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2Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de
Ciudad Real, 13071 Ciudad Real, Spain

3 Center for Astrophysics — Harvard and Smithsonian, Harvard University, 60 Garden St.,
Cambridge, MA 02138, USA

4Black Hole Initiative at Harvard University, 20 Garden St., Cambridge, MA 02138, USA

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

Shockwaves in plasma are usually dealt with using Magnetohydrodynamics (MHD). Yet,
MHD entails the assumption of a short mean free path, which is not fulfilled in a colli-
sionless plasma. Recently, for pair plasmas, we devised a model allowing to account for
kinetic effects within an MHD-like formalism. Its relies on an estimate of the anisotropy
generated when crossing the front, with a subsequent assessment of the stability of this
anisotropy in the downstream. We solved our model for parallel, perpendicular and
switch-on shocks. Here we bridge between all these cases by treating the problem of
an arbitrarily, but coplanar, oriented magnetic field. Even though the formalism pre-
sented is valid for anisotropic upstream temperatures, only the case of a cold upstream
is solved. We find extra solutions which are not part of the MHD catalog, and a density
jump that is notably less in the quasi parallel, highly magnetized, regime. Given the
complexity of the calculations, this work is mainly devoted to the presentation of the
mathematical aspect of our model. A forthcoming article will be devoted to the physics
of the shocks here defined.

1. Introduction

Shock waves in plasmas are typically analysed using the tools of Magnetohydrodynam-
ics (MHD). Hence, the jump conditions derived rely on two assumptions: 1) that collisions
are frequent enough to establish an isotropic pressure, both upstream and downstream,
and 2) that all the matter upstream passes to the downstream, together with the momen-
tum and the energy it carries (Gurnett & Bhattacharjee (2005) §5.4.4, Goedbloed et al.

(2010) chapters 2 & 3, or Thorne & Blandford (2017) §13.2).
It turns out that in collisionless plasmas, where the mean free path is much larger

than the size of the system, shock front included, these two assumptions may not be
fulfilled. Regarding the second one, it has been known for long that collisionless shocks
can accelerate particles which escape the “Rankine-Hugoniot (RH) budget” and modify
the jump conditions (Berezhko & Ellison 1999). As for the first assumption, namely that
pressures are isotropic, it is still valid in a collisionless un-magnetized plasmas since in
such plasmas, the Weibel instability ensures isotropic pressures are unstable (Weibel
1959; Silva et al. 2021).
Yet, still in a collisionless plasma, an external magnetic field can stabilize an anisotropy,

invalidating the second assumption (Hasegawa 1975; Gary 1993). This has been clearly
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Figure 1. System considered. The upstream magnetic field B1 makes an angle θ1 with the shock
normal. The downstream field B2 and velocity v2 make angles θ2 and ξ2 respectively with the
shock normal. We work in the reference frame where the shock is stationary and the upstream
velocity v1 is normal to the front (ξ1 = 0). The upstream has density n1 and temperatures
T1‖, T1⊥, parallel and perpendicular to the upstream field B1. The downstream has density n2

and temperatures T2‖, T2⊥, parallel and perpendicular to the downstream field B2. The parallel
and perpendicular directions are therefore defined with respect to the local magnetic field.
Even though the equations presented in section 3 can be applied to an anisotropic upstream,
the model is only solved for T1‖ = T1⊥ = 0.

proved by in situ measurement in the solar wind (Bale et al. 2009; Maruca et al. 2011;
Schlickeiser et al. 2011). The present work is about departures from MHD predictions
stemming from the violation of the second assumption. Departures stemming from the
violation of the first one, namely accelerated particles escaping the RH budget, will not
be addressed here (see Bret (2020) for a review).

Assuming an isotropic upstream, how could any anisotropy develop downstream? Sim-
ply through an anisotropy that would be triggered at the front crossing, and then main-
tained stable in the downstream by means of an external magnetic field. Such is the
scenario we have been contemplating in a series of recent articles on parallel, perpendic-
ular and switch-on shocks (Bret & Narayan 2018, 2019, 2020, 2022).

In our model, the plasma is compressed anisotropically when it crosses the front. Then,
depending on the resulting anisotropy degree, the field can sustain the anisotropy in the
downstream, or not. Note that for the parallel case, our model has been successfully
tested against Particle-In-Cell (PIC) simulations in Haggerty et al. (2022).

