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The accurate first-principles calculation of relative energies of transition metal complexes and
clusters is still one of the great challenges for quantum chemistry. Dense lying electronic states and
near degeneracies make accurate predictions difficult, and multireference methods with large active
spaces are required. Often density functional theory calculations are employed for feasibility
reasons, but their actual accuracy for a given system is usually difficult to assess �also because
accurate ab initio reference data are lacking�. In this work we study the performance of the density
matrix renormalization group algorithm for the prediction of relative energies of transition metal
complexes and clusters of different spin and molecular structure. In particular, the focus is on the
relative energetical order of electronic states of different spin for mononuclear complexes and on the
relative energy of different isomers of dinuclear oxo-bridged copper clusters.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2805383�

I. INTRODUCTION

The density matrix renormalization group �DMRG� al-
gorithm is a quite new ab initio method to solve the many-
particle electronic Schrödinger equation as accurately as pos-
sible in a full-configuration-interaction �FCI� sense for a
given one-electron basis. The DMRG algorithm was devel-
oped by White.1,2 In contrast to other electronic structure
methods, DMRG is not based on an expansion of the wave
function in terms of Slater determinants, but rather in an
adaptive many-particle basis. It also provides a means to
systematically approximate the FCI solution as accurately as
one desires with only polynomial computational cost, which
is a significant advantage over conventional quantum chemi-
cal methods. A number of interesting papers showed how
DMRG can be applied to quantum chemical Hamiltonians,
which shall be briefly reviewed in the following paragraph.
For an excellent review ranging from the early beginnings of
DMRG in solid state physics to the quantum chemical for-
mulation of DMRG we refer to the work of Schollwöck.3

DMRG in quantum chemistry started with the work of
Fano et al.4 who performed DMRG calculations on molecu-
lar systems using the semiempirical Pariser-Parr-Pople
Hamiltonian. Shortly afterwards, White and co-workers5,6

used the full many-electron Hamiltonian. Several other
groups investigated DMRG as well in pioneering studies on
benchmark molecules �see Mitrushenkov et al.,7,8 Chan and
co-workers,9–11 and Legeza and co-workers12–14�. Chan and
Head-Gordon provided the first comprehensive description
of the DMRG algorithm in quantum chemistry.15 A fresh
look on the algorithm including detailed flow charts was pre-
sented in Ref. 16 very recently. The studies of Chan and

co-workers comprise benchmark calculations on the dinitro-
gen ground state potential energy curve,10 an extension of the
DMRG algorithm for nonorthogonal orbitals,17 a quadratic
scaling algorithm,18 and a harmonic Davidson algorithm.19

Our group provided a feasibility study on the curve crossing
of the two lowest lying electronic states of cesium hydride
using relativistically contracted orbitals,20 systematic studies
on the convergence properties of DMRG,21,22 and recently, a
way to decompose DMRG states into a Slater determinant
basis,16 which allows one to understand DMRG convergence
in terms of the uptake or rejection of certain electronic con-
figurations for the representation of the DMRG state during
the iterations.

The current state of the art DMRG method is still a
developmental one, mostly concerned with algorithmic im-
provements and convergence studies. Nevertheless, it turned
out very early in the short history of DMRG that FCI results
can be obtained for one-particle active spaces much larger
than those usually accessible with standard FCI or complete-
active-space self-consistent field �CASSCF� methods.
DMRG active spaces can be easily larger than 18 electrons in
18 active spatial orbitals, which may be regarded as the final
frontier unsurmountable for CASSCF. This fact in mind, we
propose here to apply the DMRG approach to molecules that
require huge active spaces already for a qualitatively correct
description of the wave function.

Regarding well-established standard methods we may
note that CASSCF and its restricted-active-space SCF
extension—especially, when supplemented by a perturbation
theory calculation to capture dynamic correlation contribu-
tions that are missing due to the neglect of most virtual
orbitals—is a feasible and therefore widely applied multiref-
erence method to provide qualitatively correct wave func-
tions for open-shell transition metal complexes.23 The multi-
reference configuration interaction �MRCI� approach appears
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to be the only alternative for open-shell systems at the mo-
ment. But as any other quantum chemical method, MRCI
also has its restrictions such as the need to choose a reference
function and to restrict the subsequent orbital substitutions in
the wave function to single and double excitations �leaving
aside the fact that it is not size consistent, which may be
partially cured by a Davidson correction for a small number
of electrons�. More accurate �multireference� coupled cluster
approaches are desirable as they incorporate contributions
from the virtual orbitals in the most efficient way, but these
are quickly unfeasible for large complexes and clusters.
Surely, standard single-reference coupled cluster methods are
very valuable for validation purposes of typical closed-shell
molecules such as ferrocene,24–26 but the most exciting
chemistry takes place at open-shell systems occurring as re-
actants or intermediates in transition-metal-mediated reac-
tions and catalysis. For these species, CASSCF-type methods
are an optimum choice especially if the neglect of many
virtual orbitals in the ansatz of the CI-type wave function
�the so-called neglect of dynamic correlation effects� is cap-
tured afterwards via second-order perturbation theory �PT2�
denoted as CASPT2. However, if the CASSCF reference
wave function does not adequately represent the electronic
structure, which is the case if the CAS cannot be as large as
the qualitative picture of the electronic structure would de-
mand, the perturbation correction fails. We will later discuss
an example of this type identified by Cramer et al.27,28

Consequently, the capabilities of DMRG to handle much
larger active spaces than CASSCF should be exploited to
produce qualitatively correct electronic wave functions and
energies. While CASSCF is rather accurate for mononuclear
transition metal complexes, this is not necessarily the case if
the complexity doubles because the number of transition
metal atoms is doubled. Hence, a dinuclear cluster will re-
quire at least a twice as large active space. Since the metal
atoms in such clusters are often bridged by chalcogen atoms
and therefore in close contact, the valence shell orbitals
dominated by the atomic orbitals of these bridging atoms
need also be included. Thus, transition metal clusters require
rather large active spaces and DMRG is capable of handling
these.

Therefore, we study DMRG as a potential CASSCF sub-
stitute for transition metal cluster chemistry in this work. As
most challenging test clusters we select the dinuclear oxo-
bridged copper clusters identified in Ref. 27 as very difficult
cases. But before we can tackle these we are advised to in-
vestigate the DMRG algorithm for mononuclear complexes
first. The reason for this procedure is the fact that DMRG
may easily converge to energies which are higher than the
desired FCI energy.22 This technical problem needs to be
overcome in order to assure the accuracy of the results ob-
tained and we therefore consider single-metal molecules
first. Because of the well known spin-state-energy problem
for mononuclear transition metal complexes,29–41 we let
these first exploratory steps be driven by the desire to calcu-
late the energy of states of different spin reliably.

This work is organized as follows. In Sec. II, we briefly
review the DMRG algorithm and apply it in Sec. III first to
two mononuclear transition metal complexes carrying only a

single ligand. For this purpose we selected CoH and NiCO.
Section IV then proceeds to the main target, which are the
above-mentioned dinuclear copper clusters. This paper
closes with some generally valid conclusions in Sec. V.

II. BRIEF OVERVIEW OF THE DMRG
ALGORITHM

Since the DMRG algorithm is not yet widely known and
only two detailed formulations with explicit reference to the
quantum chemical many-electron Hamiltonian have been
published,15,16 we briefly recall its basic ingredients that are
also needed to introduce the notation required in the subse-
quent sections.

In most of the quantum chemical DMRG publications
mentioned in the Introduction, one usually faces the notation
that originated from the solid state physics background of
DMRG. There, sites are occupied by spins on a lattice which
leads to a direct spatial interpretation of the latter. The whole
set of sites is subdivided into three parts of which two are
called system and environment. In the quantum chemical
context, however, this picture of having localized sites may
be misleading since the orbitals we place on a lattice are
spatially delocalized and do not refer to a single point in
space. Instead, the actual meaning of having a lattice is to
have a certain ordering of the orbitals. To highlight this fact,
we stick to the notation of Ref. 16, where system was called
active subsystem �AS�, environment was called complemen-
tary subsystem �CS�, and site was called orbital in order to
emphasize the abstract nature of the algorithm free of any
reference to some physical objects in real space.

