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Abstract

Perhaps surprisingly, recent studies have
shown probabilistic model likelihoods have
poor specificity for out-of-distribution (OOD)
detection and often assign higher likelihoods
to OOD data than in-distribution data. To
ameliorate this issue we propose DoSE, the
Density of States Estimator. Drawing on the
statistical physics notion of “density of states,”
the DoSE decision rule avoids direct compar-
ison of model probabilities, and instead uti-
lizes the “probability of the model probabil-
ity,” or indeed the frequency of any reasonable
statistic. The frequency is calculated using
nonparametric density estimators (e.g., KDE
and one-class SVM) which measure the typ-
icality of various model statistics given the
training data and from which we can flag test
points with low typicality as anomalous. Un-
like many other methods, DoSE requires nei-
ther labeled data nor OOD examples. DoSE
is modular and can be trivially applied to
any existing, trained model. We demonstrate
DoSE’s state-of-the-art performance against
other unsupervised OOD detectors on previ-
ously established “hard” benchmarks.

1 Introduction

An important assumption behind the success of ma-
chine learning methods is that the data seen at test
time follows a similar distribution to the training data.
When a model encounters an anomalous, or out-of-
distribution (OOD) input, it can output incorrect pre-
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dictions with high confidence. Therefore, it is impor-
tant to the reliability and safety of these systems to
be able to recognize distributional shifts that are often
present in real-world applications, such as autonomous
driving and medical diagnoses.

The many proposed approaches to OOD detection can
be broadly categorized into supervised and unsuper-
vised methods. In a supervised setting, models have
access to class labels and/or specific OOD examples,
and are either calibrated post hoc to flatten the predic-
tive distribution as the distance from the training set
increases [Liang et al., 2018] or directly trained to distin-
guish in- and out-of-distribution examples [Hendrycks
et al., 2019, Meinke and Hein, 2020, Dhamija et al.,
2018].

In an unsupervised setting, generative models are often
employed because of their ability to approximate or
calculate the density q(X) that describes the distri-
bution of the training set, which can then be used to
determine when to trust the prediction q(Y |X). His-
torically, this approach centers around interpreting this
density as a probability of the input x, and therefore
assuming OOD inputs would be assigned lower prob-
ability than in-distribution inputs, making them “less
likely” to be in-distribution. However, Nalisnick et al.
[2019a], Hendrycks et al. [2019] exposed some egregious
failure modes of this methodology, such as OOD inputs
being assigned higher likelihoods than in-distribution
examples. Concurrent work by Choi et al. [2018] and
follow-up work from Nalisnick et al. [2019b] showed
that this failure occurs because the typical set of the
data may not intersect with the region of high density.

Consider a high-dimensional isotropic Gaussian dis-
tribution with zero mean and unit variance. In Fig-
ure 1(a), we show a two-dimensional slice of this distri-
bution. The mean of this distribution has the highest
likelihood (red), but it is clearly not typical since the
likelihood of draws concentrate on lower likelihoods,
as shown in Figure 1(c). This phenomenon is a conse-
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Figure 1: (a) A two-dimensional projection of a 100-dimensional multivariate normal distribution. The origin is
shown in red. We show histogrammed measurements of 100,000 random draws from this distribution: (b) The
observed norm of the draws, (c) the negative log-likelihood, (d) the value of the first coordinate, and (e) the max
over the coordinates of the draws. The dashed vertical line denotes the corresponding measurement for the origin.

quence of the norm’s sensitivity to one large variance
dimension. The Gaussian Annulus Theorem [Blum
et al., 2020] formalizes this idea and stipulates that
samples concentrate on the spherical shell of radius

√
d,

as depicted in Figure 1(b).

These observations have parallels to physical systems.
In statistical mechanics, the probability of observing
a particle in a given state is governed not only by the
probability of the state, but also by the geometry of
the system. The density of states codifies this idea; it
describes the number of configurations in the system
which take on particular values of a given statistic.
Figure 1(d, e) show how different statistics convey
different information about the state. From this we
hypothesize that the density of states–as measured by
different statistics–might be potentially useful as a tool
for identifying OOD data.

