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DENSITY IN SMALL TIME FOR LEVY PROCESSES

JEAN PICARD

ABSTRACT. The density of real-valued Lévy processes is studied in
small time under the assumption that the process has many small
jumps. We prove that the real line can be divided into three subsets
on which the density is smaller and smaller: the set of points that the
process can reach with a finite number of jumps (A-accessible points);
the set of points that the process can reach with an infinite number of
jumps (asymptotically A-accessible points); and the set of points that
the process cannot reach by jumping (A-inaccessible points).

1. INTRODUCTION

The problem of the absolute continuity of infinitely divisible laws has been
studied for a long time in the literature, especially in dimension 1, see Tucker
(1965) (in larger dimension, more geometry is involved, see Yamazato (1994)
for an example). Variables corresponding to these laws can be viewed as the
values at a fixed time of Lévy processes X, (processes with independent
and stationary increments such that Xy = 0), or as linear functionals of
Poisson random measures. The problem of the absolute continuity and of
the smoothness of the density can also be extended to some non linear
functionals of Poisson measures, especially to Markov processes X; with
jumps (see for instance Bismut (1983), Bichteler et al. (1987), Picard (1996)).
In order to study these processes, one has to consider the measure

p(y,dz) = P[Xypae € (y + da) ‘ Xe=y] [ dt

which describes how the process can jump from y to y + #; in the case of
Lévy processes, u(y,dz) = p(dz) does not depend on y and is called the
Lévy measure of the process. The sufficient conditions which are known for
the existence of a smooth density involve two types of conditions, namely
the mass of y near 0 (the process must have many small jumps) and the
smoothness of p. Actually, one type of condition can be weakened if the
other one is strengthened; for instance, a Lévy process has an absolutely
continuous law if its Lévy measure is absolutely continuous and if it has
infinitely many jumps (Tucker (1962)), but if the Lévy measure is singu-
lar, one has to impose a stronger condition on the number of small jumps;
moreover a critical behaviour is possible, where the law is singular for small
times and absolutely continuous for large times (Tucker (1965)). If now
we assume that the law of X, is absolutely continuous for any ¢, a natural
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question is to study the behaviour of the density p(¢,z) as ¢ — 0. This has
been considered in Léandre (1987), Ishikawa (1993 and 1994) in the case
of absolutely continuous Lévy measures, and for a class of points z which
the process can reach with a finite number of jumps (these points will be
called A-accessible in this paper). Our aim here is to consider the case of
processes with possibly singular Lévy measures and with a large enough
number of jumps, so that a C'*° density p(¢, z) exists for any ¢; however, in
order to avoid many technicalities, we consider neither the general case of
Markov processes (which requires the use of Malliavin’s calculus), nor the
multidimensional case (which involves more geometry); we limit ourselves
to real-valued Lévy processes and study the logarithmic behaviour of p(t, )
as t — 0; it appears that this simple case already involves some interesting
geometrical properties.

We now state our results without making precise all the conditions. We
need two main assumptions on the Lévy process X;. Loosely speaking,

(a) the first assumption says that X has approximately the same number
of small jumps than stable processes with some index 0 < 8 < 2; the case
[ = 2 means that X contains a non trivial Brownian part, and if § < 2,
the precise statement of the assumption says that the tail at 0 of the Lévy
measure of X satisfies an approximate scaling property;

(b) the second assumption requires that the process goes sufficiently up and
down; this assumption is always satisfied if § > 1, and otherwise, it says
that the Lévy measure has enough mass on both R} and R*.

Under these two assumptions, it appears that the points # € R can be

divided into three classes for which the behaviour of p(¢, z) as t — 0 is quite
different.
(i) The first class is the set A of A-accessible points x that the process can
reach with a finite number of jumps (in particular # = 0 that the process
can reach without any jump); more precisely, A is the set of points of the
form Y7 @; where z; is in the support of the Lévy measure; for these points
(and under additional regularity conditions),

logp(t,z) = I'(z) logt 4 o(log(1/t))

where the rate function I'(z) depends on the jumps z; which drive the pro-
cess from 0 to z; in particular, I'(0) = —1/3. Notice that this set A may
be countable. A large deviation principle is easily proved for the law of X,
but the rate function M (z), which is the minimal number of jumps which
are necessary to reach z, is different from I'(z) in the singular case.

(ii) The second class is the set A\ A of asymptotically A-accessible points
that the process can reach with an infinite number of jumps; for these points,

log (1/t) < log(1/p(t,)) < C(log1)*.
Actually, we will describe an example for which
log p(t, ) ~ —p()(logt)”

for some points & and a function p(z) depending on the sequences of jumps
driving the process from 0 to «.
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(iii) Finally the third class is the set R\ A of A-inaccessible points that the
process cannot reach with only jumps (this does not mean that these points
are inaccessible for the process); under our two assumptions (a) and (b), this
set can be non empty only if 3 =2 (X has a non trivial Brownian part), or
if 1 < g < 2 and all the jumps of X have the same sign, for instance positive
(the process is said to be completely asymmetric, or spectrally positive); in
this case R\ 4 is R* and log(1/p(t,z)) is of order t=1/(F=1),

We also consider the case of non-decreasing Lévy processes (or subordi-
nators). In this case, the second assumption (b) is not satisfied; however,
similar properties can also be proved; the main difference concerns the be-
haviour at A-accessible points (notice for instance that p(¢,0) = 0 under the
first assumption (a)).

Let us now set the notations which are used throughout this paper. Con-
sider first an infinitely divisible law @ on R (or equivalently an infinitely
divisible variable X with law @Q); its Fourier transform is given by the Lévy-
Khintchine formula

a’w?

p(w) = /eml’dQ(x) = exp (iwx— —I—/ (emx—l—iwxl[OJ](|x|))d,u(x))

(1.1)
with x € R, ¢ > 0 (diffusion coefficient) and p a measure on R* satisfying

/(ac2 A1)dp(z) < oo,
and which is the Lévy measure of ). More generally, if A = Ay +2A;5 is a
complex number such that e™® is y-integrable on [—1,1]¢, then
2/\2

2

/e”d@(x) = exp (/\X + + /(e” -1- /\$1[071](|$|))d,u($)). (1.2)

We also introduce a finite measure on R which is deduced from p and o by
v(dz) = (2* A ) p(dz) + 0?8y (dz).

Then @ is characterized by the parameters (x,o, ), or equivalently by
(x,v) which are called its y-parameter and v-measure. It follows easily
from (1.1) that the sum of two independent infinitely divisible variables
with parameters (y1,v1) and (a2, v2) is infinitely divisible with parameters
(X1 + x2,v1 + 12); thus, if we decompose the measure v into vy + vy, we
deduce a decomposition of the variable X into the sum of two independent
variables. It is also an easy consequence of (1.1) that if the restriction of u
to [—1,1]¢ has a first moment or a second moment, then a variable X with
law () satisfies the same property and

EX =y -|-/ v du(z), var X = 0% + /x2d,u(96). (1.3)
|z|>1

Now consider a Lévy process X;; the law of each variable X; is infinitely
divisible, and the parameters x, o, u, v of the process (X) are defined to
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be the corresponding parameters of the variable X5; then the parameters of
the variable X; are given by tx and tv; thus the characteristic function ¢; of
X is deduced from the Lévy-Khintchine formula (1.1), and a decomposition
of v also leads to a decomposition of X into the sum of independent Lévy
processes. In the particular case where ¢ = 0 and

[ lal A auo) < o, (1.4)
then X; has finite variation and can be written as

Xt:ZAXertY (1.5)
s<t

where the Y-parameter is defined as
v=x- [ edio) (1.6)
[_171]

In this case, the law of X can be characterized by (X, x). In particular,
X = 0 means that X; is a pure jump process; similarly, we will say that an
infinitely divisible law satisfying (1.4) and ¢ = 0 is of pure jump type if its
X-parameter defined by (1.6) is 0. If Y > 0 and p is supported by R7, then
X is non decreasing (it is a subordinator).

The paper is organized as follows. In §2, we prove some preliminary results
concerning infinitely divisible variables. In §3, assuming that the tail of v at
0 satisfies an approximate scaling property, we estimate sup, p(¢, ). In §4,
we study p(¢,0) and in the three subsequent sections, we study p(¢, z) when
x is A-accessible (§5), asymptotically A-accessible (§6), or A-inaccessible
(§7); in §5, we also give the large deviation principle. The various constant
numbers will be denoted by ¢ or C' and may vary from an equation to the
other.