The present work aims at bridging between all the previously treated cases. We shall
therefore consider the general case of an oblique shock, where the upstream magnetic
field makes an arbitrary angle with the shock normal.

The system considered is pictured on figure 1. Sub-indices “1” and “2” refer to the
upstream and the downstream respectively. We work in the reference frame where the
upstream velocity v1 is normal to the front. The upstream magnetic field B1 makes an
arbitrary angle θ1 6= 0 with the shock normal, contrary to Bret & Narayan (2018, 2022)
where θ1 = 0, and to Bret & Narayan (2019) where θ1 = π/2. The fields B1,2 and the
velocities v1,2 are assumed coplanar.
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Even though the formalism presented is valid for anisotropic downstream and upstream
temperatures, we shall restrict to T1‖ = T1⊥ = 0 when solving it.

Also, we consider a plasma of electron/positron pairs. The identity of the mass of both
species allows us to deal with only one parallel and one perpendicular temperature in the
downstream, as it has been found that in collisionless shocks, species of different mass
are heated differently (Feldman et al. 1982; Guo et al. 2017, 2018).

As the reader will realize, even for a coplanar geometry with T1‖ = T1⊥ = 0, the
forthcoming algebra is quite involved. For this reason, the present work is mainly de-
voted to the algebraic resolution of our model for the oblique case. We write down the
conservation equations and explain how to solve them symbolically. We also explain how
these solutions fit with each others within the rules of our model. Yet, as known even for
MHD, listing the solutions of the equations does not provide the full picture of the shock
physics, as some solutions which do satisfy the MHD conservation equations could even-
tually be nonphysical (Kennel et al. 1990; Falle & Komissarov 1997; Wu 2003; Kulsrud
2005; Goedbloed 2008; Delmont & Keppens 2011). An assessment of the physical rele-
vance of our solutions will be presented in a forthcoming article. Here, we shall focus on
the mathematical solutions of our model.

This article is structured as follow. In section 2, we explain our model, emphasizing
how we bridge between our previous treatments of the parallel and the perpendicular
cases. In particular, we introduce “Stage 1” and “Stage 2” which are supposed to be 2
stages of the kinetic history of the plasma. In section 3, we introduce the conservation
equations for anisotropic temperatures, together with the dimensionless variables used in
the sequel. In sections 4, 5 and 6, Stages 1 and 2 are studied separately. Then in section
7, we explain how they relate to each other in order to fully characterize the shock within
our model for any field obliquity θ1.

2. Method

Although the method used to deal with the oblique case has been explained in Bret & Narayan
(2022), we here outline it for completeness.

Consider an upstream with temperature T1‖ and T1⊥. If the crossing of the front
could be fully described by the isentropic Vlasov equation (Landau & Lifshitz (1981),
§27), the downstream temperatures could be related to the other quantities through the
expressions derived in Chew et al. (1956),

T2‖ = T1‖

(
n2B1

n1B2

)2

, (2.1)

T2⊥ = T1⊥
B1

B2

.

But the crossing of the front is not isentropic since in a shock, there is an entropy
increase from the upstream to the downstream. As a consequence, temperatures increase
by more than the amount specified by Eqs. (2.1), as found in the PIC simulations by
Haggerty et al. (2022). In both the parallel case (θ1,2 = 0) and the perpendicular case
(θ1,2 = π/2), we considered this excess goes into the temperature parallel to the motion,
since the compression at the front can be considered to operate along this direction. As
a consequence, the temperature parallel to the motion increases, while the temperature
perpendicular to the motion remains constant.

Hence, denoting Tentropy the temperature correction due to entropy generation, we
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Upstream Downstream in Stage 1 Stable? End state of the downstream

T2⊥ and T2‖ Stable → Stage 1
T1‖ = T1⊥ = 0 given by Firehose unstable → Stage-2-firehose

Eqs. (2.4,2.5) Mirror unstable → Stage-2-mirror

Table 1. Summary of the assumed kinetic history of the plasma as it crosses the front. Although
the formalism presented in section 3 allows for an anisotropic upstream, the model is only solved
for T1‖ = T1⊥ = 0.

took for the parallel case,

T2‖ = T1‖

(
n2B1

n1B2

)2

+ Tentropy, (2.2)

T2⊥ = T1⊥
B1

B2

,

and for the perpendicular case,

T2‖ = T1‖

(
n2B1

n1B2

)2

, (2.3)

T2⊥ = T1⊥
B1

B2

+ Tentropy.

