

$$
\begin{gathered}
\text { Density of States in Aperiodic Solids } \\
\text { Hiroshi HASEGAWA } \\
\text { Department of Physics, Kyoto University } \\
\text { Kyoto }
\end{gathered}
$$

> Received June 12, 1973)

u! sumasイs [eoturusp doy		

 point of view and is shown to meet such requirements.

Contents

of the frequency variable $\omega, \mathscr{N}(\omega)$, in such a way that the number of the eigen-
 thus succeeded in explaining the T^{3}-law of specific heats by means of the long

 statistics by Sommerfeld ${ }^{2)}$ and other prominent founders of solid states theory. Since then the notion has been used very widely and conveniently without inquiring its logical foundation, such an inquiry being nothing but a pedagogical interest for the real knowledge about it in vast class of regular, periodic solids supplied from experiments and simulative calculations.*)
The question "what is a density of states?" has to be (and has actually been) recognized as a real important problem, when aperiodic or disordered solids become interesting objects in solid state researches such as amorphous
 formulas according to which the density of states can be computed. Such formulas quite valid for a dynamical system in periodic lattices we often write in a form of surface integration with respect to a wave-number vector variable

$\eta(\omega)=\frac{1}{(2 \pi)^{3}} \int \frac{d S(k)}{\left|\operatorname{grad}_{k} \omega(k)\right|}$

(1•1)

 $\omega(\boldsymbol{k})$. (For electronic density of states the frequency variable ω will be replaced by the energy variable E.) The existence of such surfaces entirely depends on the fact that any eigenmode of the dynamical system in the periodic

 is obscured, because one does not know whether or not the wave-number characterization would be possible for dynamical systems in aperiodic solids. One would suppose that it is rather impossible.
The present writer conjectures that vast class of dynamical systems in aperiodic solids often referred to as "disordered systems" might still be characterized by the wave-number concept on the basis of which the formula $(1 \cdot 1)$
 Brillouin-zone concept must be discarded and replaced by some other concepts

mendous. The purpose of this article is to make a preliminary consideration before attempting such a theory. We discuss general matters about densities of states by taking the following three examples typical of aperiodic solids: Harmonic vibrations in a binary alloy,
(2) Impurity scattering of electrons due to short range forces,
(3) Virtual localized states near the Fermi level in a metal.
Considerable investigations have already been published on these examples. Our chief object here is to reconsider them from a viewpoint of the so-called "Friedel sum rule" and its extension which aims to relate, shortly speaking, the density of states and scattering phase shifts, where a major effort will be placed on the question how the phase shift terms accumulate up to contribute to the extensive quantity of the density of states. If this question would be

 әлем е ұечך ио!ңелар!suoد әл!̣! propagating in a dispersive medium will change its wave number by suffering from continual scatterings receiving shifts of its phase.
The scope of the present article is as follows: In $\S \S 2 \sim 4$ the Friedel sum rule is discussed in its primitive form in accordance with the above three examples.

 6 is devoted to a special analysis to test the above-mentioned consideration,
 for the wave propagation in a dispersive medium with a model of one-di-

 the original scope it was intended to add several more sections to deal with a subject of Schrödinger waves in aperiodic fields as a prototype theory,
which we hope to resume on other occasion.

§2. Harmonic vibrations in a binary alloys)

 polarization is taken into account. Replace n atoms in an arbitrary configuration denoted by $\{j\}$ out of the total N by different kinds of atoms with mass m. The Hamiltonian for this may be written in terms of the phonon operators constructed in the reference of the M-lattice basis (i.e., in terms of the eigen-
142
modes of a perfect lattice of the mass M-atoms with no isotopic defects).

This is given by

where ω_{ν} is the eigenfrequency of the perfect M-lattice and $T_{j_{\nu}}$ the matrix element of a unitary matrix of diagonalization connecting the j-th site to the ν-th eigenmode. An introduction of equation of motion to obtain true eigenmodes in the perturbed lattice, in a form of $A^{*}=\Sigma \sqrt{ } \omega_{\mu}\left(U_{\mu} a_{\mu}^{*}+V_{\mu} a_{\mu}\right)$, leads us to a set of equations for the U 's and V 's as follows:
$\left(\omega-\omega_{\mu}\right) U_{\mu}=\left(\omega+\omega_{\mu}\right) V_{\mu}$

