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DENSITY OF INTEGER POINTS ON
AFFINE HOMOGENEOUS VARIETIES

W. DUKE, Z. RUDNICK, AND P. SARNAK

Section 1. Let F be an affine variety defined over Z by integral polynomials
Z[x, x,]:

(1.1) V {x e C": f(x) O, j 1,..., v}

A basic problem of diophantine analysis is to investigate the asymptotics as T
of

(1.2) N(T, V)= {m V(Z): Ilmll T}

where we denote by V(A), for any ring A, the set of A-points of V. Hence I1" is some
Euclidean norm on R".
The only general method available for such problems is the Hardy-Littlewood

circle method, which however has certain limitations, requiring roughly that the
codimension of V in the ambient space A", as well as the degree of the equations
(1.1), be small relative to n. Furthermore, there are restrictions on the size of the
singular sets of the related varieties:

Vu {x e C": f(x) &, j 1,..., v}, u () e c".

We refer to [Bi] and [Sch] for a discussion of the restriction. Regardless of these
restrictions, one hopes that for many more cases N(T, V) can be given in the form
predicted by the Hardy-Littlewood method, that is, as a product oflocal densities:

(,) N(T, V) l--I l,(V)lUoo( T, v),
p <oo

where the "singular series" I-I,< #,(V) is given by p-adic densities:

# v(z/pz)
#(V) lira

k pk dim V

and/(T, V) is a real densitymthe "singular integral." Following Schmidt [Sch],
we say that V is a Hardy-Littlewood system if the above asymptotics (,) is valid.
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144 DUKE, RUDNICK, AND SARNAK

In complete generality, the above problem (1.2) is hopeless, and so one seeks to
solve it for a special but rich family of varieties. In this paper we consider varieties
defined via actions of linear algebraic groups and, in particular, such varieties defined
by invariant theory. In a recent paper [FMT] Franke-Manin-Tschinkel consider
the problem of counting rational points of height < T on flag varieties V P\G
where G is reductive (over Q) and P is a parabolic subgroup. In their case, the
corresponding Eisenstein series is the key tool in determining the asymptotics. In
the theory developed below, the full harmonic analysis of L2(G(Z)\G(R)) comes
into play.
We now formulate the main result. Let G be a linear algebraic semisimple group

defined over Q. Let p: G GL(W) be a rational representation of G defined over
Q, w being a Q vector space. Let wo W be a vector whose orbit V wop(G) is
Zariski closed. Then the stabilizer H c G of Wo is reductive and V is isomorphic to
H\G. It is this family of varieties that we investigate in connection with the basic
problem. The reason that the problem is at all approachable is that a fundamental
theorem of Borel-Harish-Chandra [B-HC] asserts that V(R) breaks up into finitely
many G(R)-orbits and, more surprisingly, V(Z) into finitely many G(Z)-orbits. Thus
the points of V(Z) are parametrized by cosets of G(Z).

For our purpose of studying (1.2), it suffices to fixate on one G(Z) orbit (9, say
(9 Wo G(Z) with Wo e V(Z). The stabilizer of Wo in G(Z) is H(Z) H G(Z), where
H is the stabilizer of Wo. The counting problem in question becomes

(1.3) N(T, (9) 1{7 e H(Z)\G(Z): Ilwoll T}I.

To state the main theorem we will need to make a further restriction, one which
is satisfied by many interesting examples. We say V(R) H(R)\G(R) is symmetric
if H(R) is the fixed point set of some involution z of G(R). Note that z need not be
a Cartan involution, and so we are not assuming that V(R) is a Riemannian
symmetric space. While Vol(G(Z)\G(R)) < , Vol(H(Z)\H(R)) need not be finite
as H need only be reductive. For this paper we will assume that

(1.4) Vol(H(Z)\H(R)) < .
This assumption can be removed by a refinement of these methods. Indeed, the basic
asymptotics below change by factors of log T if (1.4) fails.
We will usually assume that G is a Q-simple, connected Q-group, with G(R)

noncompact (see however Example 1.6). This is to guarantee that nontrivial spheri-
cal constituents of Lz(F\G) have matrix coefficients which decay at infinity (see
Theorem 2.6).
We normalize d9 on G(R) and dh on H(R) so that

(1.5) Vol(G(Z)\G(R)) Vol(H(Z)\H(R))= 1.

Note that such a normalization builds in the arithmetical constants involved in
volumes of fundamental domains.
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With this normalization we get a unique G(R) invariant measure d on V(R)
H(R)\G(R) satisfying

(1.6) do dh dO.

Let/(T) be defined by

(1.7) /(T) | dO.
Ilwo0 < T

Our main result is the following theorem.

THEOREM 1.2. Assuming V(R) is (affine) symmetric, we have

(1.8) N(T, (.9) I(T) as T .
Remarks

1.3. We will prove Theorem in the case that H c F\H is compact and G is
classical. The assumption that G is classical is imposed to avoid technical issues
in Lemma 2.7. Our proof of the general case (H c F\H noncompact) is very involved
as it requires a regularization of the period integrals of Eisenstein series. Since in
the meantime Eskin and McMullen have given a technically much simpler proof of
the theorem, we see no reason at this time to present our original proof of Theorem

in the case that H c F\H is noncompact. Because of its possible use in other
contexts, we nevertheless state without proof the general regularization of periods
of Eisenstein series (see Theorem 1.1 1).

1.3’. The assumption that V(R) be symmetric cannot be dropped since Eskin
has recently found a nonsymmetric example where (1.2) fails. See example (1.8) for
a nonsymmetric example where (1.2) holds.

1.4. Combining the asymptotics ofN (T, 60j) over the finite number of orbits gives
the asymptotics for N(T, V). The constants c coming up in Proposition 1.1 via the
normalization (1.5) are of considerable interest since the corresponding weighted
sum over the orbits gives one side of a "mass formula"/ la Siegel. Indeed, the other
side is supplied if V is a Hardy-Littlewood system. Theorem 1.2 may be used to give
a new proof of Siegel’s mass formula for rational quadratic forms or, what is the
same, that the Tamagawa number of an orthogonal group is 2 [ERS]. We also
find that many homogeneous affine V’s are Hardy-Littlewood systems or are not
far from being such.
We give some concrete examples of Theorem 1.2.

Example 1.5. The well-studied case of quadratic forms is included in the above.
Let

F(xl, xn) fox,xj
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be a nondegenerate integral quadratic form, whose signature over R is (p, q),
p + q n, pq v O. Let

W {xlF(x)= k}, k O.

W is a hyperboloid and is a symmetric space of the form SO(p 1, q)\ SO(p, q).
As long as vol(H(Z)\H(R))< oz, which certainly is the case if n > 4, then by
Theorem 1.2

(1.9) N(T, W) Ck.FTn-2

Ck.F is explicitly computable and is 0 if (and only if) there are no integral points on
Vk. The case of n 3 is instructive. Let

F(x, x2, x3) --x2 x2 + dx23, d>0.