In order to bridge between these two extremes, we now make the following ansatz :

T2‖ = T1‖

(
n2B1

n1B2

)2

+ Te cos
2 θ2, (2.4)

T2⊥ = T1⊥
B1

B2

+
1

2
Te sin

2 θ2, (2.5)

where Te (subscript e for entropy) will be determined by the conservation equations.

Physically, Eqs. (2.4,2.5) are motivated by our hypothesis that the excess energy goes
into a direction parallel to the upstream velocity, in analogy with our previous treatments
of the parallel and perpendicular shocks sub-cases. Geometry is then used to divide the
energy excess between T2‖ and T2⊥.
The scheme chosen in (2.4,2.5) is the simplest one fulfilling the following conditions,

• It correctly reduces to Eqs. (2.2,2.3) for θ2 = 0 and θ2 = π/2.
• All temperature excesses sum up to Te.
• It guaranties the 2 downstream temperatures normal to the field B2 are equal, which

is required by the Vlasov equation (Landau & Lifshitz (1981), §53).
Its relevance will have to be checked via PIC simulation, like Bret & Narayan (2018) has
been checked in Haggerty et al. (2022).

The downstream temperatures after the front crossing are therefore given by Eqs.
(2.4,2.5). We refer to this state of the downstream as “Stage 1”. Depending of the strength
of the downstream field B2, Stage 1 can be stable or unstable.
Previous analysis showed that Stage 1 can be firehose or mirror unstable. In case

Stage 1 is firehose unstable, it migrates to the “Stage-2-firehose” state, on the firehose



Density jump for oblique collisionless shocks in pair plasmas: allowed solutions 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
2//

0.5

1.0

1.5

2.0

2.5

3.0

A2

Firehose unstable

Mirror unstable

Figure 2. Instability thresholds (2.6,2.8) for the firehose and mirror instabilities. The system
is stable in the shaded region and the instability domains do not overlap.

instability threshold where (Hasegawa 1975; Gary 1993; Gary & Karimabadi 2009),

A2 ≡
T2⊥

T2‖
= 1−

1

β2‖
, (2.6)

with,

β2‖ =
n2kBT2‖

B2
2/4π

, (2.7)

where kB is the Boltzmann constant. In case Stage 1 is mirror unstable, it migrates to
the “Stage-2-mirror” state, on the mirror instability threshold where,

A2 = 1 +
1

β2‖
. (2.8)

At any rate, imposing condition (2.6) or (2.8) in the forthcoming conservation equations
determines the state of the downstream. Our algorithm is summarized in Table 1.
The firehose instability reaches its maximum growth rate for k parallel to the field,

while the mirror instability reaches its maximum growth rate for a k making an oblique
angle with the field (Gary (1993), §7.2). The instability thresholds (2.6,2.8) for the fire-
hose and mirror instabilities are plotted on figure 2. Noteworthily, the instability domains
do not overlap in the (β2‖, A2) plane so that the two instabilities cannot compete with
each other.

3. Conservation equations

The conservations equations for anisotropic temperatures were derived in Hudson
(1970); Erkaev et al. (2000); Génot (2009). They have been re-derived in Bret & Narayan
(2022) with the present notations. They are formally valid even for anisotropic upstream
temperatures, with T1‖ 6= T1⊥. Writing them for T1‖ = T1⊥ ≡ T1, they read,

n2v2 cos ξ2 = n1v1, (3.1)

B2 cos θ2 = B1 cos θ1, (3.2)

B2v2 sin θ2 cos ξ2 −B2v2 cos θ2 sin ξ2 = B1v1 sin θ1, (3.3)
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B2
2 sin

2 θ2
8π

+ n2kB(T‖2 cos
2 θ2 + T⊥2 sin

2 θ2) +mn2v
2
2 cos

2 ξ2 =
B2

1 sin
2 θ1

8π
+ n2kBT1 +mn1v

2
1 , (3.4)