The aligned orbitals are divided into three subsystems,
two large ones that represent AS and CS, and a block of an
�in principle� arbitrary number of single orbitals, which may
be called exactly represented subsystem �ERS�. A subsystem
is simply a set of spatial orbitals which are neighbors in the
chain of orbitals. The ERS usually consists of two spatial
orbitals for feasibility reasons and is located between AS and
CS. Each of the three subsystems allows us to construct a
many-particle space which is spanned by the orbitals of the
subsystem. The many-particle space for a subsystem is a
subspace of the Fock space. Matrix representations of opera-
tors can be explicitly calculated for the small ERS. It repre-
sents 42=16 states if it consists of two spatial orbitals. The
spaces of the AS and CS, though, are spanned by m many-
particle basis states, with m being a parameter of the DMRG
calculation �see below�.

For the very first DMRG microiteration step, the size of
the AS is chosen such that one can explicitly create all op-
erators needed for the buildup of the total electronic Hamil-
tonian in second quantization,

H = �
i,j

�

hijai�
† aj� +

1

2 �
i,j,k,l

�,��

Vijklai�
† aj��

† ak��al�, �1�

which contains one-electron integrals hij over orbitals �i�x�,
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hij =� �i
*�x��−

1

2
�2 − �

I

ZI

rI
�� j�x�d3x , �2�

with the nuclear charge numbers ZI of the atomic nuclei I
and their distances to the electrons rI= 	r−RI	 �note that the
nucleus-nucleus repulsion term is suppressed for the sake of
brevity�. The two-electron integrals Vijkl are defined as

Vijkl =� � �i
*�x1�� j

*�x2��k�x2��l�x1�
r12

d3x1d3x2. �3�

In general, a DMRG microiteration can be divided into three
steps.

�i� Solving for the wave function. The wave function is
represented in the �tensor� product space of AS, CS, and
ERS. It is of dimension 16m2 since AS and CS both contain
m basis states and the ERS contains 16 basis states. The
product space is restricted to the correct number of particles
and projected spin. To determine the ground state wave func-
tion �0, we calculate the matrix representation of the Hamil-
tonian Htotal, which is spanned in the basis 
AS� � 
ERS�
� 
CS�. Since we are usually only interested in the lowest
eigenvalue and the corresponding eigenvector of the Hamil-
tonian, we apply the Davidson iterative subspace procedure42

to obtain a CI-like representation for the ground state �0

with expansion coefficients �IJ.
�ii� Blocking. In this step, the AS is enlarged by that

orbital of the ERS which follows the AS on the orbital chain.
The dimension of the spaces of AS and the single orbital are
m and 4, respectively, which means that 4m many-particle
states are defined on the enlarged subsystem AS� then. The
basis of the enlarged block can be obtained by building the
tensor product between the Fock spaces of the active sub-
system 
AS� and of the single orbital 
EAS�,


AS�� = 
AS � EAS� = 
AS� � 
EAS� . �4�

We can now construct the representations of the operators on
the enlarged subsystem AS� by direct multiplication of the
corresponding operators from AS and EAS. The dimensions
of the operators defined on AS� are then reduced in a deci-
mation step.

�iii� Decimation. The enlarged subsystem AS� of dimen-
sion 4m is transformed to a new many-particle basis of di-
mension m. The decimated system block is then used as a
starting point for the next microiteration. The density matrix
DAS� of the enlarged active subsystem AS� can be calculated
from the ground state wave function �0 expressed by the
CI-type expansion coefficients �IJ according to

DII� = �
J

�IJ�I�J
* =

�IJ real

�
J

�IJ�I�J. �5�

This evaluation is possible because we know from the con-
struction of the Hamiltonian matrix that an eigenvector � of
the Hamiltonian can be written as a tensor product of many-
particle states �I of the enlarged active subsystem AS� and of
many-particle states �J of the complementary subsystem CS
plus the remaining exactly represented orbitals,

	�� = �
IJ

�IJ�I � �J. �6�

The reduced density matrix is then diagonalized,

DAS� = �
i

wi	Ai�
Ai	 . �7�

The eigenvalues wi of the reduced density matrix can be
interpreted as the weights of the eigenstates. We now have a
sophisticated way of choosing an �m�4m�-dimensional rect-
angular renormalization matrix C built from the eigenvectors
	Ai� of the reduced density matrix with highest weights wi.

The transformation to the truncated basis is called renor-
malization. The old operators Oold of AS� are renormalized
to lower dimensional new operators Onew,

Onew = CTOoldC , �8�

where C is the renormalization matrix built up from m eigen-
vectors of DAS�. If the m�4m matrix C were square, Eq. �8�
would be a unitary transformation. Since C is not a square
matrix, the transformation eliminates those states which are
less important if the optimum representation of reduced di-
mension is sought for in a least-squares sense.

A sequence of DMRG microiteration steps from left to
right along the orbital chain is called a sweep. If the sweep
reaches the end of the orbital chain, the sweep terminates and
the direction is reversed. The next sweep commences now in
the reversed direction along the chain of orbitals.

III. PERFORMANCE OF DMRG ON THE SPIN STATE
PROBLEM

After having discussed the basics of the DMRG algo-
rithm, we now apply it to states of different spin for two
prototypical transition metal complexes carrying only a
single ligand. We choose CoH and NiCO as examples. The
latter molecule is electronically more complex due to the CO
ligand �capable of accepting back-donation from the metal
atom in the Dewar-Chatt-Duncanson picture43,44� when com-
pared to the simple �-donor ligand H in CoH.

A. CoH

Our primary goal is to investigate the applicability of the
DMRG algorithm to determine the difference between the
calculated singlet and triplet energies, which is difficult to
calculate with any quantum chemical method �see the refer-
ences given in the Introduction�. Cobalt hydride is a small
molecule particularly suited for the assessment of the reli-
ability of the DMRG algorithm. We focus on the DMRG
calculation of the triplet ground state and the energetically
lowest lying state of singlet symmetry with various numbers
of DMRG renormalized system states m and compare the
converged energy with the CASSCF reference energy. The
different choices for m are needed in order to identify a po-
tential convergence of a single run to a local energy mini-
mum. In this way we avoid to interpret single sets of total
energies for both spin states of which one or even both en-
ergies did not converge to the complete-active space CI
�CAS-CI� energy, which is the exact reference for the
DMRG calculation.
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All preparatory calculations described in this and in the
following sections, which produce the one-electron and two-
electron integrals, hij and Vijkl, respectively, as well as the
CASSCF, CASPT2, and density functional theory �DFT� ref-
erence results, were carried out with the MOLPRO program
package.45 All DMRG calculations were performed with the
DMRG programs developed in our group. We study the two
spin states of the cobalt hydride molecule at a bond distance
of 156.271 pm, which was obtained by a structure optimiza-
tion using CCSD�T� and a Dunning cc-pVTZ basis set.46,47

The final Hartree-Fock occupation in C2v symmetry for the
singlet state is 1a1

2−8a1
2, 1b1

2−3b1
2, 1b2

2−2b2
2, and 1a2

2; and
1a1

2−6a1
27a1

18a1
1, 1b1

2−3b1
2,1b2

2−3b2
2, and 1a2

2 for the triplet
state.

For the CASSCF calculation, we employ two active
spaces consisting of 10 and 14 molecular orbitals, respec-
tively, occupied by ten electrons each. The molecular orbitals
are chosen according to the occupation and orbital coeffi-
cients of the Hartree-Fock orbitals and are listed in Table I.
The CASSCF�10,10� and the CASSCF�10,14� results are
then used as a reference for the DMRG calculations and are
given in Table II.

For the subsequent DMRG calculations the initial occu-
pation was determined according to the Hartree-Fock con-
figuration. We consider 10 and 14 natural orbitals, i.e., the
same active spaces as in the CASSCF reference calculations,
and a sequence of 32, 60, 64, 100, 200, 400, and 600 renor-
malized states m. Up to 400 microiterations were required
until convergence of the energy was achieved. For the singlet
calculation, a level shift performed on the many-electron
Hamiltonian H,

Hshift = H + �S−S+ = H + ��S2 − Sz
2 − Sz� , �9�

was applied in order to obtain a wave function of pure spin.
This prevents the occurrence of states which possess the
same projected spin �i.e., the same MS eigenvalue of Sz� but
a different total spin S. The unwanted spin states with a
higher multiplicity are affected by the level shift operator

and augmented by an energy shift proportional to the param-
eter �. Tests showed that a value of �=1 is sufficient in most
cases. Energies presented in this work have been obtained by
diagonalization of the shifted Hamiltonian Hshift. The one-
electron and two-electron integrals were calculated from
CASSCF orbitals based on the same active space presented
in Table I. In Table II the vertical energy splitting of the
singlet and triplet states of cobalt hydride is listed for the
CASSCF and CASPT2 reference as well as for the DMRG
calculations with an increasing number of m renormalized
DMRG system states.

