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Quantum state tomography is a key technique for quantum information processing, but is chal-
lenging due to the exponential growth of its complexity with the system size. In this work, we
propose an algorithm which iteratively finds the best non-negative matrix product state approxima-
tion based on a set of measurement outcomes whose size does not necessarily grow exponentially.
Compared to the tomography method based on neural network states, our scheme utilizes a so-called
tensor train representation that allows straightforward recovery of the unknown density matrix in
the matrix product state form. As applications, the effectiveness of our algorithm is numerically
demonstrated to reconstruct the ground state of the XXZ spin chain under depolarizing noise.

I. INTRODUCTION

Characterizing an unknown quantum state is of central
importance in developing quantum technologies. Stan-
dard quantum state tomography (QST) reconstructs a
generic quantum state by performing projective measure-
ments on an informationally complete basis [1, 2]. The
number of projective measurements required grows ex-
ponentially with the system size. In the meanwhile, cur-
rent quantum technologies have pushed the number of
qubits to close to one hundred [3–5], and scalable quan-
tum state tomography schemes are in great need. With
additional assumptions on the underlying quantum state,
more efficient schemes than the standard QST have been
proposed. For example, QST for a sparse quantum state
by compressive sensing [6–9], QST for quantum states
which are permutationally invariant [10, 11], and QST
for quantum states which can be efficiently represented
with a low-depth parametric quantum circuit[12]. In par-
ticular, QST methods based on tensor network represen-
tation [13, 14] as well as neural network ansatz [15–19]
are promising to extend QST to a much larger scale, and
both approaches have been demonstrated on several tens
of qubits based on synthetic data.

For an unknown L-qubit pure state that can be well ap-
proximated by a matrix product state (MPS), it is proved
that a set of O(L) local n-body reduced density matrices
suffices to reconstruct the unknown state, where n is a
constant and independent of L if the underlying state has
bounded entanglement. Thus, only O(poly(L)) number
of measurements are required [13, 14]. It has also been
shown that a similar approach can be applied to recon-
structing an unknown mixed state, with an additional as-
sumption of its invertibility [20]. However, such methods
based on local density matrices are not easy to imple-
ment in practice, since (1) exact tomography of a series

∗ guochu604b@gmail.com
† xiaoting@uestc.edu.cn

of local density matrices may be already hard, and (2)
we can only reconstruct an approximation of each local
density matrix from tomography using a finite number of
measurements, and the approximation errors could accu-
mulate and affect the overall tomography performance
of the entire state. Another method based on an MPS
ansatz is proposed using an unsupervised machine learn-
ing algorithm, where only global measurement data on a
randomly prepared basis are required [21]. Such method
however only considers the reconstruction of pure states.
Neural network state based algorithms constitute another
important class of heuristic approaches for QST with
excellent precision and scalability in practice. Specifi-
cally, neural network states are used to model the pure
states [15, 22] and the density matrices [16] as classical
neural networks; alternatively, they are used to model
the output probability distributions [17] as classical neu-
ral networks. In the latter approach, it will generally
be exponentially hard to further reconstruct the state as
a vector or a density matrix from the probability dis-
tribution. In the former approach, one could efficiently
compute amplitudes based on the trained neural network
state, but for other tasks such as computing expectation
values one still needs to perform a sampling process based
on the trained neural network state, which may not be as
convenient or efficient, if the underlying quantum state
could be well represented as an MPS. Another possible
drawback of the QST methods based on neural network
states is, a priori, it is not clear which neural network
representation is suitable for a given unknown state.