A+mn2v
2
2 sin ξ2 cos ξ2 = −

B2
1 sin θ1 cos θ1

4π
, (3.5)

Av2 sin ξ2 + B + C = mn1v1

(
5kBT1

2m
+

B2
1 sin

2 θ1
4πmn1

+
v21
2

)

,(3.6)

where

A = sin θ2 cos θ2n2kB
(
T‖2 − T⊥2

)
−

B2
2

4π
sin θ2 cos θ2,

B = v2 cos
2 θ2 cos ξ2n2kB(T‖2 − T⊥2),

C = mn2v2 cos ξ2

(
kB
2m

(T‖2 + 4T⊥2) +
B2

2 sin
2 θ2

4πmn2

+
v22
2

)

.

The anisotropic upstream version of these equations is obtained by replacing the right-
hand side of each equation by the left-hand side, changing subscripts “2” to “1” and then
setting ξ1 = 0. Indeed, in case a shock propagates behind another one, the downstream of
the first shock is eventually the upstream of the next one. A formalism accounting for an
anisotropic upstream is therefore necessary since our model always leaves an anisotropic
downstream (unless B1 = 0).

Even though the model can be solved, the algebra is extremely involved. The system
is symbolically solved with Mathematica. Its solutions are then numerically studied in
MATLAB. On occasions, the Mathematica calculations give rise to the resolution of a
polynomial of considerable length. In such cases, the polynomial is transferred to MAT-

LAB using the Mathematica Notebook described in Bret (2010).

It is useful to focus on the quantity

T 2 ≡ tan θ2, (3.7)

as the system of equations above allows to deduce a polynomial equation for T 2, easy
to solve numerically. The general pattern of the resolution consists therefore in deriving
such a polynomial and from its roots, to compute the other downstream quantities like
n2, in terms of the upstream parameters.

The following dimensionless variables are used throughout this work,

r =
n2

n1

, MA1 =

√

mn1v21
B2

1/4π
, σ =

B2
1/4π

mn1v21
=

1

M2
A1

. (3.8)

While the Alfvén Mach number MA,i is prominent in shock literature, the related σ
parameter is typically used in PIC simulations like Haggerty et al. (2022).

In order to simplify the problem, in the present work we restrict to the case T1 = 0,
that is, the strong sonic shock case. This is why no sonic Mach number is defined above.

The upstream is therefore characterized by 4 variables: n1, θ1, B1 and v1.

The downstream is characterized by 6 variables n2, θ2, B2, v2, ξ2 and Te. The 6
equations (3.1-3.6) allow then to solve the problem.

We now outline the resolution of the conservation equations for Stage 1, Stage-2-
firehose, and Stage-2-mirror.
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4. Study of Stage 1

With T1‖ = T1⊥ = 0, Eqs. (2.4,2.5) for Stage 1 read,

T2‖ = Te cos
2 θ2, (4.1)

T2⊥ =
1

2
Te sin

2 θ2.

4.1. Symmetries

Although not immediately visible, the system (3.1-3.6) with prescriptions (4.1) has some
symmetries.
It can be checked that all other things being equal, if the set of angles (θ1, θ2, ξ2)

is a solution, then (−θ1,−θ2,−ξ2) is also a solution, while (−θ1,+θ2,±ξ2) is not. This
implies that we cannot ignore the negative θ2’s. We shall then restrict our exploration to
θ1 ∈ [0, π/2] and solve for θ2, ξ2 ∈ [−π/2, π/2].

4.2. Resolution

Resolving Stage 1 is then achieved through the following steps,
• Eliminate v2 everywhere by extracting its value from Eq. (3.1).
• Eliminate B2 everywhere by extracting its value from Eq. (3.2).
• Use the resulting Eq. (3.4) to eliminate Te.
• At this junction, we are left with n2, θ2 and ξ2 as unknowns. ξ2 can be eliminated

(defining X2 ≡ tan ξ2). We finally obtain 2 equations for r = n2/n1 and T 2 = tan θ2.
The equation for T 2 reads,

(T 2 cosθ1 − sin θ1)