2. PRELIMINARY RESULTS

LEmMMA 2.1. Let Q; be a family of infinitely divisible laws with parameters
Xi and v;. Suppose that the total mass v;(R) is bounded, and that each Q;
has a continuous density p;. Then there exists a family x; such that x; — Y;
is bounded and p;(x;) is bounded below by a positive number. In particular,
sup,, pi(z) is bounded below.

Proof. Let X; be a variable with law J;, and write X; = x; + Y; + Z; where
Y; and Z; are independent infinitely divisible variables with y-parameter 0,
and the v-measures of which are respectively the restriction of v; to [—1, 1]
and its complement; notice that Z; has Y-parameter 0 (see (1.6)). Then

EY? = Vi([_lv 1])7 P[Zz = 0] > exp _,ui([_lv 1]0) = exp _Vi([_17 1]0)

where the second relation is obtained by considering Z; as the value at time
1 of a pure jump Lévy process, and by noticing that the right-hand side is
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the probability for the process to contain no jump. Thus

PIIX: — xi| < h] = PlYi| < AP[Z; = 0]

; (1 -vi([-1, 1])/h2) exp —v;([—1,1]9)
> (1 - v;(R)/h*) exp —v;(R)

if we choose h large enough; this expression can be bounded below by a
positive constant, so the supremum of p; on [x; — h, x; + k] can also be
bounded below. O

LEMMA 2.2. Consider a family Q); of infinitely divisible laws of pure jump
type, with Lévy measure p; satisfying

lim sup/ |z|dpi(z) =0, supr;(R) < oo.
[—z,e] ?

e—=0

Suppose that each (Q; has a continuous density p;. Then for any fized h > 0,
there exists a family x; such that |x;| < h and p;(z;) is bounded below by a
positive number,

Proof. Let 0 < € < 1 be a number which will be chosen later. We decompose
a variable with law @Q); into X; = Y; + Z;, where Y; and Z; are of pure jump
type, and their Lévy measures are the restriction of u; to [—&,¢] and its
complement. Then

2
EYfz(/[ ]wdui(w)) +/[ ]dem(w)

2
<([ sdwie) e [ feldut
[—&,e] [—&,e]

converges uniformly to 0 as € — 0, so we can choose € such that EY;? < h%/2.
On the other hand,

P[Z; = 0] > exp —p;i([—¢,£]°) > exp —v;(R)/&?
so by proceeding as in Lemma 2.1,
P[IXi| < k] > (1 - EY;*/h%) exp —v;(R)/* > (exp —vi(R) /%) / 2

is bounded below and we can conclude. a0

LeMmMA 2.3. Consider a family of infinitely divisible laws (); with parameters
(Xi,vi) and suppose that

vi([—e,e]) > P (2.1)

for any 0 < ¢ < 1 and for some ¢ > 0 and 0 < 3 < 2. Then Q; has
(k)

a smooth density p;, and p;(z), as well as all the derivatives p;

bounded uniformly in (i, ).

(x), are

REMARK 2.4. The proof relies on integrability properties of the character-
istic function, and is classical, see §4f of Bismut (1983) for related results;
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actually, it can be extended to some Markov processes with jumps, see Pi-
card (1996).

Proof. We deduce from the Lévy-Khintchine formula (1.1) that the charac-
teristic function of @); satisfies

650 = exp(~ [ (1= costwa)ds(a) - o3 2)
< exp(—co WP ([~ 1/w, 1/w]))
for |w| > 1 and some ¢y > 0, where we have used the inequality
1 — cos(wa) > colwzl|?
on the set {x; [wz| < 1}. Thus, from our assumption (2.1),
165(w)] < exp—clu]?

for |w| > 1. In particular, ¢; is integrable with respect to the Lebesgue
measure, so (); has a density p; which is given by the inversion formula

1 ’ 1
pi0) = 5= [ st < o [ Jow)ldw,

Thus p; is uniformly bounded. Similarly, by differentiating this formula, one
proves that

k 1
suplpf)(2)] < 5= [ TPy (w)ldu

is bounded. O

The following lemma is a simple result concerning the closed support of
infinitely divisible laws. In particular, it does not say anything about much
more complicated problems (such as the Hausdorff dimension of the law, see
Rubin (1967)) which have been studied in previous literature; it is however
sufficient for our purpose, since our laws will be easily proved to have a
smooth density from previous lemma.

LEMmMA 2.5. Consider an infinitely divisible law @ without Gaussian part
(0 = 0) and the Lévy measure of which satisfies u([—<,¢]) > 0 for any e > 0.
Suppose either that

(] = 00,00 a(]0, <) > 0, (2:2)
or that

/(|x| A1)dp(z) = +oo. (2.3)

Then the support of Q) is R. If these two conditions are not satisfied, then
the support is | — 00, Y] or [\, +oc|.

REMARK 2.6. It is evident that the support is R if ¢ has a non trivial
Gaussian part.

Proof. For any £ > 0, if u. is the restriction of p to [—&,£]°, one can check
that @ * p. is absolutely continuous with respect to ). One deduces that

supp () +supp pt C supp Q. (2.4)
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From our assumption, the support of x contains numbers with arbitrarily
small absolute value; suppose for instance that it contains arbitrarily small
positive numbers; then we deduce from (2.4) that

x € supp Q) = [z, +o00[C supp Q.

It is thus sufficient to prove that under each of our two assumptions (2.2)
and (2.3), the support of () contains arbitrarily large negative numbers, and
that if neither (2.2) nor (2.3) hold, the smallest number in the support is .
Under (2.2), the support of p contains some negative number —y, so (2.4)
implies

z €supp@Q = (v — y) €supp@

and we conclude. Let us now suppose that (2.2) does not hold, so that u
is supported by positive numbers. If we view () as the law of X for some
Lévy process X, then for any , the law of

Xf=X1-) AXilax,>e
t<1

is absolutely continous with respect to Q. If (2.3) holds, then X§{ | —oo as
£} 0, so its support contains some z(g) which diverges to —oo, and therefore
supp @ also contains z(¢); if (2.3) does not hold, then X§ | X from (1.5),
and we can deduce that Y is in the support of (); moreover in this case,
X; — tY is non-decreasing, so X; > Y and the support cannot contain a
smaller number. O

LEMMA 2.7. Let X be an infinitely divisible variable with parameters (x, v)
such that v is supported by a bounded interval [—p, p]. There exists a C' > 0
depending only on upper bounds on |x|, v(R) and p such that for any h,

PIX| > h] < Ce.

REMARK 2.8. Equivalently, one can say from (1.3) that C' depends only on
upper bounds on p, |[EX| and var X.

Proof. 1t is sufficient to estimate the expectation of exp X and exp —X. But
from (1.2),

0.2
Eexp X = eXp(X +5+ /(ex -1- $1{|x|31})du(96))-

Since the support of p is bounded, the function in the integral is dominated
by #? A 1, so the term in the exponential is dominated by |x| + »(R). The
expectation of exp — X is dealt with similarly. O

LEMMA 2.9. Consider infinitely divisible variables X, the Lévy measures of
which are supported by some bounded interval [—p, p], and which have zero
mean. Then there exists C,, = C,(p) such that

Pl X]| > np] < Cp(var X)".
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REMARK 2.10. One can say equivalently that
P[LX| > np] < Chu(R)".

