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We present a method to invert a given density and find the Kohn-Sham (KS) potential

in Density Functional Theory (DFT) which shares that density. Our method employs

the concept of screening density, which is naturally constrained by the inversion

procedure and thus ensures the density being inverted leads to a smooth KS potential

with correct asymptotic behaviour. We demonstrate the applicability of our method

by inverting both local (LDA) and non-local (Hartree-Fock and Coupled Cluster)

densities; we also show how the method can be used to mitigate the effects of self-

interactions in common DFT potentials with appropriate constraints on the screening

density.
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I. INTRODUCTION

Density functional theory (DFT) is the most widely-used method in electronic structure

theory calculations, with many tens of thousands of publications using it every year1. De-

spite the many successes of the Kohn-Sham (KS) formalism in DFT, the most commonly

used functionals do not correctly describe various physical situations, such as molecular dis-

sociation and charge transfer processes2,3. Developing methods to overcome these difficulties

is an active area of research4–9.

In order to judge the quality of new approaches in KS theory, it is important to have an

accurate reference against which to benchmark results. Often, we can compare with exper-

iment or a higher level calculation; however, it is also valuable to know what an ‘exact’ KS

result is. This is commonly done by inverting an accurate density to find the corresponding

KS potential. Various methods have been developed to accurately obtain the KS potential

from a given density. Early attempts typically focussed on small atomic systems10–17; more

generally applicable methods18–24, including to the time-dependent case25–27, have subse-

quently been developed. However, the problem remains interesting due to its associated

difficulties28.

In this paper, we present a method29 to invert a known target density ρt of a system of

N interacting electrons in a known external potential ven, in order to obtain the Hartree-

exchange and correlation (Hxc) potential of the KS system with density ρt. Our method is

based on minimizing the Coulomb energy U [ρv − ρt] of the density difference ρv − ρt,

U [ρv − ρt] =
1

2

∫∫
dr dr′

[ρv(r)− ρt(r)][ρv(r′)− ρt(r′)]
|r− r′| , (1)

where ρv is the density of another noninteracting N -electron system with KS potential ven+v.

Obviously, the effective potential v simulates the electronic repulsion and at the minimum

of the Coulomb energy U , when ρv = ρt, this effective potential becomes equal to the Hxc

potential we seek.30

The Coulomb energy U is clearly positive and tends to zero as the two densities become

close. As will be explained in section II, minimizing U also minimizes the energy difference

from Ref. 31,

TΨ[v] = 〈Ψ|Hv|Ψ〉 − Ev, (2)
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where Ψ is a state with density ρt, and Hv is the many-body KS Hamiltonian,

Hv =
N∑
i=1

[
−∇

2
i

2
+ ven(ri) + v(ri)

]
, (3)

of the KS system with density ρv. When Ψ is the (exact or approximate) ground state of

the interacting system in the external potential ven, the minimizing potential of (1, 2) will

be equal to (exactly or approximately) the Hxc potential of the KS system with density ρt.

Central to our method is the concept of screening density32, or electron repulsion density6,

in the KS scheme. It can be thought of as the effective electron density that screens the

nuclear charge from a KS electron (i.e. electron in a KS orbital). Alternatively, it is the effec-

tive charge density that repels each KS electron, mimicking the electron-electron repulsion

and underpinning the Hartree, exchange and correlation (Hxc) potential. Specifically, using

Poisson’s equation, the screening density can be obtained from the Laplacian of the Hxc po-

tential, ρscr(r) = −(1/4π)∇2vHxc(r)
6,32. Görling33 and Liu, Ayers and Parr34 had previously

considered the xc-only screening density, obtained from the Laplacian of the xc-potential.

In our algorithm for density inversion, the screening charge (the integral of the screening

density over all space) is fixed; this stabilizes the minimization procedure and means we can

constrain our potentials to be smooth and have the correct asymptotic behaviour, as we

shall see that multiple potentials can arise from the inversion of the same density. Inverting

DFT densities under appropriate constraints for the screening charge also provides a reliable

procedure for alleviating self-interaction errors35 in common DFT functionals.