9∑

k=0

akT 2
k

︸ ︷︷ ︸

≡Λ

= 0, (4.2)

with,

a0 = −128
(
−2M2

A1 + cos(2θ1) + 1
)2

sin θ1,

a1 = 128 cosθ1
(
4M4

A1 − 2M2
A1 +

(
2− 6M2

A1

)
cos(2θ1) + cos(4θ1) + 1

)
,

a2 = −16
(
16M4

A1 − 16M2
A1 +

(
8− 16M2

A1

)
cos(2θ1) + cos(4θ1) + 7

)
sin θ1,

a3 = 8 cos θ1
(
16M4

A1 − 44M2
A1 +

(
48− 68M2

A1

)
cos(2θ1) + 17 cos(4θ1) + 31

)
,

a4 = 4
(
−32M4

A1 + 40 cos(2θ1)M
2
A1 + 40M2

A1 + cos(4θ1)− 1
)
sin θ1,

a5 = 4 cos θ1
(
−16

(
2M4

A1 +M2
A1

)
+ 8

(
7− 2M2

A1

)
cos(2θ1) + 15 cos(4θ1) + 41

)
,

a6 = −2
(
96M4

A1 − 112M2
A1 + 8

(
3− 14M2

A1

)
cos(2θ1) + 9 cos(4θ1) + 15

)
sin θ1,

a7 = 2 cos θ1
(
32M4

A1 + 16M2
A1 + 8

(
5− 6M2

A1

)
cos(2θ1) + 15 cos(4θ1) + 25

)
,

a8 = 16 cos4 θ1 sin θ1,

a9 = 16 cos5 θ1. (4.3)

The equation for r reads,

r =
4M2

A1T 2
3(1 + T 22)

∑5

k=0 bkT 2
k

, (4.4)

where,

b0 = 8M2
A1 tan θ1 − 4 sin(2θ1),

b1 = −8M2
A1 + 6 cos(2θ1) + 2,
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Figure 3. Values of the density ratio r for Stage 1, with θ2 given by Λ = 0 as defined by
Eq. (4.2). The red curve was studied in Bret & Narayan (2018). The blue one was studied in
Bret & Narayan (2022). The blue curve has θ2 > 0. The red one has θ2 = 0. The thick black
curve at θ1 = π/2 was studied in Bret & Narayan (2019).

b2 = 0,

b3 = 4M2
A1 + cos(2θ1) + 3,

b4 = 4M2
A1 tan θ1 − 2 sin(2θ1),

b5 = 2 cos2 θ1. (4.5)

Eq. (4.2) is a polynomial yielding various T 2-branches as solutions. Scanning them,
and using Eq. (4.4), allows to derive the density jump. Note that one value of T 2 gives
one single value of r.
Eq. (4.2) clearly displays 2 main branches,
• T 2 cos θ1 − sin θ1 = 0, that is, θ2 = θ1. Inserting in Eq. (4.4) gives r = 1. This is the

continuity solution.
• Λ = 0. The values of the density ratio r so defined are represented on figure 3 in

terms of (σ, θ1). For θ1 = 0, we recover the solutions found in Bret & Narayan (2018,
2022). For θ1 = π/2, we recover the solutions found in Bret & Narayan (2019).
All these Stage 1 solutions do not make their way to the end state of the downstream

since some are unstable. We need now to assess the stability of Stage 1.

4.3. Stability of Stage 1

From Eqs. (2.6,2.8), we see that assessing the stability of Stage 1 requires computing
its anisotropy A2 and its β2‖ parameter. The anisotropy for Stage 1 is straightforwardly
given by Eqs. (4.1) as,

A2 =
T2⊥

T2‖
=

1

2
Te tan

2 θ2. (4.6)

The β‖2 parameter is given by,

β‖2 = 2
sec2 θ1

(
2M2

A1(r − 1) + r
)
− r

(
T 22 + 1

)

r (T 24 + 2)
. (4.7)

Using Eqs. (4.6,4.7) we can then numerically assess the firehose or mirror instability
of Stage 1. Depending on the result, Stage 1 will be the end state of the downstream, or
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Figure 4. Left : Values of r for Stage-2-firehose, where θ2 is given by Eq. (5.1). The blue and
red curves were studied in Bret & Narayan (2018). The blue one has temperature anisotropy
A2 < 0 and is therefore nonphysical. Right : Values of r for Stage-2-mirror. The blue and red
curves were studied in Bret & Narayan (2019). The blue one has A2 < 0.

else it will migrate to Stage-2-firehose or Stage-2-mirror, on the corresponding instability
thresholds.