Proof. Put ¢ = var X and r = r(g) = ¢"/C0+1): one can suppose ¢ < 1.
Consider X as the value X; of a Lévy process X; at time 1, and decompose
it into Xy = X} + X? where

X; =) 1gax.snAX..
s<t

Let us consider the event {|X}| > (n — 1/2)p}; the process X} is a pure
jump process, and its jumps are at most p (in absolute value), so on this
event, there is at least n jumps; moreover, one more jump is needed if one
of the jumps is less than p/2. Thus, in order for |X{| to be greater than
(n — 1/2)p, there must be at least n jumps satisfying p/2 < |AX| < p, or
at least n + 1 jumps satisfying r < |[AX| < p. These two numbers of jumps
are Poisson variables with mean values

p{lz] > p/2} <de/p*,  pllz| > 1) <egfr? =/
PIIXi| > (n = 1/2)p] < p{lz] > p/2}" + p{|z] > r}"* = O(").  (25)

The Lévy measure of X?/r is supported by [—1, 1],

‘ ﬁ _‘Eﬁ :‘/ fd,u(av) <e/r? <1, VarX—%gs/r2§1,
r r lo|>r T r
so from Lemma 2.7,
PIXY| > p/2] < C /30 = o(ck) (2.6)
for any k. We conclude by adding (2.5) and (2.6). a

3. ESTIMATION OF THE SUPREMUM OF THE DENSITY

We have seen in §2 that the supremum of the density of an infinitely divisible
variable can be estimated from the behaviour of its v-measure. We now
translate these results in the case of a Lévy process in small time.
THEOREM 3.1. Let Xy be a Lévy process with parameters (x,v).
(a) Suppose that

lign_jélfeﬁ_2l/([—€,€]) >0 (3.1)

Jor some 0 < 3 < 2. Then Xy has a C'™ density satisfying

supp(t, ) = O(t~/7)

ESAIM: P&S, NOVEMBER 1997, VoL.1, pp. 357-389



DENSITY IN SMALL TIME 365

as t — 0, and more generally

sup‘p(k) (t, x)‘ = O(t_(k‘i'l)/ﬁ).

(b) Suppose that Xy has a continuous density p(t,.) and that

limsup e”~?v([—¢,¢]) < o (3.2)
e—=0

Jor some 0 < 3 < 2. Then, fort small enough,

sup p(t,z) > ct~7, (3.3)

Proof. Consider Y; = Xt/tl/ﬁ. Of course, Y; is not a Lévy process but is
for each ¢ an infinitely divisible variable. Its Lévy measure and diffusion
coeflicient are given by

p(A) =tp(@'4), oy =ot' PP,

80 its v-measure satisfies

z? o? dv(z)

if t <1, and
vi([—e,e]) = 172/ Py([—e 1P e 11/F)) (3.4)

for e < 1. In case (a), we deduce that
vi([—e,e]) > ee?™7,

so from Lemma 2.3, the variables Y; have uniformly bounded densities ¢(¢, .)
with bounded derivatives; thus X; has a density given by

plt,2) = 171 %q(t, 171/ %) (3.5)

and we can conclude. In case (), from an integration by parts,

1

Lﬁ’w])dx (3.6)

(R) = ty(R)—l—Qt/

ti/8 €

which is bounded from our assumption. Thus we can apply Lemma 2.1 and
deduce that the supremum of the density of Y; is bounded below. We again
conclude from the formula (3.5) relating the densities of X; and Y;. a

REMARK 3.2. The assumption (3.2) of case (b) is always satisfied with
[ = 2, so the Wiener process provides a lower bound for the concentration
of Lévy processes in small time.

REMARK 3.3. If X;is a S-stable process, then v satisfies the scaling property
v([~e.e]) = 7Pw([-1.1]),
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and both conditions (a) and (b) hold. These conditions can actually be
viewed as an approximate scaling property on the tail of v at 0.

REMARK 3.4. If we assume condition (3.2) with 5 < 1, then

| alduta = [
[-1,1] [-1,1]

)

1
vie) /ol = (=1, 1)+ [ vil-aal) /el < o0
0
so X; has finite variation. If we assume condition (3.1) with 8 > 1, then

[ line = [ avlelz ez e e 30
[—&,e] [—&,2

)

S0

| Jelduta) = o0
[_171]

and X; has infinite variation.

REMARK 3.5. By joining the two parts of Theorem 3.1, we deduce that

ce? P <p([—e,e]) < C? P = 7P <supp(t,x) < C't7 VP,
X

and that
ii_r}r(l) (logv([—e,e]) [ loge) =2 - (3.8)

implies
]Ei_rf(lj(suplogp(t,x) / logt) =-1/8.

4. ESTIMATION NEAR O

We now want to find a condition ensuring that p(¢,0) also satisfies a lower
bound similar to (3.3), so that it has the order of magnitude of sup, p(¢, z).
Consider first the symmetric case y = 0 and p symmetric; in this case, the
function  — p(¢, ) has its maximum at 2 = 0 (because the characteristic
function is positive), and therefore the behaviour of p(¢,0) follows from
Theorem 3.1. Let us now consider the general non-symmetric case.

LEMMA 4.1. Let Q; be a family of infinitely divisible laws with parameters
(xi,vi), and let 0 < 3 < 2. Suppose that x; and v;(R) are uniformly bounded
and that one of the two following conditions is satisfied;
(a) B> 1 and v; satisfies the lower bound condition (2.1);
(b) B < 1 and both restrictions of v; to Ry and R_ satisfy (2.1).
Then for any p > 0, the density p; of Q; (which exists from Lemma 2.3)
satisfies

inf inf p;(2) > 0.

i z|<p

Proof. Let v} be the restriction of v;/2 to [~1,1], let v} = v; — v}, and
decompose a variable X; with law @; into independent variables X} + X2

with respective coefficients (v},0) and (v7, y;). Let p} be the density of X?;
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the mass v?(R) and the coefficient y; are bounded, so, from Lemma 2.1,
there exists a bounded z; such that p?(z;) is bounded below by a positive
number; moreover, the derivative of p? is uniformly bounded from Lemma
2.3, so there exists a positive ¢ such that

Ve €R o —ai] <c=> pHa) > c
If we notice that p;(x) is the expectation of p3(z — X}), we obtain

inf p;(2) > ¢ inf Plla = X! —a;| <e¢
|x|§pp( )2 || <p | ‘ =]

>c inf P[X! -2 <]
|z|<p+C

Thus it is sufficient to check that for any € and c,

inf inf P[IX} -z <] >0,
¢ Jel<o

or that
inf inf P|X—z|<¢>0
XEX |z|<C

where X denotes the set of laws of X!. The measures v} are relatively

compact for the topology of convergence on bounded functions (they are
bounded and supported by [—1,1]), and for any converging subsequence,
the corresponding X} also converges in law (this is an easy application of
the Lévy-Khintchine formula (1.1)); thus A" is relatively compact. Since the
map (z, X) — P[|X —z| < ] is lower semicontinuous, it is sufficient to prove
that

PIX -zl <c]>0

for any z, ¢ and any X in the closure X’ of X. This means that one has to
prove that the closed support of any X € X is R; the v-measure v’ of X
satisfies an estimate of type

V([—e,e]) > eg?7P

because these estimates hold uniformly for v}; if 8 =2, X has a non trivial
Gaussian part, so the result is immediate; if 1 < 8 < 2 and if g’ is the
Lévy measure of X, the function |z| A 1 is not p'-integrable from (3.7), so
the result follows from Lemma 2.5; in the case § < 1, both v'([—¢,0]) and
v'(]0,¢]) satisfy the above estimate, so one can also apply Lemma 2.5. O
LEMMA 4.2, Let Q); be a family of infinitely divisible laws of pure jump type;
we suppose that the v-measures v; are uniformly bounded, supported by R7,
and that
ce? P < v;([0,¢]) < Ce?p

for some 0 < 3 < 1. Then for any 0 < py1 < pa, the densities p; of QQ; satisfy

inf inf ; 0.
i mSH;’sz pi(e) >
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Proof. We follow the argument of the proof of Lemma 4.1. We decompose
X; into X} + X? of pure jump type, with v-measures v} and v? defined as
in Lemma 4.1. Notice that

2 2 e 2
[ 0 | RO oo
[0,¢] y € 0 Y

so Lemma 2.2 and the fact that Xf > 0 show that there exists 0 < z; < pg
such that p?(z;) > c. From the boundedness of the derivative of p?, we also
deduce

lv — 2] < e = pi(z) > c.

Thus )
inf > inf Pllz — X: — 2] <
mSH;’sz p(ac) = plSH;’sz [|ac ! $Z| - C]
>c inf P[X]! -2 <.
0<z<po

Therefore one only has to prove that

inf infl P[|X -2 <c]>0,
XeX 0<z<ps2

or that the support of any X € X’ contains R ; but this follows from Lemma
2.5, because X is of pure jump type. O

THEOREM 4.3. Assume that
ce? P <y([—e,g]) < C*P (4.1)

Jor any 0 < ¢ < 1 and some index 0 < 3 < 2. Suppose also that one of the
four following conditions is satisfied;

(a) B> 1;

(b) 3=1 and

lim sup
e—0

/ zdp(z)| < oo
{z<]=|<1}

(¢) B < 1, both restrictions of v to R* and R} satisfy (4.1), and the X-
parameter is 0 (so that Xy is a pure jump process);

(d) 3 < 1, v is supported by R and the X-parameter is 0 (so that Xy is a
pure jump non decreasing process).