The paper is structured as follows. In section II, we demonstrate the algorithm used

to minimize (1). In section III, we first demonstrate the accuracy and applicability of

our method by inverting LDA densities for several molecules. We also show how inverting

LDA densities under a constraint for the screening charge yields LDA potentials with self-

interaction errors largely corrected. We then demonstrate how it can be applied to Hartree-

Fock (HF) and coupled cluster densities to obtain accurate exchange-only and xc-potentials.

Finally, we draw a brief comparison with the density inversion method of Zhao, Morrison

and Parr19, which uses the objective functional in Eq. (1) in a different manner.
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II. METHOD

In order to minimize the objective functional in (1), we split the KS potential into the

electron-nuclear part and an effective potential v(r). At the minimum, the effective potential

will coincide with the Hxc-potential we seek, for the KS system with density ρt(r). We

represent the effective potential v(r) using a screening density32:

vs(r) = ven(r) + v(r); (4)

v(r) =

∫
dr′

ρscr(r
′)

|r− r′| . (5)

This is always a valid representation for the potential due to Poisson’s law36. The screening

density integrates to a screening charge Qscr,∫
dr ρscr(r) = Qscr, with (6)

N − 1 ≤ Qscr ≤ N. (7)

We argue that the value of Qscr is a measure of self-interactions (SIs)32: Qscr = N − 1 is a

necessary condition for a method to be fully self-interaction free, otherwise the method is

contaminated with self-interactions. As the value of Qscr does not change in the implemen-

tation of the method that we will describe, it is important to start with a screening density

that is consistent with the screening charge of the target density.

When we vary v(r) as v(r) → v(r) + ε δv(r), with δv(r) =
∫

dr′ δρscr(r
′)/|r − r′|, the

change in the Coulomb energy U (functional of v) is given by

δU [v] = ε

∫∫
dr dr′ δρscr(r)χ̃v(r, r

′)δρ(r′) +O(ε2); (8)

with δρ(r) = ρv(r)− ρt(r); (9)

and χ̃v(r, r
′) =

∫∫
dx dy

χv(x,y)

|r− x||r′ − y| , (10)

where χv(r, r
′) is the density-density response function for the KS system,

χv(r, r
′) =

occ∑
i

unocc∑
a

φv,i(r)φ
∗
v,a(r)φ

∗
v,i(r

′)φv,a(r
′)

εv,i − εv,a
+ c.c. (11)

φv,i, φv,a and εv,i, εv,a are the occupied, unoccupied KS orbitals and their KS eigenvalues in

the KS determinant with density ρv (the ground state of Hv in (3)).
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Since χv(r, r
′) is a negative-semidefinite operator, if we vary ρscr(r) in the direction

ρscr(r)→ ρscr(r) + εδρ(r), with ε > 0, (12)

then U will decrease. We can therefore use a gradient-descent method to minimize U . This

minimization will also ensure that the quantity TΨ[v] in (2) is minimized, since the functional

derivative of TΨ[v]31 is equal to −δρ(r), when ρt(r) is the density of Ψ.

We note that during the minimization procedure, the screening charge Qscr remains equal

to the value of the initial guess for ρscr(r), since
∫

dr δρ(r) = 0.

A. Algorithm

The method has been implemented in the Gaussian basis set code HIPPO37. The algo-

rithm is described below.

1. Initialize the screening density as follows:

ρ(0)
scr(r) =

N − α
N

ρ(0)(r), (13)

where α ∈ [0, 1] depends on the target density, and thus Qscr = N − α. ρ0(r) can be

any density for the N -electron system.

ρscr(r) is expanded in an auxiliary basis set,

ρscr(r) =
∑
k

ρs
kθk(r). (14)

For our auxiliary basis we employed the density-fitted basis set38 corresponding to the

orbital basis. Justification for this choice of auxiliary set is given in Appendix A.

2. Solve the single-particle KS equations,[
−∇

2

2
+ ven(r) + v(r)

]
φv,i(r) = εv,i φv,i(r), (15)

to update the density ρv(r).

3. Update the screening density of the i-th iteration in the direction

δρ(i)
scr(r) = ε

[
ρ(i)
v (r)− ρt(r)

]
, (16)
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where ε is chosen with a quadratic line search to minimize U .

At this step, it is convenient for the target density to be expanded in the same basis

set as the KS density ρv(r), since the density difference is thus directly obtained.