From the reference calculation we know that more con-
figurations are needed to properly describe the singlet state
compared to the number of configurations for the triplet
state. In the DMRG algorithm, we apply for each calculation
a fixed number of renormalized states m. We may therefore
assume that the triplet state is better described than the sin-
glet in a DMRG calculation. Still, the energy difference is
already converged to 0.1 kJ mol−1 in the case of the large
CAS by selecting only m=400 renormalized states.

The DMRG calculations employing the large CAS pro-
duced two outliers for the singlet state with m=60 and m
=200, which turned out to be too high in energy. The outlier
for m=60 could be corrected by reducing the number of
DMRG states to 32 for 150 microiterations and then switch-

TABLE I. First set: CAS�10,14� in C2v symmetry of the CoH molecule. The
doubly occupied orbitals in the reference determinant are marked in bold
face type and singly occupied are underlined. Second set: CAS�10,10� in
C2v symmetry of the CoH molecule. The doubly occupied orbitals in the
reference determinant are marked in bold face type and singly occupied are
underlined. The sequence of orbitals represents the orbital ordering em-
ployed in the DMRG calculations.

Spin state Active orbitals

CAS�10,14�

Singlet 6a1 7a1 8a1 9a1 10a1 11a1 12a1 3b1

4b1 5b1 3b2 4b2 5b2 1a2

Triplet 6a1 7a1 8a1 9a1 10a1 11a1 12a1 3b1

4b1 5b1 3b2 4b2 5b2 1a2

CAS�10,10�

Singlet 6a1 7a1 8a1 9a1 10a1 3b1 4b1 3b2

4b2 1a2

Triplet 6a1 7a1 8a1 9a1 10a1 3b1 4b1 3b2

4b2 1a2

TABLE II. Results of CASSCF and CASPT2 reference and DMRG calcu-
lations for the singlet and triplet states of CoH for ten electrons distributed
over ten active spatial orbitals in hartree atomic units. Relative energies are
given in kJ mol−1. The first set of DMRG calculations employed a CAS of
ten orbitals, while the latter the one consisting of 14 orbitals. It is interesting
to note the deviating DMRG calculation marked by the superscript a. Here,
during the first 150 microiterations 32 DMRG basis states were used and
afterwards changed to 60 DMRG basis states for the next 250 microitera-
tions.

Method Esinglet�Eh� Etriplet�Eh� 	E�kJ mol−1�

DMRG�m=32� −1381.942 837 45 −1381.994 947 72 136.8
DMRG�m=60� −1381.943 854 89 −1381.995 091 39 134.5
DMRG�m=64� −1381.952 033 91 −1381.995 096 08 113.1
DMRG�m=100� −1381.952 064 07 −1381.995 107 66 113.0
DMRG�m=200� −1381.952 073 84 −1381.995 110 42 113.0
DMRG�m=400� −1381.952 073 95 −1381.995 110 45 113.0
DMRG�m=600� −1381.952 073 95 −1381.995 110 45 113.0

CASSCF�10,10� −1381.952 073 95 −1381.995 110 45 113.0
CASPT2�10,10� −1382.189 526 76 −1382.241 333 74 136.0

DMRG�m=32� −1381.964 667 68 −1382.017 236 98 138.0
DMRG�m=60� −1381.959 381 80 −1382.020 096 40 159.4
DMRG�m=60a� −1381.972 877 48 −1382.020 096 40 124.0
DMRG�m=64� −1381.977 619 31 −1382.020 167 82 111.7
DMRG�m=100� −1381.979 696 65 −1382.020 506 76 107.2
DMRG�m=200� −1381.977 099 88 −1382.020 751 52 114.6
DMRG�m=400� −1381.981 062 29 −1382.020 808 17 104.4
DMRG�m=600� −1381.981 090 47 −1382.020 812 76 104.3

CASSCF�10,14� −1381.981 097 35 −1382.020 813 74 104.3
CASPT2�10,14� −1382.192 370 84 −1382.242 103 09 130.6

DFT/BP86 −1383.504 018 73 −1383.585 211 82 213.1
DFT /B3LYP* −1383.031 402 31 −1383.106 305 78 196.7
DFT/B3LYP −1383.202 267 27 −1383.279 574 17 203.0
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ing back to the desired 60 DMRG states. This procedure,
described in Ref. 22, allowed us to capture all important
configurations which were not picked up in the standard
setup �see Ref. 16 for a detailed investigation of such cases�.
Despite the occurrence of these outliers, the overall picture is
very satisfactory in the sense that by increasing the number
of DMRG states the spin splitting converges. The effect of
the enlarged CAS�10,14� compared to the CAS�10,10� on the
DMRG calculation manifests in a slower convergence of the
energy splitting between the singlet and triplet states. We
also notice that the absolute energy values for the
CASSCF�10,14� calculations of the singlet and triplet states
are deviating by about 0.03 a.u. from the energy values of
the CASSCF�10,10� calculations, whereas the difference in
the absolute energies of the CASPT2�10,14� and
CASPT2�10,10� calculations is of the order of 0.003 a.u. The
CASPT2 results are—irrespective of the CAS chosen—
20–30 kJ mol−1 lower in energy than our best DMRG results
with 600 DMRG states m, which indicates the magnitude of
dynamic correlation effects neglected in a standard DMRG
calculation. The DFT/BP86,48,49 DFT /B3LYP*,32 and DFT/
B3LYP �Refs. 50 and 51� calculations yield similar energy
splittings around 200 kJ mol−1, which are strongly deviating
from all our DMRG, CASSCF, and CASPT2 results. Be-
cause of the multireference character of the wave function of
CoH with two near-degenerate electronic singlet states often
poorly described by DFT and considering the fact that
CASPT2 incorporates dynamical electron correlation
through a perturbative inclusion of the virtual orbitals �the
CASPT2 energy values are also only slightly changing by
increasing the active space�, we may assume that the pure
and hybrid DFT calculations provide a qualitatively wrong
description of the energy splitting between the singlet and
triplet states of CoH.

The critical DMRG�10,14� singlet calculation for m
=60 in Table II demonstrates that the DMRG algorithm may
converge to a stationary point �being a local minimum or a
saddle point�. For such cases, Chan and co-workers15,19 rec-
ommend to add random noise to the density matrix in order
to force the mixing of configurations that would have not
been captured otherwise if m is chosen to be too small. If we
add small numbers 10−n, with n=8, 9, 10, 11, and 12, to all
entries of each block of the density matrix, where each block
corresponds to states of the same particle number and pro-
jected spin, we note that the energy drops down to
−1381.960 005, −1381.972 565, −1381.972 580,
−1381.973 611, and −1381.973 531 hartree, respectively.
Thus, the addition of some noise may improve the absolute
energy in cases where the seemingly converged energy is too
high. In the case of the second critical singlet calculation
with m=200, however, the addition of noise to the density
matrix improves the energy only insignificantly up to
−1381.977 201 hartree, which is still considerably higher
than the −1381.979 697 hartree obtained from the calculation
with the smaller value m=100. On the other hand, the se-
quence of energies for different m values allows us to obtain
a very good estimate for the relative energy independent of a
single result from a single calculation with a given value of
m. We should also note that we got similar results for the Cr2

example studied in Ref. 22, where the total energy got stuck
in one case at −2086.1379 hartree, while the best calculation
with an optimized ordering of the orbitals on the chain
yielded −2086.3379 hartree. Adding noise with n=6, 9, and
11 yields in this case −2086.1058, −2086.1899, and
−2086.1369 hartree. Thus, also in the Cr2 case the energy
may improve but does not approach the reference value.

