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ABSTRACT

For any optical system, optical eigenmodes describe solutions of Maxwells equations that
are orthogonal to each other. In their simplest free space form, these modes correspond, for
example, to Bessel, Laguerre-Gaussian or Hermite-Gaussian beams. However, the orthog-
onality property is not limited to the intensity of the optical field but more generally the
optical eigenmode decomposition can be applied to the linear and angular momentum aris-
ing from complex coherent beams. These modes can be seen as describing the independent
degrees of freedom of the optical system and are characterized by the mode, their density
and coupling efficiency. It is interesting to study the effect of different optical systems on
the density of the optical degrees of freedom propagating through them. Here, we look at
systems containing different elements such as: dielectric, meta-material and random lenses.
Using the optical eigenmode decomposition, we determine their density in these different
cases and discuss the origin of the variations observed. Further, we study the overall number
of optical degrees of freedom accessible including linear and angular momentum of optical
beams.
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1. INTRODUCTION

Many applications in optics rely on the capability to create or detect beams having a spe-
cific profile. Generally, this capability depends on the number of optical degrees of freedom
accessible by the source, transmitted by the optical system and finally detectable by the
measuring device. In this paper, we study how the optical system affects different defini-
tions of the optical degrees of freedom (ODOF). The total number of ODOF gives us insight
into how many independent channels can be used for information transmission in an optical
system. Indeed, each ODOF corresponds to an independent and orthogonal electromagnetic
field that can used as an independent communication channel.1 Introducing the concept of
density of ODOF we can asses the optical imaging resolution of the system.2,3 In this case,
the higher the density the smaller the point spread function of the optical system and ulti-
mately the higher the resolution of the imaging system. The optical eigenmodes (OEi) offer
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a natural description of the electromagnetic fields propagating through a linear optical sys-
tem.4 These modes correspond to solutions of Maxwell’s equations that are orthogonal with
respect to a specific measure.5 Counting the number of OEi in an optical system corresponds
to the number of optical degrees of freedom accessible in this system. Mathematically, this
corresponds to the rank of the system.

2. THEORY

The optical eigenmode decomposition is based on the definition of a property of the electro-
magnetic field as a quadratic function of the field. In this paper, we are considering the time
averaged intensity of the field as defined by IROI =

∫
ROI

dσE∗ · E where the integration is
done over the region of interest (ROI). Other properties such as the angular momentum6,7

or optical forces8 can also be considered.

In the following, we are describing the step by step procedure to determine the optical
eigenmodes and the degrees of freedom associated with them in the case of illumination by
a family of orthogonal incident beams. Considering the intensity measure, we can describe
this intensity as a function of the superposition coefficients ai of N probe fields Ei. Indeed,
considering the total field described by

E =
N∑
i=1

aiEi

we can rewrite the intensity as

IROI =
N∑
i=1

N∑
j=1

a∗iMijaj

where we define the matrix M as

Mij =

∫
ROI

dσE∗
i · Ej.

Practically, the probes are chosen to correspond each to a member taken from an orthog-
onal family of fields having the same incident intensity on the optical system considered.
For example, the probe fields Ei can be chosen to correspond to a member of the Laguerre-
Gaussian or Hermite-Gaussian beams family. Provided each incident probe field is nor-
malised in intensity over the whole transversal plane and that the superposition coefficients
ai are chosen such that

N∑
i=1

a∗i ai = 1

then each set of coefficients ai describes an incident beam that is normalised in intensity
over the whole transversal plane. For regions of interest that are finite, this property does
not hold any more and the intensity is given by IROI .
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The optical eigenmodes are defined as the beam corresponding to superpositions coef-
ficients ai that describe normalised eigenvectors of the matrix operator Mij. Further, by
construction, the matrix operator Mij is Hermitian

Mij = M∗
ji

and as such its eigenvectors are orthogonal to each other and its eigenvalues are real. Phys-
ically, the eigenvalues correspond to the integrated intensity of the optical eigenmode in the
region of interest (ROI). As such, the optical eigenmode having the largest eigenvalue de-
scribes a superposition of probe beams that corresponds to the largest intensity achievable
in the ROI considering the probes used. Provided, the probes describe a complete set of
probes this property transforms into a global property that delivers the absolute maximum
achievable in a linear optical system.