Let

(1.10) V-- Vx {xlF(x) -1}.

V(R) is a one-sheeted hyperboloid, and the group G(R) SOo(1, 2) acts transitively
on V(R) with Wo (1, 0, 0) and stabilizer H(R)-SO(I, 1). H is the orthogonal
group of the form

(1.11) Q(X, y) --X2 + dy2.

if for on R 3 we choose

Ilxll 2 x21 + x22 + axe,
then

N(T,V)= r2(1 +an2)
Inl < T

where

r2(n) I{(x, y) Z2lx2 + y2 n}l.

In this case the asymptotics ofN(T, V) may also be deduced in an elementary fashion

N(T, V)
f T,
caT log T,

if d is not a square
if d is a square
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where ca > 0 [Sco]. The last dichotomy corresponds to exactly the cases, vol(H(Z)\
H(R)) being finite or not. Theorem 1.2 gives the first case and the modification
mentioned after (1.4) gives the latter.
Of course, for this example (1.5) the Hardy-Littlewood method works if n > 5

while the theory of 0-functions can also be used to analyze this case.

Example 1.6. Let V,,k={XMat,ldetx=k}, k:0. The group G*=
SL, SL, acts on V,,k by x(91,92)=O-lx92 Over C, l/,,k A\G* where
A {(9, 9)19 SL,} -SL, is the diagonal subgroup. It is the fixed point set
of the involution (91,92)" (92, 91). Thus V(R) is symmetric. The Euclidean norm
on V,, Ilxll 2 tr(txx)is invariant under K* SO(n) SO(n), which is a maximal
compact subgroup. Theorem 1.2 gives

(1.12) N(T, Vn,k) Cn,,T"2-"

where, if k p,...pr, then

Cn, k
7T, n2/2 k-in-l)

2
F (2)... (n)

(pJ+ 1)...(pflj+"- 1)

n2/2

-n+2)
(2)- (n)-x d] d 2... d-(,-1).

dl ’"dn=k

Note that N(T, V.,)just counts

(1.14) Z
SLn(Z)
< T

The latter, when n 2, is a quadratic equation and so falls into the previous
example. In this case it also corresponds to a non-Euclidean lattice point problem,
and the result and indeed our method, via non-Euclidean harmonic analysis, goes
back to Delsarte [D]. For lattice points in a non-Euclidean ball in hyperbolic spaces
see [LP], and see [Ba] for non-Euclidean balls in more general symmetric spaces
when the lattice F is cocompact.

Example 1.7. Let S,,k denote the space of symmetric n x n matrices of determi-
nant k :/: O. SL, acts on Sn, k by A’g tgAg. Then S,,k(R) is a union of symmetric
spaces SO(p, q)\SL,,(R) with p + q n, q even or odd depending on sign(k). Theo-
rem 1.2 yields

(1.14) N(T, Sn, k) dn,kTn(n-)/2
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This example generalizes easily to the variety of nondegenerate skew symmetric
matrices of order 2n and of fixed Pfaffian.

Example 1.8. Let IV, denote the vector space of binary forms of degree n > 3
(n 2 is again quadratic):

(1.15) IV, {f(x, y) aox" + axx"-ly + + a,,y"}.

SL2(C acts on W,(C) by linear substitutions and the stabilizer of a generic form is
finite. The corresponding orbits are closed and so are described by a finite number
of polynomials in the coefficients ao, a l, a,, these being generators for the ring
of invariants C[W,]sL2. On W,(R) define the Euclidean norm

(1.16) II(ao, ax, a,)ll 2 a2.
i=0

For an SL2(C orbit 60 c I4’,, let as usual

(1.16) N(T, 6o)- I{f e (gz: Ilfll r}l.

This example falls into the H\G setup with H finite; however H(R)\G(R) is not
(affine) symmetric so that Theorem 1.2 does not apply. We will prove the following
statement.

THEOREM 1.9.

N(T, (9),. CeT 2/n asT oe.

For n 3 the discriminant D(ao, al, a2, a3) aga + 18aoala2a3 4aoa
4a3a3 27a2a2 generates the ring of SL2 invariants. Thus the varieties we obtain
are

(1.17) V {(ao, al, a2, a3)lD(a) k}

and

(1.18) N(T, l/k) C T2/3

The constants Ce above, besides involving the usual arithmetical constants, also
involve the numbers

(1.19)
dx

Cy
If(l, x)l 2/"

see Section 4. Interestingly, CI is invariant under SL2(R but not SL2(C).
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In these examples of varieties defined by level sets of a homogeneous form F of
degree d in n variables, one expects heuristically cTn-d for the asymptotics. The
reasoning being that F assumes values in [-c’Td, cT] as m Z ranges in a ball
of radius T. Furthermore, there are order T such points and one expects each value
is assumed (roughly) equally often. This heuristic (up to factors of log T) is accurate
for Examples 1.5, 1.6, and 1.7, but (1.18) has an unexpectedly large number ofpoints.
The method of proof of Theorem 1.2 in principal also allows us to obtain a

remainder term. We have pursued this for the varieties V.k of Example 1.6.

THEOREM 1.10.

N(T, V,k)= #(T) + O(T---1/n+1)+") for all l > O.

For n 2, which is the classical case of the upper half-plane, our remainder term
of O(T 5/3) falls short of the best known remainder of O(T4/3) due to Selberg [LP].
We now outline the contents of the rest of the paper. In Section 2 we prove

Theorem 1.2. The problem is reduced to estimating the number of 7 G(Z) which
lie in a certain family of regions Rr in G(R). To do this one applies the spectral
theory of functions on G(Z)\G(R). For simplicity we assume that the Euclidean
norm on W satisfies

(1.20) wk w for k e K

where K c G(R) is a maximal compact subgroup 1. This a.ssumption can be re-
moved, and we will indicate how to do so at the end of Section 2. An important
issue is the study of the H-periods of G(Z)\G(R)/K eigenfunctions of the ring of
invariant differential operators (S) on S G(R)/K. Precisely, if4 is such a function,
let

(1.21) Cn(g) fn q(hg) dh

If this integral converges, as will be the case if 4 is a cusp form, thenn is a left H(R)
and right K-invariant eigenfunction whose asymptotics at infinity may be studied.
The corresponding integral, if ff is an Eisenstein series and H cu F\H noncompact,
often diverges and requires an elaborate regularization. We state the main result
that will be needed here.