Inspired by the fact that the MPS has been adapted to
represent the multivariate probability distribution func-
tion, often referred to as the tensor train representation
[23], we propose a QST scheme that combines the advan-
tages of both the tensor network approach and the neural
network approach. Specifically, in the first stage, a tensor
train representation of the multivariate distribution func-
tion is constructed based on the quantum measurement
data, instead of a neural network representation, and a
density matrix renormalization group (DMRG)-like algo-
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FIG. 1. A flowchart of our nonnegative tensor train state tomography algorithm. Given an unknown L-qubit quantum state ρ̂s,
an IC-POVM is performed to obtain a sample of bitstrings {aj}, each of which is then encoded into a one hot MPS Sj . Based
on these Sj , an optimal MPS P (a) with a fixed bond dimension is found through optimization, satisfying that it is the closest
to the superposition of all state Sj . Then an MPO ρ̂ is reconstructed, with the same bond dimension as P (a), by applying the
inverse of the IC-POVM locally on each site of P (a). Simulations in this work are based on synthetic data.

rithm is used to find the optimal tensor train representa-
tion. After that, the tensor train is transformed back
into a matrix product operator (MPO) representation
of the unknown density matrix. Compared to the es-
tablished QST methods based on tensor network states,
our scheme directly uses a tensor train representation
for the multivariate probability distribution function, in-
stead of the unknown density matrix; compared to the
established QST methods based on neural network states,
our scheme constructs the unknown density matrix as an
MPO, which usually allows more convenient and efficient
evaluations of observables. The flowchart of our algo-
rithm is summarized in Fig. 1. This work is organized as
follows: we show the details of our QST scheme in Sec. II,
and then numerically demonstrate our algorithm for the
ground state of the XXZ chain perturbed by depolarizing
noise in Sec. III, ended with a concluding discussion in
Sec. IV.

II. METHOD

For QST, we use quantum measurements given by
informationally complete positive operator-valued mea-
sures (POVMs) [24–26], which describes the most gen-
eral quantum measurements allowed by quantum theory
[27]. We denote the single qubit POVM as {Ms}, where

Ms is positive semi-definite satisfying
∑
sM

s = Î, where

Î is the identity matrix. For a single qubit, a mini-
mal informationally complete POVM can be chosen as

Ms = 1
2 |ψs〉 〈ψs| with

|ψ0〉 = |0〉 ,

|ψ1〉 =

√
1

3
|0〉+

√
2

3
|1〉 ,

|ψ2〉 =

√
1

3
|0〉+

√
2

3
ei

2π
3 |1〉 ,

|ψ3〉 =

√
1

3
|0〉+

√
2

3
ei

4π
3 |1〉 ,

(1)

which form the vertices of a regular tetrahedron in the
Bloch sphere [28]. Such a single-qubit POVM, M =
{Ms}s=0,1,2,3 can be viewed as a 3-dimensional tensor
written as Ms

σ,σ′ with two physical indices σ, σ′ of dimen-
sion 2 and another index s of dimension 4 correspond-
ing to different measurement outcomes. If we reshape
the single-qubit density matrix into a vector of size 4,
then M becomes a 4× 4 invertible matrix, representing
a one-to-one mapping between the density matrix and
the single-qubit probability distribution.

As in [17], for an L-qubit quantum system, we consider
the quantum measurement defined by

M⊗a ≡Ma1 ⊗Ma2 ⊗ · · · ⊗MaL , (2)

where a = (a1, . . . , aL) represents a string of inte-
gers specifying the local projectors, and each integer
al ∈ {0, 1, 2, 3}. The probability distribution P (a) forms
an L-variable distribution function in which each local
dimension d is equal to 4, satisfying P (a) ≥ 0 and