Or, if the U^{\prime} 's and V^{\prime} s are eliminated from ($2 \cdot 2 \mathrm{~b}$) by virtue of (2.2a), an $n \times n$ secular equation may be obtained for a vector W :

$\boldsymbol{F}(\boldsymbol{\omega}) W=0$,

that is, explicitly

[^0]$$
F_{j j \prime}(\omega)=\delta_{j j}-\frac{M-m}{m} \frac{1}{N} \sum_{\mu} \frac{\omega_{\mu}^{2}}{\omega^{2}-\omega_{\mu}^{2}} T_{j \mu} T_{j^{\prime} \mu}^{*} \quad(2 \cdot 3 \mathrm{~b})
$$
is the $\left(j j^{\prime}\right)$-matrix elements of an $n \times n$ matrix $F(\omega)$. An alternate equivalent
presentation of the secular equation may be obtained for a vector $U-V$ in
the form
$$
\left(\omega^{2}-\omega_{\mu}^{2}\right)\left(U_{\mu}-V_{\mu}\right)=\left(\frac{M}{m}-1\right) \sum_{\nu} \rho_{[j j}(\mu-\nu) \omega_{\mu} \omega_{\nu}\left(U_{\nu}-V_{\nu}\right), \quad(2 \cdot 3 \mathrm{c})
$$
where
$$
\rho_{(j j}(\mu-\nu)=\sum_{|j|} T_{j \mu} T_{j \nu}^{*}=\frac{1}{N} \sum_{\mid j j} \exp \left\{i \frac{2 \pi}{N}(\mu-\nu) j\right\}
$$
143
Density of States in Aperiodic Solids

and V 's vanish, i.e., the eigenfrequency of the perturbed lattice is unshifted. (See Fig. 1.) In the former case, the normalization condition (2.2c) becomes
$\left(\frac{M}{m}-1\right)^{2}-\frac{1}{N} \sum_{\nu} \frac{\omega \omega_{\nu}^{2}}{\left(\omega^{2}-\omega_{\nu}^{2}\right)^{2}}\left|W_{1}\right|^{2}=1$,

from which
The
Therefore, one gets a list of all the eigenmodes in the perturbed lattice:
\[

$$
\begin{aligned}
& U_{\mu}=\frac{1}{\Omega-\omega_{\mu}}\left(\frac{M-m}{2 m \frac{d f}{d \omega}}\right)_{\omega=\Omega}^{1 / 2}, \\
& V_{\mu}=\frac{1}{\Omega+\omega_{\mu}}\left(\frac{M-m}{2 m \cdot \frac{d f}{d \omega}}\right)_{\omega=\Omega}^{1 / 2}, \\
& U_{\nu}=T_{1 \mu} \delta_{\nu \mu}, \quad V_{\nu}=0 .
\end{aligned}
$$
\]

The density of states for such a finite system may be defined as follows: $$
\operatorname{n}_{N}(\omega)=\sum_{\nu}\left\{\delta\left(\omega-\Omega_{\nu}\right)+\delta\left(\omega+\Omega_{\nu}\right)\right\}
$$

$=\lim _{\delta \rightarrow 0} \frac{-1}{\pi} \operatorname{Im} \sum_{\nu} \frac{2 \omega}{(\omega+i s)^{2}-\Omega_{\nu}^{2}}$.
By means of the function $f(\omega)$ defined in (2.4) $\Re_{N}(\omega)$ can be expressed: For
the reason that (a) all the zeros of $f(\omega)$ cover all the eigenfrequencies of the
perturbed lattice other than those unshifted from the unperturbed one, (b)
any simple pole of $f(\omega)$ is identical with one of the ω_{ν} 's, and (c) $f(\omega) \rightarrow 1$ as
$\omega \rightarrow \infty$, we may write

$$
f(\omega)=\frac{\prod_{\nu}\left(\omega^{2}-\Omega_{\nu}^{2}\right)}{\prod_{\nu}\left(\omega^{2}-\omega_{\nu}^{2}\right)} .
$$

[^1]Density of States in Aperiodic Solids 145
 shift term is a fraction of order $1 / N$ compared to $\Re_{N}^{0}(\omega)$ itself. On the other hand, by the term "density of states" one tends to mean a thermodynamically

 venient.
In order to inquire the relations for a large system so as to keep the $1 / N$ fraction without losing its proper meaning, let us consider a specific example
 of the system size infinity and the $s \rightarrow 0$ limit. Perhaps the simplest example at hand would be the nearest-neighbor coupled linear chain as an unperturbed system for which