Let P c G be a Q-parabolic subgroup with Langlands decomposition P NAM.
Let v Co(A) and a cusp form on M F\M, F G(Z). Let

(1.22) E,(g) (m(g))v(a(g)).
P F\F

In many examples, such a norm is unique (up to scalar multiples) and is the "natural" norm for the
problem.
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Fourier inversion gives

(1.23) Eo(g) (2z)-dimA fR )(2)E(2, b, g)ld21
e(,)=2o

where

(1.24) E(2, b, g)
e F nP\F

for 2 ea in the region of absolute convergence of the Eisenstein series (1.24).
Denote by Ca(H(R)\G(R)/K) the space ofeigenfunctions of the center (g) of the

universal enveloping algebra of G, with infinitesimal character 2 (al)/W (where
al Lie(A,), N,AK an Iwasawa decomposition of G(R)), which are left H(R) and
right K-invariant. Let f be the convex hull of {wplw W(G(R), A,)} where p is half
the sum of the positive roots. The general regularization reads as follows:

THEOREM 1.11. There are measures d/, j 1,..., v on a and meromorphic
functions E(g, 2), 2 a: such that

E(g) (E, 1) + = fE(g, 2)(2) d#)(2)

where E(g, 2) 6 Csjta)(H(R)\G(R)/K) for 2 6 supp(/s) and Re(Bs(2)) 6 f0 for 2
support #.

The measures d/s correspond to contour integrals of varying dimensions and
may be described explicitly. They arise from regularizing (1.21). As explained follow-
ing Theorem 1.1, we will not prove this regularization in general. Of course, when
H c F\H is compact, Theorem 1.11 is obvious by shifting contours.

In Section 3 we prove Theorem 1.10 and in Section 4, Theorem 1.9. In Appendix
we estimate certain integrals, and in Appendix 2 we prove a special case ofTheorem

1.11.

Acknowledoement. We would like to thank E. van den Ban, M. Burger, A. Eskin,
R. Howe, H. Schlichtkrull, and J. Silverman for their comments.

Section 2. In this section we prove Theorem 1.2. We assume H(R) is symmetric
and (1.5) holds. 60 is the G(Z) orbit Wo G(Z) in W.

Define the function Fr on G(R) by

(2.1) FT(g) XT(WoYg)
H(Z)\G(Z)

where Zr(w) is the characteristic function of Br (llwll T} in W. Clearly, we
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have

(2.2) Fr(Y9) Fr(9)

for G(Z); that is, Fr lives on G(Z)\G(R). Note that

(2.3) N(T, (.9)= Fr(e).

For O L(G(Z)\G(R)) we have

xr(WoO)(o) dO
(Z)\G(R)

flf(il)\G(l)
’T(WoO) fl.l(Z)\H(ll)

’l(ho) dh dO"

Thus

(2.4) (Fr, ) fn ;tr(Wo0)Oa(0) dO
(!1)\6(11)

where

(2.5) d/n(g) fn d/(hg) dh
(Z) kH(II)

is the H-period of O, which is plainly left H(R)-invariant,
Applying (2.4) to and using Fr > 0, we have

(2.6) IIFrllL =/(T).

In general, this is all we can say about Ft. That is, in general, it need not be in L2

(see Appendix 2 for an example). It is this that makes the spectral analysis of Fr
delicate. Set

(2.7) Fr Fr.
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We may view fir as a probability measure on G(R)\G(R), and in view of (2.3)
Theorem 1.2 will follow from the following theorem.

THEOREM 2.1. fir(g) "* for each fixed g.

We can rewrite Fr in the form

(2.8) Fr(9) Z 1= Z 1.
m m
mg Br m Brg-

LEMMA 2.2. Let L = G(Z)\G(R) be compact. Then there is x x(L) > 1 such that
for 91, 92 e L and T >

Moreover, as L -, {e}, x(L) 1.

Proof. Since G acts linearly on IV, it is clear that for L compact there is x(L)
such that

and that x as L -, {e}. The lemma follows immediately.

LEMMA 2.3. In order to prove Theorem 2.1, it suffices to prove thatr in the
w-star topology, that is

(2.9)
(z)\((R)

for any fixed O Co(G(Z)\G(R)).

Proof. Fix go e G(R). Let , > 0 be an approximation to the identity near Oo.
Precisely,q e Coo(G(Z)\G(R)), otz)\ot) q(O) do and @, 0 outside a compact
neighborhood U, of 9o where U, { 9o } as e 0. Applying Lemma 2.2, we have

(x T._._)(2.10) [ do./(T) .
Now by Appendix 1, we have

./(x, T) /(x T)b(x,) < lim n,-.#(T) lim sup p(T) < a(x)

with a(x), b(x) as x 1, while by assumption

(F,T,) (1, q,) 1.
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Thus letting T ov in (2.10) yields

limsup Fr(go) < 1.

In a similar way, one deduces that

lim inf Fr(go > 1,
T-*oo

completing the proof of Lemma 2.3.

One further remark: Since IIFll 1, it clearly suffices to check (2.9) for a dense
set of functions in Co(G(Z)\G(R)). We will do so for certain eigenfunctions of the
center of the universal enveloping algebra. At this point we assume that (1.20) holds,
and so FT(g) satisfies

(2.11) FT(gk FT(g), for k K.

This assumption can easily be relaxed to K-finite functions and hence to deal with
the general on W. 2

Thus fit LI(G(Z)\G(R)/K), and we may stick to ff’s on the same space. The k’s
we consider are eigenfunctions of the center of the universal enveloping algebra
(9). The infinitesimal character of such an eigenfunction corresponds to a point
/ a/W where NAK G(R) is an Iwasawa decomposition, a Lie(A). Since
G(Z)\G(R) need not be compact, we need to include certain Eisenstein wave packets
in order to get a dense set. Precisely, for each Q-parabolic subgroup P of G, let

(2.12) P NeAeMe

be a Langlands decomposition of P. For v Co(Ae) and b a cusp form [HC] on
Me F\me/me K, F G(Z), let

(2.13) eev(b, g) b(me(yg))v(ae(g)).
rP \r

This is a finite series and the resulting function eEv Co(G(Z)\G(R)/K). According
to standard convention, P G is also allowed, in which case the above function is
just a cusp form on G(Z)\G(R)/K.

LEMMA 2.4. The functions eEo(ck, g), as P runs over parabolics, v e Co(A), and q
runs over cusp forms on Me F\Me/K c Me, are dense in Co(G(Z)\G(R)/K).

Proof. Let v be a measure of finite (total) variation on G(Z)\G(R)/K. We must
show that, if (v, pEo(b, .)) 0 for all P, v, b, then v 0.

Theorem 2.6 below holds for K-finite functions, while the rest of the argument can be carried out
along the lines of 4.
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Let k,(z, w) be a point pair invariant on S x S [Se] of compact support which as
0 is an approximation to the identity. Let

(2.14) K,(z, w)= k,(z, w)
G(Z)

and

f(z) f K,(z, w) dv(w).
(z)\(lt)

Then f,(z) C(G(Z)\G(R)/K) and is of moderate growth. Moreover,

(2.16) (f,) (v, if) as e ---, 0

for all Coo(G(Z)\G(R)/K). It is easy to see that, for each e, f satisfies the same
hypothesis as v, i.e.

(2.17) <f, eEv(b, ’)> 0 for all P, v, b.

The last implies f 0 by a theorem of Langlands (see [HC, Theorem 4]). Hence
in view of (2.16), v 0 as needed.