Our approach for identifying samples as being in- or
out-of-distribution is to produce an estimator of this
density of states on several summary statistics of the
in-distribution data, and then to evaluate the density
of states estimator (DoSE) on new trial points, mark-
ing those that have low support under the observed
densities of the measurements as out-of-distribution. In
general we expect and observe that a relatively small set
of reasonable measurements of the samples works well
at OOD detection. We summarize our contributions
as follows:

1. We propose a novel OOD detection method, DoSE,
inspired by ideas from statistical physics and the
notion of typicality, that jointly leverages mul-
tiple summary statistics from generative models
to differentiate between in-distribution and out-of-
distribution data.

2. We show that two variants of DoSE can be eas-
ily applied to any pre-trained, generative model.
Specifically, we evaluate DoSE with β-VAEs [Hig-
gins et al., 2017] and Glow [Kingma and Dhariwal,
2018].

3. We evaluate our method on OOD detection bench-
marks and demonstrate state-of-the-art perfor-
mance among unsupervised methods, and compa-

rable performance to state-of-the-art supervised
methods.

2 Related Work

Given that modern large-scale neural networks can
both be fooled by very small perturbations to their
inputs [Szegedy et al., 2013], as well as make poorly-
calibrated predictions [Guo et al., 2017], it is increas-
ingly important for neural networks used in applica-
tions to be able to identify when it is asked to make
predictions for out-of-distribution inputs.

Unsupervised OOD Detection. Bishop [1994] first
proposed that generative models may be a useful tool
for OOD detection, using a one-sided threshold on the
log-likelihood as a decision rule. The underlying idea
behind this approach is that the likelihood represents
the “probability of the data,” and therefore a high
likelihood means that the data is “good,” and a low
likelihood is “bad.” They found that this approach,
applied to a model trained on 4 classes was successful
at detecting OOD data generated from a fifth class
using 16-dimensional feature vectors. However, the
success of this early approach may have been merely
coincidental, or due to the fact that the model operated
on a low-dimensional feature space. Notably Choi et al.
[2018] pointed out that in extremely high dimensions,
the previously held assumption that in-distribution
inputs should have high likelihoods does not hold. This
was concurrently validated empirically by Nalisnick
et al. [2019a], Hendrycks et al. [2019], who showed that
the log-likelihood returned by deep generative models
can often be higher for OOD data than it is for in-
distribution data. Serrà et al. [2019] suggested that
the input complexity of the data may be responsible
for this effect.

Subsequent work on unsupervised OOD detection has
focused largely on ways to correct this pathology. For
example, Choi et al. [2018] proposed that OOD data
may receive higher likelihoods because of epistemic
errors in the likelihood computation, and instead pro-
posed to use the Watanabe-Akaike Information Crite-
rion (WAIC), thereby leveraging multiple generative
models trained in parallel to identify OOD data. Al-
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ternatively, Ren et al. [2019] argue that the reason
models assign high likelihoods to OOD data is instead
because they are confounded by background informa-
tion present in the dataset. Thus, they propose to use
the likelihood ratio of an autoregressive model trained
on in-distribution data with a heavily regularized model
trained on mutated pixel data to try to normalize the
likelihood by removing contributions from the “back-
ground pixels.” However, neither of these approaches
address the issue with high-dimensional likelihoods,
and therefore may be unreliable in broader applica-
tions. More recently, efforts have been made to at-
tempt to directly measure the typicality of the input
data. Nalisnick et al. [2019b] propose a simple typi-
cality test by flagging a batch of data X if the mean
of the generative model log-likelihood (log q(X̀|θn)) for
that batch disagrees with the mean of q(X|θn) in the
training set by a user-specified threshold. There are
two shortcomings to this approach: First, their test
operates on an entire batch, for which all examples are
assumed to be either jointly in-distribution or jointly
OOD. Performance noticeably degrades as the batch
size decreases to 1. For practical purposes we require
a decision rule that can reliably operate on individ-
ual samples. Second, for both VAEs and flow-based
models, the likelihood may not be the most informa-
tive metric, while its constituents or an alternative
might (see Figure 1 or Appendix B). Finally, Li et al.
[2019] appear to have created a special case of DoSE
for malignant cancer detection. We believe that our
methodology, specifically Theorem 3.1 and extensive
empirical study, further justifies their domain-specific
application of DoSE-like ideas. Additionally, we think
the ideas presented in this paper could further improve
their results but defer the evaluation of this hypothesis
to future work.