4. Repeat steps 2 and 3 until either:

i U and δU are converged to within some chosen tolerances, or;

ii The amount and rate of increase of negative screening charge Qneg ≥ 0 exceeds a

chosen amount, where

Qneg =
1

2

[∫
dr |ρscr(r)| −Qscr

]
. (17)

Condition 4.ii is a kind of regularization28,39. Due to both numerical issues (such as

the effect of finite basis sets40–42), and possible theoretical constraints (non-interacting

v-representability43–48), converging U to within the above tolerances can lead to spurious

oscillations in the potential. This behaviour frequently coincides with a large build-up of

negative screening charge, and thus a simple criterion to avoid these scenarios is to stop

the procedure when this occurs. Details of the convergence criteria used can be found in

Appendix B.

III. RESULTS

A. Inversion of LDA densities

To demonstrate the applicability of our method, we first present results for the inversion

of LDA densities for a few atomic and molecular systems. As previously discussed, it is

important to begin with the correct Qscr for the system under consideration. As can be seen

in Fig. 1, minimizing U [ρv − ρt] for the same target density yields a unique potential for

every value of Qscr. Obviously, only the potential with the correct Qscr will yield the target

density ρt exactly.

Since LDA potentials are contaminated with self-interactions, we would expect physically

that Qscr = N in this case. However, this turns out not to be true when we transform

from a grid-representation for the LDA xc-potential (as is typical in most codes), to the

6

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

78
1



0.0 0.5 1.0 1.5 2.0 2.5 3.0

r (a0)

−8

−6

−4

−2

0

v x
c
(H

)

Qscr = N − 1

Qscr = N

Qscr = N + 1

LDA

FIG. 1: The inverted xc-potentials from the LDA density of Neon (cc-pVTZ), for different

values of Qscr. Each value of Qscr produces a unique xc-potential.

representation given by Eqs. (5) and (14). We observe that, in this representation, Qscr 6= N

and is basis-set dependent. To determine the value of Qscr, we solve the equation

ρxc
k =

∑
l

〈θ̃k|θl〉−1 〈θl|vxc〉 ,with (18)

ρxc(r) =
∑
k

ρxc
k θk(r), θ̃k(r) =

∫
dr′

θk(r′)

|r− r′| . (19)

Here, ρxc(r) is the effective xc-screening density, with
∫

dr ρxc(r) = −α. Table I shows some

values of Qscr for Helium and Beryllium with increasing basis set size.

If desired, it is possible to approachQscr = N by adding diffuse s-functions to the auxiliary

basis set. As this only affects the potential by a small amount in the asymptotic tail, we

choose not to modify the established basis sets in this work.

With a method to calculate the appropriate value of Qscr for LDA densities, we now

demonstrate the accuracy of our method when applied to LDA densities and the convergence

with increasing basis set size. In Fig. 2, we see the qualitative similarities between the xc-

potential from the inverted LDA density, and the actual LDA xc-potential. The region

of biggest difference is observed near the nuclei; if accuracy in this region is desired, it is

important to use a large basis set.
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He Be

α IP (eV) α IP (eV)

cc-pVDZ 0.479 15.15 0.207 4.50

cc-pVTZ 0.214 14.82 0.148 4.81

cc-pVQZ 0.301 15.41 0.185 5.29

cc-pV5Z 0.256 15.89 0.165 5.41

TABLE I: Values of α, where Qscr = N − α, and ionization potentials (IPs) as the negative

of the HOMO energies, for He and Be with increasing basis set size. Basis sets are from

Ref. 49.

cc-pVDZ cc-pVTZ cc-pVQZ

IP (eV) Inverse LDA % err Inverse LDA % err Inverse LDA % err

He 15.15 15.14 0.1 14.82 15.47 4.2 15.41 15.37 0.6

Be 4.50 5.62 19.9 4.81 5.60 14.1 5.29 5.60 5.5

Ne 6.69 12.24 45.3 10.56 13.17 19.8 11.75 13.40 12.3

HF 7.18 8.45 15.0 8.91 9.38 5.0 9.37 9.64 2.8

H2O 5.71 6.23 8.3 6.67 7.00 4.7 6.86 7.21 4.4

H2 9.53 10.12 5.8 10.00 10.25 2.4 10.02 10.26 2.3

CO 6.16 8.71 29.3 7.73 9.07 14.8 8.82 9.11 3.2

Avg % err - - 17.7 - - 9.3 - - 4.5

TABLE II: Comparison of IPs (from HOMO energies) of the inverted LDA densities with

the actual LDA IPs.