It is evident that at the level of 600 DMRG states the
DMRG algorithm reproduces the CASSCF energy of the co-
balt hydride within the same active space. We demonstrated
that DMRG calculations for 200, 400, and 600 renormalized
states can produce a consistent picture on DMRG conver-
gence and provide an accurate relative energy of the two spin
states. This indicates that the DMRG algorithm is suitable for
calculations of the spin state splitting in transition metal
complexes. We may now investigate the second, more com-
plex example, namely, NiCO.

B. NiCO

This section presents DMRG calculations on the singlet
and triplet spin states of the NiCO molecule, which can be
considered as a prototypical carbonyl metal complex. All
preparatory calculations of the one- and two-electron inte-
grals in the molecular orbital basis as well as all DFT and
CASSCF calculations have been performed using the MOL-

PRO package of ab initio programs.45 The bond distances
were set to 168.389 pm for NiC and 114.893 pm for CO,
which were obtained by structure optimization with DFT/
B3LYP �Refs. 50 and 51� and a Dunning cc-pVTZ basis
set.46,47 These structural parameters are in very good agree-
ment with the data collected and reported for various quan-
tum chemical methods in Ref. 52. For the reference CASSCF
calculations we have employed 18 electrons in 16 active or-
bitals for the singlet and triplet states. The active spaces for
the CASSCF and for the DMRG calculations are given in
Table III.

The 39 natural orbitals needed for the DMRG calcula-
tions were produced with the help of smaller CASSCF cal-
culations, where we have used 10 active orbitals for the sin-
glet state and 11 active orbitals for the triplet states.
Afterwards, all orbitals were transformed to natural orbitals
and a DMRG active space of 39 natural orbitals was se-
lected. The one-electron and two-electron integrals, hij and
Vijkl, respectively, were calculated in the basis of the 39 natu-
ral CASSCF orbitals.

TABLE III. Active orbitals for the singlet and triplet CASSCF and DMRG
calculations of NiCO in Cs symmetry. Doubly occupied orbitals in the
Hartree-Fock reference determinant are marked in bold face. In the case of
the triplet state orbitals 16a1 and 17a1 are singly occupied. The second
sequence of orbitals also represents the orbital ordering employed in the
DMRG calculations.

CASSCF 11a1 12a1 13a1 14a1 15a1 16a1 17a1 18a1 19a1 20a1

21a1 3a2 4a2 5a2 6a2 7a2

DMRG 7a1 8a1 9a1 10a1 11a1 12a1 13a1 14a1 15a1 16a1

17a1 18a1 19a1 20a1 21a1 22a1 23a1 24a1 25a1 26a1

27a1 28a1 29a1 30a1 31a1 32a1 33a1 2a2 3a2 4a2

5a2 6a2 7a2 8a2 9a2 10a2 11a2 12a2 13a2
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We have considered 200–1200 renormalized states m per
active subsystem. Each calculation is converged with respect
to the number of microiteration steps. For the singlet calcu-
lation, a level shift was applied according to Eq. �9� in order
to obtain pure spin states. In Table IV, the DMRG calculated
energies are shown in comparison to CASSCF and CCSD�T�
results.

The DMRG energy difference of the singlet and triplet
states is monotonically converging with the number of states
m. Already for m=200 states, the relative energies are essen-
tially converged, especially in view of the general spread of
such results obtained with other quantum chemical methods
as highlighted by the data given in Table IV. The total ener-
gies, however, are not fully converged and even change in
the largest DMRG calculations from m=800 to m=1200.
This is an important result as it demonstrates that one may
obtain reliable relative energies from DMRG calculations
even if the total energy is not fully converged with respect to
the number of renormalized system states m. Of course, also
the relative energy is not fully converged, but its changes are
below 1 kJ mol−1—as our calculations show—and are thus
below the accuracy needed for chemical purposes.

The restriction of DMRG to a small number of m basis
states is, in principle, comparable to the restriction to certain
excitations in CI and CC models that lead to the CISD,
CISDT,…, and CCSD, CCSDT,…, models, respectively. But
in the case of DMRG, the restriction of the basis defined by
the size of m always features the DMRG optimization con-
dition, namely, that the reduced-dimensional space in which
the total wave function is represented obeys a least-squares-
fit condition by virtue of the renormalization procedure. The
comparatively small number of m basis states must not be
confused with electronic configurations as each of these
DMRG basis states represents a FCI-type expansion into all
electronic configurations constructable within the active
space chosen.16 Hence, one may obtain reliable relative

DMRG energies with comparatively moderate computational
cost since the total electronic energy does not need to be
fully converged with respect to m.

Compared to the CASSCF results, the total DMRG en-
ergies for both the singlet and triplet states is much lower,
which is due to the larger active space. Single-reference
CCSD coupled-cluster calculations carried out by Horný
et al.52 yield a vertical energy difference of −95.5 kJ mol−1

comparable to the CASSCF energy difference of
−98.9 kJ mol−1. The DMRG data, however, show that the
complete active space in the CASSCF calculation was not as
large as it should be since the DMRG vertical excitation
energy converges to −73.0 kJ mol−1. Then, inclusion of the
perturbatively treated triples excitations in CCSD�T� �Ref.
52� increases the absolute value of the CCSD energy gap and
yields −151.5 kJ mol−1. But as already mentioned above, the
relative vertical energies obtained with all methods differ
very much and the accuracy of the single-reference CCSD�T�
for this multireference case is not clear. Unfortunately, there
are no experimental results available for the vertical excita-
tion energy from the singlet to the triplet state. In any case,
the DMRG result may be considered as a converged CAS-CI
result, which is lacking contributions from dynamic correla-
tion effects.

Although we have considered two small transition metal
molecules so far, DMRG is, of course, also able to treat
larger complexes because the computer time determining in-
gredient is the number of active orbitals rather than the num-
ber of atomic nuclei in the molecule. Hence, molecular or-
bitals located mainly on spectator ligands can easily be kept
frozen in a DMRG calculation. We will encounter such larger
molecules in the next section.

IV. RELATIVE ENERGIES OF DINUCLEAR COPPER
CLUSTERS

After having demonstrated the capabilities of DMRG for
the spin state problem in transition metal chemistry, we now
consider the question of a reliable calculation of relative en-
ergies on a given potential energy hypersurface of the same
total spin. Since DMRG is ideally suited for the calculation
of electronic structures that require huge active spaces even
for a qualitatively correct description of the ground state
wave function, we choose transition metal clusters with two
copper atoms and two bridging oxygen atoms. As mentioned
in the Introduction such dicopper clusters have been recently
investigated by Cramer et al.27,28 and were found to be chal-
lenging systems for all electronic structure methods.

We should also note that these dicopper complexes and
their reliable quantum chemical treatment are of tremendous
importance in coordination and bioinorganic chemistry–
which was the starting point for the work of Cramer
et al.27,28 Activation of dioxygen is mediated by copper-
containing metalloproteins such as oxyhemocyanin and
oxytyrosinase.53,54 There exist several reviews on dicopper-
oxygen complexes55–57 which play an important role as cata-
lysts and in active centers of enzymes. Usually, such di-
nuclear complexes are studied within the framework of
broken-symmetry DFT. But in view of the fact that the ap-
proximate nature of present-day density functionals prohibits

TABLE IV. Performance of DMRG in comparison to CASSCF and DFT for
lowest lying singlet and triplet spin states of the NiCO molecule employing
a cc-pVTZ basis set and 16 active natural orbitals from the CASSCF calcu-
lations. The DMRG vertical excitation energies were obtained for the same
setup but with 39 active natural orbitals in the DMRG calculations. Coupled
cluster results have been taken from Ref. 52. Note that Ref. 52 only provides
the total energy of the triplet state for an adiabatic excitation. The adiabatic
excitation energies are −50.9 kJ mol−1 for CCSD/ANO-TZ and
−115.2 kJ mol−1 for CCSD�T�/ANO-TZ.