Supervised OOD detection. There are also many
proposed approaches to OOD detection that use labeled
in-distribution inputs [Alemi et al., 2018, Hsu et al.,
2020, Lakshminarayanan et al., 2017] and/or known
OOD examples [e.g. Liang et al., 2018, Hendrycks et al.,
2019, Stutz et al., 2019, Meinke and Hein, 2020]. All
of these methods have demonstrated successful perfor-
mance, but are trained with class labels and/or specific
outlier examples.

In this work we do not use class labels or any expo-
sure of OOD data to the model during training. This
presents a significant practical advantage over these
methods for several reasons: First, in many settings one
may need to identify OOD data without being given
class labels. Second, training specifically to predict
class labels may otherwise discard information that
may be useful when identifying OOD data (though it
also may highlight information which is useful). Third,

models trained using specific instances of OOD data
are overly tuned to attributes in the OOD dataset, and
therefore may suffer from overconfident yet incorrect
predictions when given inputs from a separate OOD
set.

3 Approach

We first establish notation. Assume access to data
generated according to {Xi = xi}ni

iid∼ p(X) for
X ∈ X and that our task is to construct a sum-
mary statistic Tn suitable for evaluation on un-
seen data. Example summary statistics include
T

(nll)
n (X)

def

= − log q(X|θn), T
(L2)
n (X)

def

= ‖X − µn‖2,
or T (ml)({X,Y }) def

= maxY q(Y |X, θn). Suppose, how-
ever, that each unseen sample datum is drawn from
the mixture X̀ ∼ αp(X̀) + (1 − α)p̃(X̀) where α and
p̃ are unfixed and unknown confounders and X̃ ∼ p̃
has X̃ ∈ X . Our task is to devise a decision rule for
identifying when Tn(X̀) is not to be trusted.

Since we presume α, p̃ are unfixed and unknown we
can neither access OOD samples {X̃i}mi nor make as-
sumptions of α, p̃ when constructing Tn. Our only
option is to devise a rule based solely on Tn and {xi}ni .
Our proposal–and indeed an obvious idea–is to fit a
distribution to {T (xi)}ni and use that probability as
a threshold for classifying whether a sample is OOD.
For example, assuming the statistic T is multivariate
(T : X → R

D) one could use a product-of-experts
(POE) kernel density estimator (KDE) of the form,

q(X = x|T, {xi}ni , h) =
D
∏

d

1

nhd

n
∑

i

φj

(

[T (x)]d − [T (xi)]d
hd

)

, (1)

one-class SVM [Schölkopf et al., 2000], or any other
similarly constructed density.

3.1 What is a good q in theory?

What makes for a good OOD distribution, q? How
do we choose the statistic T and associated density
estimator hyperparameters when we have neither p̃
nor samples from it? Similarly, why is direct use of
the maximum likelihood distribution a generally poor
OOD detector? [Nalisnick et al., 2019a]

To answer these questions, consider a slightly general-
ized notion of the information theoretic typical set,

A(s,ǫ)
p,q =

{

{Xi}si ∈ X s
p :

∣

∣

∣

∣

∣

−1

s

s
∑

i

log q(Xi)− H[p]

∣

∣

∣

∣

∣

≤ ǫ

}

,

(2)
where H[p] is the entropy of the true process p, ǫ gov-
erns the permissible entropic gap, s is the sequence
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length, and q is any distribution over Xp. Equation 2

generalizes the standard definition, A(s,ǫ)
p,p [Cover and

Thomas, 2012] by considering the typicality coverage
on p by a possibly different distribution q. To make an
effective OOD classifier, we are concerned with identi-
fying the q which maximizes the expected typicality of
q on p, i.e., maxq∈Q p(Xs ∈ A(s,ǫ)

p,q ). Notably, our work
is concerned with the s = 1 case, i.e., capability for
singleton OOD designation. Theorem 3.1 clarifies this
objective by way of bound.

