
ESAIM� Probability and Statistics November ����� Vol��� pp� �	�
���

DENSITY IN SMALL TIME FOR LEVY PROCESSES

JEAN PICARD

Abstract� The density of real�valued L�evy processes is studied in

small time under the assumption that the process has many small

jumps� We prove that the real line can be divided into three subsets
on which the density is smaller and smaller� the set of points that the

process can reach with a �nite number of jumps ���accessible points	

the set of points that the process can reach with an in�nite number of

jumps �asymptotically ��accessible points	
 and the set of points that

the process cannot reach by jumping ���inaccessible points	�

�� Introduction

The problem of the absolute continuity of in�nitely divisible laws has been
studied for a long time in the literature� especially in dimension �� see Tucker
�����	 �in larger dimension� more geometry is involved� see Yamazato ����
	
for an example	� Variables corresponding to these laws can be viewed as the
values at a �xed time of L�evy processes Xt �processes with independent
and stationary increments such that X�  �	� or as linear functionals of
Poisson random measures� The problem of the absolute continuity and of
the smoothness of the density can also be extended to some non linear
functionals of Poisson measures� especially to Markov processes Xt with
jumps �see for instance Bismut �����	� Bichteler et al� �����	� Picard �����		�
In order to study these processes� one has to consider the measure

��y� dx	  P
�
Xt�dt � �y � dx	

�� Xt  y
� �

dt

which describes how the process can jump from y to y � x� in the case of
L�evy processes� ��y� dx	  ��dx	 does not depend on y and is called the
L�evy measure of the process� The su�cient conditions which are known for
the existence of a smooth density involve two types of conditions� namely
the mass of � near � �the process must have many small jumps	 and the
smoothness of �� Actually� one type of condition can be weakened if the
other one is strengthened� for instance� a L�evy process has an absolutely
continuous law if its L�evy measure is absolutely continuous and if it has
in�nitely many jumps �Tucker �����		� but if the L�evy measure is singu�
lar� one has to impose a stronger condition on the number of small jumps�
moreover a critical behaviour is possible� where the law is singular for small
times and absolutely continuous for large times �Tucker �����		� If now
we assume that the law of Xt is absolutely continuous for any t� a natural
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��� JEAN PICARD

question is to study the behaviour of the density p�t� x	 as t � �� This has
been considered in L�eandre �����	� Ishikawa ����� and ���
	 in the case
of absolutely continuous L�evy measures� and for a class of points x which
the process can reach with a �nite number of jumps �these points will be
called ��accessible in this paper	� Our aim here is to consider the case of
processes with possibly singular L�evy measures and with a large enough
number of jumps� so that a C� density p�t� x	 exists for any t� however� in
order to avoid many technicalities� we consider neither the general case of
Markov processes �which requires the use of Malliavin�s calculus	� nor the
multidimensional case �which involves more geometry	� we limit ourselves
to real�valued L�evy processes and study the logarithmic behaviour of p�t� x	
as t � �� it appears that this simple case already involves some interesting
geometrical properties�

We now state our results without making precise all the conditions� We
need two main assumptions on the L�evy process Xt� Loosely speaking�
�a� the �rst assumption says that X has approximately the same number
of small jumps than stable processes with some index � � � � �� the case
�  � means that X contains a non trivial Brownian part� and if � � ��
the precise statement of the assumption says that the tail at � of the L�evy
measure of X satis�es an approximate scaling property�
�b� the second assumption requires that the process goes su�ciently up and
down� this assumption is always satis�ed if � � �� and otherwise� it says
that the L�evy measure has enough mass on both R�

� and R�
��

Under these two assumptions� it appears that the points x � R can be
divided into three classes for which the behaviour of p�t� x	 as t� � is quite
di�erent�
�i� The �rst class is the set A of ��accessible points x that the process can
reach with a �nite number of jumps �in particular x  � that the process
can reach without any jump	� more precisely� A is the set of points of the
form

Pn
� xi where xi is in the support of the L�evy measure� for these points

�and under additional regularity conditions	�

log p�t� x	  ��x	 log t � o�log���t		

where the rate function ��x	 depends on the jumps xi which drive the pro�
cess from � to x� in particular� ���	  ����� Notice that this set A may
be countable� A large deviation principle is easily proved for the law of Xt�
but the rate function M�x	� which is the minimal number of jumps which
are necessary to reach x� is di�erent from ��x	 in the singular case�
�ii� The second class is the set A nA of asymptotically ��accessible points
that the process can reach with an in�nite number of jumps� for these points�

log���t	� log���p�t� x		 � C�log t	��

Actually� we will describe an example for which

log p�t� x	 � �	�x	�log t	�

for some points x and a function 	�x	 depending on the sequences of jumps
driving the process from � to x�
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DENSITY IN SMALL TIME ���

�iii� Finally the third class is the set RnA of ��inaccessible points that the
process cannot reach with only jumps �this does not mean that these points
are inaccessible for the process	� under our two assumptions �a� and �b�� this
set can be non empty only if �  � �X has a non trivial Brownian part	� or
if � � � � � and all the jumps of X have the same sign� for instance positive
�the process is said to be completely asymmetric� or spectrally positive	� in
this case RnA is R�� and log���p�t� x		 is of order t���������

We also consider the case of non�decreasing L�evy processes �or subordi�
nators	� In this case� the second assumption �b� is not satis�ed� however�
similar properties can also be proved� the main di�erence concerns the be�
haviour at ��accessible points �notice for instance that p�t� �	  � under the
�rst assumption �a�	�

Let us now set the notations which are used throughout this paper� Con�
sider �rst an in�nitely divisible law Q on R �or equivalently an in�nitely
divisible variable X with law Q	� its Fourier transform is given by the L�evy�
Khintchine formula


�w	 

Z
eiwxdQ�x	  exp

�
iw���

�w�

�
�

Z �
eiwx���iwx�������jxj	

�
d��x	

�
����	

with � � R� � � � �di�usion coe�cient	 and � a measure on R� satisfyingZ �
x� 	 �

�
d��x	 �
�

and which is the L�evy measure of Q� More generally� if   � � i� is a
complex number such that e��x is ��integrable on ���� ��c� then
Z
e�xdQ�x	  exp

�
��

���

�
�

Z �
e�x � �� x�������jxj	

�
d��x	

�
� ����	

We also introduce a �nite measure on R which is deduced from � and � by

��dx	  �x� 	 �	��dx	 � �����dx	�

Then Q is characterized by the parameters ��� �� �	� or equivalently by
��� �	 which are called its ��parameter and ��measure� It follows easily
from ����	 that the sum of two independent in�nitely divisible variables
with parameters ���� ��	 and ���� ��	 is in�nitely divisible with parameters
��� � ��� �� � ��	� thus� if we decompose the measure � into �� � ��� we
deduce a decomposition of the variable X into the sum of two independent
variables� It is also an easy consequence of ����	 that if the restriction of �
to ���� ��c has a �rst moment or a second moment� then a variable X with
law Q satis�es the same property and

EX  � �

Z
jxj��

x d��x	� varX  �� �

Z
x�d��x	� ����	

Now consider a L�evy process Xt� the law of each variable Xt is in�nitely
divisible� and the parameters �� �� �� � of the process �Xt	 are de�ned to
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��� JEAN PICARD

be the corresponding parameters of the variable X�� then the parameters of
the variable Xt are given by t� and t�� thus the characteristic function 
t of
Xt is deduced from the L�evy�Khintchine formula ����	� and a decomposition
of � also leads to a decomposition of Xt into the sum of independent L�evy
processes� In the particular case where �  � andZ �jxj 	 �

�
d��x	 �
� ���
	

then Xt has �nite variation and can be written as

Xt 
X
s�t

�Xs � t� ����	

where the ��parameter is de�ned as

�  ��
Z
������

x d��x	� ����	

In this case� the law of X can be characterized by ��� �	� In particular�
�  � means that Xt is a pure jump process� similarly� we will say that an
in�nitely divisible law satisfying ���
	 and �  � is of pure jump type if its
��parameter de�ned by ����	 is �� If � � � and � is supported by R�

�� then
Xt is non decreasing �it is a subordinator	�

The paper is organized as follows� In x�� we prove some preliminary results
concerning in�nitely divisible variables� In x�� assuming that the tail of � at
� satis�es an approximate scaling property� we estimate supx p�t� x	� In x
�
we study p�t� �	 and in the three subsequent sections� we study p�t� x	 when
x is ��accessible �x�	� asymptotically ��accessible �x�	� or ��inaccessible
�x�	� in x�� we also give the large deviation principle� The various constant
numbers will be denoted by c or C and may vary from an equation to the
other�

�� Preliminary results

Lemma ���� Let Qi be a family of in�nitely divisible laws with parameters
�i and �i� Suppose that the total mass �i�R	 is bounded� and that each Qi

has a continuous density pi� Then there exists a family xi such that xi � �i
is bounded and pi�xi	 is bounded below by a positive number� In particular�
supx pi�x	 is bounded below�
Proof� Let Xi be a variable with law Qi� and write Xi  �i� Yi �Zi where
Yi and Zi are independent in�nitely divisible variables with ��parameter ��
and the ��measures of which are respectively the restriction of �i to ���� ��
and its complement� notice that Zi has ��parameter � �see ����		� Then

EY �
i  �i����� ��	� P�Zi  �� � exp��i����� ��c	  exp��i����� ��c	

where the second relation is obtained by considering Zi as the value at time
� of a pure jump L�evy process� and by noticing that the right�hand side is
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DENSITY IN SMALL TIME ���

the probability for the process to contain no jump� Thus

P�jXi� �ij � h� � P�jYij � h�P�Zi  ��

� �
�� �i����� ��	�h�

�
exp��i����� ��c	

� �
�� �i�R	�h

�
�
exp��i�R	

if we choose h large enough� this expression can be bounded below by a
positive constant� so the supremum of pi on ��i � h� �i � h� can also be
bounded below� tu
Lemma ���� Consider a family Qi of in�nitely divisible laws of pure jump
type� with L�evy measure �i satisfying

lim
���

sup
i

Z
������

jxjd�i�x	  �� sup
i
�i�R	�
�

Suppose that each Qi has a continuous density pi� Then for any �xed h � ��
there exists a family xi such that jxij � h and pi�xi	 is bounded below by a
positive number�
Proof� Let � � � � � be a number which will be chosen later� We decompose
a variable with law Qi into Xi  Yi �Zi� where Yi and Zi are of pure jump
type� and their L�evy measures are the restriction of �i to ���� �� and its
complement� Then

EY �
i 

�Z
������

x d�i�x	
��

�

Z
������

x�d�i�x	

�
�Z

������

x d�i�x	
��

� �

Z
������

jxjd�i�x	

converges uniformly to � as �� �� so we can choose � such that EY �
i � h����

On the other hand�

P�Zi  �� � exp��i����� ��c	 � exp��i�R	���

so by proceeding as in Lemma ����

P�jXij � h� � ��� EY �
i �h

�	 exp��i�R	��� �
�
exp��i�R	���

� �
�

is bounded below and we can conclude� tu
Lemma ���� Consider a family of in�nitely divisible laws Qi with parameters
��i� �i	 and suppose that

�i����� ��	 � c ���� ����	

for any � � � � � and for some c � � and � � � � �� Then Qi has

a smooth density pi� and pi�x	� as well as all the derivatives p�k�i �x	� are
bounded uniformly in �i� x	�

Remark ���� The proof relies on integrability properties of the character�
istic function� and is classical� see x
f of Bismut �����	 for related results�
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actually� it can be extended to some Markov processes with jumps� see Pi�
card �����	�
Proof� We deduce from the L�evy�Khintchine formula ����	 that the charac�
teristic function of Qj satis�es

j
j�w	j  exp
�
�
Z
��� cos�wx		d�j�x	� ��jw

���
�

� exp
��c� w��j�����w� ��w�	

�
for jwj � � and some c� � �� where we have used the inequality

�� cos�wx	 � c�jwxj�

on the set fx� jwxj � �g� Thus� from our assumption ����	�

j
j�w	j � exp�cjwj�

for jwj � �� In particular� 
j is integrable with respect to the Lebesgue
measure� so Qj has a density pj which is given by the inversion formula

pj�x	 
�

��

Z
e�iwx
j�w	dw � �

��

Z
j
j�w	jdw�

Thus pj is uniformly bounded� Similarly� by di�erentiating this formula� one
proves that

sup
x

��p�k�j �x	
�� � �

��

Z
jwjkj
j�w	jdw

is bounded� tu
The following lemma is a simple result concerning the closed support of

in�nitely divisible laws� In particular� it does not say anything about much
more complicated problems �such as the Hausdor� dimension of the law� see
Rubin �����		 which have been studied in previous literature� it is however
su�cient for our purpose� since our laws will be easily proved to have a
smooth density from previous lemma�

Lemma ���� Consider an in�nitely divisible law Q without Gaussian part
��  �� and the L�evy measure of which satis�es ������ ��	 � � for any � � ��
Suppose either that

����
� ��	������
�	� �� ����	

or that Z
�jxj 	 �	d��x	  �
� ����	

Then the support of Q is R� If these two conditions are not satis�ed� then
the support is ��
� �� or ����
��

Remark ���� It is evident that the support is R if Q has a non trivial
Gaussian part�
Proof� For any � � �� if �� is the restriction of � to ���� ��c� one can check
that Q � �� is absolutely continuous with respect to Q� One deduces that

suppQ� supp� � suppQ� ���
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DENSITY IN SMALL TIME ���

From our assumption� the support of � contains numbers with arbitrarily
small absolute value� suppose for instance that it contains arbitrarily small
positive numbers� then we deduce from ���
	 that

x � suppQ  �x��
�� suppQ�

It is thus su�cient to prove that under each of our two assumptions ����	
and ����	� the support of Q contains arbitrarily large negative numbers� and
that if neither ����	 nor ����	 hold� the smallest number in the support is ��
Under ����	� the support of � contains some negative number �y� so ���
	
implies

x � suppQ  �x� y	 � suppQ

and we conclude� Let us now suppose that ����	 does not hold� so that �
is supported by positive numbers� If we view Q as the law of X� for some
L�evy process Xt� then for any �� the law of

X�
�  X� �

X
t��

�Xt�f	Xt��g

is absolutely continous with respect to Q� If ����	 holds� then X�
� � �
 as

� � �� so its support contains some x��	 which diverges to �
� and therefore
suppQ also contains x��	� if ����	 does not hold� then X�

� � � from ����	�
and we can deduce that � is in the support of Q� moreover in this case�
Xt � t� is non�decreasing� so X� � � and the support cannot contain a
smaller number� tu
Lemma ��	� Let X be an in�nitely divisible variable with parameters ��� �	
such that � is supported by a bounded interval ��	� 	�� There exists a C � �
depending only on upper bounds on j�j� ��R	 and 	 such that for any h�

P�jXj � h� � C e�h �

Remark ��
� Equivalently� one can say from ����	 that C depends only on
upper bounds on 	� jEX j and varX �
Proof� It is su�cient to estimate the expectation of expX and exp�X � But
from ����	�

E expX  exp
�
��

��

�
�

Z
�ex � �� x�fjxj��g	d��x	

�
�

Since the support of � is bounded� the function in the integral is dominated
by x� 	 �� so the term in the exponential is dominated by j�j� ��R	� The
expectation of exp�X is dealt with similarly� tu
Lemma ���� Consider in�nitely divisible variables X� the L�evy measures of
which are supported by some bounded interval ��	� 	�� and which have zero
mean� Then there exists Cn  Cn�		 such that

P�jXj � n	� � Cn�varX	n�
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��	 JEAN PICARD

Remark ����� One can say equivalently that

P�jX j � n	� � C�n��R	
n�

Proof� Put �  varX and r  r��	  ������n����� one can suppose � � ��
Consider X as the value X� of a L�evy process Xt at time �� and decompose
it into Xt  X�

t �X�
t where

X�
t 

X
s�t

�fj	Xsj�rg�Xs�

Let us consider the event fjX�
� j � �n � ���		g� the process X�

t is a pure
jump process� and its jumps are at most 	 �in absolute value	� so on this
event� there is at least n jumps� moreover� one more jump is needed if one
of the jumps is less than 	��� Thus� in order for jX�

� j to be greater than
�n � ���		� there must be at least n jumps satisfying 	�� � j�X j � 	� or
at least n� � jumps satisfying r � j�X j � 	� These two numbers of jumps
are Poisson variables with mean values