Then, in cases (abc), for any positive p, one has

lz| < ptl/ﬁ — ct~ /0 < p(t,z) < Ce e

for t small enough, so in particular p(t,0) is of order t=Y/7. In case (d), for
any positive p1 and ps and for small t,

pltl/ﬁ <z < thI/ﬁ — ct™YP < p(t,z) < C Y8,
REMARK 4.4. The conclusion of case (d)is weaker. This is not surprising
since p(¢,0) = 0. One can say in this case that X slips on the right, and one

can refer to the cases (abc) as the non slipping case.
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Proof. In this theorem, the upper bound has already been derived in The-
orem 3.1, and for the lower bound, it is sufficient to verify that the as-
sumptions of Lemmas 4.1 or 4.2 are satisfied for the family of variables
Y, = Xt/tl/ﬁ. So denote by (vy, x:) the coefficients of Y;. We have already
checked in (3.6) that v4(R) is bounded and from (3.4), it is easy to see that
v¢([—¢,€]) satisfies the lower and upper bound conditions (on both sides in
case (¢)). Moreover, in case (d), the Y-parameter is 0. Thus we only have
to prove that y; is bounded in cases (a), (b) and (c¢). From (1.3), one has

Y= t—l]E[Xt - ZAXS1{AXS>1}],
s<t

so one can verify that

Xt = t_l/ﬁE{Xt — ZAXsl{AXS>t1/5}}
s<t

= ¢1-/8 (X—/ xd,u(x)).
{#1/P <]z <1}

In case (a), one has

/ aldpu(z)
(175 <|a|<1}

e R B SN P

/8 x?

1
X

=07,

so x¢ is bounded; it is also immediately proved to be bounded in case (b);
in case (¢), since Y = 0, from (1.6) one has

Xt = tl‘l/ﬁ/ x dp(x)
{|zl<t1/8}

and
/8 _
/ |z|dp(z) = t_l/ﬁy([—tl/ﬁ7t1/ﬁ]) _|_/ Lﬂ?ﬂ)dx
{lz|<t1/ 8} 0 z
= O(tl/ﬁ_l)
Thus y: is bounded in each of the three cases. 0

ExampLE 4.5. If X; is a symmetric stable process, it is clear that the
conditions of Theorem 4.3, cases (a), (b) or (c¢), are fulfilled. If now o =0
and p is supported by R with p(de) = da/z'TF, we are in case (a) if
1< p<2,and in case (d)if 0 < § < 1 and ¥ = 0. Actually, it appears that
if < land Y=0,0rif 3> 1 and

(== [ adute) =1/
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(so that X, is a martingale), then X, satisfies the scaling property

for any A > 0, so that X, is a completely asymmetric stable process (a
stable subordinator in the non decreasing case). The case § = 1 has not
been studied in the theorem, and no scaling property is possible; by looking
more precisely at the proof, it appears that the density can be bounded
below at

v = a(t) = —t/t v dp(z) = —tlog(1/t).

This is the only value of 3 for which the slipping of the process is larger
than the dispersion of the law for any value of y.

EXAMPLE 4.6. Suppose that ¢ = 0 and p is given by

p=> 25, (4.2)

neZ

for 0 < # < 2, where §, denotes the Dirac mass at y. This measure can be
viewed as the discretization at points 27" of the previous example. Then

(/277 J (1=20") <w([0,e]) = D 27T <2270 [ (12072,
n:2m>1/e

so v satisfies the approximate scaling property (4.1);if § > 1, we are in the
case (a) of Theorem 4.3, and if # < 1 and Y = 0 (non decreasing process),
we are in the case (d). Notice that like previously, if 5 < 1 and Y = 0, or if
4> 1 and

x=- [ wdute) = -1/ -,
1
then X} satisfies the scaling property
(Xai; t > 0) ~ (29Xt > 0).

Subsequently, we will refer to (4.2) as the dyadic example.

In Theorem 4.3, one assumes that lower and upper bounds on the tail of v
at 0 have exactly the same order of magnitude. This was not necessary in §3;
the logarithmic estimation of sup, p(¢,z) may follow from the logarithmic
tail estimation (3.8). Here, one can similarly wonder if

log p(t,0)

lim
logt

——1/8 (1.3)

can follow from (3.8) instead of (4.1). This is of course true in the sym-
metric case. In other cases however, p(¢,0) may have a much more irregular
behaviour; suppose for instance that & = y = 0 and that p is supported by
a sequence (uy,)neN such that

Upt1 = Up / (108;(1/“71))%7 p{un}) = u;ﬁ
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for some 0 < up < e71, 1 < B <2and k >2/(2— ). Then

_ 2=, 2P
V([_€7€]) - Z Uy, un(a)

Up <&
with
n(e) = min{n; u, < e}.

One easily checks that

(log(1/2)) e < Up(e) < €,

so (3.8) is satisfied. However, by studying the behaviour of p(t,,0) on the
sequence of times

tn =1/ (2u([tn, +00[)),

we are going to prove that (4.3) does not hold. Notice that ¢, ~ u? /2. Let
us decompose X;, into Y,! + V> with

Y, = Z AXliax >u,} — tn/ xdp(z). (4.4)
Sgtn {l’Zun}
Then 5
2-p
varY,? = t,v([0, uns1]) ~ s ui:ff ~ U (Lﬁ)
2 \|log u,|
Uy —r(2=7)
= ?‘log un‘
2
= —u”2+1 |log un‘ﬁﬁ.

Moreover, the jumps contained in Y,? are at most u,;; which is therefore
smaller than the standard deviation of Y;?, so, by applying Lemma 2.7 to
Y?/(varY?)'/? which has mean 0 and bounded jumps, we obtain that for

any fixed e

= o(u}) = o(t}/?)

for any j since k(2 — 3)/2 > 1. On the other hand, the compensator of the
jumps of Y,! in (4.4) satisfies

tn/ zdu(z) ~t, u};ﬁ ~ U ([, 00]) = U, /2,

and the jump part is either 0, either at least u,, so |Y;}| > w,/3 almost
surely for n large enough. From (4.5) applied with ¢ = 1/12, we deduce
that

PIXe,| < wn/d] = o(th)
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for any j. We also know from Theorem 3.1 that
lim sup sup log |5/ (1, 2)| / log(1/%) < 2/5,
t—0 T
so p'(t,, x) is uniformly dominated by ¢, * for aw > 2/, and we deduce that

sup  p(tn, ) = oft],)
ol <uun /4

for any j. In particular, for x = 0, we obtain that
hgn_}lélf(logp(t,O) / log(1/t)) = —co.

The reason for this behaviour is that the limit of renormalized X, is a
Poisson variable and is therefore not absolutely continuous.

5. ESTIMATION AT A-ACCESSIBLE POINTS

We now want to estimate p(¢, z) at fixed points # # 0. Before considering
the density itself, we give a large deviation principle for the law of Xy; this
principle involves the rate function

M(z) = inf{n; x € supp I/(”)}

which is the minimal number of jumps which is necessary to reach z (the
measure v(") is the convolution of v with itself n times); for instance, in the
dyadic example (4.2), M (z) is the number of 1’s in the dyadic expansion of
z if « is a non negative dyadic number, and is +oo otherwise. Let M (B) =
infg M be the minimal number of jumps necessary to reach B.

PropPOSITION 5.1. Suppose that the support of p is bounded, so that the
level sets {M(z) < n} are compact. Let B be a Borel set; there exists a
C' > 0 such that

—M(B°)log(1/t) — C <logP[X; € B] < —M(B)log(1/t) +C

for t small.

REMARK 5.2. This is a large deviation principle for X; as ¢ | 0; one can
look at other asymptotics; for instance, if exponential moments exist, the
behaviour of X,,/n as n T oo is given by the classical Cramér theorem, and
this has been extended to more general Markov processes in Chapter 5 of
Freidlin and Wentzell (1984).