We can also use the HOMO energy as an indicator of the quality of the inversion proce-

dure. In Table II, we present results for the percentage difference between the actual and

inverted HOMO energy for some atoms and molecules. These results demonstrate the im-

proved accuracy with respect to basis set size, as well as a rough indication of how accurate

we can expect our potentials to be with a given basis set.
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−4 −2 0 2

r (a0)

−6

−4

−2

0

v x
c
(H

)

Inverse

Exact−3 0 3

0

1

∆
v x

c
(a) HF (cc-pVTZ)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r (a0)

−3

−2

−1

0

v x
c
(H

)

Inverse

Exact

0 2

0.00

0.25

∆
v x

c

(b) Be (cc-pVQZ)

FIG. 2: Comparison of xc-potentials for the inverted LDA density, and the exact LDA

result.

B. Constrained LDA results

In the previous subsection, we demonstrated the importance of choosing the right screen-

ing charge when inverting LDA densities. However, the flexibility we have in choosing the
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LDA CLDA (inv) CLDA32 Expt.51

He 15.47 23.12 23.82 24.59

Be 5.60 8.48 8.65 9.32

Ne 13.17 18.85 18.89 21.56

HF 9.38 14.08 14.17 16.03

H2O 6.83 11.10 11.04 12.62

H2 10.25 15.15 15.64 15.43

CO 8.97 12.50 12.84 14.01

TABLE III: Comparison of IPs (from HOMO energies) for constrained-LDA using the

inversion of density, and our previous CLDA method32. All basis sets are cc-pVTZ.

screening charge can be used to our advantage, to remove the effects of self-interactions (SIs)

from LDA and other SI contaminated densities by setting Qscr = N − 1. The success of

this ‘constrained DFT’ approach has been already demonstrated6,32, but using a different

method in which the energy is minimized under the following constraints:

Qscr = N − 1, and (20)

ρscr(r) ≥ 0. (21)

The second constraint (21) is an approximation, which in the aforementioned method is

required to prevent a negative screening charge ‘hole’ localizing at infinity. In our density

inversion approach we have employed the weaker condition 4.ii (17) instead of (21).

In Table III, we see a comparison of the ionization potentials (IPs), taken to be the

negative of the HOMO orbital energies50. We see that inverting the density under the

constraint Qscr = N − 1, and our previous constrained-LDA (CLDA) method32 with the

positivity constraint, both yield very similar results for the IPs. As discussed in earlier work

and seen here, this constrained method yields consistently better IPs than normal LDA,

but preserves the energetics from the LDA calculation. Further analysis of the tendency for

ρscr(r) to be positive can be found in Appendix A.
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C. Inversion of ‘non-local’ densities

The principal application of the density inversion scheme is to invert densities obtained

with non-DFT methods to find the KS potential which shares the same density. We have

applied our scheme to two densities calculated with Hartree-Fock (HF) and Coupled Clus-

ter (CCSD(T)) theories, with target CCSD(T) densities obtained from the PSI4 code52,53.

We focus on these because the inversion of an HF density gives us an exchange-only local

potential in DFT (local Fock exchange, LFX29), which is a close approximation to the exact-

exchange potential29,54. CCSD(T) calculations yield highly accurate densities55, which give

us an idea of what the ‘exact’ xc-potential in KS theory should be.

Just as for the LDA case, it is important to choose the correct value for the screening

charge. As both HF and CCSD(T) are self-interaction free, we expect Qscr = N − 1. Unlike

in the LDA case, there is no way of determining if this is the exact numeric value; however,

our results strongly suggest this is a good choice. We again focus on the IPs obtained from

the HOMO orbital energies to judge the quality of our inversion procedure. For HF-inverted

densities, by Koopmans’ theorem56 and its analogue in DFT relating the HOMO energy

to the IP50, we expect the inverted εH to equal εH from HF. Meanwhile, for the densities

inverted from CCSD(T), the difference in the IP compared to experiment should offer insight

into the reliability of the procedure.