Method Esinglet�Eh� Etriplet�Eh� 	E�kJ mol−1�

DMRG�m=200� −1619.871 519 −1619.845 027 −69.6
DMRG�m=400� −1619.881 770 −1619.854 491 −71.6
DMRG�m=600� −1619.886 757 −1619.859 160 −72.5
DMRG�m=800� −1619.889 232 −1619.861 482 −72.9
DMRG�m=1200� −1619.891 536 −1619.863 724 −73.0

CASSCF�18,16� −1619.856 677 −1619.819 003 −98.9
DFT/BP86 −1622.022 509 −1621.951 771 −185.7
DFT /B3LYP* −1621.377 705 −1621.321 455 −147.7
DFT/B3LYP −1621.608 140 −1621.557 320 −133.4
CSD/ANO-TZa −1620.402 54 −95.5
CCSD�T�/ANO-TZa −1620.475 16 −151.5

aReference 52.
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a systematic improvement of the results obtained, broken-
symmetry studies are affected by a high degree of uncer-
tainty when it comes to the assessment of the reliability of
the results. Also, accurate ab initio reference data are lacking
and DMRG may provide a way out of this dilemma.

Two main motifs of metal-containing cores
containing two copper ions were synthetically
characterized, the bis�
-oxo� �Cu2�
-O�2�2+ �1� and
the peroxo �Cu2�
-�2 :�2-O2��2+ �2� cores.58 Cramer
et al.59 examined the interconversion of the model
compounds 
��NH3�3Cu�2�
-O�2�2+ �3� and

��NH3�3Cu�2�
-�2 :�2-O2��2+ �4� using multireference
second-order perturbation theory �CASPT2� with eight elec-
trons in eight orbitals active space. They found that the

-�2 :�2 peroxo form is slightly favored by electrostatic in-
teractions but both isomers are almost equal in energy and
that the energetical barrier for their interconversion is small.
This was also experimentally concluded by Tolman.60 Due to
the flat potential energy surface along the interconversion,
the ability of the dicopper-dioxygen isomers to rapidly
equilibrate was obvious and documented by Mahapatra
et al.61 In Fig. 1 the structures of the four clusters 1–4 are
depicted.

The interconversion pathway between the 
-�2 :�2 per-
oxo and bis�
-oxo� isomers, where each copper ion is
equipped with three NH3 ligands, was discussed in a study
by Flock and Pierloot.62 After comparing the performance of
DFT/B3LYP and CASPT2 on the two isomers, they reported
that broken-symmetry DFT calculations are not able to cap-
ture the most important correlation effects in the bis�
-oxo�
structure and that CASPT2 reveals an intrinsic stabilization
of the 
��NH3�3Cu�2�
-O�2�2+ compound. The huge differ-
ence between the results of the two isomers obtained by
DFT/B3LYP and CASPT2 was due to varying nondynamical
and dynamical correlation effects along the isomerization
pathway. Based on their findings, they concluded that the
presence of the 
��NH3�3Cu�2�
-�2 :�2-O2��2+ structure in
respiratory proteins must be traced back to the presence of
bulky capping ligands or to electrostatic solvent effects. In
the work of Rode and Werner63 the two isomers were rein-
vestigated using a localized orbital description and multiref-
erence configuration interaction with a Davidson correction
�MRCI+Q� method.63 It was claimed that CASPT2 strongly

overestimates the correlation effects. MRCI+Q predicts the

-�2 :�2 peroxo structure to be favored, which is in qualita-
tive agreement with DFT/B3LYP and x-ray experiment for
hemocyanine.64,65 On the other hand, DFT/B3LYP seems to
stabilize the biradical 
-�2 :�2 peroxo isomer too much. This
effect depends approximately linearly on the amount of exact
exchange in the density functional. A couple of years ago, we
proposed to scale the amount of exact exchange in the ex-
change density functional down to at least 15%,32–34 which
became known as the B3LYP� functional. Indeed, the
DFT /B3LYP� calculations in Ref. 63 turned out to be in
good agreement with the MRCI+Q results. Then, Cramer
et al.27,28 performed another study on the isomerization path-
way of the 
-�2 :�2 peroxo and bis�
-oxo� dicopper cluster
applying a wide variety of theoretical models with special
emphasis on the problem of maintaining a balanced descrip-
tion of rapidly changing dynamical and nondynamical elec-
tron correlation effects and a varying degree of biradical
character. A qualitatively correct description of the relative
energies compared to experimental results55 is achieved by
completely renormalized coupled cluster and surprisingly by
pure density functional theory. Hybrid density functionals
underestimate the stability of the bis�
-oxo� form by almost
a factor of 2. Single-root CASPT2 overestimates the stability
of the bis�
-oxo� form and even gives a qualitatively wrong
result �both in comparison to MRCI calculations�, as Rode
and Werner have already noticed. Selected results of these
studies relevant to this work have been collected in Table V.

Our goal is to reinvestigate the relative energies of the
�Cu2�
-�2 :�2-O2��2+ and �Cu2�
-O�2�2+ cores as well as
that of the 
��NH3�3Cu�2�
-�2 :�2-O2��2+ and

��NH3�3Cu�2�
-O�2�2+ clusters and to show that the DMRG
algorithm is capable of handling a varying degree of dynami-
cal and nondynamical correlation effects to predict qualita-
tively correct energies.

A. Qualitative picture of the electronic structure

It is instructive to first study a qualitative picture of the
electronic structure of the Cu2O2

2+ isomers in terms of an
extended Hückel theory molecular orbital �MO� diagram66

by the YAeHMOP program.67 We want to show that the active
space of a binuclear transition metal cluster cannot be

FIG. 1. Structures of the
�Cu2O2�2+ isomers �Cu2�
-O�2�2+ 1
and �Cu2�
-�2 :�2-O2��2+ 2 and
of the 
��NH3�3Cu�2O2�2+ isomers

��NH3�3Cu�2�
-O�2�2+ 3 and

��NH3�3Cu�2�
-�2 :�2-O2��2+ 4.
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handled using the standard CASSCF approach anymore be-
cause it cannot cope with all relevant active orbitals. A sub-
sequent CASPT2 calculation thus cannot be expected to cure
this defect. Figure 2 demonstrates that the relevant active
space for a correct description of the bis�
-oxo� �Cu2O2�2+

isomer is doubled with respect to the active space of a mono-
nuclear complex. The MO diagram is produced for two
CuO+ fragments and consists of the valence atomic orbitals
�AOs� of Cu and O which sum up to 26 MOs in total �for
clarity the MOs originating from the interaction of the oxy-
gen 2s orbitals are omitted in Fig. 2�.

A detailed analysis of the composition of the molecular
orbitals leads to the classification of the 26 MOs into three
segments marked by Fig. 2. Box A comprises MOs which
are predominantly composed of Cu 3d and O 2p AOs. Box A
may be subdivided again into three areas where the first one
contains six bonding orbitals as linear combinations of Cu 3d

and O 2p AOs. The next four MOs are essentially nonbond-
ing Cu 3dxy, 3dx2−y2, 3dxz, and 3dz2 AOs. The last six MOs
are then the antibonding linear combinations of Cu 3d and O
2p AOs. The two MOs in box B are mainly the Cu 4s AOs
with small contributions from the Cu 4pz and O 2pz AOs.
Box C comprises six MOs with Cu 4p and O 2p characters.
The extended Hückel theory calculation is sufficient to dem-
onstrate that in binuclear transition metal clusters the one-
particle active space must be doubled compared to the mono-
nuclear analog if one aims at a qualitatively correct
description of the electronic structure. In analogy of this ar-
gument, the active space of a trinuclear clusters would have
to be tripled, which would correspond to about 50 active
orbitals in this case.

Note also that Pierloot suggests the inclusion of a second
d shell in a multireference treatment to obtain accurate
results.68 This corresponds to an increase of the active space
of five MOs per transition metal. At present, DMRG is the
only method to handle active spaces of such dimension if a
CASSCF-type wave function is sought for.