Proof of the lower bound. Suppose that B is open. Let 2 € B and £ > 0 such
that M (2) = M(B) and [z — e,z +¢<] C B. Write X; as the sum X} + X7 of
two independent Lévy processes with respective Lévy measures v and p—v,
and such that X} is a pure jump process. The distribution of X} is

P[X} € ] = exp(~tr(R)) Z%VW (5.1)
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If we estimate this expression below by its term of order n = M(z), we

obtain
PlX} — 2| <e/2] > ctM@),

Since the probability of {|X?2| < &/2} converges to 1, we deduce
P[X, € B] > P X} — 2| <¢/2]P[|X?]| < /2] > etM®),

g
Proof of the upper bound. Suppose that B is closed; since we have as-
sumed that the support of p is bounded, there exists ¢ > 0 such that the
e-neighbourhood B¢ of B satisfies M (B®) = M(B). Let r > 0 and consider
the decomposition X; = X! + X? where X} is the sum of jumps greater
in absolute value than r. The mean and variance of X7 are O(t), so from
Lemma 2.9, one can choose r so that

Pl X2 > &] < C'tM(B), (5.2)
The distribution of X} is

PIX} € ] =exp(—tp,(R)) D %uﬁ”) (5.3)

n

where pu,. denotes the restriction of p to the complement of [—r,r]; then
uﬁ,”) (B®) =0 for n < M(B®), so

P|X}| € B] < CtMB), (5.4)

We estimate the probability of {X; € B} by adding (5.2) and (5.4). a

We now study p(¢, z) at A-accessible points (points satisfying M (z) < o0).
Due to the singularity of the asymptotic behaviour, the rate function for
log p(t, ) will not always be M. We suppose that the process does not
slip (assumptions of Theorem 4.3, cases (abc)) and explain at the end of
the section how the results can be extended to the case of a non-decreasing
process. Notice that some results have been obtained previously for more
general multidimensional Markov processes; when p is smooth and M (z) = 1
(one jump is sufficient to reach z), a precise equivalent for p(t, ) is given
in Léandre (1987); when p is obtained by truncating the Lévy measure of a
stable process and M (z) is some integer, a lower bound is given in Ishikawa
(1993), and a precise equivalent is obtained in Ishikawa (1994) for g < 1.

The main result of this section is Theorem 5.6 below, but we first give
two lemmas.

LEMMA 5.3. Under the conditions of Theorem 4.3, cases (abc), suppose that
VI ([z — e,z 4¢]) > ce?
as € = 0, for some v > 0 and some integer n. Then, for small t,
p(t,x) > vt =1/8,
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Proof. Write X; = X} +X? asin the proof of the lower bound in Proposition
5.1; we estimate below the law (5.1) of X} by its nth term, and if use our
assumption, we obtain that

P[X{ €[z —c,a+¢]] >cet™

On the other hand, from Theorem 4.3, the density p; of X} is bounded
below by ¢t/ on [—t1/8 /9], so

p(t,z) =E[pa(t,e — X})] > ct_l/ﬁ]P’Hth —z| < tl/ﬁ]

and we apply the above estimate with & = t!/7, O
REMARK 5.4. Suppose that

V" (dy) > ¢ 1v(y)dy

for some neighbourhood V of z; then Lemma 5.3 can be applied with v = 1,
but we now check that the assumptions of Theorem 4.3 can be omitted in
this case. By using again the decomposition of X; of Proposition 5.1 (proof
of the lower bound), we deduce from (5.1) that the law of X} is bounded
below by a measure with density

q(t,y) = "1y (y).

Thus
pt,x) > Elg(t,r — X?)] > t"P[(z — X}) € V]

and the probability tends to 1, so the conclusion of Lemma 5.3 holds with
v =1.
LEMMA 5.5. Under the conditions of Theorem 4.3, cases (abc), consider

Zy =Xy = AX,1{jax.|>r)
s<t

with r = r(t) of order t'/8. Let p > 0 and ' > 3. Then the density p? of
7y satisfies
|2 < pt"? = pf(2) = ct™VP,

pr(z) < CH7YP 2| > P = pf(2) < OtV exp(—ct™?)

with a =1/ —-1/3'.

Proof. The variable Z;/t'/? is the variable Y; of the proof of Theorem 4.3
without its jumps greater than r/t'/% which is of order 1; in particular, its
X-parameter and v-measure are bounded, and its v-measure satisfies (2.1)
(on both sides in case (c)); thus the first and second inequalities follow from
Lemmas 2.3 and 4.1, and one can also deduce that the derivative of p? is
dominated by t=2/%. On the other hand, one can estimate the density with

7 () <2 /[ L EWION Gl < Cr R > 5
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From Lemma 2.7,
P[|Z] > |2]] < Cexp(—|z|/t"/7),

SO
pE(2) < C 7 P exp(—|2|/(2617)).
O

THEOREM 5.6. Suppose the conditions of Theorem 4.3, cases (abc). Con-
sider the functions

Yul(z) = — lign_jélf(log v (& — e,z 4¢)) / log(1/z)),

Tu(e) = - limsup (log ") ([y — 2,y +¢]) / log(1/2))
and
() = inf (0 + (3 (2) - 1)/5), (55)
T(z) = i%f(n + 7, (z) — 1)/ﬁ) (5.6)
Then

—I'(z) < lign_}élf(logp(t,x) / log(1/t))
< lir?_%lp(logp(tw) [ log(1/t)) < —T(a).

REMARK 5.7. One can check that the functions 7, and T' are lower semi-
continuous. Notice also that

n < M(z) = ya(@) =7,(2) = +oo,

n> M(z) = 0<7%,(z) <min(1, y,(2)),

S0

M(z)—1/8 <T(z) < min(['(z), M (2)).

Proof. The lower bound is easily deduced from Lemma 5.3, so let us prove
the upper bound. Fix z; choose 3’ > 3 and a sequence v/ < 7, (z). For
some 0 < r < 1 (it will be chosen later), consider the decomposition of X,
into X} + X7 + X? where X} and X} are respectively the sum of jumps in
[—r,7]¢ and [—t'/2 £1/8]¢ 0 [=r, 7]. We want to estimate

P[IX!+ X7 — o <tM7] = /P[le — a4y < 7PIXT € dy].

By applying Lemma 2.9 to X7 — EX}? which has variance O(t) and jumps
bounded by r,

PX} + X2 — 2| <t/

:/ PX} — o +y| < VP ]PIX? € dy] + O(tK)
|y-EX?|<Kr
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for any integer K; we will choose and fix
K >inf(n+7,/8"). (5.7)

Thus, for any neighbourhood V of 0, if one chooses r small enough, since
EX} converges to 0, one has

PIX} + X2 -2 <tV/7] < / PX} -z +y| < tV/P]P[X? € dy] + O(tF).
14

The distribution of X! has been given in (5.3), and for r < 1, the measure
p, is dominated by v/r?, so

tn n

n t n ’¢
PIX e <Y 4 = Y L o). 6
n n< K

Now choose the neighbourhood V of 0 so that
v ([w =y — eyt tl/ﬁ’]) < Wl
for ¢t small, y in V and n < K; then, from (5.8) and (5.7),
P[IX} -z 4yl < tl/ﬁ'] < ¢ finf(n+7,/6")
for y in V, so
]P’[|th + X2 -2 < tl/ﬁ'] < ittty /67
By estimating the density ps(t,.) of X7 from Lemma 5.5, we deduce that

p(t,z) = Eps(t,z — th — Xf)
< Cexp(—ct™) + Ct_l/ﬁ]P’“th + XP -2 < tl/ﬁl]
S C«Itinf(n—l—w;/[3')—1/[37

and therefore,

lim sup (log p(t, ) / log(1/t)) < —inf(n +7,/5) +1/5.

Since this holds for any 3’ > 3 and any sequence v, < 7¥,(z), we can
conclude. O

ExXAMPLES 5.8. Suppose that
ul(dz) = f(z)de (5.9)

is absolutely continuous, has a compact support [py, p2], and that fis locally
bounded below and above on [p1, p2] \ {0}. Then

M(z) <n <= npy << npy
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and v(™ has a density which is locally bounded below and above on {M(z) <
n}\ {0}. Thus v,(z) =7,(z) =1if n > M(z), 2 #0,s0 I'(z) = I'(2) =
M (z). On the other hand, if

w= Zun% (5.10)

where z,, is bounded below by some real number and has no limit point in
R* (as in the dyadic example (4.2)), then v,(z) = 7,(z) = 0if M(z) =n
because ¥ has a mass at x; thus ['(z) = T'(z) = M(2) — 1/8.