This lemma allows us to deal with cuspidal Eisenstein series only. This is an
important technical point since we avoid the difficulties associated with residual
Eisenstein series. Indeed, those are needed for L2-decompositions, which is not
appropriate in our problem since fir is not necessarily in L2.
Our analysis shows that it suffices to prove the following proposition.

PROPOSITION 2.5.

(FT, eE,,(rk, ")) --, ( 1, eEo(rk, "))

for all such E’s.

We begin by proving this when P G, i.e. q is a cusp form on G(Z)\G(R)/K. If
G(Z)\G(R) is compact, this case would be the whole story. ("Cusp form" then means
an eigenfunction.) The function b (as well as the general Eo(k, ")) is rapidly
decreasing in the cusps of G(Z)\G(R) [HC], so that calculation (2.4) applies and
yields

(2.18) (Fr, b) l ZT(WOO)H() dO./J(T) JH

Also from (2.5) (which converges) qH(g) is an eigenfunction of (g) and is both left
H(R) and right K-invariant. Denote by C^(H(R)\G(R)/K) the linear space of such
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eigenfunction whose infinitesimal character is/ alW, Now we use heavily the
fact that H(R) is symmetric. This allows one to conclude [FJ] that C^(H(R)\G(R)/K)
is finite-dimensional. Let f c a be the convex hull of {wplw W} and p e al is
half the sum of the positive roots. Let fo be its interior. We will need the following
theorem due to Rudnick and Schlichtkrull [RS].

THEOREM 2.6.
in H(R)\G(R).

If Re(A) fo and C (H(R)’\G(R)/K), then (0) " 0 as 0 o0

Returning to (2.18), if is a (nonconstant) cusp form on G(Z)\G(R)/K with
eigenvalue/k, then since appears in the L2 spectrum, the Howe-Moore theorem
[HM], [BW] implies that Re(A) e t2 and hence that

(2.19) (0) ---* O, as 0 oo in H(R)\G(R).

This is where we use the assumption that G is a Q-simple connected Q-group; this
ensures Howe-Moore for nontrivial spherical constituents ofL2(F\G). in the setting
of Example 1.6, where F\G FI\G1 x FI\G1, and H A G is the diagonal
subgroup, we further need to note that, although there are representations in
L2(F\G) whose matrix coefficients do not decay at infinity, the only irreducible
nontrivial representations with nonzero H-periods are of the form H n (R) 1,
with rc an irreducible unitary representation of G1, and so except for the constants,
all eigenfunctions for whichn . 0 have their Langlands parameter in fo and so
satisfy (2.19).
From (2.18)it follows that (fiT, )0 (1, ) asT oo as needed. We note

that, if/k e ia/W, that is belongs to the tempered spectrum (which is what is
expected for most cusp forms by the general Ramanujan conjectures; see [BLS],
[Sa]), then the result of Rudnick-Schlichtkrull mentioned earlier ensures that, for
e>O,

CH e L+*(H(R)\G(R)).

Thus

(Fr,) O(#(T)m+*).

That is, these frequencies contribute at most the square-root of the leading term!
We now deal with the more general eEo(, #). One cannot directly deal with the

Eisenstein series (1.24) since (2.5) may not converge. Instead, we apply (2.4) to
eEv(, g) and use the regularization Theorem 1.11. This gives

(2.20)
(Fr, Ev(b, .) (Eo(, .), 1)

+= - .\.
Zr(WoO)E(O, A)dO e(A)d(A),
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The integrals are all absolutely convergent, a fact which follows from (/) being
rapidly decreasing in Im(/), while E(/,/) is polynomially bounded in im(/).
Now for A fixed in the support of

P
0

,u(’/") .\

as T . The reason is that, by Theorem 1.11, E(9,/) Cnj^)(H(R)\G(R)/K)
with Re Bj(/) e fo, and so Theorem 2.6 applies. Thus the result that

(Fr, ,Eo(q, ")) -* (1, eEo(o, ’))

follows from the convergence theorem and the following lemma [Ru]:

LEMMA 2.7. Assume G is classical. Then for C a large compact set in G(R), there
is a constant c such that, for Re(A) f and an C^(H(R)\G(R)/K),

I(g)l < c sup I(g,)l.
gteC

Section 3, In this section we prove Theorem 1.10. We do so for ,1
{ (x0)ldet xo }, G SLy. The more general case of ,k is dealt with in a similar
way by considering each of the F SL,(Z) orbits on matrices of determinant k,
separately. For . we prove the following more general theorem.

THEOREM 3.1. Let n > 3 and F c SL.(R) be any lattice. Set

N(T, I")=
I1’ , r

where I1011 tr(t#0). Then

N(T, F) =/(T) + for all l > O.

Here/(T) as in (1.7) is defined to be

Iloll T

Its asymptotics are described in Appendix 1.
The above theorem is not valid for n 2 since F\SL2(R) may have small

eigenvalues IRa]. However, if F SL2(Z) or a congruence subgroup thereof, then
the result is true with the remainder term of the form 0(T4/3), a result due to Selberg
[LP].
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We turn to the proof of Theorem 3.1. Here G SLn(R), K SO,(R), and G/K is
the Riemannian symmetric space of positive definite matrices of determinant 1.
What we exploit here over and above the techniques of the last section is the
multiplicity one of zonal spherical functions. That is, for an/ a, C^(K\G/K) is
exactly one-dimensional [Se]. In fact, its unique member if^(0) which is 1 at = e
is given by

(3.1) ^ (a) fr e( ^ +)n() dk

where p is as usual and elements of a {trace zero diagonal matrices} are denoted
by H.

Let kr be defined on G(R) by

1, if I111 T
(3.2) kr()= O, otherwise.

Note that kr(kl gk2) kT(g), kl, k2 K. Set

(3.3) KT(g,h) kT(a-h).
,.F

So

(3.4) N(T, F) Kr(l, I)

and

(3.5) KT(/lgk2, ))2hk2) KT(g, h)

for /, )2 I", kl, k2 K.
We examine the precise behavior of Kr(x, y) near (I, I) in the space G/K x G/K

of positive definite matrices of determinant equal to 1.
Define Iloo on G(R)by

(3.6) Ilbll 2 2max(tbb)00

Let

(3.7) B {x ’aa: Ilgllo < 4- e, IIg- Iloo < 1 /

LEMMA 3.2. For x, y B,

KT( +O-2(X, y) < KT(I, I) <. Kr( +,)(x, y).

This will follow from the next lemma.
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LEMMA 3.3. For b, c G(R)

bcll Ilblloo Ilcll and bcll

Proof. Let 0 < 21 < 22 <’" < 2.n be the eigenvalues of tcc and 0 < 2’ .%< 2 <
< 2’, those of’(bc)bc. We first show that

(3.8) 2’ Ilbll 2 &, i= n00

Write bb ’k dk where k On(R) and d > 0 is diagonal. Define

z ’k(llbll 2I d)k > 0

by (3.6). But

Ilbll 2’occ ’c(’bb + z)c ’(bc)bc + ’czc.