B. DMRG performance for relative energies
on the same potential energy surface

All preparatory calculations were again performed with
the MOLPRO package.45 For Cu we employed the same basis
set as Cramer et al.,27,28 namely, the Stuttgart pseudopoten-
tial and associated basis functions �ECP10MDF�.69 The
atomic natural orbital �ANO� basis set of Pierloot et al. was
used for O.70 The basis set of Pierloot et al., however, did not
feature the �10s6p3d 	4s3p2d� contraction scheme for O as
reported in Ref. 27. For calculations on 1 and 2 with an
active space of 32 orbitals, which corresponds to entries 1
and 2 in Table VII, the ANO basis set of Pierloot et al. was
used with a �10s6p3d 	7s6p3d� contraction �denoted as BS1
in the following�. After publication of the reference to the
second contraction scheme,28 subsequent calculations were
performed also with this �14s9p4d 	4s3p2d� contraction of
the ANO basis set71 and are denoted as BS2 in the following.
For CASSCF and CASPT2 calculations on 3 and 4, we
chose the ANO basis set of N with the same contraction
scheme as used for O, whereas for H we applied a
�8s4p 	2s1p� contraction, belonging to BS2 as well. How-

TABLE V. Energy differences 	E12=E�1�−E�2� and 	E34=E�3�−E�4� in
kJ mol−1 from the work of Cramer et al. �Refs. 27 and 28� Rode and Werner
�Ref. 63� and Flock and Pierloot �Ref. 62�. A detailed description of the
orbitals included in the active space of the reference calculations can be
found in the corresponding literature. “bs” denotes a broken-symmetry so-
lution.

Method 	E12 	E34

CASSCF�8,8�a −15.6 74.0
CASSCF�16,14�a 1.0 124.7
CASSCF�8,10�b 97.1
CASSCF�8,10�c 97.9

CASPT2�8,8�a 27.2 −50.6
CASPT2�16,14�a 6.0 −71.9
CASPT2�8,10�b −48.1
CASPT2�12,14�b −53.1
CASPT2�8,6�c −51.1
CASPT2�8,10�c −42.8

MRCI+Q�8,6�c 48.6
CCSD�T�a 128.0 26.4
BLYPa 35.0
bs-B3LYPa 221.3 85.4

aReference 27.
bReference 62.
cReference 63.

FIG. 2. The molecular orbital diagram
as obtained from extended Hückel cal-
culations �Ref. 67�. The molecular or-
bitals for the interaction of the oxygen
2s orbitals at −33.47 and −32.27 eV
were omitted for clarity in the diagram
in the left panel. In the right panel, box
A is scaled up for a better presentation
of the molecular orbitals dominated by
the 3d orbitals on the copper atoms
and 2p orbitals of the oxygen atoms.
Boxes B and C contain the molecular
orbitals dominated by 4s- and 4p-type
orbitals of the copper centers, respec-
tively. Note that two orbitals in part B
are lying on top of each other with en-
ergies of −9.182 and −9.137 eV.
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ever, for the calculation of the one- and two-electron inte-
grals needed for the DMRG calculations on clusters 3 and 4,
the basis sets for N and H were reduced for feasibility rea-
sons to a DZP and DZ basis sets,72 respectively, which yield
a basis set designated as BS3 in the following.

To all CASPT2 calculations a level shift of 0.1 a.u. was
applied. In our cases, intruder states did not appear to pose
any significant problems. CASSCF canonical orbitals have
been used to speed up the CASPT2 calculations. All opti-
mized geometries have been taken from the supporting infor-
mation of Refs. 27 and 28. These structures were optimized
by Cramer and co-workers using the B3LYP density func-
tional.

Active spaces are defined in Tables VI and VII for the
CAS�16,14� and CAS�8,8� calculations as well as for the
calculation of the one- and two-electron integrals. CASPT2
and the corresponding CASSCF calculations always em-

ployed the same active spaces. For the DMRG calculations,
the active spaces 1-5 in Table VII were chosen. The integrals
were computed with the MOLPRO package45 from natural or-
bitals generated from CASSCF calculations.

In the DMRG calculations, we have employed active
spaces of two different sizes consisting of 32 and 44 active
orbitals, respectively, and considered 32, 64, 100, 200, 400,
600, 800, and 1200 DMRG states. Up to 600 microiterations
were required to achieve convergence of the energy. For all
calculations, a level shift was applied in order to obtain pure
singlet spin states as described above.

The relative energies of the �Cu2�
-�2 :�2-O2��2+ and
�Cu2�
-O�2�2+ cores as well as of the

��NH3�3Cu�2�
-�2 :�2-O2��2+ and 
��NH3�3Cu�2�
-O�2�2+

compounds are reliably produced by the DMRG algorithm
for various numbers m of renormalized DMRG states and for
different active spaces. The energy values for the active
spaces 1-4 for structures 1 and 2 and for the active space 5
for 3 and 4 converge with increasing number of DMRG
states. From Tables VIII–X it is apparent that DMRG calcu-
lations employing 32 DMRG states are not sufficient to ob-
tain qualitatively correct energies. Note that the DMRG cal-
culation for 2 using 200 DMRG states in active space 1 in
Table VIII is an outlier and potentially trapped in a local
minimum. This can be circumvented by starting the calcula-
tion by a different number of DMRG states and after a
couple of sweeps switch back to the desired number of
states.

To demonstrate the effect of adding random noise15,19 to
the reduced density matrix for the active subsystem �com-
pare the discussion for CoH above�, we reconsidered the
DMRG�m=400� calculation of Table IX with CAS�32,44�

TABLE VI. Active spaces for the CASSCF calculation for the 
-�2 :�2

peroxo and bis�
-oxo� �Cu2O2�2+ cores in D2h symmetry �top�. Active
spaces for the CASSCF calculation for the 
-�2 :�2 peroxo and bis�
-oxo�

��NH3�3Cu�2O2�2+ molecules in C2v symmetry �bottom�. Doubly occupied
orbitals in the Hartree-Fock reference determinant are marked in bold face.

Method Active space for 1 and 2

CAS�8,8� 7ag 8ag 4b2u 5b2u 5b1u 6b1u 2b3g 3b3g

CAS�16,14� 5ag 6ag 7ag 8ag 4b2u 5b2u 6b2u 3b1u

4b1u 5b1u 6b1u 2b3g 3b3g 4b3g

Method Active space for 3 and 4
CAS�8,8� 18ag 19ag 11au 12au 17bu 18bu 10bg 11bg

CAS�16,14� 17ag 18ag 19ag 10au 11au 12au 13au 16bu

17bu 18bu 9bg 10bg 11bg 12bg

TABLE VII. Active spaces CAS�n ,m� for the preparatory CASSCF calculation to produce the one-electron and
two-electron integrals for the subsequent DMRG calculations. Doubly occupied orbitals are marked in bold face
type. n and m are the number of electrons and orbitals, respectively. PG is an abbreviation for point group and
BS for basis set. The different set numbers are denoted by 1–5. While 1–4 are valid for 1 and 2, set 5 refers to
3 and 4.

n ,m PG BS Active space

1 26,32 D2h BS1 5–7ag 8–10ag 3b3u 4b3u 3b2u

4b2u 5–8b2u 2b1g 3b1g 3–5b1u

6–8b1u 2b2g 3b2g 2b3g 3–7b3g

1au 2au

2 26,32 D2h BS1 5–7ag 8ag 3b3u 4–6b3u 3b2u

4b2u 5b2u 6b2u 2b1g 3–5b1g

3–5b1u 6b1u 2b2g 3–5b2g 2b3g

3–5b3g 1au 2–4au

3 32,44 D2h BS2 3–7ag 8–12ag 3b3u 4–5b3u 2–4b2u

5–10b2u 2b1g 3–5b1g 2–5b1u 6–10b1u

2b2g 3–4b2g 2b3g 3–6b3g 2au

4 26,44 D2h BS2 5–7ag 8–10ag 3b3u 4–7b3u 2–4b2u

5–8b2u 2b1g 3–6b1g 3–5b1u 6–8b1u

2b2g 3–6b2g 2b3g 3–7b3g 1au

2–5au

5 26,44 C2h BS3 15–18ag 19–25ag 9–11au 12–19au 15–17bu

18–25bu 8–10ag 11–18ag
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active space 3 of Table VII and added 10−9 to the density
matrix of the active subsystem. The energy decreased to
−541.453 378 for the bis�
-oxo� isomer and to
−541.475 579 for the 
-�2 :�2 peroxo isomer. That is, the
energy is lowered in both cases but still far away from the
DMRG reference obtained for large m. Nevertheless, the
relative energy is 58.3 and thus remains almost constant
when compared to the DMRG�m=400� energy difference of
59.1 in Table IX. Therefore, we do not apply the recipe ad-
vocated by Chan and co-workers15,19 in the case of the cop-
per clusters and rely instead on a comparison of results ob-
tained for different values of m.