�fjxj � 	��g � 
��	�� �fjxj � rg � ��r�  �n��n����

so

P�jX�
�j � �n� ���		�� �fjxj � 	��gn � �fjxj � rgn��  O��n	� ����	

The L�evy measure of X��r is supported by ���� ���
����EX�

�

r

���� 
����EX�

�

r

���� 
�����
Z
jxj�r

x

r
d��x	

����� � ��r� � �� var
X�

�

r
� ��r� � ��

so from Lemma ����

P�jX�
�j � 	��� � C e�	���r�  o��k	 ����	

for any k� We conclude by adding ����	 and ����	� tu

�� Estimation of the supremum of the density

We have seen in x� that the supremum of the density of an in�nitely divisible
variable can be estimated from the behaviour of its ��measure� We now
translate these results in the case of a L�evy process in small time�

Theorem ���� Let Xt be a L�evy process with parameters ��� �	�
�a� Suppose that

lim inf
���

���������� ��	 � � ����	

for some � � � � �� Then Xt has a C� density satisfying

sup
x
p�t� x	  O�t����	
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as t� �� and more generally

sup
x

��p�k��t� x	��  O�t��k�����	�

�b� Suppose that Xt has a continuous density p�t� �	 and that

lim sup
���

���������� ��	 �
 ����	

for some � � � � �� Then� for t small enough�

sup
x
p�t� x	 � c t����� ����	

Proof� Consider Yt  Xt�t
���� Of course� Yt is not a L�evy process but is

for each t an in�nitely divisible variable� Its L�evy measure and di�usion
coe�cient are given by

�t�A	  t ��t���A	� �t  � t������� �

so its ��measure satis�es

�t�R	  t

Z � x�

t���
	 �

�
d��x	 � t

��

t���
 t

Z
d��x	

�x� 	 �	� t���

if t � �� and
�t����� ��	  t���������� t���� � t����	 ���
	

for � � �� In case �a�� we deduce that

�t����� ��	 � c �����

so from Lemma ���� the variables Yt have uniformly bounded densities q�t� �	
with bounded derivatives� thus Xt has a density given by

p�t� x	  t����q�t� t����x	 ����	

and we can conclude� In case �b�� from an integration by parts�

�t�R	  t ��R	� �t

Z �

t���

����x� x�	
x


dx ����	

which is bounded from our assumption� Thus we can apply Lemma ��� and
deduce that the supremum of the density of Yt is bounded below� We again
conclude from the formula ����	 relating the densities of Xt and Yt� tu
Remark ���� The assumption ����	 of case �b� is always satis�ed with
�  �� so the Wiener process provides a lower bound for the concentration
of L�evy processes in small time�

Remark ���� IfXt is a ��stable process� then � satis�es the scaling property

������ ��	  ���������� ��	�

ESAIM� P�S� November ����� Vol��� pp� �	�
���



��� JEAN PICARD

and both conditions �a� and �b� hold� These conditions can actually be
viewed as an approximate scaling property on the tail of � at ��

Remark ���� If we assume condition ����	 with � � �� then

Z
������

jxjd��x	 
Z
������

d��x	�jxj  ������ ��	 �
Z �

�

����x� x�	�x�dx �


so Xt has �nite variation� If we assume condition ����	 with � � �� then

Z
������

jxjd��x	 
Z
������

d��x	�jxj � ������ ��	�� � c���� � c� ����	

so Z
������

jxjd��x	 


and Xt has in�nite variation�

Remark ���� By joining the two parts of Theorem ���� we deduce that

c ���� � ������ ��	 � C ����  c� t���� � sup
x
p�t� x	 � C � t���� �

and that
lim
���

�
log ������ ��	 � log ��  �� � ����	

implies
lim
t��

�
sup
x

log p�t� x	
�
log t

�
 �����

�� Estimation near �

We now want to �nd a condition ensuring that p�t� �	 also satis�es a lower
bound similar to ����	� so that it has the order of magnitude of supx p�t� x	�
Consider �rst the symmetric case �  � and � symmetric� in this case� the
function x �� p�t� x	 has its maximum at x  � �because the characteristic
function is positive	� and therefore the behaviour of p�t� �	 follows from
Theorem ���� Let us now consider the general non�symmetric case�

Lemma ���� Let Qi be a family of in�nitely divisible laws with parameters
��i� �i	� and let � � � � �� Suppose that �i and �i�R	 are uniformly bounded
and that one of the two following conditions is satis�ed�
�a� � � � and �i satis�es the lower bound condition ���	��
�b� � � � and both restrictions of �i to R� and R� satisfy ���	��
Then for any 	 � �� the density pi of Qi �which exists from Lemma ��
�
satis�es

inf
i

inf
jxj�	

pi�x	 � ��

Proof� Let ��i be the restriction of �i�� to ���� ��� let ��i  �i � ��i � and
decompose a variable Xi with law Qi into independent variables X�

i � X�
i

with respective coe�cients ���i � �	 and ���i � �i	� Let p
�
i be the density of X

�
i �
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the mass ��i �R	 and the coe�cient �i are bounded� so� from Lemma ����
there exists a bounded xi such that p�i �xi	 is bounded below by a positive
number� moreover� the derivative of p�i is uniformly bounded from Lemma
���� so there exists a positive c such that

�x � R jx� xij � c  p�i �x	 � c�

If we notice that pi�x	 is the expectation of p�i �x�X�
i 	� we obtain

inf
jxj�	

pi�x	 � c inf
jxj�	

P
�jx�X�

i � xij � c
�

� c inf
jxj�	�C

P
�jX�

i � xj � c
�
�

Thus it is su�cient to check that for any C and c�

inf
i

inf
jxj�C

P�jX�
i � xj � c� � ��

or that
inf
X�X

inf
jxj�C

P�jX� xj � c� � �

where X denotes the set of laws of X�
i � The measures ��i are relatively

compact for the topology of convergence on bounded functions �they are
bounded and supported by ���� ��	� and for any converging subsequence�
the corresponding X�

i also converges in law �this is an easy application of
the L�evy�Khintchine formula ����		� thus X is relatively compact� Since the
map �x�X	 �� P�jX�xj � c� is lower semicontinuous� it is su�cient to prove
that

P�jX� xj � c� � �

for any x� c and any X in the closure X of X � This means that one has to
prove that the closed support of any X � X is R� the ��measure �� of X
satis�es an estimate of type

� ������ ��	 � c����

because these estimates hold uniformly for ��i � if �  �� X has a non trivial
Gaussian part� so the result is immediate� if � � � � � and if �� is the
L�evy measure of X � the function jxj 	 � is not ���integrable from ����	� so
the result follows from Lemma ���� in the case � � �� both ������� ��	 and
������ ��	 satisfy the above estimate� so one can also apply Lemma ���� tu
Lemma ���� Let Qi be a family of in�nitely divisible laws of pure jump type�
we suppose that the ��measures �i are uniformly bounded� supported by R�

��
and that

c ���� � �i���� ��	� C ����

for some � � � � �� Then for any � � 	� � 	�� the densities pi of Qi satisfy

inf
i

inf
	��x�	�

pi�x	 � ��

ESAIM� P�S� November ����� Vol��� pp� �	�
���



��� JEAN PICARD

Proof� We follow the argument of the proof of Lemma 
��� We decompose
Xi into X

�
i �X�

i of pure jump type� with ��measures ��i and ��i de�ned as
in Lemma 
��� Notice thatZ

�����

d��i �y	

y


��i ���� ��	

�
�

Z �

�

��i ���� y�	

y�
dy � C ���� �

so Lemma ��� and the fact that X�
i � � show that there exists � � xi � 	�

such that p�i �xi	 � c� From the boundedness of the derivative of p�i � we also
deduce

jx� xij � c  p�i �x	 � c�

Thus
inf

	��x�	�
p�x	 � c inf

	��x�	�
P
�jx�X�

i � xij � c
�

� c inf
��x�	�

P
�jX�

i � xj � c
�
�

Therefore one only has to prove that

inf
X�X

inf
��x�	�

P�jX� xj � c� � ��

or that the support of anyX � X contains R�� but this follows from Lemma
���� because X is of pure jump type� tu
Theorem ���� Assume that

c ���� � ������ ��	 � C ���� �
��	

for any � � � � � and some index � � � � �� Suppose also that one of the
four following conditions is satis�ed�
�a� � � ��
�b� �  � and

lim sup
���

���Z
f��jxj��g

x d��x	
��� �
�

�c� � � �� both restrictions of � to R�
� and R�

� satisfy ���	�� and the ��
parameter is  �so that Xt is a pure jump process��
�d� � � �� � is supported by R�

� and the ��parameter is  �so that Xt is a
pure jump non decreasing process��
Then� in cases �abc�� for any positive 	� one has

jxj � 	t���  c t���� � p�t� x	 � C t����

for t small enough� so in particular p�t� �	 is of order t����� In case �d�� for
any positive 	� and 	� and for small t�

	�t
��� � x � 	�t

���  c t���� � p�t� x	 � C t���� �

Remark ���� The conclusion of case �d� is weaker� This is not surprising
since p�t� �	  �� One can say in this case that X slips on the right� and one
can refer to the cases �abc� as the non slipping case�
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Proof� In this theorem� the upper bound has already been derived in The�
orem ���� and for the lower bound� it is su�cient to verify that the as�
sumptions of Lemmas 
�� or 
�� are satis�ed for the family of variables
Yt  Xt�t

��� � So denote by ��t� �t	 the coe�cients of Yt� We have already
checked in ����	 that �t�R	 is bounded and from ���
	� it is easy to see that
�t����� ��	 satis�es the lower and upper bound conditions �on both sides in
case �c�	� Moreover� in case �d�� the ��parameter is �� Thus we only have
to prove that �t is bounded in cases �a�� �b� and �c�� From ����	� one has

�  t��
E

h
Xt �

X
s�t

�Xs�f	Xs��g

i
�

so one can verify that

�t  t����
E

h
Xt �

X
s�t

�Xs�f	Xs�t���g

i

 t�����
�
� �

Z
ft���
jxj��g

x d��x	
�
�

In case �a�� one hasZ
ft���
jxj��g

jxjd��x	

 ������ ��	� t��������t��� � t����	 �
Z �

t���

����x� x�	
x�

dx

 O�t�����	�

so �t is bounded� it is also immediately proved to be bounded in case �b��
in case �c�� since �  �� from ����	 one has

�t  t�����

Z
fjxj�t���g

x d��x	

and

Z
fjxj�t���g

jxjd��x	  t��������t��� � t����	 �
Z t���

�

����x� x�	
x�

dx

 O�t�����	�

Thus �t is bounded in each of the three cases� tu
Example ���� If Xt is a symmetric stable process� it is clear that the
conditions of Theorem 
��� cases �a�� �b� or �c�� are ful�lled� If now �  �
and � is supported by R�

� with ��dx	  dx�x���� we are in case �a� if
� � � � �� and in case �d� if � � � � � and �  �� Actually� it appears that
if � � � and �  �� or if � � � and

�  �
Z �

�

x d��x	  ����� � �	
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�so that Xt is a martingale	� then Xt satis�es the scaling property�
X�t� t � �

� � �
���Xt� t � �

�
for any  � �� so that Xt is a completely asymmetric stable process �a
stable subordinator in the non decreasing case	� The case �  � has not
been studied in the theorem� and no scaling property is possible� by looking
more precisely at the proof� it appears that the density can be bounded
below at

x  x�t	  �t
Z �

t

x d��x	  �t log���t	�

This is the only value of � for which the slipping of the process is larger
than the dispersion of the law for any value of ��

Example ���� Suppose that �  � and � is given by

� 
X
n�Z

�n����n �
��	

for � � � � �� where �y denotes the Dirac mass at y� This measure can be
viewed as the discretization at points ��n of the previous example� Then

����	���
�
��� ����	 � ����� ��	 

X
n��n����

��n����� � ����
�
��� ����	�

so � satis�es the approximate scaling property �
��	� if � � �� we are in the
case �a� of Theorem 
��� and if � � � and �  � �non decreasing process	�
we are in the case �d�� Notice that like previously� if � � � and �  �� or if
� � � and

�  �
Z �

�

x d��x	  �������� � �	�

then Xt satis�es the scaling property�
X�t� t � �

� � �
����Xt� t � �

�
�

Subsequently� we will refer to �
��	 as the dyadic example�
In Theorem 
��� one assumes that lower and upper bounds on the tail of �

at � have exactly the same order of magnitude� This was not necessary in x��
the logarithmic estimation of supx p�t� x	 may follow from the logarithmic
tail estimation ����	� Here� one can similarly wonder if

lim
log p�t� �	

log t
 ���� �
��	

can follow from ����	 instead of �
��	� This is of course true in the sym�
metric case� In other cases however� p�t� �	 may have a much more irregular
behaviour� suppose for instance that �  �  � and that � is supported by
a sequence �un	n�IN such that

un��  un
� �

log���un	
��
� ��fung	  u��n
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for some � � u� � e��� � � � � � and � � ����� �	� Then

������ ��	 
X
un��

u���n � u���n���

with
n��	  minfn� un � �g�

One easily checks that

�
log����	

���
� � un��� � ��

so ����	 is satis�ed� However� by studying the behaviour of p�tn� �	 on the
sequence of times

tn  �
� �

����un��
�	
�
�

we are going to prove that �
��	 does not hold� Notice that tn � u�n��� Let
us decompose Xtn into Y �

n � Y �
n with

Y �
n 

X
s�tn

�Xs�f	Xs�ung � tn

Z
fx�ung

x d��x	� �
�
	

Then

var Y �
n  tn����� un���	 � tn u

���
n�� �

u�n
�

� un��log un���
����


u�n
�

��log un���������


u�n��

�

��log un�����
Moreover� the jumps contained in Y �

n are at most un�� which is therefore
smaller than the standard deviation of Y �

n � so� by applying Lemma ��� to
Y �
n ��varY

�
n 	

��� which has mean � and bounded jumps� we obtain that for
any �xed �

P
�jY �

n j � �un
� � C exp

�
��un

�
�var Y �

n 	
���
�

� C exp
�
��
p
�
��log un������������� o��		

�
 o�ujn	  o�tj��n 	

�
��	

for any j since ���� �	�� � �� On the other hand� the compensator of the
jumps of Y �

n in �
�
	 satis�es

tn

Z
fx�ung

x d��x	 � tn u
���
n � tn un���un�
�	  un���

and the jump part is either �� either at least un� so jY �
n j � un�� almost

surely for n large enough� From �
��	 applied with �  ����� we deduce
that

P
�jXtn j � un�


�
 o�tjn	
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for any j� We also know from Theorem ��� that

lim sup
t��

sup
x

log jp��t� x	j � log���t	 � ����

so p��tn� x	 is uniformly dominated by t��n for � � ���� and we deduce that

sup
jxj�un��

p�tn� x	  o�tjn	

for any j� In particular� for x  �� we obtain that

lim inf
t��

�
log p�t� �	

�
log���t	

�
 �
�

The reason for this behaviour is that the limit of renormalized Xtn is a
Poisson variable and is therefore not absolutely continuous�

�� Estimation at ��accessible points

We now want to estimate p�t� x	 at �xed points x � �� Before considering
the density itself� we give a large deviation principle for the law of Xt� this
principle involves the rate function

M�x	  inf
	
n� x � supp ��n�



which is the minimal number of jumps which is necessary to reach x �the
measure ��n� is the convolution of � with itself n times	� for instance� in the
dyadic example �
��	�M�x	 is the number of ��s in the dyadic expansion of
x if x is a non negative dyadic number� and is �
 otherwise� Let M�B	 
infBM be the minimal number of jumps necessary to reach B�

Proposition ���� Suppose that the support of � is bounded� so that the
level sets fM�x	 � ng are compact� Let B be a Borel set� there exists a
C � � such that