Since cc > 0, we deduce (3.8).
Now we can write the singular value decomposition of c klak2 where a is

diagonal, Of course Ilcll Ilall. Further, Ilall defines a norm on R which depends
only on the absolute values of the components of a. Thus

Ilbcll 11(2’x) x/2, (2’)x/211

Ilblloll(2/2, 2/2)11

Ilblloollcll by (3.8).

The second inequality follows from the first together with the obvious fact that
II’b = b II.
Note 3.4. The above proof, as well as what follows, would apply just as well to

any norm on G(R)satisfying

Ilkxgk211 Ilgll, kx, k2 K.

We turn to the proof of Theorem 3.1. Choose @ C(F\G(R)/K) supported in Be
and such that @ 0, r\ota)/r @(x) dx 1. According to Lemma 3.2,

(3.9) H(T(I + e)-2) < N(T, F) < H(T(I + e)2)

where

(3.10) H(T)

r’\o(ll)/K

d/(x)@(y)Kr(x, y) dx dy.
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On the other hand, H(T) can be expanded in the spectrum of L2(F\G(R)/K). In this
case it would be in terms of cusp forms, unitary Eisenstein series as well.as residual
Eisenstein series [L]. However, (3.10) is a purely L2-statement, and so one can
simply appeal to the abstract spectral theorem for the selfadjoint ring (G(R)/K) to
get

(3.11) H(T) f,, hr(A)l(A)l d(A)

where a c az denotes the spectrum of L2(F\G(R)/K), hr(/k) is the Selberg trans-
form

(3.12) hT(A) b^ (g)kT(g)

and (A) is the spectral transform of q(O). In particular, we have Parseval’s formula

(3.13)
r

I(g)l do f,, I(A)I da(A)"

Note that (3.11) uses the multiplicity-one theorem for zonal spherical functions. In
(3.11) we separate out the main term which comes from the constant function--that
is, from/ p in a.

(3.14) H(T) hT(P) + Rem(T)

where

(3.15) Rem(T) J" hr(A)l(A)l z d(A).

Of course,

(3.16) hT(p) f kT(g do #(T).
(It)

We know that #(T) O(T"2-"); hence it follows from (3.9) and (3.14) that

(3.17) N(T, F)= #(T) + O(eT"2-" + Rem(T)).

To estimate Rem(T) we need to know a little about the spectrum a, which we
note is contained in the unitary spherical dual of SL,(R). From the classification due
to Vogan IV] (see also rSca]), one can show that, for/ a:/W,/k # p, and k^(9)
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the corresponding spherical function, we have uniformly

for p > 2(n- 1).
Thus for/ a,/ # p, we have

(3.19) IhT(A)I < IkT(a)l dy Clip < (#(T))i/qC/’

where lip + 1/q and p > 2(n 1) is fixed. Thus from (3.15)

(3.20) Rem(T) << (#(T))

From (3.13)

I,(A)I 2 dA < fr I,,(a)l - dg
O(,1-(n+l)n/2).

Since k is an approximation to the identity on an (n(n + 1)/2- 1)-dimensional
space, it can be chosen to be of L2-norm as above. This gives

Rem(T) <<, Tn2-(3/2)n+tl81-n(n+l)/2

for any r/> 0 (using p > 2(n 1)). Hence returning to (3.17),

N(T, F) =/(T) + O,(eT"2-" + Tn2-(3/2)n+’e1-n("+1)/2).

To minimize the remainder choose

e, T-z/(n+)

and we obtain Theorem 3.1
As mentioned before, the above arguments are exactly adapted to deal with other

K-bi-invariant norms. For example,

2IIg tr((gg)

arises naturally from the action of G SL, on positive definite symmetric matrices
sym/ (n). We obtain in this way the following theorem.
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THEOREM 3.5. Let

N(T) Bssym .,Z
detB=k
IIBII < T

where IIBll 2 tr(tBB); then

N(T) =//i(T) + O.(T"-")/2-1/z"+l)+") forl > O.

# (T) Cn,kT"-"/2

for a suitable nonzero constant Cn. k (assuming of course that k > 1).

Section 4. Our aim in this section is to prove Theorem 1.9 and some related
results. This case involves G SLz and H finite. We hope the method below will
form a basis for the general case when H(Z) is finite.
We begin with some results concerning lattice points in regions in

hyperbolic plane. Let F < SLz(R) be a lattice and let

(4.1) N(F, R) I( rld(i, i) < R}I

where d(z, w)is the non-Euclidean distance. (Of course, one could consider d(yz, w)
for z, w 6 as well.) It is well known (Delsarte [D] in the cocompact case and
Selberg [LP] in the finite-volume case), and is also a special case of Theorem 1.2,
that

(4.2) N(F, R)
Vol(F\’)

The usual argument leading to this may easily be extended to include the case of
lattice points in sectors. That is, if(r, 0) are geodesic polar coordinates about and

(4.3) N(I’, R, I) I(, lrld(i, i) R, O(,i) l}l

for I [0, 2zr], then

(4.4) N(r’, R, I)
l(l)e

2 Vol(r\a)

l(l) being the length of I.
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We extend (4.4) to cover regions Rr of a more complicated nature. Let pj(0),
-n j n, be trigonometric polynomials. Let Rr be the region defined by

(4.5) le"/2p,(O)l 2 + let"-2)/2p,_2(O)12 + ...+ le-,,/2p_(O)l 2 T2.

Let

(4.6) N(F, RT) I{ FI i RT}I,

PROPOSITION 4.1. Assume that

’2n dO
(4.7) K 12/n <o Ip(0)

and that (pn(0), p_(O)) (0,..., O) for all 0 [0, 2hi. Then

K
N(F, RT) T2/" as T c.

2 Vol(r\e)

Note. If n ) 3 and the zeros of p, are simple, then K < o; this will be used in
applications. Also the assumption about the nonvanishing of (p,(O),..., p_,(O)) is
equivalent to Rr being compact.

We will need the following general upper bound.

LEMMA 4.2. Let R be a connected region in ,’t; then

N(F, R) << Vol(R) + length (dR).

Proof, Without loss of generality, we can assume that F has no torsion. Let
eo = co(F) be such that

d(Ji, ?i) d(i, -1i) > o

if 6 . V. For V e F such that /i e R let neo/2(7i )Bto/2(i be the ball about ,i of
radius %/2, Now either B,o/2(vi)c R in which case let re(V)= Vol(Bo/2(vi)), or
c3R c Bo/2(vi . In this latter case let C be the connected component ofR c Bo/2(vi
containing vi (see Figure 4.3).

Since R is connected, C must meet cOBo/2(vi ). There are two possibilities: either
Bo/4(yi) meets dC, in which case IcCI > Co/4 and Ic3R c neo/2(Ti)l >> e/4, or R
Bo/4(yi) and Vol(R Bo/2(yi)) >>. e/4. In this way we associate to each y with yi R
either a subregion Br = R of volume m(y) >> 1 or a subset of dR of length n(y) >> 1.
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OR

FIGURE 4.3

Moreover, these sets are all disjoint as we vary over ), F. Hence

<< m(y) + n(y) << Vol(R) + length (OR),
yF
7iR

which proves the lemma.