3∑
a P (a) = 1. Interestingly, if we assume that the un-

known quantum state can be efficiently represented as an
MPO

ρ̂ =
∑

b1,b2,...,bL+1

W
σ1,σ

′
1

b1,b2
W

σ2,σ
′
2

b2,b3
. . .W

σL,σ
′
L

bL,bL+1
, (3)

where bl denotes the auxiliary index, then P (a) can be
written as an MPS

P (a) =
∑

b1,b2,...,bL+1

Xs1
b1,b2

Xs2
b2,b3

. . . XsL
bL,bL+1

, (4)

with each tensor Xsl
bl,bl+1

=
∑
σl,σ′l

W
σl,σ

′
l

bl,bl+1
Msl
σl,σ′l

. There-

fore the bond dimensions of P (a), which are defined as
the dimensions of the auxiliary indices Dl = dim(bl), are
exactly the same as the bond dimensions of ρ̂. Since M
is invertible, we can efficiently transform back and forth
between the density matrix ρ̂ and the probability dis-
tribution P (a). Here we choose to first construct P (a)
as an MPS, and then transform it back into a density
matrix. One advantage of this approach is that as long
as the constructed P (a) is a proper probability distribu-
tion, then the density matrix ρ̂ from this approach will
automatically be Hermitian (which however may not be
positive if there are not enough measurement data).

Thus the problem reduces to reconstructing an approx-
imate probability distribution Ps(a), based on a set of N
samples a1,a2, . . . ,aN collected from experiment. As-
suming among those samples there are only Ns different
ones, which are denoted as a1,a2, . . . ,aNs , where each
distinct sample aj has multiplicity nj , and each aj ap-
pears with a probability Ps(a

j) =
nj
N , j = 1, · · · , Ns.

Ps(a
j) will eventually converge to the exact distribution

P (a) as N increases. For a limited number of samples,
the entries of Ps(a) are approximately equal to the cor-
responding entries of P (a). Therefore the original QST
is reduced to the following mathematical problem: given
some approximated values of the nonzero elements of an
unknown P (a), how can we construct a tensor train ap-
proximation of P (a) with a minimum bond dimension
D?

To this end, we note that each sample aj can be en-
coded as a one hot MPS:

aj 7→ Sj =
∑

c1,c2,...,cL+1

As1j,c1,c2A
s2
j,c2,c3

. . . AsLj,cL,cL+1
, (5)

such that dim(cl) = 1 and dim(sl) = 4 for all 1 ≤ l ≤
L, and each tensor Aslj,cl,cl+1

satisfies Aslj,0,0 = 1 iff sl
equals to al, and 0 otherwise. For a specific aj , if al
in aj is 3 then Aslj,cl,cl+1

satisfies A0
j,0,0 = 0, A1

j,0,0 = 0,

A2
j,0,0 = 0 and A3

j,0,0 = 1. With Eq. (5) we can rewrite
the probability distribution formed by N samples as

Ps(a) =

Ns∑
j=1

nj
N
Sj , (6)

where Ps(a) can be viewed as a superposition of all one
hot states Sj , weighted by the multiplicities. Ps(a) can
be directly taken as the best approximation of P (a), that
is, setting P (a) = Ps(a), Ps(a) can be directly evaluated
from Eq. (6) using simple MPS arithmetics. However,
given a limited set of samples, the bond dimension of
the resulting MPS could be much larger than that of
the target distribution. Moreover, this might result in
an over-fitting problem, since Ps(a) will be perfect for
known samples but will be 0 for unknown samples. For
better efficiency and generalizability, one can search for
P (a) which is approximately equal to Ps(a) under the
condition that the bond dimension is bounded by a fixed
value D. This could be done in two approaches [29]:
(1) evaluating Eq. (6) exactly and then compressing the
resulting MPS using SVD, and (2) iteratively searching
for the solution to the following optimization problem

Loss(P (a)) ≡
Ns∑
j=1

‖P (a)− Ps(a)‖2 , (7)

with a maximal bond dimension D, where ‖P‖ denotes
the Frobenius norm of the tensor P . We will follow
the latter approach which is more precise in practice.
One complication here is that if one directly uses the ap-
proaches in [29], the MPS ansatz will be kept in a canoni-
cal form by iteratively using either singular value decom-
position (SVD) or QR decomposition, and the solution
generally contains negative values, which is undesirable
for a probability distribution. To ensure the nonnegativ-
ity of P (a), one could represent P (a) as a nonnegative
MPS instead, that is, each tensor X in Eq. (4) is non-
negative. Several algorithms have been proposed to ap-
proximate a target probability distribution using a non-
negative MPS with a fixed bond dimension [30,31,32].
Here we use a refined approach based on [32], the central
idea of which is to use a non-negative matrix decompo-
sition instead of SVD or QR decomposition.

