
tially from excitation energies. Therefore the correction that
brings the KS energy differences to the excitation energies
comes from the kernel, in particular, from the exchange-
correlation part since, unlike in finite systems, the Hartree
part of the kernel does not correct the KS energy differences.
Theoretical analyses62–66 on the properties of the kernel sug-
gest that the correction to the KS orbital energies differences
should come from a singularity in the frequency dependence

of the exchange-correlation kernel.
ct to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

6 Jun 2014 11:05:49



154108-9 Band gap for semiconductors and insulators J. Chem. Phys. 124, 154108 �2006�

 This ar
The theory employed in this work to derive accurate
exchange-correlation potentials, can be applied as well for
deriving accurate exchange-correlation kernels29,67 and could
be a valuable tool to tackle this problem. Work in this direc-
tion is in progress.
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