LEMMA 4.4. Let f be continuous on [g, fl] c [0, 2rt] and f(O) v 0 for 0 [, fl].
Let RT, I {(r, O)lr < v loglT/f(O)l, < 0 < fl} where v is a positive constant. Then

T f dO
(4.8) N(F, RT, f)

2 Vol(F\dCt) If(0)l
as T .

Proof. The lemma follows from (4.3) by an obvious approximation argument.

We now prove Proposition 4.1. Clearly p,(O) 0; so let 0x ,0z be its zeros. Fix
e > 0 and define R and S by: R consists of all (V, 0) satisfying (4.5) with
0 I Z;=l (0; e, 0; + e) andS RT\’R ()T From Lemma 4.4 one deduces that

(4.9)
o,2.\ Ip.(O)I 2/" Vol(r\arg)

asT.
We claim that

(4.10) N(F, S)) < (e)T2/" as T--, c

where (e) 0 as e 0.
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Granting this, we have for each fixed

and

lim sup
N(F’ RT)T2/n <

T--- 0,2\ Ip(O)I 2/ Vol(1-’\t)

lim inf
N(F’ Rr)T2/ >

T O,

dO 1

2t]\/ ]P,,)I2/nJvI("\)

Since K < oz and a(e)--. 0 as e 0, Proposition 4.1 follows from the last two
inequalities.
We turn to (4.10). It suffices to consider each such (0 e, 0, / e) separately. Say

0 0 is a zero ofp,,(0) oforder m. Now ’Rr R {0ll0l < e} is contained in both

(I) r < log
T 12/1 101 <,

(II) r < log
T 2/n

where < < n is such that p(0) :/: 0. (That such exists follows from the assump-
tion in Proposition 4.1.) Now we use the set II to bound ’R in the range 01(T) <
0 < e and I in the range 0 < 0 < 01 (T) where 01 (T) is to be determined. Near 0,
p,(O) , aO with a : 0 (and m < n/2 since K < oz); hence

(4.11) Vol(II) << j
(T)

T 2/n

dO TZ/"Ol (e)

where a (e) $ 0 as e 0. Also

where

10(II)l << + (sinh r)2 dO

r(O) log T2/ log lp,(O)l 2/

log T 2/n log 02m/n.

One checks that

(4.12) I(II)1 << -log 01(T) + 02($,)T2/n

with 02( -- 0 as e O.
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On the other hand,

Vol(I) << 0x (T)T2/l

(4.13) and

10(I)1 << 0x (T)T2/z.

So choosing 01(T) 1/T and applying Lemma 4.2, we establish (4.10) and hence
Proposition 4.1.

With these results on lattice points we turn to the proof of Theorem 1.9. Let W,
denote the space of binary forms of degree n

(4.14) l/V, f(x, y) aox" + alx"-Xy + + aix"-y + + a,y"}.

For f W,, disc(f) # 0, denote by Orb(f, Z) fSLz(Z), Orb(f, R) fSLz(R) the
orbits off under the action of SL2. Let be

II/11 / a2
i=0

then

(4.15) Ilfkll Ilfll for all k SO(2).

Under the above representation of SL2 the matrix takes the form

(4.16)

nfl t

cos 0
Hence ifg=

-sin0
sin O][tcos 0 t-l k, k K, > 1, then

(4.17) fp(g) (t"p,(O), t"-2pn_2(O), t-"p_.(O))
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where

(4.18) p.(O) f(cos 0, sin 0).

The condition Ilfp(0)ll T becomes

(4.19) It"p,(O)l 2 + It"-2p._2(O)l 2 + + It-"p_,(O)l 2 T2

If we map SL2 by 9 9i, then (4.19) becomes

le"/Zp,(O)l z +...+ le-’n/p_,(O)lZ < T2

where e r/2 and (r, 0) are polar coordinates about i. That is, we get (4.5). Hence
we see that

(4.20) N(T, Orb(f, Z)) N(SL2(Z), Rr)
IStaby(Z)l

with Rr as in (4.5). We are assuming n > 3 so that Stabs(Z {y SL2(Z)If fp(y) }
is finite.
Now R r is compact; so by note (4.2) the nonvanishing condition is satisfied. Also

we are assuming disc(f) k 0 so that

f’ dO f -oo dx
Ky

If(cos 0, sin 0)12/" If(l x)l 2/"

since n > 3 and the roots off are simple. Thus Proposition 4.1 applies, and we get

(4.21) N(T, Orb(f, Z))~
3Ky TZ/n"

2rc Staby(Z)

This proves Theorem 1.9.

The constant Ks also appears in an asymptotic problem concerning binary forms
in the work of Siegel and Mahler [Ma]. We apply (4.21) to the varieties V
which are given by specializing (to integers) the values of the invariants. The Vk’S in
(1.7) are examples of such. For such a V, let fl, fh be a representative set of the
h (h class number) SL2(Z)-orbits in V(Z). Here h may be zero which happens if
V(Z) . From (4.21) we obtain the following result.

THEOREM 4.5.

N(T, V).. = IStaby(Z)l
T2/""
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Note that Kj. is SL2(R)-invariant; so we may collect together the SL2(R classes
above. For example, in the case of n 3, there is only one SL2(R) orbit with a given
discriminant. Also if the discriminant

D -27a2d 2 + 18abcd + b2c2 4ac3 4bd 3 < 0,

then Stab,(R) for any f of discriminant D. (The complex roots f(1, x) 0 must
be pointwise fixed and hence also the real root.) We conclude that for k < 0 and

Vk {(a, b, c, d)lD(a, b, c, d) k},

we have

3 3/2K h
(4.21) N(T, Vk)

2rr(_ k,/6") T2/3

where h h(-k) is the class number and

(4.22) f?oo dx 3 f dt
K (1 -- x3)2/3 - 31N x/1 3

APPENDIX
The volume function #(T)

In this appendix, we derive some properties of the measure #(T) given in (1.7),
and show that

(AI.1) b(x) lim"
,#(xT)

lim sup#(XT)lnI
#(T) #(T) < a(x)

with a(x), b(x) as x 1. We also compute #(T) explicitly in the case of SLm.
Structure theory. Let G be semisimple, tr an involution of G with fixed-point

group H, 0 a Cartan involution of G commuting with or, and K the corresponding
maximal compact subgroup of G. Let g k p h q be the decomposition of
the Lie algebra of G into the 1-eigenspaces of 0 and or, respectively. Let aq be a
maximal abelian subspace of p c q, Eq E(a, g) the root system of a in g, E a
system of positive roots, and p the corresponding half-sum of the positive roots.
Denote by g/ the fixed points of the involution 0or; it is a reductive subalgebra of
g with a as its Cartan subspace. Let E(a, g/) be the set of restricted roots, and

/ be theE+(a, g+) a set of positive roots chosen so that it is contained in 2;. Let a
positive Weyl chamber determined by the choice of 2;+(a, g/). We have a "polar
decomposition" G KAH and, corresponding to it, an integral formula for Haar
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measure on G [FJ]:

(A1.2)

where dh, dk are Haar measures on H and K, dY is Lebesgue measure on a, and
the Jaeobian factor 6(Y) is defined as follows: For each root a Z, letg g+ @ g
be the decomposition of the corresponding root space into the _+ 1-eigenspaces of
0a and let m+() be their dimension. Then up to a constant factor, 6(Y), Y aq, is
given by

(A1.3) 6(Y)= 1--[ sinhm+{t(Y) cshm-{a}cz(Y)

The asymptotics of t(T). We are given a linear representation of G on a vector
space Rs, a vector Vo z R with Staba(vo) H, and a K-invariant euclidean norm

It’11 on R, For T > 0 we let

zr(g) fl, Ilvogll <T
(Al.4)

otherwise.