A comparison of the CASPT2 energies with those from
the literature listed in Table V shows a qualitatively correct
behavior in terms of energy differences, but the data show
rather large deviations from each other. This can be mainly
attributed to the different active spaces, which was already
discussed by Rode and Werner.63

An important point to be discussed in the remainder of
this section is the question whether the electronic energy of
the two isomers is described with a comparable or even equal
accuracy by the DMRG algorithm. Considering the incorpo-
ration of correlation effects in calculations on the bis�
-oxo�
and 
-�2 :�2 peroxo structures, one understands from the
CASSCF calculations that static electron correlation is more
easily captured for the 
-�2 :�2 peroxo cluster. Accordingly,
the energy difference between the CASSCF and CASPT2
energy values is larger for the bis�
-oxo� cluster. The fact
that the electronic structure of the bis�
-oxo� isomer is
dominated by dynamical correlation effects while that of the

-�2 :�2 peroxo isomer is dominated by static electron cor-
relation is also evident upon inspection of the CI coefficients
in the CASSCF�8,8� and CASSCF�16,14� calculations which
are given in Tables XI and XII. The wave function of the
bis�
-oxo� isomer is composed of more configurations with
intermediate coefficients compared to the 
-�2 :�2 peroxo
isomer. By contrast, the electronic structure of the 
-�2 :�2

peroxo isomer is mainly dominated by two configurations
with large coefficients representing the singlet biradical char-
acter. The same qualitative results were already reported by
Cramer et al.,27,28 Rode and Werner,63 and Flock and
Pierloot.62

The DMRG energies are qualitatively agreeing with the
reference energy values �see Table V�. Quantitatively, how-
ever, it is very difficult to have a reliable basis for compari-
son because even the most sophisticated method, MRCI+Q,
in Table V suffers from insufficiencies in the active space.
Since in the DMRG calculations on 1 and 2, the energy
difference is comparable for various active spaces, one may
assume that the results are reliable.

It is obvious from the absolute energy values of the

-�2 :�2 peroxo and bis�
-oxo� isomers, in comparison to
the CASSCF results with smaller CAS, that the total energies

TABLE VIII. Relative energies of 1 and 2 using basis set BS1.

Method Ebisoxo �Eh� Eperoxo �Eh� 	E �kJ mol−1�

Active space 1 of Table VII
DMRG�m=32� −541.402 182 75 −541.135 398 69 −700.4
DMRG�m=64� −541.432 367 69 −541.455 773 92 61.5
DMRG�m=100� −541.434 525 92 −541.460 221 22 67.5
DMRG�m=200� −541.413 739 57 −541.283 061 56 −343.1
DMRG�m=400� −541.441 626 18 −541.461 944 65 53.3
DMRG�m=600� −541.441 896 55 −541.462 061 95 52.9

Active space 2 of Table VII
DMRG�m=32� −541.042 734 14 −541.026 908 67 −41.5
DMRG�m=64� −541.434 307 98 −541.464 873 79 80.3
DMRG�m=100� −541.446 934 32 −541.468 405 01 56.4
DMRG�m=200� −541.448 185 60 −541.468 931 35 54.5
DMRG�m=400� −541.460 475 74 −541.481 894 88 56.2
DMRG�m=600� −541.460 876 73 −541.482 093 06 55.7

CASSCF�16,14� −541.456 670 16 −541.453 589 46 −8.1
CASSCF�8,8� −541.420 922 24 −541.375 104 16 −120.3
CASPT2�8,8� −542.096 581 32 −542.133 350 13 96.5

TABLE IX. Relative energies of 1 and 2 now using basis set BS2 and the
active spaces 3 and 4 of Table VII.

Method Ebisoxo �Eh� Eperoxo �Eh� 	E �kJ mol−1�

Active space 3 of Table VII
DMRG�m=32� −541.407 585 08 −541.222 570 67 −485.8
DMRG�m=64� −541.431 214 32 −541.459 130 90 73.3
DMRG�m=100� −541.439 834 93 −541.462 711 53 60.1
DMRG�m=200� −541.442 855 87 −541.466 755 73 62.7
DMRG�m=400� −541.452 932 51 −541.475 423 76 59.1
DMRG�m=600� −541.453 651 24 −541.475 670 83 57.8
DMRG�m=800� −541.453 984 02 −541.475 970 95 57.7
DMRG�m=1200� −541.454 426 75 −541.476 144 71 57.0

Active space 4 of Table VII
DMRG�m=32� −540.716 417 74 −541.060 185 09 902.6
DMRG�m=64� −541.456 375 19 −541.479 968 62 61.9
DMRG�m=100� −541.463 696 56 −541.494 473 08 80.8
DMRG�m=200� −541.466 781 25 −541.496 679 80 78.5
DMRG�m=400� −541.467 527 30 −541.497 171 27 77.8
DMRG�m=600� −541.467 720 85 −541.497 274 43 77.6
DMRG�m=800� −541.467 793 75 −541.497 314 24 77.5

CASSCF�16,14� −541.467 083 19 −541.477 448 01 27.2
CASPT2�16,14� −541.601 131 87 −541.598 756 46 −6.2
CASSCF�8,8� −541.431 345 46 −541.425 640 59 −15.0
CASPT2�8,8� −541.505 663 07 −541.510 177 90 11.9

TABLE X. Relative energies of 3 and 4 compounds using basis set BS3
active space 5 of Table VII for the DMRG calculations. The reference
CASSCF and CASPT2 calculations were performed using BS2.

Method Ebisoxo �Eh� Eperoxo �Eh� 	E �kJ mol−1�

DMRG�m=32� −878.938 533 93 −878.711 402 96 −596.3
DMRG�m=64� −879.029 696 54 −879.097 431 80 177.8
DMRG�m=100� −879.036 594 03 −879.100 232 65 167.1
DMRG�m=200� −879.041 286 09 −879.101 377 78 157.8
DMRG�m=400� −879.042 981 73 −879.101 746 90 154.3
DMRG�m=600� −879.043 261 96 −879.102 003 98 154.2
DMRG�m=800� −879.043 382 07 −879.102 043 41 154.0

CASSCF�16,14� −879.275 988 03 −879.317 291 78 108.4
CASPT2�16,14� −879.596 238 44 −879.632 776 38 95.9
CASSCF�8,8� −879.211 171 85 −879.240 512 25 77.0
CASPT2�8,8� −879.416 839 40 −879.318 770 56 −257.5
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of 3 and 4 are not fully converged. Nevertheless, the relative
energy is obviously converged. With this result we arrive at
the interesting observation that the relative energy of the dif-
ferent isomers can indeed be converged even if convergence
has not been achieved for the total energy yet. Actually, we
already observed this effect for the active space 1 in Table
VIII. Here, the total energy of the bis�
-oxo� isomer is
above the CASSCF�16,14� reference energy, although the
situation should be reversed because of the larger CAS in the
DMRG calculation. Nevertheless, the energy difference of

bis�
-oxo� and 
-�2 :�2 peroxo structures is already con-
verged, as can be seen by comparison with the results ob-
tained for the larger active space 2 given in the same table.
Note also that the total energies of the larger CAS are now
below the CASSCF�16,14� energies as they should be. The
question arises how the relative energy can converge if the
absolute energy is even found above a CASSCF energy with
smaller CAS. Apparently, the DMRG calculation failed to
pick up configurations in the renormalization step which are
essential for a converged total energy. However, these con-

TABLE XI. CI coefficients from the CASSCF�8,8�/BS2 and CASSCF�16,14�/BS2 calculations for 1 and 2 in
D2h symmetry. The occupation numbers indicate the occupation of the molecular orbitals in the corresponding
active space. The orbitals can either be empty �0�, doubly �2�, or singly occupied with spin up ��� or spin down
���. The occupation numbers belonging to the same irreducible representation are grouped together.

Structure

CASSCF�8,8�/BS2 CASSCF�16,14�/BS2

Occupation no. Coeff. Occupation no. Coeff.