Specifically, we first define the following tensors
X>k
bk+1;sk+1,...,sL

and X<k
s1,...,sk−1;bk

:

X>k =
∑

bk+2,...,bL+1

X
sk+1

bk+1,bk+2
. . . XsL

bL,bL+1
, (8a)

X<k =
∑

b1,...,bk−1

Xs1
b1,b2

. . . X
sk−1

bk−1,bk
, (8b)

and G>kbk+1,b′k+1
and G<kbk,b′k

:

G>k =
∑

sk+1,...,sL

X>k
bk+1;sk+1,...,sL

X>k
b′k+1;sk+1,...,sL

, (9a)

G<k =
∑

s1,...,sk−1

X<k
s1,...,sk−1;bk

X<k
s1,...,sk−1;b′k

. (9b)

With Eq.(8a) and (8b) we can rewrite P (a) as

P (a) =
∑

bk,bk+1

Xsk
bk,bk+1

X<k
...,sk−1;bk

X>k
bk+1;sk+1,...

, (10)
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for each 1 ≤ k ≤ L. Substituting Eq. (10) into Eq. (7),

the loss function becomes ‖V −WH‖2, with V = Ps(a),
W = Xsk

bk,bk+1
and H = X<k

...,sk−1;bk
X>k
bk+1;sk+1,...

. Thus

the goal is to find the best non-negative factorization of
V . One of the most well known approaches for solving
this problem is the following updating rule

W ←W ◦ [V Ht]

[WHHt]
, (11a)

H ← H ◦ [W tV ]

[WTWH]
, (11b)

where ◦ means Hadmard (element-wise) product and [A]
[B]

denotes the element-wise division of the matrices A and
B [33]. With Eqs.(11a) and (11b) the loss function is
guaranteed to decrease monotonically. From Eq. (11a),
one can update the tensor Xsk

bk,bk+1
as

Xsk
bk,bk+1

← Xsk
bk,bk+1

◦
[
∑
sl 6=k

Ps(a)X<kX>k]

[
∑
b′k,b

′
k+1

Xsk
b′k,b

′
k+1

G>kbk+1,b′k+1
G<kbk,b′k

]

(12)
The denominator on the right hand side of Eq. (12)
can be efficiently evaluated without computing the sum-
mation in Eq. (6), for which we define two tensors

G̃>kj,bk+1,ck+1
and G̃<kj,bk,ck :

G̃>kj =
∑

sk+1,...,sL

X>k
bk+1;sk+1,...,sL

A>kj,ck+1;sk+1,...,sL
, (13a)

G̃<kj =
∑

s1,...,sk−1

X<k
s1,...,sk−1;bk

A<kj,s1,...,sk−1;ck
, (13b)

where A>k and A<k are defined similarly as X>k and
X<k in Eq. (8a) and (8b). Then we have∑

sl 6=k

Ps(a)X<kX>k

=
∑
j

nj
N

∑
b′k,b

′
k+1

Askj,ck,ck+1
G̃>kj,bk+1,ck+1

G̃<kj,bk,ck .
(14)

The complete algorithm to find the optimal P (a) that
minimizes Loss(P (a)) in Eq. (7) is summarized in Algo-
rithm 1. Once P (a) is found, the best MPO ρ̂ can be
reconstructed by applying the inverse of the IC-POVM
locally on each site of P (a), as illustrated in Fig. 1.