In Lie algebra coordinates, Zr is a characteristic function on aq, given by
inequalities involving linear forms 2 a*. More specifically, in the representation
of G on RN, one can choose an orthonormal basis consisting of eigenvectors
for Aa:
(A1.5) vi exp(Y) eX’tr)v,, Y aq.

Thus ;tr(exp Y) is the characteristic function of the set

(A1.6) Sr Y . aq E e2&{r) T2
i=1

The volume function t(T) is written as a (euclidean) integral

(A1.7) t(T) | tS(Y) dY.
dsT Cffl

We may describe ST in polar coordinates (r, o) on a:

(A1.8) Sr f(r, oo)" e2X’t’ < T2t
Let f,(r) e2’’{w}r. Then fo,(r) is increasing for r sufficiently large (independent

of o), and so Sr is star-shaped for T large. For >> 0, define r,o(t) by f,o(r,o(t)) e t.
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LEMMA. There is Co > 0 such that, for all >> 0, 09, and > 0,

(A1.9) 0 < r,(t + )- ro(t) < Co.

Proof. It suffices to give an upper bound for the derivative of r, or, what is the
same, a lower bound for the derivative off,o. For each o9, let 200(o9) max 2(o9) and
let 2+ mino 2(co). Then 2+ > 0; otherwise, there would be infinite directions on
H\G which keep the vector Vo inside a compact set.
For r >> we have

f,(r)= 22(o)e2’t’- 212i(o9)1e2z’t’)r
.i(t.O) > 0 ,.i(tO) < 0

> 22oo(co)e2’t)r c >/22+ e2;(Ir C >/Ke2z(R)tOr,

and so we find

e
r;(t) < e Ke2Z(to)ro,(t) < CO

The volume kt(T) can be expressed in polar coordinates as

El

#(e’) 6(r, co)rd-1 dr dco #(e’, co) dco

where d dim aqand N(e t, co) jor"(t)6(r, co)ra- dr. From (A1.3), it can be seen that

(AI.10) ((r, co)r- < c f] 6(s, co)sa- ds.

Therefore we have by (A1.9)

log
#(e ’+’, co)
#(e t, CO)

+ot) I,o(t)log 6(r, CO)rd-1 dr log 6(r, o)ra-x dr

f,o(t)+Co ff,o(t)

log 6(r, co)ra- dr log 6(r, co)ra- dr

By the mean value theorem, for some r < u < r + CoS, this equals

6(u, o)u-Co "o 6(s, oo)s- as < c

by (AI.IO).
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Therefore if x > 1, #OCT, co) < C#(T, co) for c > 0 independent of co. Integrating
over co, we find

#(xT) < x #(T),

which proves (AI.1).

An integral on SLm. On GL+ (R) use the Haar measure

dg e2a(H) dk da dn

where KAN is as usual, K dk 1, da dal/ax dam/am, dn l-[ dno.

a o

2p(H) (m 1)Hx + (m 3)H2 (m 1)Hm.

Let

(A1.13) F(s) | e-tW)(det gy dg
L(R)

for Re(s) large. We first evaluate F(s).

fN e-tr(tntaan) dn

fN _-a2. -a2.n a2n2 -a2-a2n a2.2 a2rn anti23 2"’2m

e-a12-a22 2,numum_l_O _-1 a-(m-1)Tr, m(m-1)/4

Hence

F(s) ;’";Trm(m-1)/4e-(a+’"+a2m)a’(m-1)" UmU1-O-m-l"’’an(m-1)

(ala2...am)sda
da

al am

2m I-Ir
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Now let dg dgo(dt/t) where det g and dgo is the corresponding Haar measure
on SLm(R). Let H(2) be defined by

H(2) fs e-’(’) dgo.

The asymptotics of H(2) as 2 $ 0 will give us the volume asymptotics.
Now setting 9 tl/"9o,

f e-tr(’)(det g)S dg f Cfs e-t2/"tr(’oooo) dgo) dt

L+m(R) L.(R)

f H(tZ/")tsdt--t F(s).

Thus if f(t) H(t2/"), then for large

"(m-1)/4" (s+l_J)t_ds
2" I-I F

j=l 2

Shifting the contour to the left, the first pole occurs when s m 1. Hence

f(r) 2 F
m--j t_(m_l

2" j=l 2

as ---} 0. Hence

(Al.14) H(t) 7T’m(m-1)/4m-12"-i"I-Ij=l I (m--J)t-"("-1)/22
Setting

@(x) dgo
r(tgogo) <x

we have

H(2) ; e-a’ d(t).

Thus by a standard Tauberian argument [W, p192], (Al.14) implies

(A1.15) p(x) 1" x

2m-iF(m2 m + j=l 2
asx oz.
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The passage to the asymptotics for d0o which has vol(G(Z)\G(R))= is
straightforward. First, one deduces the analogue of (Al.15) for the measure (on
GLm+(R))

Idet glm

which differs from de by a factor of

2m-1 m2/2-m(m-1)]4

Ifdo is the corresponding measure on SLm(R), then according to Minkowski (see
[Si]),

Volaoo(SLm(Z)\SLm(R)) (2)(3)’" (m).

(1.12) then follows.

APPENDIX 2
Regularizing Eisenstein periods on SL2(R)\SL2(C

Let G SL2(C), H SL2(R), 1" SL2(Z[i]) the Picard group, and Fn
H c F SL2(Z). Let

0 y-1/2 "Y > 0

e_iO
P MAN, K SU(2).

Any g G has lwasawa decomposition g=n [YS 0 1y-m k,nN,kK and

y y(g) > O. In these coordinates, Haar measure on G is given by

dg dn dk.

Likewise, Haar measure on H is given by dh dn y-2 dy dk’.
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Remark. This situation gives an example of Fr which is not in L2"

asy.

Since the measure on F\G is y-3 dz dy dk, this estimate shows that Fr L2.