Theorem 3.1. Bias/Variance Tradeoff for Typicality.

p({Xi}si 6∈ A(s,ǫ)
p,q )ǫ2 ≤ KL[p, q]2+ 1

s
Varp[log q(X)] (3)

Proof. Write Y = − 1
s

∑s

i log q(Xi) − H[p]. From
Markov’s inequality, p(|Y | ≥ ǫ)ǫ2 ≤ Ep[Y

2]. Mak-
ing substitutions based on 1

t2

∑s

i Varp[log q(X1)] =
Varp[

1
s

∑s

i log q(Xi)] = Ep[(− 1
s

∑s

i log q(Xi))
2] −

H[p, q]2 and KL[p, q]2 = (H[p, q]− H[p])2 completes the
proof.

Through the lens of Theorem 3.1, we understand the
MLE-fitted distribution’s shortcomings as an OOD
probability measure. When q is chosen solely to mini-
mize KL[p, q], it will generally be a looser bound on the
s = 1 typical set–the case of interest when making sin-
gle sample OOD evaluations. Likewise, many choices
of T are also apparently sub-optimal. For example,
T (42)(x) = 42 would generally be useless because any
density q built solely from this statistic would have an
infinite KL[p, q] unless p(X) = δ(X − 42). Also, we can
generally rule out degenerate KDEs (h = 0) because of
their lack of smoothness, i.e., disregard for Varp[log q].

3.2 What is a good q in practice?

Although Theorem 3.1 is cognitively appealing, it is not
directly computable owing to its nonlinear dependency
on H[p] (an unknown). We now describe a heuristic
procedure for minimizing the right-hand side of Theo-
rem 3.1 and justify this procedure both by exploring a
plugin estimate to Theorem 3.1 and by appealing to
rationale from statistical physics.

We first note that it is possible to make coarse tuning
to the OOD detecting distribution q via crude approxi-
mations to Theorem 3.1’s implications. The empirical
approximation of the right-hand of Theorem 3.1 over
the held-out distribution {xi}mi is,

KL[p, q]2+Varp[log q] ≈
1

m

m
∑

j

(log q(xj |{xi}ni , T, γ))2

+ 2H[p]
1

m

m
∑

j

log q(xj |{xi}ni , T, γ) + c (4)

where m is the size of the evaluation set, γ represents
the parameters of our density (e.g., h for a KDE and
ν for one-class SVM), and c is constant for any choice
of q. A general strategy to minimize 4 is to consider
several different choices for H[p] and explore different
choices of T under this range. Alternatively, one can
consider using H[q(X|θ(ml)

n )] as a plugin estimate for
H[p]. This is the “resubstitution estimator” introduced
by Beirlant et al. [1997] and used by Nalisnick et al.
[2019b]. Assuming the OOD distribution has the same
discrete support, one can additionally explore use of
entropy bounds like H[p] ∈ [0, h · w · c · log k] (for im-
age height h, width w, channels c, and discrete pixel
intensity levels k) or use or use known estimates of
H[p], e.g., Parmar et al. [2018]. We emphasize that
discrete entropy is only reasonable if q also has the
same support; failing this requirement may introduce
an inconsistent sign in Equation 4.

We use equation 4 and the resubstitution estimator for
the entropy to evaluate the tightness of the bound for all
different statistics. For a statistic which is completely
informative about the typicality (i.e., it minimizes the
bound from 3.1), one need only evaluate that statistic
to evaluate the typicality of trial points and identify
those which are out-of-distribution. In practice we find
that multiple different statistics get indistinguishable
values for this bound, and therefore we do not know
which statistic is the most informative. We therefore
construct our estimator based on the KDE of multiple
different statistics evaluated on the same data. The
procedure is straightforward: If we interpret the KDE
estimates as probabilities of typicality, then the prod-
uct of the KDEs gives the probability that a given
input is typical for all metrics jointly (assuming no cor-
relation between statistics). We can further relax the
assumption of independence by jointly evaluating the
DoSE using an alternative density estimator, such as
a one-class Support Vector Machine [SVM; Schölkopf
et al., 2001] in our case. We show in the experiments
that both of these approaches outperform alternative
methods, which only query a single statistic. We fur-
ther show in Section 5 that both of these approaches
are robust against the inclusion of uninformative, or
even obfuscatory statistics.