Algorithm 1 Nonnegative Tensor Train State
Tomography

Input: the set of samples from POVM measurement;
Output: near-optimal non-negative MPS form of P (a);
1: Encode each aj into Aj according to Eq. (5);
2: Randomly initialize P (a) as in [34];

3: G̃<1
j,b1,c1

= 1,G̃>Lj,bL+1,cL+1
= 1

4: G<1
b1,b′1

= 1,G>LbL+1,b′L+1
= 1

5: for k = 1, 2, . . . , L− 1 do

6: G<k+1
bk+1,b′k+1

=
∑
sk,bk,b′k

G<kbk,b′k
Xsk
bk,bk+1

Xsk
b′k,b

′
k+1

;

7: for j = 1, 2, . . . , Ns do

8: G̃<k+1
j,bk+1,ck+1

=∑
sk,bk,ck

G̃<kj,bk,ckX
sk
bk,bk+1

Askj,ck,ck+1
;

9: end for
10: end for
11: for k = L− 1, L− 2, . . . , 1 do
12: G>kbk+1,b′k+1

=∑
sk+1,bk+2,b′k+2

G>k+1
bk+2,b′k+2

X
sk+1

bk+1,bk+2
X
sk+1

b′k+1,b
′
k+2

;

13: for j = 1, 2, . . . , Ns do

14: G̃>kj,bk+1,ck+1
=∑

sk+1,bk+2,ck+2
G̃>k+1
j,bk+2,ck+2

X
sk+1

bk+1,bk+2
A
sk+1

j,ck+1,ck+2
;

15: end for
16: end for
17: while true do
18: for k = 1, 2, . . . , L− 1 do
19: update Xsk

bk,bk+1
using Eq. (12);

20: G<k+1
bk+1,b′k+1

=
∑
sk,bk,b′k

G<kbk,b′k
Xsk
bk,bk+1

Xsk
b′k,b

′
k+1

;

21: for j = 1, 2, . . . , Ns do

22: G̃<k+1
j,bk+1,ck+1

=∑
sk,bk,ck

G̃<kj,bk,ckX
sk
bk,bk+1

Askj,ck,ck+1
;

23: end for
24: end for
25: for k = L− 1, L− 2, . . . , 1 do
26: update X

sk+1

bk+1,bk+2
using Eq. (12);

27: G>kbk+1,b′k+1
=∑

sk+1,bk+2,b′k+2
G>k+1
bk+2,b′k+2

X
sk+1

bk+1,bk+2
X
sk+1

b′k+1,b
′
k+2

;

28: for j = 1, 2, . . . , Ns do

29: G̃>kj,bk+1,ck+1
=∑

sk+1,bk+2,ck+2
G̃>k+1
j,bk+2,ck+2

X
sk+1

bk+1,bk+2
A
sk+1

j,ck+1,ck+2
;

30: end for
31: end for
32: if stopping criterion is meet then
33: break;
34: end if
35: end while
36: return P (a)

III. RESULTS

We demonstrate our algorithm by reconstructing the
density matrix corresponding to the ground state of the
XXZ chain subjecting to depolarizing noise. The Hamil-
tonian of the XXZ chain can be written as

Ĥ =

L−1∑
l=1

J(σ̂xl σ̂
x
l+1 + σ̂yl σ̂

y
l+1 +γσ̂zl σ̂

z
l+1) +h

L∑
l=1

σ̂z, (15)

where L is the number of the spins, J is the tunnel-
ing strength which we fix to 1, h is the magnetization
strength, and γ is the interaction strength. We choose
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FIG. 2. (a) Iq (red dashed line with squares) and Ic (blue
solid line with circles) as functions of system size L for fixed
p = 0.6. The inset shows Ic as a function of system size
for larger system size (Iq for L > 6 is not shown since it
is too expensive to compute). (b) Iq and Ic as functions
of depolarized noise intensity p for fixed L = 4. (c) The
minimum number of required training data N as a function
of L such that Ic ≤ 1%, with p = 0.6. (d) The minimum
number of required training data N as a function of p such
that Ic ≤ 1%, with L = 4. All simulations are done with a
bond dimension D = 10.