5. Study of Stage-2-firehose

In case Stage 1 is firehose unstable, it will migrate to the firehose stability threshold.
In order to determine its properties, we need now to impose condition (2.6) to the system
(3.1-3.6) instead of the temperatures prescriptions (4.1).
The resolution strategy is similar to that for Stage 1. Now T 2 = tan θ2 is given solving,

4∑

k=0

akT 2
k = 0, (5.1)

with,

a0 = −32
(
MA1 sin(2θ1)− 2M3

A1 tan θ1
)2

,

a1 = −10M2
A1

[(
20M2

A1 − 2
)
sin(2θ1)− 8

(
2M2

A1 + 1
)
tan θ1M

2
A1 − 3 sin(4θ1)

]
,

a2 = M2
A1

[
−32M4

A1 + 8M2
A1 + 24

(
3M2

A1 − 1
)
cos(2θ1)− 15 cos(4θ1)− 9

]
,

a3 = 0,

a4 = −8M2
A1 cos

4 θ1. (5.2)

Then the density jump reads,

r =
2M2

A1T 2

− sin(2θ1) + 2M2
A1 tan θ1 + T 2 cos2 θ1

. (5.3)

Again, 1 value of T 2 corresponds to one and only one value of r.

The density jump so defined is plotted in figure 4-left in terms of (σ, θ1). For θ1 = 0,
the red arc joining (σ = 0, r = 4) to (σ = 1, r = 2) fits exactly what was found in
Bret & Narayan (2018). In Bret & Narayan (2018), we argued that the blue arc, joining
(σ = 0, r = 1) to (σ = 1, r = 2), was not a shock solution since it reaches r = 1 for σ = 0.
In fact, these blue solutions are discarded on an even simpler physical ground: they have
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A2 < 0. For Stage-2-firehose, the anisotropy is no longer given by (4.6) but by,

A2 = 1−
r
(
T 22 + 1

)
cos2 θ1

2M2
A1(r − 1) + r sin2 θ1

. (5.4)

When computing this quantify for the lower, blue arc, and indeed for the whole lower
surface in figure 4-left, A2 < 0 is found. This property will be useful when putting Stages
1 and 2 together in section 7.

6. Study of Stage-2-mirror

If Stage 1 is mirror unstable we need to impose relation (2.8) to the conservation
equations. The quantity T 2 is still solution of the polynomial equation Eq. (5.1), where
the coefficients are now,

a0 = 4
(
sin(2θ1)− 2M2

A1 tan θ1
)2

,

a1 =
1

4

[
2
(
74M2

A1 − 17
)
sin(2θ1)− 40

(
2M2

A1 + 1
)
tan θ1M

2
A1 − 27 sin(4θ1)

]
,

a2 = 4M4
A1 + 8 sin2 θ1M

2
A1 + 30 cos4 θ1 − cos2 θ1

(
30M2

A1 + 19 sin2 θ1
)
,

a3 = −
(
1− 2M2

A1 + cos(2θ1)
)
sin(2θ1),

a4 = 15 cos4 θ1. (6.1)

Then the density jump becomes,

r =
2M2

A1T 2

− sin(2θ1) + 2M2
A1 tan θ1 + 3T 2 cos2 θ1

. (6.2)

The results are plotted in figure 4-right in terms of (σ, θ1). A pattern similar to that of
Stage-2-firehose emerges here. When treating the θ1 = π/2 problem in Bret & Narayan
(2019), we discarded the lower branch in blue at θ1 = π/2, arguing it is not a shock
solution since it reaches r = 1 for σ = 0. It turns out that this branch again has
anisotropy A2 < 0. For Stage-2-mirror, this quantity reads,

A2 = −
−4M2

A1(r − 1) + rT 22 cos(2θ1) + r
(
T 22 − 2

)

4M2
A1(r − 1)− r (2T 22 + 1) cos(2θ1)− 2rT 22 + r

, (6.3)

and is found negative on the blue arc in figure 4-right, as well as along the lower surface
that extends from this arc.