Our procedure to construct DoSE for OOD detection
is as follows:

1. Train a deep probabilistic model q(X|θn) using
training set {xi}ni where n is the size of a train-
ing set from which m samples (chosen randomly)
are excluded from training and used as a validation
set.

2. Evaluate summary statistics Tn(x) on the training
data.
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3. Construct DoSE using a KDE or SVM on each set
of statistics from the training set.

4. Evaluate the DoSE score by computing the sum of
the log-probabilities from the KDE on each statis-
tic for each example in the training set {xi}ni and
validation set {xi}mi . Alternatively, compute the
scores for both sets using the SVM.

5. Check the DoSE calibration between the training
and validation DoSE scores using the expected cali-
bration error (ECE) [Guo et al., 2017].

6. Determine threshold for OOD rejection, by choosing
a number of examples to discard from the validation
set, and identifying the corresponding threshold to
place on the DoSE score.

We now establish intuition to further explain the under-
pinnings of our empirical methodology. In statistical
physics, a system contains particles x. For each parti-
cle, a measurement or statistic Tn represents a physical
property of that particle. Our challenge is to determine
if any given particle is atypical, using only the physical
properties of that particle, along with the physical prop-
erties of n particles from the system. Atypicality here
means that the particle should not be found having
these properties assuming that the system is in equilib-
rium (i.e. the particle is an anomaly). For any physical
property (e.g., energy), the probability of occurrence in
a physical system is determined by the density of states:
g(T ) =

∫

dXδ(T ′(X)−T ). This quantity describes the
number of occupied configurations in the system which
have a given value of T .

One can often calculate the statistical physics notion
of density of states from first principles. Since this is
not possible in our problem setup, we instead simply
approximate the density of states using a Density of
States Estimator (DoSE): a nonparametric density es-
timator trained to measure the density of states of a
statistic T evaluated on an input X̀ using the sample
particles from the system. We can apply this approach
towards any statistic T evaluated on the data {xi}ni to
construct the DoSE of that statistic. DoSE then mea-
sures the empirical density of the statistic T evaluated
at some new point x̀ using nearby points in the training
set. Note that we need not offer any interpretation for
T , and even if the statistic is not interpretable, we can
still measure its typicality.

4 Experimental Setup

To evaluate the empirical performance of DoSE, we
follow the procedures outlined in Choi et al. [2018],
Nalisnick et al. [2019b], Ren et al. [2019]. To sum-
marize, we first train an ensemble of deep generative

models on a given in-distribution dataset. We then
evaluate statistics on examples from the training set
and construct our DoSEs using the measured statistics.
We validate that our models are not memorizing using
a heldout set of examples from the training set. We
finally compute the DoSE scores on the in-distribution
test set, and several OOD datasets. We measure the
success of OOD identification using the Area Under
the ROC Curve (AUROC).

We compare our performance against several estab-
lished unsupervised baselines:

1. A single-sided threshold on the log-likelihood
q(X|θn) [Bishop, 1994].

2. The single-sample typicality test (TT) from Nalis-
nick et al. [2019b]. To evaluate the AUROC using
this method, we simply use the raw typicality score
TT(X̀) = | log q(X̀|θn) − H [q(X|θn)] |. Similar to
Nalisnick et al. (2019), we calculate H [q(X|θn)] as
an empirical average over the training set.

3. The Watanabe-Akaike Information Criterion
(WAIC) from Choi et al. [2018]. For this, we
use 5 models trained separately and measure
WAIC(X̀) = Eθ[log q(X̀|θn)]− Varθ[log q(X̀|θn)]

4. The likelihood ratio method (LLR) from Ren et al.
[2019]. To compute LLR, we train a background
model using their proposed method of mutations,
using a mutation rate of 0.15, the center of the
range in which they found successful results. The
LLR score is then simply LLR(X̀) = log qs(X̀|θn)−
log qb(X̀|θn), where the subscripts s and b indicate
the semantic and background models, respectively.

For all of these methods, we use the same models to
evaluate the OOD scores. This highlights the difference
in performance caused by the methodology, rather than
due to differences in the training procedure. To quan-
tify the uncertainty in performance resulting from the
parameters θ found during an individual training run,
we train 5 separate models in parallel, and evaluate the
performance of all methods using all models.