h = 1 to break the degeneracy of the ground state due
to the spin flip symmetry. The depolarizing noise is de-
scribed by the CPTP map:

ρ̂→ E(ρ̂) =
pÎ

d
+ (1− p)ρ̂, (16)

with d = 2L as the dimension of the Hilbert space, ρ̂ the
density matrix corresponding to the exact ground state,
and p the strength of the noise. We note that for p = 0,
namely for pure states, there already exists efficient MPS-
based tomography algorithm which directly use MPS as
the ansatz to represent an unknown pure state [13].

Similar to [17], we use both the quantum fidelity and
the classical fidelity to measure the learning accuracy.
Specifically, the quantum fidelity is defined as

Fq = tr2
(√√

ρ̂1ρ̂2
√
ρ̂1

)
, (17)

for two density matrices ρ̂1 and ρ̂2, and the classical fi-
delity is defined as

Fc = Ea∼Pi [
√
Pm(a)/Pi(a)], (18)

where Pm(a) is the measured probability distribution,
and Pi(a) is the ideal probability distribution. We

0 1000 2000 3000 4000
Sweeps

0.5

1.0

1.5

2.0

2.5
Iq ×10−1

(a)
γ =1.0

γ =1.2

γ =1.4

γ =1.6

γ =1.8

γ =2.0

0 1000 2000 3000 4000
Sweeps

0.5

1.0

1.5
Iq ×10−1

(b)

0 1000 2000 3000 4000
Sweeps

0

2

4

6

8
Ic ×10−3

(c)

0 1000 2000 3000 4000
Sweeps

0

1

2

3

4

5
Ic ×10−3

(d)

1.0 1.2 1.4 1.6 1.8 2.0
γ

5.5

6.0

6.5

7.0

Iq ×10−2

(e)

1.0 1.2 1.4 1.6 1.8 2.0
γ

2.4

2.6

2.8

Iq ×10−2

(f)

2000 3000 4000

2

3

Ic ×10−4

5

6

7

8

9

Ic×10−4

1.6

1.8

2.0

2.2

2.4
Ic×10−4

FIG. 3. (a, c) Iq (a) and Ic (c) as functions of the number
of sweeps for different γs with p = 0.4. (b, d) Iq (b) and Ic
(d) as functions of the number of sweeps for different γs with
p = 0.6. The inset in (d) shows the tail of the convergence
of Ic. In (a, b, c, d) we have chosen 5 best results according
to their loss values out of 100 trials and plotted the mean
values of them (The standard deviations are shown as error
bars). (e) The left and right axis show the final Iq and Ic as
functions of γ with p = 0.4. (f) The left and right axis show
the final Iq and Ic as functions of γ with p = 0.6. Here we
have chosen L = 6 and used Ntrain = 30000000.

also define the quantum and the classical infidelities as
Iq = 1 − Fq and Ic = 1 − Fc respectively. In our nu-
merical simulations, we have generated two independent
synthetic datasets for each parameter setting we have
considered, each with 30, 000, 000 samples. One dataset
is used for training and the other is used for testing. For
the quantum fidelity, we directly compute Fq between
the reconstructed density matrix and the target density
matrix. For the classical fidelity, we use a test dataset to
evaluate Eq. (18).

We first study the final reconstruction quality as a
function of the system size L and the noise strength p.
We show Iq and Ic as functions of L in Fig. 2(a) and
of p in Fig. 2(b) respectively. We can see that the final
fidelity (both the quantum and the classical) decreases as
L increases and increases as p increases. We can also see
that it is much easier for a near-perfect reconstruction of
the probability distribution than the construction of the
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FIG. 4. Iq (red dashed line with squares) and Ic (blue solid
line with circles) as functions of the bond dimension D. Here
we have used L = 4, p = 0.6 and Ntrain = 30000000.

underlying quantum state, as in the numerical simula-
tions Ic is always at least one order of magnitude smaller
than Iq. In Fig.(2)(c, d) we show the minimum number
N of required training data for Ic ≤ 1% as a function
of L and p respectively. We can see that N increases
as L increases and decreases as p increases, as shown in
Fig. 2(a, b).