7. Putting Stages 1 and 2 together

We finally come to the point where we can assemble Stages 1 and 2. This has been
performed in MATLAB according to the following algorithm,
(a) Solve Λ = 0 in Eq. (4.2) for T 2 in Stage 1, and record all the branches of the

solutions.
(b) Then scan each Stage 1 branch. If a Stage 1 state is found stable, then this is the

end state of the downstream.
(c) If a Stage 1 state is found firehose unstable, then switch to Stage-2-firehose, end

state of the downstream.
(d) If a Stage 1 state is found mirror unstable, then switch to Stage-2-mirror, end state

of the downstream.
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Figure 5. Left : All solutions of Stage 1 for θ1 close to zero, color-coded according to their
stability (none is mirror unstable). Center : All Stage-2-firehose solutions. Dashed line indicate
A2 < 0 (nonphysical). Right : End result. The grey dashed lines show the MHD solutions.

Steps (c) and (d) can be non-trivial when, for an unstable Stage 1 state (σ, θ1), there
are more than one Stage 2 states with the same (σ, θ1). Some criteria are needed in order
to select one Stage 2 state among the possible solutions. We apply the following ones,
(a) Discard Stage 2 states with A2 < 0 since they represent nonphysical solutions to

the equations.
(b) In case degeneracy persists, select the Stage 2 state which has θ2 closest to the

unstable Stage 1.
We now check how this method retrieves our previous result, before applying it to any

intermediate angle θ1.

7.1. Case θ1 ∼ 0

The case θ1 ∼ 0 is pictured on figure 5. The left graph shows all Stage 1 solutions.
Black means they are stable, green means they are firehose unstable. Red would mean
mirror unstable, but for the selected θ1, there are no such cases. The solution r = 2
has θ1 = θ2 ∼ 0. It pertains to the parallel case which was studied in Bret & Narayan
(2018). The other solutions, which draw an open loop, pertain to the switch-on case
studied in Bret & Narayan (2022). They have θ2 > 0. These switch-on solutions are
physical, namely, they have A2 > 0 (see figure 4(a) of Bret & Narayan (2022)).
The center plot shows all solutions for Stage-2-firehose. We see that an unstable Stage

1 state with σ = 0.9, for example, can in principle go to 3 Stage-2-firehose states. Out of
these 3, one has A2 < 0, as indicated by the dashed line on the center plot. Among the 2
remaining options, the upper one has θ2 = 0 while the lower one has θ2 > 0. Therefore,
choosing the Stage 2 state which has closest θ2 to the unstable Stage 1, leaves only 1
possible option.
The right plot shows the end result. We recover the result of the parallel case, with a

marginal firehose jump going from r = 4 to 2 for 0 < σ < 1, and then Stage 1 stable with
r = 2 for σ > 1 (Bret & Narayan 2018). Also recovered are the 2 switch-on solutions
found in Bret & Narayan (2022), with a portion of the upper one being replaced by its
Stage-2-firehose counterpart.

7.2. Case θ1 ∼ π/2

We here check the conformity of the present calculations with the results previously
derived in Bret & Narayan (2019) for the perpendicular case.
Figure 6-left shows Stage 1 solutions. There is but 1 branch solution, mirror unstable

for σ < σc, where σc = 0.106.
The center plot of figure 6 shows all of Stage-2-mirror branches. There is but one, with

A2 < 0 below r ∼ 2.47, which is reached for σ = σ′
c. We checked numerically, up to the

13rd digit, that σc = σ′
c.

As a consequence, the right plot of figure 6, which features the end result, has no gap.
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Figure 6. Left : All solutions of Stage 1 for θ1 close to π/2, color-coded according to their
stability (none is firehose unstable). Center : All Stage-2-mirror solutions. Dashed line indicate
A2 < 0 (nonphysical). Right : End result. The grey dashed lines show the MHD solutions.