For DoSE on β-VAEs, we used 5 statistics:

1. Posterior/prior cross-entropy,

T (xent)
n (X) = H[q(Z|X, θn), q(Z)],

2. Posterior entropy:

T (ent)
n (X) = H[q(Z|X, θn)],

3. Posterior/prior KL divergence:

T (rate)
n (X) = KL[q(Z|X, θn), q(Z)],
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Figure 2: Decomposition of q(X|θn) for a Glow model trained on CelebA. The blue points show the test data,
in coordinates of T (latent)

n (X̀) and T
(jac)
n (X̀). Red points show the same coordinates observed for CIFAR10, an

OOD dataset. We show the decision boundaries that exclude 10% of the in-distribution data for q(X|θn) (left),
TT (middle) and DoSE (right). The shaded (gray) region is classified as out-of-distribution, and the non-shaded
region is classified as in-distribution.

4. Posterior expected log-likelihood:

T (distortion)
n (X) = Eq(Z|X,θn)[log q(X|Z, θn)],

5. IWAE [Burda et al., 2015]:

T (iwae)
n (X) = log Eq(Z|X,θn)[q(X,Z, θn)/q(Z|X, θn)].

In all cases, the intractable expectation
Eq(Z|X,θn)[f(Z)] was replaced with a seeded

Monte Carlo approximation, 1
16

∑16
t f(Zt) with

Zt
iid∼ qpost(Z|X, θn, seed=hash(X, t)). By seeding, we

ensure the statistics’ reproducibility yet preserve the
logic of the approximation. For Glow models, we used
3 statistics:

1. Log-likelihood T
(like)
n (X) = q(X|θn),

2. Log-probability of the latent variable T (latent)
n (X) =

q(Z|X, θn),

3. Log-determinant of the Jacobian between X; the
input space, and Z; the transformed space (i.e.,

T
(jac)
n (X)

def

= log | J(X)|).

Additional model and training details are in Ap-
pendix C.

5 Results

A summary of all quantitative results on all baselines
is presented in Table 1. We show the AUROC com-
puted between all pairs of in- and out-of-distribution
data, measured using our method as well as alternative
techniques.

DoSE vs related methods We find that, for all
“hard” dataset pairings, both variants of DoSE either
outperform or significantly outperform all competing
methods. Note that this same result is observed for
either DoSE evaluated on an individual model or on a
full ensemble of models. For an individual model, we
observe that all 5 runs of DoSEKDE outperform all 5
runs of all competing techniques. This corresponds to
a probability of 0.003 that our result was observed due
to random chance, compared against any competing
technique. We further find that our method gener-
ally outperforms competing techniques on most easy
dataset pairings as well, with a few exceptions (e.g.,
SVHN→CIFAR10), which are typically found by a one-
sided threshold on the likelihood q(X|θn). While DoSE
may not then be the highest performing technique in
all dataset pairings, it is important to note that it is
the highest performing overall, with an average ranking
of 1.2 for both DoSEKDE and DoSESVM against other
competing techniques (we exclude the other when com-
puting the ranking). For reference, q(X|θn) has rank
of 2.2, TT 2.7, WAIC 3.06, and LLR 4.19.

In general, we find that TT achieves more reliable
performance than the alternatives. This is, on some
level, to be expected because TT also attempts to di-
rectly measure the typicality of a datum. However,
we also find several situations where TT is vulnera-
ble because it relies exclusively on the likelihood. In
particular, we find that TT achieves only AUROC
≈ 0.6 when trying to identify CIFAR10 or CIFAR100
when trained on CelebA. For GLOW, the log-likelihood
T

(like)
n (X) is itself a sum of two different statistics

T
(latent)
n (X) and T

(jac)
n (X). Figure 2 shows scatter
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Dataset/OOD Dataset Model q(X|θn) WAIC TT LLR DoSEKDE DoSESVM

MNIST VAE
Omniglot 1.000 1.000 1.000 0.470 1.000 1.000

FashionMNIST 0.998 0.988 0.997 0.404 0.999 0.996
Uniform 1.000 1.000 1.000 0.277 1.000 1.000