REMARK 5.9. Solving the minimization problems (5.5) and (5.6) explains
how the process goes from 0 to z, and in those two examples, it uses the path
containing the minimal number of jumps. In more general cases however,
this is not so simple, and, even if z is in the support of p, the process may
find better to reach x with two jumps; for instance if

p(der) = 61 (dz) + da |21+,

then the functions v, and 7, again coincide, but v1(2) = 1, v2(2) = 0, so
I'(2) = min(1,2 — 1/3); if B > 1 the process goes directly from 0 to 2, but
if < 1, it makes two jumps. Similarly, for x = 3, it makes three jumps if
8 < 1/2, and one jump if g > 1/2.

In the end of this section, we explain without detailed proof how Theorem
5.6 can be extended to the non-decreasing case (case (d) of Theorem 4.3).
The process slips on the right, so in order to be at point 2 at time ¢, it must
jump to a point strictly on the left of z; thus in order to obtain the lower
bound of Lemma 5.3, one has to assume that

(" ([z — 5,2 —azg]) > ce”

as € — 0, for some 0 < o < 1, some v > 0 and some integer n. The
proof is then similar, by noticing that the lower bound on p; holds in this
case on [at'/8 #1/5]. The fact that one needs a stronger assumption is not
surprising, since the upper bound of Theorem 5.6 can be made smaller in
this case; in the proof, one has to choose the decomposition of X; with X},
X? and X} non decreasing, and it appears that one needs an upper bound
on v\" ([y — e, y]) instead of ¥(") ([y — e,y + &]). Thus, if one defines

Yo(x) = — sup lim i(r)lf(log v ([ — e, 2 — ag]) / log(1/z)),
0<a<l &=
Tole) == limsup  (log (") ([y —=,y)) / log(1/¢))

(y,a)—>(x,0),y<x
and

*

[*(z) =inf(n+ (y3(2) = 1)/8),  T'(2) =inf(n+ (7,(2) — 1)/5),

then ) o
—I"(z) < hgn_}élf(logp(t,x) / log(1/t))
*

< lir?_%lp(logp(tw) [log(1/t)) < =T"(x).
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If one considers the above examples (5.9) and (5.10) with supp p C Ry,
then
I'*(z) =T (z) = lim M(y)
yTt
in the absolutely continuous case (5.9), whereas ['* and T are 400 every-
where in the discrete case (5.10) (there is no accumulation of the mass of

X, at any fixed point z).

6. ESTIMATION AT ASYMPTOTICALLY A-ACCESSIBLE POINTS

If T(z) = 0o (or T (z) = oo in the non-decreasing case) then log(1/p(t, z)) >
log(1/t). The aim of this section is to make a more precise study when z is
in the closure of |, supp v{"); for instance, in the dyadic example (4.2) this
concerns positive non-dyadic numbers (non-slipping case), or all positive
numbers (non-decreasing case). Since the proofs are similar, we consider
mainly the non-slipping case, and give as remarks the extension to the non-
decreasing case. We first derive the following general lower bound.

PROPOSITION 6.1. Assume the conditions of Theorem 4.3, cases (abc) with
B < 2, and suppose that p(R%) > 0. Then for any R > 0,
log p(t, )

AL T ERE

REMARK 6.2. In the non-decreasing case, one has to consider the infimum
on [Ry, Ry] for positive Ry and Rs.

REMARK 6.3. We have assumed that 3 < 2, so that X; has no Brownian
part; in this case indeed, the condition (4.1) imposes a constraint on the tail
of o near 0 (see (6.1) below). If 3 = 2, the result of the proposition can be
extended if one assumes that this constraint is satisfied; otherwise, the set
of asymptotically A-accessible points may be more complicated, and other
orders of magnitude for log p(¢, z) are possible.

Proof. From (4.1) and since u(Ry) > 0, we deduce that if we fix 5 small
enough, we have

< [ Vdu(y) = cp?™  and  u(n,1/m) > 0.
{n?p<|y|<p}

Thus
plys o <lyl <p}>ep™’ > ¢ (6.1)

for p < n, and if we define
Jo = [0 =P T UL T (e 2 1), Jo =l 1),

then p(J,) is bounded below. For any integers K and n, there exists an
interval I(K,n) C J, of length |J,|/(2K) and with measure pu(I(K,n)) >
1(J,)/(2K). Tf we let K be the integer value of t='/% we deduce the exis-
tence of intervals I,, = I,,(t) C J, satisfying

I, < CtYBp u(I,) > et'/P. (6.2)
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Let z,, = 2, (t) be a point of I,,; then |z,| is a decreasing sequence such that
|2p41/2,] > nt, and x¢ is positive. On the other hand, for any z € [0, R],
there exists a sequence of non-negative integers k,, = k,,(t, ) such that

S |$N| S 772N—1‘

N
T — anxn

n=0

More precisely, the sequence k,, can be constructed by induction as follows;
if kg, ..., k,_1 have been chosen, the integer k,, is chosen so that ngn kjx;
is the best approximation of x lower than x if 2,41 > 0, greater than =z if
Zp+1 < 0. Then

ko <1l4a/zg <1+ R/n and kp<14n74 (n>1).

If z is a real number of the form

kn,

N
z= Z Zynj, with  y,; € I, (6.3)

n=0 j=1
then

N N
v= Y k|4 Y k|l <pPNTH 4 OO

n=0 n=0

|z — 2| <

from the estimation (6.2) of the length of I,, and since the series Y k,n*" is
bounded. If we choose N = N(¢) so that

N(t) = (logt)/ (25 log 1) + O(1),

then
|z —a| < CtY/P, (6.4)

Let us now return to our Lévy process. We are going to use the decomposi-
tion X; = X} + X? where X/ is the sum of the jumps greater (in absolute
value) than r = 7*N*1 with N = N(t) like above, so that r is of order
tY/8 . 1f, before time ¢, X has exactly k, jumps AX € I,, and no jump
AX € [-r,r]°\UI,, then z = X} satisfies (6.3) and therefore (6.4). Thus

PX] =2 < 1Y) > exp(—tu((=r,11) [T (a1 ko)

n<N(t)
> C(Ctlx’)N(t)

for some K, because tu([—r,r]°) and k,, are bounded, and from the lower
bound (6.2) on p(I,). Since N (t) is of order log(1/t), we deduce that

logP[| X} — 2| < Ct1/P
liminf inf 8 “ (-l < ] > —00.
t50 0<z<R (logt)?
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On the other hand, from Lemma 5.5, the density ps(¢,.) of X7 satisfies
paltyy) > et for |y| < C't18, so

log p(t, ) > logP[|X] — 2| < Ctl/ﬁ] + O(logt)

and we can conclude. O

In some cases, one can make more precise the method of Proposition 6.1
in order to obtain an equivalent of log p(¢, z); this is possible when the lower
and upper bounds of the following proposition become similar as ' | 3; we
will apply this result to the dyadic example (4.2).

PRrROPOSITION 6.4. Suppose that p satisfies the assumptions of Theorem
4.3, cases (abc) with § < 2, and that it is supported by a countable set
{z,, n € IN} such that |z,41| < |z,|; denote by p, the mass p({z,}).
Suppose that

N = N(t) = max{n; |v,| > 7} = O(log(1/1)).

Let p > 0 and ' > (3. Suppose that p(R%7) > 0 and let z > 0. Then
log p(t, x) is bounded below and above by expressions of type

= min > (kn log (1/(tpn) + log(k,!) ) + O(log(1/1) loglog(1/1))  (6.5)

n=0

where the minimum is taken with respect to the sequences (k) such that

N
z — Z kpan| < pt'/? (6.6)
n=0
for the lower bound, and
N
z — Z kpan| < t4/° (6.7)
n=0

for the upper bound.

REMARK 6.5. One deduces from (4.1) that for some ¢o > 0, the measure
must give positive mass to all the sets {coe < |z < £} for € small enough;
thus these sets must contain at least one point z,,, so that N (¢) is bounded
below by some clog(1/t). The assumption of the proposition therefore says
that N(t) is exactly of order log(1/t).