Define an Eisenstein series on G by

yeFP\F

which is absolutely convergent for Re 2 > 2 and has meromorphic continuation
with simple pole at 2 2, with residue

Vol(F c P\N)
(A2.1) Res E(g, 2)

4=2 VoI(F\G)

The constant term of E(g, 2) along N is given by

Ee(g, 2) frN\N E(ng, 2) dn y(g)4 + (2)y(g)2-4,

with

(2- 1)

(s) being the Dedekind zeta function of Q(x//- 1) (with archimedean factor).
Denote b,y EDV the space of entire functions f(2), rapidly decreasing in vertical

strips. For f EDV, define f C(N\G) by

f(2)y(g) d2.

Now for Re 2 2o > 2, let

Ef(g)= f(?,g)=
e F ,’P\F 41,=4o

f(2)E(g, ) d2
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and define

E/(g) fr Ef(hg) dh.
H\H

Mellin inversion shows that

(A2.2) E(O) do Vol(r" c P\N)f(2).

As a special case of Theorem 1.11, we will show the following theorem.

THEOREM. If e > 0 is sufficiently small, then

VoI(Fn\H)}’() Vol(r\G) fr\o El(9) dg

f(2)E’(g, 2) d2 f(1) fK y(kg) dk,

where E’H(g, 2) is an H-invariant eigenfunction with central character 2, meromor-
phic in 2.

We use the standard fundamental domain for SL(2, Z):

Let T > and decompose as - ,H(T)w ,(T) where

,.n(T) {h : y(h) < T}

which is compact and

,,(T) {h : y(h) > T}.

Then

Yto)--f E(hg)dh+f E (hg)dh.
’n( T) 3p( T)

In the compact part, we interchange order ofintegration and write(for Re 2o > 2)

’H(T) - ;t .o -n(T)
E(hg, 2) dh} d2,
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which is meromorphic in 2, with a simple pole at 2 2 with residue

Vol(F c P\N)Res E(hg) dh Vol(ffH(T)).
;t=2 ,r) Vol(I"\G)

Since for Re 2 > 2 we have E(9,2) Y(9);t as Y(9)--* oz, in the integral
ptT) Ei(hg) dh we cannot interchange orders of integration as in the integral over
n(T).

Note. For h -e(T) and 9 in a Siegel set 5e relative to P, h9 lies in

CONCLUSION. E(hg, 2) EP(hg, 2) is rapidly decreasing in h as h varies in ,(T).

This is because E(g’, 2) EP(g ’, 2) is rapidly decreasing as 9’ oz in NSee.
Now write

f(2)(E Ee)(hg)d2 + f(2)E’(hg, 2) d2.(A2.3) Eg,(hg)
;t=Zo ;t=;to

Then the integrand is rapidly decreasing for h p(T); so the integral over ,(T)
of the first integrand in (A2.3) is absolutely convergent, and we may write

-e(T) ;t ;to ,-,(T)

,,t,(T) ;t ;to
f(2)Ee(hg, 2)d2} dh.

Since EP(g, 2) y(g);t + q(2)y(g)2-;t, we have

(A2.5) fR f(2)EP(hg, 2)d2
2=;to

;t=;to
f(2) {y(h)Zy(tc(h)g) + q(2)y(h)2- y(x(h)g) -;t} d2.

For Re 2 2o > 2, y(hg)2-’ y(h)2-’. y(tc(h)g)2-;t is decreasing in p(T) and is
integrable over p(T). Note that b(2) is bounded in Re 2 > 2.
We separate out the two terms in (A2.5); the second one equals

(A2.6)
2rci ;t=;to ,,(T)
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Now we deal with the contribution of the first term of the integrand in (A2.5):

(A2.7) fr) {---i fRx=xof(,z)y(hv)X d2} dh.

We first shift the contour in this integral from Re 2 20 > 2 to Re 2 21, with

21 < 1. This can be done since f(2) EDV. Having done this, the integral in (A2.7)
is absolutely convergent and after interchanging order of integration equals

(A2.8) fr f(;O f Y(hv) dh d)
/ ;t=,;t < 3rt,(T)

2rri e=1<1 xl< 1/2 cH -dkd2
y(kg) dk d2.(2)

2

We now shift the contour in (A2.8) back to Re 2 20 > 2 and pick up a residue
at2= ltoget

(A2.9)
X=Xo

y(kg); dk d2 f(1) y(kg) dk.f(2)2 -1 n .
Combining (A2.3), (A2.4), (A2.6), and (A2.9), we find

(A2.10) f(2)E’n(g, 2)d2 (1) fr,n y(kg) dk

where

(A2.11)
3rn( T) 3rp( T)

y(kg) dk.y(hg)2- dh + 2 on

From this formula, we see that E’n(g, 2) is an eigenfunction with infinitesimal
character 2, is meromorphic in 2, and holomorphic for Re 2 > 2 e for some e > 0,
except for a simple pole at 2 2.

CLAIM. E’n(g, 2) is H-invariant.
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Proof. Indeed, from (A2.10) we have

2zi (2)=2o > 2

f(2)E’(g, ) d E(g) + f(1) fr. y(kg) dk.

E/(g) is H-invariant and one easily checks the following statement.

LEMMA. KI y(kg) dk is H-invariant.

Thus j’ X=Xof(2)EO’n(g, 2) d2 is H-invariant for all f e EDV. Since EO’n(g, 2)is
holomorphic in Re 2 > 2, ofmoderate growth in vertical strips, this forces EG’H(g, 2)
to be H-invariant.

We now shift the contour of integration in (A2.10) from Re 2 2o > 2 to the left
of Re 2 2. (Just a slight shift will suffice for our purposes.) To do so, we need to
know that EG’n(g, 2) is at most of polynomial growth in Re 2 > 2 e. This follows
from (A2.11) modulo knowing this for (2) and E(g, 2). From (A2.11) we see
Ea’n(g, 2) is holomorphic in Re 2 > 2 e except for a pole at 2 2, since the same
holds for 4(2) and E(g, 2). Also from (A2.11) we see

(A2.12) Res EO’n(g, 2)
2=2

Vol(F P\N)(Vol
Vol(F\G)

H(T) + Vol fie(T)) Res2=z qt(2) + Res2=: b(2)

Vol(F c P\N)Vol(Fn\H).
Vo(r\6)

Therefore

E(g) Vol(r c P\N)Vol(Fu\Hff(2)
Vol(F\G)

f f(2)EO, n(O, 2) d2 f(1) fr y(kl) dk.+
2=2- H

Upon using (A2.2), this becomes

(A2.13)
VoI(Fa\H) fr Ef(9)doE’(o) Vol(r\o) \

f(2)E’n(g, 2) d2 f(1) fKn y(ko) dk.
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Remark. (A2.13) shows that

Ey(g) Vol(Fn\H)
| Ey(9) d9 + terms decaying on H\G/KVol(F\G) .r\o

since in (A2.13), both E’n(g, 2) and rny(kg)dk are eigenfunctions with
infinitesimal character having real part in the "convex hull" 0 < Re 2 < 2 and so
decay on H\G/K [-RS].
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