Gaussian 1.000 1.000 1.000 0.228 1.000 1.000

HFlip 0.839 0.861 0.776 0.473 0.760 0.812
VFlip 0.838 0.821 0.837 0.499 0.818 0.830
FashionMNIST VAE
Omniglot 0.995 0.893 0.991 0.508 1.000 0.998
MNIST 0.931 0.950 0.901 0.503 0.998 0.997
Uniform 0.998 0.878 0.998 0.573 1.000 0.998
Gaussian 0.997 0.852 0.997 0.501 1.000 0.998
HFlip 0.658 0.503 0.599 0.479 0.658 0.625
VFlip 0.702 0.473 0.635 0.485 0.748 0.728
CIFAR10 Glow
CIFAR100 0.520 0.532 0.548 0.520 0.569 0.571

CelebA 0.914 0.928 0.848 0.914 0.976 0.995

SVHN 0.064 0.143 0.870 0.064 0.973 0.955
ImageNet32 0.794 0.870 0.754 0.795 0.914 0.930

Uniform 1.000 1.000 1.000 1.000 1.000 1.000

Gaussian 1.000 1.000 1.000 1.000 1.000 1.000

HFlip 0.501 0.499 0.500 0.501 0.507 0.502
VFlip 0.505 0.505 0.501 0.505 0.533 0.523
SVHN Glow
CelebA 1.000 0.991 1.000 0.912 1.000 1.000

CIFAR10 0.990 0.802 0.970 0.819 0.988 0.962
CIFAR100 0.989 0.831 0.965 0.779 0.986 0.965
ImageNet32 0.998 0.980 0.994 0.916 0.999 0.999

Uniform 1.000 1.000 1.000 1.000 1.000 1.000

Gaussian 1.000 1.000 1.000 1.000 1.000 1.000

HFlip 0.504 0.502 0.499 0.502 0.520 0.512
VFlip 0.502 0.504 0.500 0.501 0.510 0.511

CelebA Glow
CIFAR10 0.404 0.507 0.634 0.323 0.861 0.949

CIFAR100 0.427 0.535 0.671 0.357 0.867 0.956

SVHN 0.008 0.139 0.982 0.028 0.993 0.997

ImageNet32 0.705 0.837 0.775 0.596 0.995 0.998

Uniform 1.000 0.961 1.000 1.000 1.000 1.000

Gaussian 1.000 1.000 1.000 1.000 1.000 1.000

HFlip 0.600 0.754 0.526 0.529 0.945 0.985

Vflip 0.706 0.734 0.602 0.606 0.983 0.998

Table 1: A comparison of AUROC of our method against unsupervised baselines on the OOD detection task. We
find that our method most reliably achieves SoTA performance across all datasets.

plot of the two components of the log-likelihood. Like-
lihood uses a one-sided test classifying the region
T

(latent)
n (X) + T

(jac)
n (X) = T

(like)
n (X) ≤ τ as OOD.

TT uses a two-sided test on the likelihood but still
cannot separate the distributions well as it relies on a
single statistic. DoSE uses multiple statistics to identify
OOD data, hence it achieves much higher AUROC.

We find that q(X|θn), WAIC, and LLR all exhibit
performance that is much less consistent for differ-
ent dataset pairings. In part, we attribute this to
the fact that none of these methods attempt to mea-
sure the typicality of an input, and are therefore vul-
nerable to OOD datasets which are assigned anoma-
lously high likelihoods. As such, all of these meth-
ods fail on CIFAR10→SVHN, CelebA→CIFAR10/100,
CelebA→SVHN. For LLR, we may also violate the
implicit assumptions underlying the methodology by
using models such as VAEs, which may not be able to
explicitly decompose the likelihood into semantic and
background components in the same way autoregressive
models do. We therefore speculate that LLR may be
more successful if a different model were used, though
we also note that it still would not measure typicality.