Then we fix L = 6 and investigate the variations of
Iq and Ic as functions of the number of sweeps, which
is shown in Fig. 3. In Fig. 3(a, c), we show Iq and Ic
as functions of the number of sweeps when p = 0.4 for
different values of γ, while in Fig. 3(b, d) we show Iq and
Ic as functions of the number of sweeps when p = 0.6
for different values of γ. We can see that for both noise
strengths, Ic converges in about 1000 sweeps and Iq does
not fully converge after 4000 sweeps. The final values of
Iq and Ic after 4000 sweeps are also shown in Fig. 3(e)
for p = 0.4 and in Fig. 3(f) for p = 0.6. We can see that
in both cases Ic is about two orders of magnitude smaller
than the corresponding Iq and that Iq and Ic for p = 0.6
is smaller than those for p = 0.4.

Next we explore the learning accuracy as a function
of the bond dimension D used in our ansatz. The bond
dimension of the MPS corresponds to the number of sin-
gular values retained in the process of restoring the orig-
inal density matrix after matrix SVD. In our case the
ground state can be represented as an MPS with a cer-
tain bond dimension D0. For a perfect training, we need
to have D ≥ D0 since otherwise our ansatz is not expres-
sive enough to represent the target quantum state. If D
is too large and we do not have enough training data, we
might have the problem of overfitting which would also
result in bad learning accuracy. The dependence of the
quantum and the classical infidelities as functions of D
are shown in Fig. 4, where we can see that both Iq and
Ic decrease as D increases until saturation.

0 20 40 60 80 100

−2.9850

−2.9825

−2.9800

−2.9775

−2.9750

−2.9725

Loss ×10−4

0.92

0.93

0.94

0.95

0.96

0.97

Fq

FIG. 5. The x axis denotes different labels of the 100 numer-
ical experiments, labelled 1 to 100, sorted by their final loss
values from large to small. In our simulation, we have used
P 2(a)−2P (a)Ps(a) as the loss value, which simply shifts the
original loss value in Eq. (7) by a constant. Here the results
are taken from the reconstruction of P (a) for L = 6, γ = 2.0
and p = 0.6.

Due to the variational feature of our algorithm similar
to DMRG, it could be trapped in local minima (also be-
cause the initial MPS P (a) is randomly initialized) [35].
Therefore in our numerical results, the same reconstruc-
tion algorithm is run for many trials with random initial-
ization of P (a), and the one with the lowest loss value
is chosen as the final result. Ideally one would likely to
directly choose the trials with the highest fidelity. How-
ever in real experiment the target state is unknown and
it is not possible to compute the fidelities. As a result
it is important that the trials with lower loss values will
correspond to those with higher fidelities. Such corre-
spondence between loss values and fidelities is shown in
Fig. 5, where we have repeated the reconstruction algo-
rithm for 100 times. We can see that indeed the loss
value has the desired correspondence with the fidelity.

IV. CONCLUSION

We have presented an algorithm based on the non-
negative matrix product state for quantum state tomog-
raphy. Given a number of experimental measurement
outcomes, our algorithm iteratively finds the optimal
non-negative MPS representation which best approxi-
mates the probability distribution of these outcomes.
Applying simple local transformations, the reconstructed
non-negative MPS can be converted into a density matrix
for the unknown quantum state. This is in comparison
with the QST methods based on neural network states,
for which one generally can not directly write down the
quantum state but only has indirect access to it via sam-
pling from the trained neural networks. As applications,
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the effectiveness of our algorithm is demonstrated to re-
construct the ground state of the XXZ chain with depo-
larizing noise.
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