In table IV, we see how the IPs taken from the HOMO energies of the inverted local

potential compare with the IPs from HF theory. These results indicate what level of accuracy

can be expected with a given basis set: it appears we should use at least cc-pVTZ basis sets

to obtain an accurate potential, with an average difference of 3.4% between the inverted and

actual IPs. More accurate results can be obtained if desired by increasing the basis set size.

A similar picture emerges for the inverted CCSD(T) densities, as seen in Table V; in this

case, cc-pVQZ results are not computed due the expense of obtaining the coupled cluster

density matrix for these densities, but we see a very similar result for the average error in

cc-pVTZ basis sets.

Besides these IP comparisons, we demonstrate the applicability of our method by plotting

some xc-potentials. In Fig. 3, we see that the xc-potentials converge with basis set and

produce smooth potentials. As in the LDA case, the inversion procedure struggles most in

the regions very close to the nuclei. However, the inverted potentials appear to converge
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cc-pVDZ cc-pVTZ cc-pVQZ

IP (eV) Inverse HF % err Inverse HF % err Inverse HF % err

He 25.23 24.88 1.4 24.97 24.97 0.0 24.98 24.98 0.0

Be 8.96 8.41 6.5 8.42 8.42 0.0 8.37 8.42 0.6

Ne 17.57 22.65 22.4 22.19 23.01 3.6 24.40 23.10 5.6

HF 14.21 17.12 17.0 16.57 17.52 5.4 17.23 17.64 2.3

H2O 12.03 13.44 10.5 12.99 13.76 5.6 13.40 13.85 3.2

H2 16.13 16.10 0.2 16.16 16.16 0.0 16.17 16.17 0.0

CO 11.65 14.96 22.1 13.74 15.09 8.9 14.03 15.11 7.1

Avg % err - - 11.5 - - 3.4 - - 2.7

TABLE IV: Comparison of IPs for the local potential of an HF density with the actual HF

IPs.

well for the purposes of qualitative analysis outside of these regions.

We can also obtain approximate correlation potentials by taking the difference between

the (almost) fully correlated inverted CCSD(T) potential, and the exchange-only inverted

HF potential. We can expect this to yield accurate correlation potentials when the system

under consideration is weakly-correlated, as in this case the inverted HF potential is close

to the exact-exchange potential29,54. In Fig. 4, we have plotted this correlation potential

and the xc-potential for Argon, along with a comparison with the PBE potential.

IV. COMPARISON WITH THE METHOD BY ZHAO, MORRISON, PARR

Zhao, Morrison and Parr (ZMP), in their well-known density-inversion method19, impose

the constraint that the Coulomb energy U [ρ− ρt] (1) actually vanishes, rather than be

minimised. The KS potential in their method,

vΛ
s (r) = ven(r) +

(
1− 1

N

)
vH[ρ](r) + Λ

∫
dr′

ρ(r′)− ρt(r′)
|r− r′| , (22)

consists of the external potential ven(r), the Fermi-Amaldi potential (1−1/N) vH[ρ](r), with

vH[ρ](r) the Hartree potential, and finally an effective potential to satisfy the constraint

of zero U [ρ− ρt], in the limit of diverging Lagrange multiplier Λ → ∞. ZMP argue that
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cc-pVDZ cc-pVTZ

IP (ev) Inverse % err Inverse % err Expt51

He 24.94 1.4 24.57 0.1 24.59

Be 9.13 2.0 9.12 2.0 9.32

Ne 12.09 43.9 20.41 5.3 21.56

HF 11.34 29.3 15.43 3.7 16.03

H2O 10.01 20.7 12.28 2.7 12.62

H2 15.91 3.1 16.45 6.6 15.43

CO 10.01 28.6 13.18 5.9 14.01

Avg % err - 18.4 - 3.8 -

TABLE V: Comparison of IPs for the local potential of a CCSD(T) density with

experimental IPs.

inclusion of the Fermi-Amaldi potential in their KS potential is auxiliary, to aid convergence

and relieve the burden of the xc-potential when Λ is finite. However, at any finite Λ,

inclusion of the Fermi-Amaldi potential in (22) is crucial since it is the term that provides

the correct screening charge required by the target density. Its omission would imply that

in the asymptotic region, a KS electron would be attracted by the full, unscreened nuclear

charge. See also the discussion by Liu, Ayers and Parr in Ref. 34.