Qualitative analysis We also perform a qualitative
examination of the attributes in the data which ap-
pear to be most indicative of the OOD score from each
method. To do so, we take the 16 images with the
highest and lowest OOD scores from a given in- and
out-of-distribution pairing for a given method. These
images correspond to the 4 elements of the confusion
matrix for each method. We organize these images into
their respective category in the confusion matrix, and
show the results for TT, WAIC and DoSE in Figure 3
on CIFAR-10→SVHN. While it is difficult to provide
an entirely objective assessment of these results, we
speculate that DoSE identifies images with high color
contrast as likely OOD candidates. TT appears to iden-
tify a split between images with uniform backgrounds,
and images with noisy backgrounds as false positives.
This makes sense, given that these are the images with
highest and lowest log-evidence, respectively. WAIC
appears to identify images with irregular colors as likely
OOD candidates. Of course, despite its reasonable qual-
itative results, WAIC also gets 0.06 AUROC on this
particular dataset pairing, undermining its utility as
an OOD detection method.
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Figure 3: Confusion matrices for methods used in our OOD detection performance. The images in each quadrant
of the matrix are in raster order, sorted by the confidence of the classification.

Figure 4: The AUROC observed when using DoSE on
FashionMNIST→MNIST with the addition of extra
statistics, which are either uninformative, or purposely
obfuscatory. We find that uninformative statistics have
little effect on performance, with only a 1% drop in the
AUROC even after the addition of 104 uninformative
statistics. Performance degrades by the same amount
when roughly 80 obfuscatory statistics are used.

Robustness to choice of statistics In our experi-
ments, we used statistics which were useful diagnostics
of the model performance, and which we therefore ex-
pected to contain some degree of meaningful signal for
OOD detection. When deploying DoSE on different
types of models, one may not always have access to
these same statistics or be tempted to choose as many
statistics as are available. As we showed in Section 1,
certain statistics are not be able to identify certain
OOD datasets as atypical. A question we wanted to
probe experimentally was then; “How hazardous are
uninformative statistics for the OOD signal?” Since
we do not have access to OOD data during training,
answering this question will allow us to be slightly more
liberal with choosing statistics.

For this experiment, we chose to use the
FashionMNIST→MNIST pairing. We took the
DoSEKDE scores evaluated on the FashionMNIST
and MNIST test sets. We then added “superfluous”

statistics, given by T (useless) ∼ N (0, 1), which was
distributed identically for both the in-distribution
and OOD data. We repeatedly drew more of these
useless statistics, and added their DoSE scores to
the test and OOD DoSE scores. We also further
consider a worst-case statistic, for which OOD data
is given maximally typical scores (− log

√
2π for the

unit-normal distribution) but in-distribution data is
given T (useless).

We show the AUROC as a function of the number of su-
perfluous statistics in Figure 4. We find that even after
adding an extremely large number of superfluous statis-
tics (at least 3×105), the AUROC has only decayed by
0.04, meaning DoSE would still have higher AUROC
than any competing technique. This phenomenon is
observed using both a KDE and a SVM to evaluate the
DoSE scores. In the worst case scenario, as expected
we find that the number of statistics needed to degrade
the OOD signal is much smaller, requiring only 100
statistics to produce noticeable degradation for the
KDE, and only roughly 20 for the SVM. Even here, we
find that roughly 300 statistics are necessary to drop
the DoSE performance below alternative methods. Em-
pirically this suggests that there may not be a strong
need to carefully choose statistics. Further insight may
be found in the literature of Approximate Bayesian
Computation or Likelihood-Free Inference, which have
an abundance of prior work dedicated towards choos-
ing meaningful summary statistics [e.g., Fearnhead and
Prangle, 2012].

6 Conclusion

We have presented a novel method, DoSE, for detecting
out-of-distribution data, which can be easily applied
to any pre-trained generative model or ensemble of
generative models without any additional tuning or
modification. We show that this approach is advan-
tageous over likelihood-based approaches because it
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provides multiple ways of evaluating the typicality of
an input under the assumed generative model. DoSE
does not require class labels or access to specific OOD
examples. Leveraging the argument that likelihoods
should not be interpreted as the probability that an
input is in- or out-of-distribution as well as ideas from
statistical physics, our method uses nonparametric den-
sity estimators to directly measure the typicality of
various model statistics given the training data. We
demonstrated state-of-the-art performance with DoSE
among unsupervised methods on common OOD detec-
tion benchmarks.
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