$\omega_{\mu}^{2}=\sin ^{2}\left(\frac{\pi \mu}{N}\right)$
 $(0 T \cdot 6) \quad .\left(\frac{N}{d_{\mu}}\right)_{\mathrm{a}} \mathrm{u}!\mathrm{s}=\frac{\pi}{8} \mathrm{~m}$

 to express in a compact form as follows:
 $f_{N}(\omega)=\frac{M}{m}-\left(\frac{M}{m}-1\right) \frac{i \omega}{\left(1-\omega^{2}\right)^{1 / 2}} \frac{\left\{\left(1-\omega^{2}\right)^{1 / 2}+i \omega\right\}^{2 N}+1}{\left\{\left(1-\omega^{2}\right)^{1 / 2}+i \omega\right\}^{2 N}-1}$

 $=\frac{M}{m}-\left(\frac{M}{m}-1\right) \frac{\omega \cot \left(N \sin ^{-1} \omega\right)}{\left(1-\omega^{2}\right)^{1 / 2}}$

 $=\frac{M}{m}-\left(\frac{M}{m}-1\right) \frac{\omega \cot \left(N \sin ^{-1} \omega\right)}{\left(1-\omega^{2}\right)^{1 / 2}}$}(A derivation of this formula is outlined in the footnote.*) A schematic graph of the function $f_{N}(\omega)$ with a real ω is shown in Fig. 1. One could

(2•12a)

 is convenient to invoke a handbook of mathematical formulas. ${ }^{6}$) One finds
$\prod_{\nu=1}^{n-1}\left(\sin ^{2} \frac{\pi \nu}{2 n}-\sin ^{2} \theta\right)=\frac{\sin 2 n \theta}{2^{2(n-1)} \sin 2 \theta}$,
$\prod_{\nu=1}^{n}\left(\sin ^{2} \frac{\pi \nu}{2 n+1}-\sin ^{2} \theta\right)=\frac{\sin (2 n+1) \theta}{2^{2 n} \sin \theta}$

alities, differentiate with respect to θ, and set $\sin ^{2} \theta=\omega^{2}$. After some algebra one gets
$\sum_{\nu=0}^{[N / 2]} \frac{2 \omega}{\omega^{2}-\sin ^{2} \frac{\pi \nu}{N}}=\frac{1}{\sqrt{1-\omega^{2}}} N \cot \left(N \sin ^{-1} \omega\right)$,
 precisely identical with that obtainable by means of the transfer matrix method.?)
H. Hasegawa

$=\frac{M}{m}-\left(\frac{M}{m}-1\right) \frac{i|\omega|}{\sqrt{1-\omega^{2}}}$,

$$
=\frac{M}{m}-\left(\frac{M}{m}-1\right) \frac{i|\omega|}{\sqrt{1-\omega^{2}}},|\omega|<1 . \quad(2 \cdot 12 \mathrm{~b})
$$

In order to substitute these expressions into the relation (2-8) we must kecp in mind several points. First of all, we are interested in the densities of states for large systems which may have definite values in the limit $N \rightarrow \infty$. Therefore, we redefine

$$
(2 \cdot 13)
$$

 $N(\omega)=N^{0}(\omega)-\frac{1}{N}\left\{\frac{d}{d \omega} \frac{1}{\pi} \arctan \left(\frac{M-m}{M} \frac{\omega}{\sqrt{1-\omega^{2}}}\right)+\frac{1}{2} \delta(\omega-1)\right\}$

 ing sum rule:

$\int_{-\infty}^{\infty} N(\omega) d \omega=\int_{-\infty}^{\infty} N^{0}(\omega) d \omega=1$

 range ω from 0 to $+\infty$ vanishes, whereas if $M>m$ it exactly compensates the

 cies in the quasi-continuum $0<\omega<1$, as can be seen from the identity:

$$
\Omega_{\mathrm{loc}}^{2}+N \int_{0}^{1}\left(N(\omega)-N^{0}(\omega)\right) \omega^{2} d \omega
$$

Note that this identity originates from an expansion of $f(\omega)$ in powers of ω^{-2} in the forms of both ($2 \cdot 4$) and ($2 \cdot 7$) and a comparison between each first term
 in a Fermi gas. ${ }^{87}$)

Density of States in Aperiodic Solids 147
account, which may be one real motivation of theory of disordered systems.*)

 $n \times n$ matrix $\boldsymbol{F}(\omega)$ defined in (2.3b), namely,
$\Re_{N}(\omega)=\Re_{N}^{0}(\omega)+\frac{d}{d \omega} \frac{-1}{\pi} \operatorname{Im} \log \operatorname{det} \boldsymbol{F}(\omega+i s)_{s \rightarrow 0}$.