The connection and similarity between the method by ZMP and ours is analogous to

the connection between the direct minimisation of a total energy density-functional and its

indirect minimisation using the optimised effective potential (OEP) method57,58. The ZMP

KS equations can be derived by the direct minimisation of the standard DFT total energy

expression (as a density functional), using EZMP
xc [ρ] = ΛU [ρ−ρt]− (1/N)U [ρ] in place of the

‘xc’ energy density-functional. The total energy minimization must then be carried out for

various values of Λ and the results extrapolated to Λ→∞. The analogy with our method

is that we only work with Λ =∞ and rather than the whole total energy, we minimise just

U [ρ − ρt]. Only now, U [ρ − ρt] becomes a functional of the effective potential ven + v that

yields ρ, i.e., ρ = ρv, and U [ρv − ρt] must be minimised with the OEP method.
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−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

r (a0)

−6

−4

−2

0

v x
c
(H

)

cc-pVDZ

cc-pVTZ

cc-pVQZ

(a) CO (HF)

−3 −2 −1 0 1 2 3

r (a0)

−1.0

−0.8

−0.6

−0.4

v x
c
(H

)

cc-pVDZ

cc-pVTZ

cc-pVQZ

cc-pV5Z

(b) H2 (CCSD(T))

FIG. 3: xc-potentials for (a) inverted HF density of CO, (b) inverted CCSD(T) density of

H2 for various basis sets.

V. DISCUSSION

We have presented a reliable inversion method to find the local KS potential corresponding

to given target density. This method utilizes the concept of a screening density, which offers
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−15

−10

−5

0

v x
c
(H

)

PBE

CCSD(T)

HF

0.0 0.5 1.0 1.5 2.0

r (a0)

0

1

v c
(H

) PBE

CCSD(T)-HF

FIG. 4: Top: Ar (cc-pvTZ) xc-potentials from inverted HF and CCSD(T) densities, and

PBE; bottom: correlation potentials, from the difference of CCSD(T) and HF inverted

xc-potentials, and PBE.

both a way of controlling the minimization procedure to yield physical potentials and also

aids our understanding of self-interactions in DFT.

The steepest descent method presented here is a stable method to invert the density

and works well for large enough basis sets for atoms and molecules at their equilibrium

geometries. Work is in progress to improve convergence for more complicated input densities

(such as for stretched molecules) and will be presented in a future publication.
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Appendix A: Choice of basis set representation for ρscr

As discussed in §II A, we expand the screening density in an auxiliary basis set which is

the density-fitted set corresponding to the orbital basis. This is an intuitive choice, because

we represent an effective density with a basis set designed for densities; it is also a convenient

choice, because density-fitted sets are frequently used anyway to accelerate the computation

of integrals in quantum Chemistry codes59,60.

To justify this choice quantitatively, we recall that we can obtain directly the Gaussian

representation of the LDA grid potential using Eq. (18). As a measure to gauge the quality

of defining the potential in a given basis set, we use the Coulomb energy U [ρga − ρgr] (1),

where ρga and ρgr are the densities arising from defining the potential in a Gaussian basis

set and on the grid respectively. The smaller the value of U [ρga− ρgr], the better one might

expect the Gaussian representation to be. In Table VI, we compare values of U [ρga−ρgr] for

three choices of basis function for the screening density: the orbital basis, the density-fitted

basis, and also the uncontracted orbital basis, which is a common choice for the potential6,33.

We observe that the density-fitted sets give the closest fit to the grid representation based

on this criterion.

In Fig. 5, we plot the LDA xc-potentials for these basis set choices. In contrast to the

analysis above, the uncontracted sets seem to give the best fit to the grid potential, but

we note that the density-fitted sets give a close fit everywhere except the nuclear positions.

In our experience, the algorithm works more smoothly for the density-fitted sets than the

uncontracted ones. Given that we minimize U [ρv−ρt], it makes sense to choose a representa-
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U [ρga − ρgr] orbital uncontracted ρ-fitted

He 2.3× 10−7 2.1× 10−7 1.2× 10−8

Be 7.0× 10−4 5.5× 10−9 4.2× 10−10

Ne 9.0× 10−5 1.8× 10−6 3.4× 10−10

HF 9.0× 10−5 2.9× 10−7 7.5× 10−9

H2O 1.2× 10−4 2.2× 10−7 8.5× 10−9

H2 7.0× 10−8 1.6× 10−7 6.0× 10−8

CO 3.5× 10−4 2.7× 10−7 1.6× 10−9

TABLE VI: Values of U [ρga − ρgr] for LDA potentials in different Gaussian basis sets. All

bases cc-pVTZ.

tion which also minimizes this expression. The gradient-descent algorithm also struggles to

reproduce the target density near the nuclei regardless of the auxiliary basis chosen, so the

lack of accuracy of the density-fitted sets in this region is not so important in our method.