0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.5

2

2.5

3

3.5

4

r 
S

ta
g

e
 1

(a)    
1
=0.3 /2

Stage 1 stable

Stage 1 firehose unstable

Stage 1 mirror unstable

0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.5

2

2.5

3

3.5

4

r 
S

ta
g

e
 2

 f
ir
e

h
o

s
e

(b)    
1
=0.3 /2

0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.5

2

2.5

3

3.5

4

r 
S

ta
g

e
 2

 m
ir
ro

r

(c)    
1
=0.3 /2

0.2 0.4 0.6 0.8 1 1.2 1.4
1

1.5

2

2.5

3

3.5

4

r 
fi
n

a
l

(d)    
1
=0.3 /2

Stage 1 stable

Stage 2 firehose

Stage 2 mirror

Figure 7. (a) All Stage 1 solutions for θ1 = 0.3π/2, color-coded according to their stability. (b)
All Stage-2-firehose solutions. Dashed line when A2 < 0 (nonphysical). (c) All Stage-2-mirror
solutions. Dashed line when A2 < 0 (nonphysical). (d) End result. The grey dashed lines show
the MHD solutions.

It fits exactly the result of Bret & Narayan (2019). For σ < σc, Stage 1 is mirror unstable
and the end state is Stage-2-mirror. Then for for σ > σc, Stage 1 is stable and gives the
density jump of the end state.

7.3. General oblique case

Figure 7 pictures the situation for an intermediate angle θ1 = 0.3π/2. Figure 7 (a) shows
all of Stage 1 solutions. Here, some are mirror unstable while others are firehose unstable.
Looking at plots (c) and (b) we can see that there is always a Stage 2 solution when Stage
1 is unstable. For some values of σ, for example 0.1 or 1.25, there are various unstable
Stage 1 solutions. As a consequence, figure 7 (d) displays various solutions for the end
State corresponding to these σ.
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Figure 8. Similar to figure 7(d), but for various values of θ1 ∈ [0, π/2]. The grey dashed lines
show the MHD solutions.

Notice also how our solutions mimic the MHD solutions (dashed gray) at low σ and
high σ.
Finally, figure 8 presents a series of plots similar to figure 7(d), for various values of

θ1 ∈ [0, π/2].

8. Conclusion

In a series of recent articles, we elaborated a model of collisionless shocks. Having
treated the parallel, the perpendicular and the switch-on cases (Bret & Narayan 2018,
2019, 2022), with our model for the parallel case being successfully tested against PIC
simulations (Haggerty et al. 2022), we here treated the general oblique case.
MHD conservation equations for the general oblique case tend to be involved. MHD

conservations equations for anisotropic temperatures are even more involved. And our
model adds temperature prescriptions to these equations. As a result, its resolution is
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lengthy and requires extensive use of Mathematica, to symbolically derive the key equa-
tions, and MATLAB, to numerically solve them. The present work was devoted to the
exposition of the mathematical solutions offered by our model. Their physics will be
assessed in a forthcoming article.
In this respect, our model frequently offers various solutions for the same value of σ.

Yet, Figs. 5 -left and -right show that such is also the case in MHD. This is also visible on
Figs. 7 (a-d) and on most of Figs. 8. In MHD, the solution selected depends on its physical
relevance (see second to last paragraph of the introduction), or on the initial conditions
of the shock formation like, for example, which initial states of a Riemann problem it is
supposed to connect. In general, this second issue, namely connecting 2 different states,
requires a succession of shocks rather than 1 single shock (see for example Ryu & Jones
(1995)). In our model, the choice of the solution when various are offered, will most
probably depend on the same factors. This topic will be addressed in a forthcoming
paper.
Even though only the case of a cold upstream has been solved here, the formalism

allows in principle for an anisotropic upstream.
Although we treated the field obliquity as an arbitrary parameter, this study remains

limited in various ways,
(a) A pair plasma is considered.
(b) Velocities are non-relativistic.
(c) The upstream pressure is assumed zero.
(d) The shock is coplanar, namely, upstream and downstream fields and velocities

share a common plane.
Regarding limitation (a), PIC simulations could be used to test the relevance of our

model to electron/ion plasmas, provided the σ parameter in Eq. (3.8) is defined using
the ion mass.
Tackling the other limitations altogether is clearly out of reach. At any rate, further

testing of our model is envisioned through PIC simulations or comparison with in situ

measurements at interplanetary shocks, by spacecrafts like Advanced Composition Ex-
plorer, Wind or the Parker Solar Probe (see for example David et al. (2022)).
As evidenced in figure 8, deviations from MHD are more pronounced for quasi-parallel

shocks and σ > 1. This is therefore the domain where our model should preferably be
compared with PIC simulations or in situ measurements.
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