$(2 I \cdot 6)$

The difficulty lies in the fact that one does not really know a convincing method әsоч7 se sә!̣! depending on the configurations of the defects.

§3. Impurity scattering of electrons due to short range forces

$$
(I \cdot \varepsilon)
$$

$$
(3 \cdot 2)
$$

$$
(\varepsilon \cdot \varepsilon)
$$

 k is introduced to satisfy $E=k^{2}$. We wish to illustrate here a mapping structure of this relation between the two complex planes of E and k (see Fig. 2). This ләdәәр е лоғ ‘ле лиэ! understanding of the coherent potential approximation.
 following convention:

[^2]H. Hasegawa
$$
(0 \leq \theta(=\arg E)<2 \pi)
$$
$$
i
$$
where the upper and the lower signs correspond to one and another sheet of the complex E-plane, called the physical sheet and the non-physical sheet, respectively, which totally represent the two-valued function $k(E)$. The physical sheet is characterized by the definition that a real, negative value
 axis $\operatorname{Re} k(E+i s)_{s \rightarrow 0}=-\operatorname{Re} k(E-i s)_{s \rightarrow 0} \geq 0$ having a discontinuity. Similarly, the non-physical sheet is characterized by just vice versa. This is summarized

> Table I. Definition of the physical and non-physical sheets.

	$\left(\mu_{7}>(g \mathrm{Bre}=)_{\theta}>0\right)$
$(\square \cdot \varepsilon)$	

Fig. 2. Physical and non-physical sheets of a complex E-plane which is
mapped to a complex k-plane through $E=k^{2}$ in the theory of scat-
tering.

$$
\begin{aligned}
& k=E^{1 / 2}=i(-E)^{1 / 2}, \\
& (-E)^{1 / 2}=\sqrt{|E|} e^{i \frac{\theta}{2} \mp i \frac{\pi}{2}}=\sqrt{|E|}\left(\pm \sin \frac{\theta}{2} \mp i \cos \frac{\theta}{2}\right),
\end{aligned}
$$

Accordingly, the integration with respect to k_{1} in the expression (3.3)
may be performed without any sign ambiguity by means of contour integramay be performed without any sign ambiguity by means of contour integra-
tions on the complex k_{1}-plane. For a given real value of k defined in the tions on complex k_{1}-plane. For a given real value of k defined in the
physet, one has

Density of States in Aperiodic Solids 149
This is because, if $x-x^{\prime}>0$, an integration along the contour composed of the real axis from $-R$ to R and a large semicircle of radius R in the upperhalf plane gives a residue $(1 / 2 i k) e^{i k\left(x-x^{\prime}\right)}$ at the pole $k_{1}=\sqrt{k^{2}+i s}$ and, if $x-x^{\prime}<0$, another similar contour integration on the lower-half plane gives ($1 / 2 i k$)

 accordance with (3.4) such that

$\frac{1}{2 i k^{i k \mid x-x^{\prime}} \mid}=-\frac{1}{2}(-E)^{-\frac{1}{2}} \exp \left\{-(-E)^{\frac{1}{2}}\left|x-x^{\prime}\right|\right\}$.

Кq рәиуәр ұ ләqunu әлем Кгеи!