�M�B�	 log���t	� C � logP�Xt � B� � �M�B	 log���t	 � C

for t small�

Remark ���� This is a large deviation principle for Xt as t � �� one can
look at other asymptotics� for instance� if exponential moments exist� the
behaviour of Xn�n as n � 
 is given by the classical Cram�er theorem� and
this has been extended to more general Markov processes in Chapter � of
Freidlin and Wentzell ����
	�
Proof of the lower bound� Suppose that B is open� Let x � B and � � � such
thatM�x	 M�B	 and �x� �� x� �� � B� Write Xt as the sum X�

t �X�
t of

two independent L�evy processes with respective L�evy measures � and ����
and such that X�

t is a pure jump process� The distribution of X�
t is

P�X�
t � ��  exp

��t��R	�X
n

tn

n�
��n�� ����	

ESAIM� P�S� November ����� Vol��� pp� �	�
���



DENSITY IN SMALL TIME �
�

If we estimate this expression below by its term of order n  M�x	� we
obtain

P
�jX�

t � xj � ���
� � c tM�x��

Since the probability of fjX�
t j � ���g converges to �� we deduce

P�Xt � B� � P�jX�
t � xj � ���

�
P
�jX�

t j � ���
� � c tM�x��

tu
Proof of the upper bound� Suppose that B is closed� since we have as�
sumed that the support of � is bounded� there exists � � � such that the
��neighbourhood B� of B satis�es M�B�	 M�B	� Let r � � and consider
the decomposition Xt  X�

t � X�
t where X�

t is the sum of jumps greater
in absolute value than r� The mean and variance of X�

t are O�t	� so from
Lemma ���� one can choose r so that

P�jX�
t j � �� � C tM�B�� ����	

The distribution of X�
t is

P�X�
t � ��  exp

��t�r�R	�X
n

tn

n�
��n�r ����	

where �r denotes the restriction of � to the complement of ��r� r�� then
�
�n�
r �B�	  � for n � M�B�	� so

P�jX�
t j � B�� � C tM�B�� ���
	

We estimate the probability of fXt � Bg by adding ����	 and ���
	� tu
We now study p�t� x	 at ��accessible points �points satisfyingM�x	 �
	�

Due to the singularity of the asymptotic behaviour� the rate function for
log p�t� x	 will not always be M � We suppose that the process does not
slip �assumptions of Theorem 
��� cases �abc�	 and explain at the end of
the section how the results can be extended to the case of a non�decreasing
process� Notice that some results have been obtained previously for more
general multidimensional Markov processes� when � is smooth andM�x	  �
�one jump is su�cient to reach x	� a precise equivalent for p�t� x	 is given
in L�eandre �����	� when � is obtained by truncating the L�evy measure of a
stable process and M�x	 is some integer� a lower bound is given in Ishikawa
�����	� and a precise equivalent is obtained in Ishikawa ����
	 for � � ��

The main result of this section is Theorem ��� below� but we �rst give
two lemmas�

Lemma ���� Under the conditions of Theorem ��
� cases �abc�� suppose that

��n�
�
�x� �� x� ��

� � c �

as �� �� for some � � � and some integer n� Then� for small t�

p�t� x	 � c� tn������� �
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Proof� WriteXt  X�
t �X

�
t as in the proof of the lower bound in Proposition

���� we estimate below the law ����	 of X�
t by its nth term� and if use our

assumption� we obtain that

P
�
X�
t � �x� �� x� ��

� � c �tn�

On the other hand� from Theorem 
��� the density p� of X�
t is bounded

below by c t���� on ��t���� t����� so

p�t� x	  E
�
p��t� x�X�

t 	
� � c t����

P
�jX�

t � xj � t���
�

and we apply the above estimate with �  t���� tu
Remark ���� Suppose that

��n��dy	 � c �V �y	dy

for some neighbourhood V of x� then Lemma ��� can be applied with �  ��
but we now check that the assumptions of Theorem 
�� can be omitted in
this case� By using again the decomposition of Xt of Proposition ��� �proof
of the lower bound	� we deduce from ����	 that the law of X�

t is bounded
below by a measure with density

q�t� y	  c�tn�V �y	�

Thus
p�t� x	 � E�q�t� x �X�

t 	� � c�tnP��x�X�
t 	 � V �

and the probability tends to �� so the conclusion of Lemma ��� holds with
�  ��

Lemma ���� Under the conditions of Theorem ��
� cases �abc�� consider

Zt  Xt �
X
s�t

�Xs�fj	Xsj�rg

with r  r�t	 of order t���� Let 	 � � and �� � �� Then the density pZt of
Zt satis�es

jzj � 	t���  pZt �z	 � c t�����

pZt �z	 � C t���� � jzj � t���
�

 pZt �z	 � C t���� exp
��c t���

with �  ��� � �����
Proof� The variable Zt�t��� is the variable Yt of the proof of Theorem 
��
without its jumps greater than r�t��� which is of order �� in particular� its
��parameter and ��measure are bounded� and its ��measure satis�es ����	
�on both sides in case �c�	� thus the �rst and second inequalities follow from
Lemmas ��� and 
��� and one can also deduce that the derivative of pZt is
dominated by t���� � On the other hand� one can estimate the density with

pZt �z	
� � �

Z
��jzj�jzj�c

pZt �y	j�pZt 	��y	jdy � C t����
P�jZtj � z��
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From Lemma ����

P
�jZtj � jzj� � C exp

��jzj�t�����
so

pZt �z	 � C t���� exp
��jzj���t���	��

tu
Theorem ���� Suppose the conditions of Theorem ��
� cases �abc�� Con�
sider the functions

�n�x	  � lim inf
���

�
log ��n���x� �� x� ��	

�
log����	

�
�

�n�x	  � lim sup
�y�����x���

�
log ��n���y � �� y � ��	

�
log����	

�
and

��x	  inf
n

�
n � ��n�x	� �	��

�
� ����	

��x	  inf
n

�
n� ��n�x	� �	��

�
� ����	

Then
���x	 � lim inf

t��

�
log p�t� x	

�
log���t	

�
� lim sup

t��

�
log p�t� x	

�
log���t	

� � ���x	�

Remark ��	� One can check that the functions �n and � are lower semi�
continuous� Notice also that

n � M�x	  �n�x	  �n�x	  �
�

n �M�x	  � � �n�x	 � min��� �n�x		�

so
M�x	� ��� � ��x	 � min���x	�M�x		�

Proof� The lower bound is easily deduced from Lemma ���� so let us prove
the upper bound� Fix x� choose �� � � and a sequence ��n � �n�x	� For
some � � r � � �it will be chosen later	� consider the decomposition of Xt

into X�
t �X�

t �X

t where X�

t and X�
t are respectively the sum of jumps in

��r� r�c and ��t���� t����c � ��r� r�� We want to estimate

P
�jX�

t �X�
t � xj � t���

��


Z
P
�jX�

t � x� yj � t���
��
P�X�

t � dy��

By applying Lemma ��� to X�
t � EX�

t which has variance O�t	 and jumps
bounded by r�

P
�jX�

t �X�
t � xj � t���

��


Z
jy�EX�

t j�Kr

P
�jX�

t � x� yj � t���
��
P�X�

t � dy� � O�tK	
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for any integer K� we will choose and �x

K � inf�n� ��n��
�	� ����	

Thus� for any neighbourhood V of �� if one chooses r small enough� since
EX�

t converges to �� one has

P
�jX�

t �X�
t � xj � t���

�� � Z
V

P
�jX�

t � x� yj � t���
��
P�X�

t � dy� �O�tK	�

The distribution of X�
t has been given in ����	� and for r � �� the measure

�r is dominated by ��r�� so

P�X�
t � �� �

X
n

tn

r�nn�
��n� 

X
n
K

tn

r�nn�
��n� �O�tK	� ����	

Now choose the neighbourhood V of � so that

��n���x� y � t���
�

� x� y � t���
�

�	 � t
�

n��
�

for t small� y in V and n � K� then� from ����	 and ����	�

P
�jX�

t � x� yj � t���
�� � C tinf�n�

�

n��
��

for y in V � so

P
�jX�

t �X�
t � xj � t���

�� � C tinf�n�
�

n��
���

By estimating the density p
�t� �	 of X


t from Lemma ���� we deduce that

p�t� x	  Ep
�t� x�X�
t �X�

t 	

� C exp
��c t���� C t����

P
�jX�

t �X�
t � xj � t���

��
� C�tinf�n�

�

n��
������ �

and therefore�

lim sup
t��

�
log p�t� x	

�
log���t	

� � � inf
n
�n� ��n��

�	 � ����

Since this holds for any �� � � and any sequence ��n � �n�x	� we can
conclude� tu
Examples ��
� Suppose that

��dx	  f�x	dx ����	

is absolutely continuous� has a compact support �	�� 	��� and that f is locally
bounded below and above on �	�� 	�� n f�g� Then