REMARK 6.6. If X, is non-decreasing, these bilateral constraints have to be
replaced by unilateral ones of type

pt? <a = hnan < pat0 0< e =Y g, <7

REMARK 6.7. The proposition can be extended to unbounded positive
sequences {,,n € Z} with lim_., x,, = 400, because jumps greater than
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x can be neglected in the following analysis. However, other cases (if for
instance both 400 and —oo are limit points of z,,) may be more delicate.
Proof. Consider the decomposition X; = X! + X? where X} is the sum of

jumps of size z,, n < N(t). The density p; of X? can be estimated from

Lemma 5.5, so since p(t, ) is the expectation of py(t, 2 — X}), we deduce

ct™ PRIX] = a| < ptP) < plt @)
< Ct YPP[X) - 2] < tYP) + exp(—ct™?)

for > 0; from Proposition 6.1, the exponential can be neglected, so

log P[|X} — a| < pt'/7] = C'log(1/t)
< logp(t, z) (6.8)
<logP[| X} — a| < tY7 ]+ Clog(1/1).

We have
N
X;=> K,
n=0

where K, is the number of jumps at z, before time t; notice that the
conditions on X} in (6.8) can be translated by saying that the sequence K,
should satisfy (6.6) or (6.7). Moreover, I, is a Poisson variable with mean
tit, and the sum of these means for n < N is bounded; in particular, the
expectation of exp K, is bounded, so

P[K, > N < Ce N,
and
PEn< N, K,> N <CN+1)e ™ <exp(—c(log(1/1))?)

is very small; thus we can add the conditions K, < N? in the probabilities
of both sides of (6.8). We deduce that log p(t, z) is bounded below and above
by expressions of type

logP[3(k,) €K Yn< N K,=k, +O(log(1/t)),

where K is the set of sequences (k,) satisfying (6.6) for the lower bound,
(6.7) for the upper bound, and the additional constraint &, < N®. On the
other hand,

N
logP[¥n < N K, =k,] =— Z(kn log (1/(tpen)) + log(kn!) + t,un)

n=0

N

= =3 (katog(1/(tp)) +log(k!)) +0(1),

n=0
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S0

logP[3(k,) EK Yn <N K, =k,
N
= —min Y (o log(1/(tpen)) + log(n!) ) + Oflog K1),

n=0

The cardinal of K is at most the number of sequences k, satisfying k, < N3,
so log|K| has the correct order log(1/t)loglog(1/t) of (6.5). We deduce
that the proposition holds with the additional constraint k, < N? in the
optimization problem (6.5), and we now have to verify that we can omit it.
This does not cause any problem for the upper bound (because the bound
after omitting the constraint is larger). For the lower bound, let us suppose
that a minimizing sequence does not satisfy k,, < N?, so that k; > N? for
some j < N;since tu, is bounded, one has

ke log(1/(tpn)) + log(kn!) > log(kn!) — C'ky > —C"

and

k]' log(l/(t,u])) —|—10g(l€]') Z log(k]') — Ck] > k]' Z N3.

Thus the value of the cost functional is at least of order (log(1/t))?, so the
lower bound stated in the proposition is in this case smaller than the bound
of Proposition 6.1. O

ExaMmpLE 6.8. Consider the dyadic example (4.2) (non-slipping or non-
decreasing cases). Then the behaviour of p(t,z) for # > 0 will depend on
the proportion of 1’s in the dyadic expansion d,, = d,(z) of = given by
=2, c7d,27". Let

N = N(t) = min{n; 2098 > 1/¢},

so that N (¢) ~ log(1/t)/(#log2). If one solves the optimization problem

min Z k, (log(l/t) —nflog 2) (6.9)

n<N

amongst sequences (k) such that > k,27" is some fixed dyadic number of
order N, it appears that one has to choose for %k, the dyadic coefficients of
the number (verify that a jump at 27" is cheaper than two jumps at 27771).
Moreover, Y log(k,!) is in this case 0 and is therefore also minimal, so the
optimization problem of Proposition 6.4 is solved by choosing the best (in the
sense of the cost functional (6.9)) dyadic number satisfying the constraint
(6.6) or (6.7), and log p(t, z) is bounded below and above by expressions of
type
-S>k, (log(l/t) — nflog 2) + O(log(1/t) loglog(1/t))

n<N

where k,, are the dyadic coeflicients of this best dyadic number. One can
notice that for the lower bound, one has to choose p large enough in order
to have at least one sequence k,, satisfying the constraint (6.6). Notice also
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that the best coefficients (k,,n < N) depend on t (since the constraints
involve t); however, in many cases, only the last values will depend on ¢ and
most values of k, will actually coincide with d,(z). If

K
lim Kt Z do(z)=p
n=0

for some 0 < p < 1 (proportion of 1’s in the dyadic expansion of z), then
the sequence d,, asymptotically does not contain too long subsequences of
0’s or of 1’s, and one can deduce that d,, is a good suboptimal solution of
the minimization problem, so that

log p(t, ) ~ —log(1/t) > dn(z)+ Blog2 Y nd,(x)

n<N(t) n<N(t)
~ —pN (1) log(1/t) + pB(log 2)N (1)* /2 (6.10)
—P__(log1)2.

~ 26102

This holds if # is a rational non-dyadic number (in this case d,, is periodic
after some rank); this also holds for almost any z relatively to the Lebesgue
measure (in this case p = 1/2). Moreover, if z is a dyadic number and if X,
is non-decreasing (apply §5 in the non slipping case), one has to reach « from
below, and one can check that (6.10) holds with p = 1 (loosely speaking, =
has two expansions, and one has to consider the one where all terms are 1
after some rank).

7. ESTIMATION AT A-INACCESSIBLE POINTS

We now consider points which cannot be reached by jumping; this means
that they are not in

F = supp Z AN
n=0

We check that the density is much smaller in this case. We first consider
the case where X; contains a non trivial Brownian part.

PRrROPOSITION 7.1. Suppose that the diffusion coefficient o is not zero. Then,
if 6(x) denotes the distance of x to I,

. _ 52 2
lim (tlog p(t, 7)) = —6°(x)/(207).
Proof. Write X; = oW, + Y; where W, is a standard Wiener process. Then

(z = Yy)?
202t

1
E
o/ 27t

p(t,z) = {exp — (7.1)

Let us first prove the lower bound. Choose y € F such that |y — z| = ().
Fix ¢ > 0 and let n = n(e) be the first integer such that |y — e,y + <[
intersects the support of v{™); then

PY; —y| <e] > ct”
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from Proposition 5.1, and we obtain from (7.1) that

1 (6(z) +¢)*
t > PlY; —y| < —_——
p(w)_a — [[Y: —y| <e]exp Sysra
" (6(z) +¢)?
. r)+¢e
llgrgélftlogp(t,x) > — YR

Since this holds for any € > 0, we conclude. Let us now prove the upper
bound; if # € F, we can apply the estimation of Theorem 3.1(a), so suppose
x ¢ F; we consider separately the two cases p finite and p infinite. If p is
finite, we can write Y; = tY+ Y where Y, is pure jump process with a finite
number of jumps; the support of Y is exactly F so

1 52 (z — tx)
exp — 5
o/ 27t 204
and we deduce the result. If y is infinite, suppose for instance that u(R7)

is infinite; then p(R*) = 0 because otherwise F' = R. Thus F'is R4, z is
negative and §(z) = —z. The Laplace transform of Y; is given from (1.2) by

p(t,z) <

Eexp —AY; = exp(—/\tx - t/loo(l — e ") du(y) + tzb(/\))

for A > 0, with

BN = / (7 + Ay — 1)duy)

= (e + A - 1o, 1]) + /01 (Ay Ayt 2)e N = 2) V(](y);,y])dy

= (e 4+ A= 1)w(j0, 1]) + A2 /0 (v+ (y+ 27 — 2) ”Gog“])dy.

In particular, ¥(A) < A? as A — +oo. We also check that ¢ is strictly in-
creasing from R4 onto itself, so if 1)~! denotes the inverse function, ¢ =1(p)>
VP as p — +oo. By taking A = ¢~!(1/t*), we obtain that for any 0 < ¢ <
|z,

logPlY; < —¢] < =Ae 4 logEexp =AY, < =Ale+tx)+ 1/t +0(t) < -1/t

because A > 1/t. From (7.1),

plt ) < (P < =] + exp(—(6(a) - 2)*/(20%1)) ),
o/ 2rnt
S0
limsuptlogp(t,z) < —(8(z) —&)*/(20?)
t—=0
and one only has to let ¢ | 0. O
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By letting ¢ — 0 in previous result, it seems that ¢logp(¢,z) — —oo at
A-inaccessible points when there is no Brownian part. The next result gives
a precise statement.