This approach can be generalised to consider different linear measures of the optical
system. For example, it is possible to replace the intensity by the energy density, Poynting
vector, Maxwell’s stress tensor, angular or linear momentum. All this quantities are, by
their nature, quadratic with respect to the electromagnetic fields and as such it is possible
to introduce in each case a Hermitian matrix operator that can be used to decompose the
fields into orthogonal optical eigenmodes.

Having described how to decompose an electromagnetic field in a set of non redundant
orthogonal fields, we can now proceed to defining the optical degrees of the system by
considering the rank of the matrix operators involved in the decomposition. Indeed, each
Hermitian matrix operator can be seen as delivering a number of non-zero eigenvalues. The
optical eigenmodes corresponding to non-zero eigenvalues describe observable fields with
respect to the measure considered, however, eigenmodes having negligible small eigenvalues
describe the null-space of this operator and as such are not observable as an independent
degree of freedom. In the following, we use a soft threshold to define whether an eigenvalue
is negligible or not i.e. the null-space is defined by the eigenvalues whose absolute value are
smaller than a given fraction of the maximal absolute eigenvalue measured. Physically, this
approach accounts for a fixed dynamic range in the measurement procedure. The smallest
measure observable is defined in relative terms with respect to the largest possible measure.
Alternatively, this definition can be described in absolute terms.

3. MODELLING

To illustrate the effect of different optical systems on the number and density of the optical
degrees of freedom accessible in the ROI, we can use finite element method programs to
simulate the propagation of monochromatic light field through simple optical systems. Here,
we use Comsol electromagnetic module to consider the propagation of fields in a 2D domain
surrounded by perfectly matched layers (PML). The incident fields are defined by the electric
field on the left hand side of the rectangular domain (see figure 1), propagate from left to
right and are detected on the right hand side interface before the perfectly matched layer.
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Figure 1. (a) Simulation configuration showing the input and output sides and the optical system
having an cylindrical form here. (b) Example probe field in absence of any optical system.

Figure 2. (a) First four optical eigenmodes of free space The receiver plane is on the right hand
side and the source plane on the left hand side. (b) Normalised eigenvalue spectrum in the same
configuration. The red horizontal line shows the relative null space limit. Eigenvalues above the
line are considered as independent degrees of freedom (ODOF) contributing to the rank of the
matrix. (c) The number of degrees of freedom as a function of the distance between the source and
receiver plane in free space.
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Figure 3. Optical eigenmodes for different optical systems. From left to right: Free space, cylindrical
lens, random index lens and metamaterial invisibility “cloak” . The top raw show the propagation
of the first probe beam through the system, the second raw the spectra of the eigenvalues for each
different configuration and the third raw the first optical eigenmode.

4. RESULTS AND DISCUSSION

Figure 2a shows the first optical eigenmodes for free space propagation between the input and
output planes. Figure 2b shows the distribution of the eigenvalues normalised to the first,
largest eigenvalue. This allows the easy counting to the rank of the matrix corresponding
to the optical degrees of freedom accessible in the system. In this context, eigenvalues that
are larger then 10% of the largest eigenvalue correspond to optical eigenmodes that are
observable. In the case of free space, we can study the effect of the distance between the
input/source and the output/received ROI on the number of ODOF. Figure 2c shows that
this number decreases continuously as this distance increases. This decrease, in the near
field is due to the loss of ODOF as the near field waves decrease evanescently, while in the
far field the decrease is due to diffraction.

Figure 3 shows example optical systems, their interaction with the first probe and first
intensity eigenmode. For each system, we evaluate the number of ODOF received in the
output plane. We remark that, in this circumstance, the largest number of orthogonal degrees
of freedom is achieved in the case of the random dielectric lens. As could be expected, the
meta material cloak delivers similar results as the free space while the dielectric lens clearly
improves the number of degrees of freedom accessible in the output plane as it accts like a
relay system.
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