M�x	 � n� n	� � x � n	�
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and ��n� has a density which is locally bounded below and above on fM�x	 �
ng n f�g� Thus �n�x	  �n�x	  � if n � M�x	� x � �� so ��x	  ��x	 
M�x	� On the other hand� if

� 
X

�n�xn �����	

where xn is bounded below by some real number and has no limit point in
R
� �as in the dyadic example �
��		� then �n�x	  �n�x	  � if M�x	  n

because ��n� has a mass at x� thus ��x	  ��x	 M�x	� ����

Remark ���� Solving the minimization problems ����	 and ����	 explains
how the process goes from � to x� and in those two examples� it uses the path
containing the minimal number of jumps� In more general cases however�
this is not so simple� and� even if x is in the support of �� the process may
�nd better to reach x with two jumps� for instance if

��dx	  ���dx	 � dx�jxj����

then the functions �n and �n again coincide� but ����	  �� ����	  �� so
���	  min��� �� ���	� if � � � the process goes directly from � to �� but
if � � �� it makes two jumps� Similarly� for x  �� it makes three jumps if
� � ���� and one jump if � � ����

In the end of this section� we explain without detailed proof how Theorem
��� can be extended to the non�decreasing case �case �d� of Theorem 
��	�
The process slips on the right� so in order to be at point x at time t� it must
jump to a point strictly on the left of x� thus in order to obtain the lower
bound of Lemma ���� one has to assume that

��n�
�
�x� �� x� ���

� � c �

as � � �� for some � � � � �� some � � � and some integer n� The
proof is then similar� by noticing that the lower bound on p� holds in this
case on �� t��� � t����� The fact that one needs a stronger assumption is not
surprising� since the upper bound of Theorem ��� can be made smaller in
this case� in the proof� one has to choose the decomposition of Xt with X

�
t �

X�
t and X


t non decreasing� and it appears that one needs an upper bound
on ��n���y � �� y�	 instead of ��n���y � �� y � ��	� Thus� if one de�nes

��n�x	  � sup
�
�
�

lim inf
���

�
log ��n���x� �� x� ���	

�
log����	

�
�

��n�x	  � lim sup
�y�����x����y
x

�
log ��n���y � �� y�	

�
log����	

�
and

���x	  inf
n

�
n � ���n�x	� �	��

�
� �

�
�x	  inf

n

�
n� ���n�x	� �	��

�
�

then
����x	 � lim inf

t��

�
log p�t� x	

�
log���t	

�
� lim sup

t��

�
log p�t� x	

�
log���t	

� � ����x	�
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If one considers the above examples ����	 and �����	 with supp � � R��
then

���x	  �
�
�x	  lim

y		x
M�y	

in the absolutely continuous case ����	� whereas �� and �
�
are �
 every�

where in the discrete case �����	 �there is no accumulation of the mass of
Xt at any �xed point x	�

	� Estimation at asymptotically ��accessible points

If ��x	 
 �or �
�
�x	 
 in the non�decreasing case	 then log���p�t� x		�

log���t	� The aim of this section is to make a more precise study when x is
in the closure of

S
n supp �

�n�� for instance� in the dyadic example �
��	 this
concerns positive non�dyadic numbers �non�slipping case	� or all positive
numbers �non�decreasing case	� Since the proofs are similar� we consider
mainly the non�slipping case� and give as remarks the extension to the non�
decreasing case� We �rst derive the following general lower bound�

Proposition ���� Assume the conditions of Theorem ��
� cases �abc� with
� � �� and suppose that ��R�

�	 � �� Then for any R � ��

lim inf
t��

inf
��x�R

log p�t� x	

�log t	�
� �
�

Remark ���� In the non�decreasing case� one has to consider the in�mum
on �R�� R�� for positive R� and R��

Remark ���� We have assumed that � � �� so that Xt has no Brownian
part� in this case indeed� the condition �
��	 imposes a constraint on the tail
of � near � �see ����	 below	� If �  �� the result of the proposition can be
extended if one assumes that this constraint is satis�ed� otherwise� the set
of asymptotically ��accessible points may be more complicated� and other
orders of magnitude for log p�t� x	 are possible�
Proof� From �
��	 and since ��R�

�	 � �� we deduce that if we �x � small
enough� we have

�	 � �

Z
f��	
jyj�	g

y�d��y	 � c 	��� and ����� ����	� ��

Thus
�
	
y� ��	 � jyj � 	


 � c 	�� � c ����	

for 	 � �� and if we de�ne

Jn  ����n������n�������n��� ��n��� �n � �	� J� ��� �����

then ��Jn	 is bounded below� For any integers K and n� there exists an
interval I�K� n	 � Jn of length jJnj���K	 and with measure ��I�K� n		 �
��Jn	���K	� If we let K be the integer value of t���� � we deduce the exis�
tence of intervals In  In�t	 � Jn satisfying

jInj � C t�����n� ��In	 � c t���� ����	
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Let xn  xn�t	 be a point of In� then jxnj is a decreasing sequence such that
jxn���xnj � ��� and x� is positive� On the other hand� for any x � ��� R��
there exists a sequence of non�negative integers kn  kn�t� x	 such that

���x� NX
n�

knxn

��� � jxN j � ��N���

More precisely� the sequence kn can be constructed by induction as follows�
if k�� � � � � kn�� have been chosen� the integer kn is chosen so that

P
j�n kjxj

is the best approximation of x lower than x if xn�� � �� greater than x if
xn�� � �� Then

k� � � � x�x� � � �R�� and kn � � � ��� �n � �	�

If z is a real number of the form

z 
NX
n�

knX
j�

ynj � with ynj � In� ����	

then

jz � xj �
���x� NX

n�

knxn

���� NX
n�

knjInj � ��N�� � C t���

from the estimation ����	 of the length of In and since the series
P

kn�
�n is

bounded� If we choose N  N�t	 so that

N�t	  �log t	���� log �	 �O��	�

then

jz � xj � C t��� � ���
	

Let us now return to our L�evy process� We are going to use the decomposi�
tion Xt  X�

t �X�
t where X�

t is the sum of the jumps greater �in absolute
value	 than r  ��N�� with N  N�t	 like above� so that r is of order
t��� � If� before time t� X has exactly kn jumps �X � In� and no jump
�X � ��r� r�c nS In� then z  X�

t satis�es ����	 and therefore ���
	� Thus

P
�jX�

t � xj � C t���
� � exp

��t����r� r�c	� Y
n�N�t�

�
�t��In		

kn�kn�
�

� c�ctK	N�t�

for some K� because t����r� r�c	 and kn are bounded� and from the lower
bound ����	 on ��In	� Since N�t	 is of order log���t	� we deduce that

lim inf
t��

inf
��x�R

logP
�jX�

t � xj � Ct���
�

�log t	�
� �
�
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On the other hand� from Lemma ���� the density p��t� �	 of X�
t satis�es

p��t� y	 � ct���� for jyj � C t��� � so

log p�t� x	 � logP
�jX�

t � xj � Ct���
�
�O�log t	

and we can conclude� tu
In some cases� one can make more precise the method of Proposition ���

in order to obtain an equivalent of log p�t� x	� this is possible when the lower
and upper bounds of the following proposition become similar as �� � �� we
will apply this result to the dyadic example �
��	�

Proposition ���� Suppose that � satis�es the assumptions of Theorem
��
� cases �abc� with � � �� and that it is supported by a countable set
fxn� n � INg such that jxn��j � jxnj� denote by �n the mass ��fxng	�
Suppose that

N  N�t	  max
	
n� jxnj � t���



 O�log���t		�

Let 	 � � and �� � �� Suppose that ��R�
�	 � � and let x � �� Then

log p�t� x	 is bounded below and above by expressions of type

�min
NX
n�

�
kn log

�
���t�n	

�
� log�kn�	

�
�O�log���t	 log log���t		 ����	

where the minimum is taken with respect to the sequences �kn	 such that

���x� NX
n�

knxn

��� � 	 t��� ����	

for the lower bound� and

���x� NX
n�

knxn

��� � t���
�

����	

for the upper bound�

Remark ���� One deduces from �
��	 that for some c� � �� the measure �
must give positive mass to all the sets fc�� � jxj � �g for � small enough�
thus these sets must contain at least one point xn� so that N�t	 is bounded
below by some c log���t	� The assumption of the proposition therefore says
that N�t	 is exactly of order log���t	�

Remark ���� If Xt is non�decreasing� these bilateral constraints have to be
replaced by unilateral ones of type

	�t
��� � x �

X
knxn � 	�t

��� � � � x�
X

knxn � t���
�

�

Remark ��	� The proposition can be extended to unbounded positive
sequences fxn� n � Zg with lim�� xn  �
� because jumps greater than
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x can be neglected in the following analysis� However� other cases �if for
instance both �
 and �
 are limit points of xn	 may be more delicate�
Proof� Consider the decomposition Xt  X�

t �X�
t where X�

t is the sum of
jumps of size xn� n � N�t	� The density p� of X�

t can be estimated from
Lemma ���� so since p�t� x	 is the expectation of p��t� x�X�

t 	� we deduce

c t����
P�jX�

t � xj � 	 t���� � p�t� x	

� C t����
P�jX�

t � xj � t���
�

� � exp��c t��	

for � � �� from Proposition ���� the exponential can be neglected� so

logP�jX�
t � xj � 	 t����� C log���t	

� log p�t� x	

� logP�jX�
t � xj � t���

�

� � C log���t	�

����	

We have

X�
t 

NX
n�

Knxn

where Kn is the number of jumps at xn before time t� notice that the
conditions on X�

t in ����	 can be translated by saying that the sequence Kn

should satisfy ����	 or ����	� Moreover� Kn is a Poisson variable with mean
t�n and the sum of these means for n � N is bounded� in particular� the
expectation of expKn is bounded� so

P�Kn � N
� � C e�N
�

�

and

P��n� N� Kn � N
� � C�N � �	 e�N
� � exp

��c�log���t		
�
is very small� thus we can add the conditions Kn � N
 in the probabilities
of both sides of ����	� We deduce that log p�t� x	 is bounded below and above
by expressions of type

logP
���kn	 � K �n � N Kn  kn

�
� O�log���t		�

where K is the set of sequences �kn	 satisfying ����	 for the lower bound�
����	 for the upper bound� and the additional constraint kn � N
� On the
other hand�

logP
��n � N Kn  kn

�
 �

NX
n�

�
kn log

�
���t�n	

�
� log�kn�	 � t�n

�

 �
NX
n�

�
kn log

�
���t�n	

�
� log�kn�	

�
�O��	�

ESAIM� P�S� November ����� Vol��� pp� �	�
���



��� JEAN PICARD

so

logP
���kn	 � K �n � N Kn  kn

�
 �min

K

NX
n�

�
kn log

�
���t�n	

�
� log�kn�	

�
� O�log jKj	�

The cardinal of K is at most the number of sequences kn satisfying kn � N
�
so log jKj has the correct order log���t	 log log���t	 of ����	� We deduce
that the proposition holds with the additional constraint kn � N
 in the
optimization problem ����	� and we now have to verify that we can omit it�
This does not cause any problem for the upper bound �because the bound
after omitting the constraint is larger	� For the lower bound� let us suppose
that a minimizing sequence does not satisfy kn � N
� so that kj � N
 for
some j � N � since t�n is bounded� one has

kn log
�
���t�n	

�
� log�kn�	 � log�kn�	� C kn � �C�

and
kj log

�
���t�j	

�
� log�kj�	 � log�kj �	� C kj � kj � N
�

Thus the value of the cost functional is at least of order �log���t		
� so the
lower bound stated in the proposition is in this case smaller than the bound
of Proposition ���� tu
Example ��
� Consider the dyadic example �
��	 �non�slipping or non�
decreasing cases	� Then the behaviour of p�t� x	 for x � � will depend on
the proportion of ��s in the dyadic expansion dn  dn�x	 of x given by
x 

P
n�Z dn�

�n� Let

N  N�t	  minfn� ��n���� � ��tg�

so that N�t	 � log���t	��� log �	� If one solves the optimization problem

min
X
n�N

kn

�
log���t	� n� log �

�
����	

amongst sequences �kn	 such that
P

kn��n is some �xed dyadic number of
order N � it appears that one has to choose for kn the dyadic coe�cients of
the number �verify that a jump at ��n is cheaper than two jumps at ��n��	�
Moreover�

P
log�kn�	 is in this case � and is therefore also minimal� so the

optimization problem of Proposition ��
 is solved by choosing the best �in the
sense of the cost functional ����		 dyadic number satisfying the constraint
����	 or ����	� and log p�t� x	 is bounded below and above by expressions of
type

�
X
n�N

kn

�
log���t	� n� log �

�
�O�log���t	 log log���t		

where kn are the dyadic coe�cients of this best dyadic number� One can
notice that for the lower bound� one has to choose 	 large enough in order
to have at least one sequence kn satisfying the constraint ����	� Notice also
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that the best coe�cients �kn� n � N	 depend on t �since the constraints
involve t	� however� in many cases� only the last values will depend on t and
most values of kn will actually coincide with dn�x	� If

limK��
KX
n�

dn�x	  	

for some � � 	 � � �proportion of ��s in the dyadic expansion of x	� then
the sequence dn asymptotically does not contain too long subsequences of
��s or of ��s� and one can deduce that dn is a good suboptimal solution of
the minimization problem� so that

log p�t� x	 � � log���t	
X

n�N�t�

dn�x	 � � log �
X

n�N�t�

n dn�x	

� �	N�t	 log���t	 � 	��log �	N�t	���

� �	
�� log �

�log t	��

�����	

This holds if x is a rational non�dyadic number �in this case dn is periodic
after some rank	� this also holds for almost any x relatively to the Lebesgue
measure �in this case 	  ���	� Moreover� if x is a dyadic number and if Xt

is non�decreasing �apply x� in the non slipping case	� one has to reach x from
below� and one can check that �����	 holds with 	  � �loosely speaking� x
has two expansions� and one has to consider the one where all terms are �
after some rank	�


� Estimation at ��inaccessible points

We now consider points which cannot be reached by jumping� this means
that they are not in

F  supp
�X
n�

��n� �

We check that the density is much smaller in this case� We �rst consider
the case where Xt contains a non trivial Brownian part�

Proposition 	��� Suppose that the di�usion coe�cient � is not zero� Then�
if ��x	 denotes the distance of x to F �

lim
t��

�
t log p�t� x	

�
 ����x	�����	�

Proof� Write Xt  �Wt � Yt where Wt is a standard Wiener process� Then

p�t� x	 
�

�
p
��t
E

h
exp��x� Yt	�

���t

i
� ����	

Let us �rst prove the lower bound� Choose y � F such that jy � xj  ��x	�
Fix � � � and let n  n��	 be the �rst integer such that �y � �� y � ��
intersects the support of ��n�� then

P
�jYt � yj � �

� � c�t
n
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from Proposition ���� and we obtain from ����	 that

p�t� x	 � �

�
p
��t

P
�jYt � yj � �

�
exp����x	 � �	�

���t
�

so

lim inf
t��

t log p�t� x	 � ����x	 � �	�

���
�

Since this holds for any � � �� we conclude� Let us now prove the upper
bound� if x � F � we can apply the estimation of Theorem ����a	� so suppose
x �� F � we consider separately the two cases � �nite and � in�nite� If � is
�nite� we can write Yt  t��Y t where Y t is pure jump process with a �nite
number of jumps� the support of Y t is exactly F so

p�t� x	 � �

�
p
��t

exp��
��x� t�	

���t

and we deduce the result� If � is in�nite� suppose for instance that ��R�
�	

is in�nite� then ��R�
�	  � because otherwise F  R� Thus F is R�� x is

negative and ��x	  �x� The Laplace transform of Yt is given from ����	 by

E exp�Yt  exp
�
�t�� t

Z �

�

��� e��y	d��y	 � t��	
�

for  � �� with

��	 

Z �

�

�
e��y � y � �

�
d��y	

 �e�� � � �	����� ��	�

Z �

�

�
y � �y � �	e��y � �

������ y�	
y


dy

 �e�� � � �	����� ��	� �
Z �

�

�
y � �y � �	e�y � �

������ y��	
y


dy�

In particular� ��	� � as  � �
� We also check that � is strictly in�
creasing fromR� onto itself� so if ��� denotes the inverse function� ����		�p
	 as 	� �
� By taking   ������t�	� we obtain that for any � � � �

jxj�

logP�Yt � ��� � ��� log E exp �Yt � ���� t�	 � ��t�O�t	� ���t

because � ��t� From ����	�

p�t� x	 � �

�
p
��t

�
P
�
Yt � ���� exp

�����x	� �	������t	
��
�

so
lim sup
t��

t log p�t� x	 � ����x	� �	������	

and one only has to let � � �� tu
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By letting � � � in previous result� it seems that t log p�t� x	 � �
 at
��inaccessible points when there is no Brownian part� The next result gives
a precise statement�

Theorem 	��� Assume the conditions of Theorem ��
 with � � � � �� and
suppose that ��R�

�	  �� Fix positive T and � and consider the function
p�t� x	 on the domain D ��� T ����
����� Let D � f�g be the one�point
compacti�cation of D� Consider the function

h�	  log E exp�X�

on R�� and its Legendre transform

��y	  sup
���

�
y � h�	

�
� ����	

Then

log���p�t� x		� t���x�t	
as �t� x	� �� moreover

c
�jxj��t�������� � log���p�t� x		 � C

�jxj��t��������
� ����	

Notice that the theorem gives simultaneously the asymptotic behaviours
for t� � and x� �
� this is due to the fact that these behaviours depend
only on the tail of � at �� and that we have assumed an approximate scaling
property on this tail� One can also prove a large deviation principle for the
law ofXt restricted to R�� and this principle involves the same rate function
�� this comes from the regularity of �� if one compares with ��accessible
points� the situation was di�erent because the rate functions were singular in
the case of a singular L�evy measure� Notice also that � is the rate function
of the classical Cram�er theorem which deals with the asymptotic behaviour
of Xn�n� actually� in the case of a stable process� the behaviours of Xt and
Xn�n can be deduced from each other �see the discussion at the end of the
section	� The basic tool of the proof will be a change of probability� We
�rst prove some lemmas�

Lemma 	��� The function H�	  h��	 is strictly increasing from R� onto
�H��	��
� and is of order ��� as � �
� the inverse function H���y	
and the function ��y	 are respectively of order y������� and y������� as
y � �
�
Proof� The function h is given from ����	 by

h�	  ���
Z �

�

��� e��y	d��y	 �

Z �

�

�e��y � y � �	d��y	� ���
	

It is strictly convex� and

H�	  �� �
Z �

�

y e��yd��y	 � 
�	 ����	
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with


�	 

Z �

�

�
�� e��y

�
y d��y	 ����	

 ��� e��	����� ��	�

Z �

�

�
�� e��y � ye��y

������ y�	
y�

dy�

Since ����� y�	 is of order y��� as y � � we deduce that 
�	 is order ���

as  � 
� so H�	 is also of order ���� and H���y	 is of order y��������
By solving the optimization problem ����	� one has

��y	  y H���y	� �h �H��
�
�y	 ����	

for y � H��	� so ��  H�� and the order of ��y	 can be deduced from the
order of H���y	 by an integration� tu
Lemma 	��� For  � �� consider the process

Lt  exp
��Xt � th�	

�
� ����	

Then Lt is a martingale� and if eP is the probability measure with density Lt
with respect to P on ��Xs� s � t	� then Xt is under eP a L�evy process with
parameters e�  � � 
�	� de��y	  e��yd��y	�

where the function 
 was de�ned in ������
Proof� The process logLt is a L�evy process� and if s � t� it follows from
the value of the Laplace transform of Xt � Xs that the mean of Lt�Ls is

�� Thus Lt is a martingale� and it is also easy to verify that Xt is under eP
a L�evy process� We have to compute its parameters� for any real w� from
����	 and ���
	�

eE�eiwXt
�
 E

�
e�iw���Xt

�
exp

��th�	�
 exp

�
�iw� 	t� � t

Z �

�

�
e�iw���y � �� �iw� 	y

�
d��y	

� t

Z �

�

�
�� e�iw���y

�
d��y	 � t�

� t

Z �

�

�e��y � y � �	d��y	 � t

Z �

�

��� e��y	d��y	
�

 exp
�
iwt�� t

Z �

�

�
eiwy � �� iwye�y

�
e��yd��y	

� t

Z �

�

��� eiwy	e��yd��y	
�
�

We now identify the parameters with the L�evy�Khintchine formula ����	� tu
Lemma 	��� Consider the variable Lt de�ned by ����� with   �t� x	 

H����x�t	� We denote by ePt�x the probability on ��Xs� s � t	 admitting
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the density Lt with respect to P� If ep�t� �	 is the continuous density of Xt

under ePt�x� then ep�t� x	 is of order �jxj����t	�������� as �t� x	� ��

Proof� We deduce from Lemma ��
� ����	 and H�	  �x�t that under ePt�x�
the variable Xt has parameters

�t�x  t� � t
�	  x� t

Z �

�

y e��yd��y	

and

�t�x�dy	  t exp��y	��dy	�

We deduce that the parameters of the variable Yt  �jxj����t	���������Xt�
x	 are given by

�Yt�x  �t�jxj����t	��������

Z �

�jxj����t����������

y e��yd��y	�

�Yt�x���� ��	  t

Z ��jxj����t����������

�

�
�jxj����t	�������y� 	 �

�
e��yd��y	�

From Lemma ���� we have

c�jxj�t	������� �  � C�jxj�t	�������� ����	

so

j�Yt�xj � t�jxj����t	�������� exp��c�jxj��t	��������	Z �

�jxj����t����������

y e�cyd��y	

� exp��c��jxj��t	��������	

is very small� for the ��measure� if jxj����t � �� one gets

�Yt�x�R�	 � t�jxj����t	�������

Z �

�

e��yd��y	

 �jxj�t	�����������

Z �

�

e��y����� y�	dy

� C�jxj�t	��������������
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which is bounded from ����	� Moreover� for � � � � ��

�Yt�x���� ��	 
� jxj
t

������������
Z ��jxj����t����������

�

e��yd��y	


� jxj
t

������������

�
exp

�
��

� jxj���
t

�����������
�
��
�� ��jxj����t	���������

��

� 

Z ��jxj����t����������

�

e��y����� y�	dy

�

�c
� jxj
t

������������

�
exp

�
�C�

� jxj�
t

����������
�jxj����t	�����������������

� �jxj�t	������������

Z c��jxj��t���������

�

e�yy���dy

�

�c
�
exp

�
�C��jxj��t	��������

�
�jxj��t	����������������

�

Z c��jxj��t���������

�

e�yy���dy

�

where we have used the estimation ����	 on  and the lower bound on the tail
of � at �� When � � �jxj��t	���������� the �rst term is bounded below by
some c ���� � and otherwise� the second term is bounded below by a positive
constant number� We deduce that �Yt�x satis�es the assumptions of lemmas
��� and 
��� so that the density of Yt at � is bounded below and above by
positive constant numbers� tu
Proof of Theorem ���� From ����	� one has for   H����x�t	 that

th�	  �x� t���x�t	�

so the density Lt of ePt�x with respect to P satis�es

Lt  exp
���Xt � x	 � t���x�t	��

Thus the density ep�t� �	 of Xt under ePt�x is given by

ep�t� z	  p�t� z	E
�
Lt
�� Xt  z

�
 p�t� z	 exp

�
��z � x	 � t���x�t	

�
for almost any z� Since both sides are continuous in z� we can take the value
at z  x and from Lemma ��� we obtain

log p�t� x	  �t���x�t	 � log ep�t� x	  �t���x�t	 �O�log�jxj�t		�

The estimation ����	 is then deduced from Lemma ���� tu
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Example 	��� Suppose that h�	  �� so that Xt is a completely asym�
metric stable process� Then

��y	  �� � �	�y��	��������

so

log p�t� x	 � � � � �

��������

� jxj�
t

��������

� �����	

Write this result at time t  n��� for n a large integer� from the scaling
property� this gives the law of Xn�n� and the right�hand side of �����	 is
�n���x	� we recognize the rate function of the classical Cram�er theorem�
If now � has a bounded support� the behaviour of Xn�n cannot be deduced
from Theorem ���� but one can apply the Cram�er theorem and get a large
deviation principle with rate function � on both R�

� and R�
�� this can be

extended to more general Markov processes �see Chapter � of Freidlin and
Wentzell ����
	 for the large deviation principle� and Ishikawa �����	 for an
estimation of the density	�
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