THEOREM 7.2. Assume the conditions of Theorem 4.3 with 1 < § < 2, and
suppose that n(R*) = 0. Fiz positive T and o and consider the function
p(t, z) on the domain D =]0,T]x] — oo, —a]. Let D U{0} be the one-point
compactification of D. Consider the function

h(A) = logEexp —A X,
on Ry, and its Legendre transform

Ay) = sup(Ay = h()). (7:2)

Then
log(1/p(t, ) ~ t A(—x/t)

as (t,x) — 0; moreover
e(jal? /)Y <log(1/p(t,0)) < C (1) TN (73)

Notice that the theorem gives simultaneously the asymptotic behaviours
for t = 0 and # — —o0; this is due to the fact that these behaviours depend
only on the tail of p at 0, and that we have assumed an approximate scaling
property on this tail. One can also prove a large deviation principle for the
law of X restricted to R_, and this principle involves the same rate function
A; this comes from the regularity of A; if one compares with A-accessible
points, the situation was different because the rate functions were singular in
the case of a singular Lévy measure. Notice also that A is the rate function
of the classical Cramér theorem which deals with the asymptotic behaviour
of X,,/n; actually, in the case of a stable process, the behaviours of X; and
X,,/n can be deduced from each other (see the discussion at the end of the
section). The basic tool of the proof will be a change of probability. We
first prove some lemmas.

LEMMA 7.3. The function H(X) = h'(X) is strictly increasing from R onto
[H(0), +oo[ and is of order A°~% as X\ — 4o0; the inverse function H~1(y)
and the function A(y) are respectively of order y /B qnd yP/F-1) gs
Yy — +00.

Proof. The function h is given from (1.2) by

by =-w- [ T e du(y) + GRS VR )

It is strictly convex, and

1) === [ reaut) + o0y (7.5
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with
o) :/0 (1= e)ydu(y) (7.6)
= (1 - e Mw([0,1]) +/0 (1 e /\ye—Ay) ”([(y);y])dy.

Since v([0,y]) is of order y2=7 as y — 0 we deduce that ¢(A) is order AP~!
as A — 00, so H()) is also of order A°~! and H~'(y) is of order y'/(F=1).
By solving the optimization problem (7.2), one has

Aly)=yH '(y) — (ho H ) (y) (7.7)
for y > H(0),s0 A’ = H~! and the order of A(y) can be deduced from the
order of H~!(y) by an integration. 0

LEMMA 7.4. For A > 0, consider the process
Ly = exp(=AX; — th(\)). (7.8)

Then Ly is a martingale, and zfﬁ is the probability measure with density Ly
with respect to P on 0(X;,s < t), then X, is under P a Lévy process with
paramelters

X=x—-0N),  diy) =eMduly),

where the function ¢ was defined in (7.6).

Proof. The process log L; is a Lévy process, and if s < ¢, it follows from
the value of the Laplace transform of X; — X that the mean of L;/L; is
1. Thus L; is a martingale, and it is also easy to verify that X; is under P
a Lévy process. We have to compute its parameters; for any real w, from

(1.2) and (7.4),
]E[eth] = ]E[e(m_A)Xt] exp(—th(X))
1
= exp((iw — A)tx —I—t/ (e(m_”y — 1= (iw— Ny)du(y)
0
- t/ (1= =Y du(y) + Aty
1
1 0
[ = Ddut) 4 [0 e duty)
0 1
1 .
= exp (iwtx + t/ (elwy —-1- iwyeAy)e_Ayd,u(y)
0
[ - e ).
1
We now identify the parameters with the Lévy-Khintchine formula (1.1). O

LEmMMA 7.5. Consider the variable Ly defined by (7.8) with A = A(t,z) =
H~Y(=z/t). We denote by Py, the probability on o(Xs, s < t) admitting
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the density L, with respect to . If p(t,.) is the continuous density of X,
under Py, then p(t, x) is of order (|x|>=2/t)1/(20=2) qs (t,2) — 0.

Proof. We deduce from Lemma 7.4, (7.5) and H(A) = —z/t that under ﬁtm
the variable X; has parameters

o=ty = o) =2t [y duty)
1

and

fit o (dy) = texp(=Ay)p(dy).

We deduce that the parameters of the variable Y; = (|z|>=%/t)1/(20-2) (X, —
x) are given by

)

e = (a2 e / yedply),
(Jef2= /1)=1/ 282

8(|x|2—ﬁ/t)—1/(2ﬁ—2)

V(0,6 =1 / (227 /0 /=Dy A1) e ().

From Lemma 7.3, we have
e(lel/) 0D < A < C(lal /)P, (7.9)

S0

i ol < el YR exp(—e(le|? /)t 20 72)

[ "
(le[2=2 /1) =1/ =2

< exp(—¢'(J° /)10

is very small; for the v-measure, if |2|>=7/t > 1, one gets

VY (Ry) < t(Jaf2P oyt 5D / v (y)
0

= (Je|/0)2=2/ =0 / ([0, y])dy
0
< C(|a]/t)B=01/ (=1 \p=2
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which is bounded from (7.9). Moreover, for 0 < ¢ < 1,

—1/(28-2)

2—8
2|\ @=8)/(8=1) peUel0/D ~
v 0.2 =(1) / v (y)

t
(2=p)/(B-1)
()

(exp( Ag(lffclz ﬁ) 1/(25_2))1/([07€(|$|2—ﬁ/t)—1/(2ﬁ—2)])

8(|l|2 ﬁ/t) 1/(25=2)
0

2] (2=0)/(5-1)
()

(exp( C€(|$|ﬁ)1/ 26— 2))(| 2= g/t) (2-6)/(26-2) 22—

cellol? /1)1 2
T (|l /1y =C)5D / e—yy2—ﬁdy)
0

ZC(exp(—C€(|x|ﬁ/t)1/(w_2)) (|z|P/1)2=P)/(28=2) 2=p

CE(|x|ﬁ/t)1/(2B—2)
[ e
0

where we have used the estimation (7.9) on A and the lower bound on the tail
of v at 0. When ¢ < (|z|%/t)=1/2F=2) | the first term is bounded below by
some c£277, and otherwise, the second term is bounded below by a positive
constant number. We deduce that 1/27/1, satisfies the assumptions of lemmas
2.3 and 4.1, so that the density of Y; at 0 is bounded below and above by
positive constant numbers. O
Proof of Theorem 7.2. From (7.7), one has for A = H™1(—x/t) that

Ayv([o,ybdy)

>c

th(\) = =Xz —tA(—=a/t),
so the density L; of ﬁt,x with respect to [P satisfies
Ly = exp(—A(X; — @) + tA(—z/1)).
Thus the density p(¢,.) of X, under ]?1'/’,571, is given by
p(t,z) = p(t, 2)E[L¢ | X; = z] = p(t, 2) exp(—/\(z —z)+ tA(—x/t))

for almost any z. Since both sides are continuous in z, we can take the value
at z = z and from Lemma 7.5 we obtain

log p(t, 2) = ~tA (/1) + log (1, 2) = —tA(~2/t) + Olog(Jz/1)).
The estimation (7.3) is then deduced from Lemma 7.3. a
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EXAMPLE 7.6. Suppose that A(A) = A’ so that X, is a completely asym-
metric stable process. Then

Ay) = (B—=1)(y/B)" =1,

S0

B-1 (|x|ﬁ)1/<ﬁ—1> 710
p : :

logp(t, z) ~ ~Z575

Write this result at time ¢ = n'~” for n a large integer; from the scaling
property, this gives the law of X, /n, and the right-hand side of (7.10) is
—nA(—z); we recognize the rate function of the classical Cramér theorem.
If now p has a bounded support, the behaviour of X,,/n cannot be deduced
from Theorem 7.2, but one can apply the Cramér theorem and get a large
deviation principle with rate function A on both R% and R*; this can be
extended to more general Markov processes (see Chapter 5 of Freidlin and
Wentzell (1984) for the large deviation principle, and Ishikawa (1995) for an
estimation of the density).
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