Appendix B: Convergence criteria

The convergence criteria for the objective functional U and the change in objective func-

tional δU were set to 5 × 10−9 Hartree and 5 × 10−11 Hartree per electron respectively. If

both of these conditions are satisfied, U is taken to be converged.

In general, satisfying the above criteria is not a problem when inverting a DFT density

(eg LDA). However, when inverting non-local densities, the problem of spurious oscillations

tends to emerge and thus it is necessary to use a regularization criterion. As mentioned in

§II A, we monitor the amount of negative screening charge to indicate the onset of these

spurious oscillations.

The onset of negative screening charge is dependent on several factors, including:

i the number of electrons N ;

ii the size of the basis set;

iii the target density;
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FIG. 5: Comparison of the LDA xc-potential on a grid, against various Gaussian basis set

representations. Lower images show the differences between the grid and Gaussian

representation.
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Qneg cc-pVDZ cc-pVTZ

He 0.0 9.88× 10−3

Be 5.81× 10−2 7.65× 10−2

Ne 0.0 3.30× 10−4

HF 4.50× 10−2 8.18× 10−2

H2O 3.03× 10−2 1.15× 10−1

H2 6.55× 10−3 6.35× 10−2

CO 1.09× 10−2 3.51× 10−4

TABLE VII: Amount of negative screening charge, Qneg, for exact LDA screening densities.

and other (hard to quantify) factors relating to the system under consideration. To guide

our intuition, we use the procedure outlined in §III A to determine the behaviour of the

‘exact’ ρs(r) for LDA densities.

In Table VII, we see that a small amount of negative screening charge is typically present

for the LDA effective screening density. In Fig. 6, we see this negative screening density has

a tendency to build up near the nuclei. There is no reason to expect dramatically dissimilar

behaviour for different target densities, and therefore it seems judicious to allow a small

amount of negative screening charge to manifest itself in the inversion procedure. However,

as previously discussed, if Qneg is permitted to increase too fast or become too large, then

we observe the onset of undesirable oscillations in the potential.

With the above arguments in mind, we monitor the following variables during the inver-

sion procedure:

i Soft limit, Qsoft
neg ;

ii Change in Qneg, δQneg between iterations;

iii Hard limit, Qhard
neg ;

If both conditions (i) and (ii) are satisfied, or just condition (iii), the calculation stops. For

all the results published in this paper, we use the same values which are equal to:

i Qsoft
neg = 0.01;

19

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

78
1



ii δQneg = 0.005;

iii Qhard
neg = 0.05;

where all the above values are quoted per electron. The above values give reasonable results

for the systems presented in this paper, which are all atoms or molecules at their equilibrium

geometries. However, we have observed that for molecules stretched beyond their equilibrium

geometries, a large build-up of negative screening charge develops. A more sophisticated

procedure would be required for these and other difficult cases.

REFERENCES

1A. Pribram-Jones, D. A. Gross, and K. Burke, Ann. Rev. Phys. Chem 66, 283 (2015).

2A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).

3N. T. Maitra, J. Phys. Condens. Matter 29, 423001 (2017).

4J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

5A. Thierbach, D. Schmidtel, and A. Görling, J. Chem. Phys. 151, 144117 (2019).

6T. Pitts, N. I. Gidopoulos, and N. N. Lathiotakis, Eur. Phys. J. B 91, 130 (2018).

7R. J. Bartlett, J. Chem. Phys. 151, 160901 (2019).

8C. Li, X. Zheng, A. J. Cohen, P. Mori-Sánchez, and W. Yang, Phys. Rev. Lett. 114,

053001 (2015).

9M.-C. Kim, H. Park, S. Son, E. Sim, and K. Burke, J. Phys. Chem. Lett. 6, 3802 (2015),

pMID: 26722874.