1 20 20 20 20 0.739 770 5 2220 200 2220 200 0.721 680 5
20 00 20 22 −0.362 595 6 2220 000 2220 220 −0.390 463 0
00 22 20 20 −0.203 509 6 2200 220 2220 200 −0.226 757 7

20 �� 20 �� 0.174 855 8 2220 −+0 2220 +−0 0.168 362 6
20 �� 20 �� 0.174 855 8 2220 +−0 2220 −+0 0.168 362 6
20 �� 20 �� −0.143 040 3 2220 −−0 2220 ++0 −0.129 844 0
20 �� 20 �� −0.143 040 3 2220 ++0 2220 −−0 −0.129 844 0

20 02 20 20 −0.125 151 1 2200 020 2220 220 0.113 539 1
20 02 20 02 0.114 715 8 2220 020 2220 020 0.101 438 7
20 20 20 02 −0.106 171 1
00 02 20 22 0.106 030 9

2 20 20 20 20 0.784 061 8 2220 200 2220 200 0.815 489 1
20 00 20 22 −0.578 967 9 2220 000 2220 220 −0.500 445 9
00 22 20 20 −0.118 511 2 2200 220 2220 200 −0.116 441 4

TABLE XII. CI coefficients in the CASSCF�8,8�/BS3 and CASSCF�16,14�/BS3 calculations for 3 and 4 in C2v

symmetry.

Structure

CASSCF�8,8�/BS3 CASSCF�16,14�/BS3

Occupation no. Coeff. Occupation no. Coeff.

3 20 20 20 20 0.774 511 2 220 2200 220 2200 0.772 153 4
20 00 20 22 −0.217 491 7 220 2000 220 2220 −0.200 869 8
20 02 20 20 −0.188 642 6 220 2020 220 2200 −0.187 691 7

20 �� 20 �� 0.164 081 5 220 2−−0 220 +2+0 0.162 155 2
20 �� 20 �� 0.164 081 5 220 2+ +0 220 −2−0 0.162 155 2
20 �� 20 �� −0.145 524 0 220 2+−0 220 −2+0 −0.138 317 3
20 �� 20 �� −0.145 524 0 220 2− +0 220 +2−0 −0.138 317 3

20 20 20 02 −0.135 762 2 220 2200 220 0220 −0.127 972 5
00 22 20 20 −0.123 180 9 220 2+−0 220 2200 0.125 470 5
20 02 20 02 0.122 831 0 220 2− +0 220 2200 −0.125 470 5

20 �� 20 20 −0.121 286 5 220 2020 220 0220 0.115 933 1
20 �� 20 20 0.121 286 5 2+0 22−0 2+0 22−0 0.111 286 6
+0 2− +0 2− 0.115 348 7 2−0 22+0 2−0 22+0 0.111 286 6
−0 2+ −0 2+ 0.115 348 7 200 2220 220 2200 −0.106 939 4

4 20 20 20 20 0.689 527 9 220 2200 220 2200 0.736 046 6
20 00 20 22 −0.635 276 3 220 2000 220 2220 −0.624 539 9

20 20 20 �� −0.186 466 7 200 2220 220 2200 −0.112 007 7
20 20 20 �� 0.186 466 7
00 22 20 20 −0.117 340 2
00 02 20 22 0.106 033 9
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figurations are obviously not important for the relative en-
ergy. Or to put it in other words, the energy contribution of
the missing configurations would drop out upon subtracting
the total energies of both isomers. In the CI framework this
has been exploited to propose the so-called difference-
dedicated CI model,73,74 which aims at the construction of a
CI wave function that comprises only electronic configura-
tions relevant for an accurate energy difference.

Another peculiarity can be observed in Table VIII. This
is the fact that the DMRG energy of the 
-�2 :�2 peroxo
isomer is indeed lower than the energy from the
CASSCF�16,14� calculation �only the bis�
-oxo� energy is
above the smaller-CAS CASSCF�16,14� calculation�. This
demonstrates why the CASSCF�16,14� yields a wrong rela-
tive energy of the two isomers since the CAS�16,14� is too
small for the 
-�2 :�2 peroxo isomer, while it is appropriate
for the bis�
-oxo� cluster. On the other hand, the large-CAS
DMRG calculation collects all relevant electronic configura-
tions of importance for the total state �in terms of large CI
coefficients� in the renormalization steps �independent of the
fact that the total energy is not converged�. It is thus impor-
tant to provide a larger CAS from which DMRG will pick
the most important configurations so that balanced wave
functions can be optimized for the different molecular struc-
tures of the cluster isomers.

To conclude, the energy differences between the
bis�
-oxo� and 
-�2 :�2 peroxo structures can be reliably
calculated for a given active space. This indicates that a fur-
ther increase in the number of DMRG system states m—or
an increase of the active space—will not change the results
considerably. It is therefore possible to obtain an appropriate
approximation to the energy difference for a relatively small
number of renormalized DMRG system states. As expected,
the DMRG algorithm is able to provide even better results
than standard CASSCF calculations. However, as expected,
the DMRG wave function is not able to entirely account for
the dynamic electron correlation. This points to the need of a
subsequent perturbation theory treatment to enhance the per-
formance of the DMRG algorithm a posteriori.

V. CONCLUSION

In this work we have demonstrated the feasibility and
accuracy of large-CAS DMRG calculations for the calcula-
tion of relative energies of transition-metal-containing mol-
ecules. Many quantum chemical methods have difficulties to
describe transition metal compounds accurately. In the
DMRG approach, however, we can consider a larger number
of active orbitals in the calculation and, hence, molecules
with a large amount of static electron correlation are well
described by DMRG. In particular, we showed that the en-
ergy difference of states of different spin in CoH and NiCO
as well as the energy difference of two different oxo-bridged
copper complexes can be reliably converged within this
CAS-CI-type DMRG approach.

DMRG has been validated for molecules with a small
number of active orbitals, where CASSCF reference results
could be reproduced exactly. However, we can afford a con-
siderably larger number of active orbitals in the DMRG cal-

culations than accessible by the standard CASSCF approach.
Test calculations indicated that natural orbitals obtained from
a preceding CASSCF calculation often lead to a lower total
energy than Hartree-Fock orbitals in the DMRG calculations
�see also Ref. 8�, which is the reason why we have employed
natural orbitals in all calculations on transition metal com-
plexes.

DMRG total energies usually decrease monotonically
with an increasing number of DMRG states m; one notices,
however, outliers which converge to a local minimum with a
too high energy. The outliers do not pose a problem since
they can be easily identified and then excluded. For a better
understanding, future work will be devoted to the analysis of
these stationary points �local minima or saddle points� using
the decomposition of DMRG states into a Slater determinant
basis.16 In all our calculations, we have found that the total
energies as well as the relative energies converge to a certain
value when the number of DMRG states m is increased.
Even when the total energy values are not yet converged, the
relative energies are almost constant in view of the chemical
accuracy required, i.e., they are converged to about
1 kJ mol−1.

Analyzing our results, we propose the following protocol
for DMRG calculations on transition metal compounds.
Natural orbitals are obtained from a preceding cheap
CASSCF calculation, employing about 10–12 active orbitals.
These natural orbitals are used in the DMRG calculation; the
active space can easily comprise up to about 45 orbitals. As
in CASSCF calculations, the active space has to be selected
thoroughly, although the dependence of the result on the
choice of the active space is much smaller than in CASSCF
calculations and the selection is more straightforward since a
much larger number of orbitals can be considered. If it is
deemed necessary, several orbital orderings and adding ran-
dom noise to the density matrix of the active subsystem may
be checked in order to avoid convergence to a wrong local
minimum or saddle point. A series of calculations with an
increasing number of DMRG states m should be performed.
If these calculations show a systematic decrease of the en-
ergy with increasing m, the obtained result can be considered
reliable.

Every quantum chemical method has its particular
strengths, which defines its niche for computational chemis-
try. It could be demonstrated in this work that one niche of
DMRG will be the transition metal chemistry of open-shell
complexes and clusters. DMRG is capable of producing
CASSCF-type wave functions for electronic structures that
require active spaces much larger than those that can be
handled in a standard CASSCF calculation, i.e., for active
spaces with more than 18 electrons in 18 spatial orbitals.
Thus, DMRG can produce qualitatively correct large-scale
CASSCF wave functions and energies. In future work, we
plan to improve on these results by a subsequent perturbation
theory treatment within the DMRG approach in order to cap-
ture the missing contributions of dynamic correlation effects
in the same manner like CASPT2 improves on CASSCF
results if the latter yields an appropriate and well-balanced
reference wave function.
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