10C. O. Almbladh and A. C. Pedroza, Phys. Rev. A 29, 2322 (1984).

11F. Aryasetiawan and M. J. Stott, Phys. Rev. B 38, 2974 (1988).

12A. Nagy and N. H. March, Phys. Rev. A 39, 5512 (1989).

13A. Nagy and N. H. March, Phys. Rev. A 40, 554 (1989).

14A. Nagy, J. Phys. B 26, 43 (1993).

15A. Nagy, Phil. Mag. B 69, 779 (1994).

16J. Chen, R. O. Esquivel, and M. J. Stott, Phil. Mag. B 69, 1001 (1994).

17S. H. Werden and E. E. Davidson, in Local Density Approximations in Quantum Chemistry

and Solid State Physics, edited by J. P. Dahl and J. Avery (Plenum, New York, 1984) 1st

ed., Chap. 3, pp. 33–42.

20

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

78
1



18Y. Wang and R. G. Parr, Phys. Rev. A 47, R1591 (1993).

19Q. Zhao, R. C. Morrison, and R. G. Parr, Phys. Rev. A 50, 2138 (1994).

20A. Görling, Phys. Rev. A 46, 3753 (1992).

21Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003).

22R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).

23A. Kumar, R. Singh, and M. K. Harbola, J. Phys. B 52, 075007 (2019).

24B. Kanungo, P. M. Zimmerman, and V. Gavini, Nat. Commun. 10, 4497 (2019).

25M. J. P. Hodgson, J. D. Ramsden, J. B. J. Chapman, P. Lillystone, and R. W. Godby,

Phys. Rev. B 88, 241102 (2013).

26S. E. B. Nielsen, M. Ruggenthaler, and R. van Leeuwen, EPL 101, 33001 (2013).

27D. S. Jensen and A. Wasserman, Phys. Chem. Chem. Phys. 18, 21079 (2016).

28D. S. Jensen and A. Wasserman, Int. J. Quantum Chem. 118, e25425 (2018).

29T. W. Hollins, S. J. Clark, K. Refson, and N. I. Gidopoulos, J. Phys. Condens. Matter

29, 04LT01 (2016).

30A subtle point is that in general, v is not exactly equal to the Hxc potential of the KS

system with density ρv. Since ven is the external potential for the KS system with density

ρt, it cannot also be the external potential for the KS system with density ρv. Hence, as

long as ρv 6= ρt, the potential v is not exactly equal to the Hxc potential of the KS system

with density ρv.

31N. I. Gidopoulos, Phys. Rev. A 83, 040502 (2011).

32N. I. Gidopoulos and N. N. Lathiotakis, J. Chem. Phys. 136, 224109 (2012).

33A. Görling, Phys. Rev. Lett. 83, 5459 (1999).

34S. Liu, P. W. Ayers, and R. G. Parr, J. Chem. Phys. 111, 6197 (1999).

35P. Mori-Sánchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125, 201102 (2006).

36A. Görling, Phys. Rev. Lett. 83, 5459 (1999).

37For information, contact NL at lathiot@eie.gr. One- and two-electron integrals for the

Cartesian Gaussian basis elements were calculated using the GAMESS code61,62.
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48M. Däne and A. Gonis, Computation 4, 24 (2016).

49B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf.

Model. 59, 4814 (2019), pMID: 31600445.

50J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

51S. G. Lias, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69,

edited by P. Linstrom and W. Mallard (National Institute of Standards and Technology,

Gaithersburg MD, 20899).

52R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G.

Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier,

A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard,

P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M.

Turney, T. D. Crawford, and C. D. Sherrill, J. Chem. Theory Comput. 13, 3185 (2017),

pMID: 28489372.

53U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 147, 044104 (2017).

54V. N. Staroverov, G. E. Scuseria, and E. R. Davidson, J. Chem. Phys. 125, 081104 (2006).

55T. D. Crawford and H. F. Schaefer, Reviews in Computational Chemistry 14, 33 (2000).

56T. Koopmans, Physica 1, 104 (1934).

57R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).

58J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).

59E. Baerends, D. Ellis, and P. Ros, Chem. Phys. 2, 41 (1973).
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FIG. 6: Effective screening densities, ρs(r), for LDA densities, with the actual densities for

comparison. We obesrve the tendency for a small amount of negative screening charge near

the nuclei.
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