$G^{+}\left(x x^{\prime} \mid i \kappa\right)=\frac{-1}{2 \kappa} e^{-\kappa\left|x-x^{\prime}\right|}$
 (3•7)
 shows that the Green kernel never grows up in this sheet. The integral equation (3.2) for the special form of $V(x)=-2 \kappa_{0} \sum_{(j)} \delta\left(x-x_{j}\right)$ now reduces to a discrete equation as follows:

an in particular,

$$
(\mathrm{e} \cdot \mathrm{C} \cdot \mathrm{\varepsilon})
$$

> (3.9)

${ }^{\left(\mathfrak{e}_{6} \cdot \varepsilon\right.}$

 which corresponds to an incident plane wave $\varphi_{k}(x)=e^{i k x}$ is of the form

20
Density of States in Aperiodic Solids

$$
\xrightarrow[A_{1} e^{-i k x} \longleftarrow A_{x_{0}}^{(0)}]{\longrightarrow A_{1} e^{i k x}}
$$

$$
\left.\begin{array}{rl}
\psi_{k}^{+}(x) & =e^{-i k x}+A(k) e^{\kappa\left(x-x_{0}\right)} e^{-i k x_{0}} \\
& =e^{-i k x}(1+A(k)),
\end{array} \quad \begin{array}{rl}
e^{-i k x}+A(k) e^{-i\left(x-x_{0}\right)} e^{-i k x_{0}} \\
=e^{-i k x}+e^{i k x} A(k) e^{-2 i k x_{0}}
\end{array}\right] \begin{aligned}
A(k) \equiv A(0, k) & =\frac{\kappa_{0}}{\kappa-\kappa_{0}} \\
& =\frac{-\kappa_{0}}{i k+\kappa_{0}} .
\end{aligned}
$$

0 $\frac{0}{2}$ 3

 the solution by $\tilde{\psi}_{k}(x)$ from the previous $\psi_{k}(x)$ and write as follows:

$x<x_{0} \quad x_{0}<x$

$\tilde{\psi}_{\dot{t}}^{+}(x)=e^{i k x}+A(k) e^{k\left(x-x_{0}\right)} e^{i k x_{0}} \quad e^{i k x}+A(k) e^{-\kappa\left(x-x_{0}\right)} e^{i k x_{0}}$
 $=e^{i k x}(1+A(k))$.

(3•15')

 are given by

$A_{t}(k)=1+A(k)$

$(9[\cdot \varepsilon)$
$\tilde{A}_{t}(k)=A_{t}(k)=1+A(k)$
$\stackrel{\text { N }}{\sim}$

$$
\tilde{A}_{r}(k)=A(k) e^{2 i k x_{0}} \text {. }
$$

For a real value of k these satisfy the conservation of the transition probability
uch that

$$
\left|A_{t}\right|^{2}+\left|A_{r}\right|^{2}=\left|\tilde{A}_{t}\right|^{2}+\left|\tilde{A}_{\boldsymbol{r}}\right|^{2}=1 \text {, }
$$

(3•18)
can be easily proved from (3•15a). In particular, the transmission ampli- tudes ($3 \cdot 16$) and (3.16^{\prime}) which have the same expression for both directions
 the transmission, a phase shift to an amount given by

$\theta=\arg (1+A(k))=\operatorname{Im} \log \frac{1}{1+\kappa_{0} / i k}$

$(6 I \cdot \varepsilon)$

. $\frac{y}{0 x}$ पедวлe $=$
Since the quantity $A(k)$ is a single-valued (actually a rational) function of
 Кұ!̣иепb депn.
 character of the logarithm of the transmission amplitude arising, besides from the two-valuedness of $k(E)=E^{1 / 2}$, from poles as well as zeros of the amplitude, $1+A(k)$.
We shall consider later the analytic aspect of these scattering quantities in one-dimensional scattering systems by setting the problem from a more

 as shown in Fig. 4.
Now, the Friedel sum rule may be deri-
ved from the usual identity fulfilled between

$$
\boldsymbol{G}^{+}=\boldsymbol{G}_{\text {tree }}^{+}+\boldsymbol{G}_{\text {iree }}^{+} \boldsymbol{T} G_{\text {iree }}^{+}
$$

The diagonal part in the coordinate repre-
problem is calculated as

ค

\[\)| $G^{+}(x x \mid i \kappa)$ | $=\frac{-1}{2 \kappa}+\left(\frac{1}{2 \kappa}\right)^{2} \int_{-\infty}^{\infty} e_{-}^{-2 \kappa\left\|x-x^{\prime}\right\|} T\left(x^{\prime}\right) d x^{\prime}$ |
| ---: | :--- |
| | $=\frac{-1}{2 \kappa}+\left(\frac{1}{2 \kappa}\right)^{2}\left(-2 \kappa_{0}\right) \frac{e^{-2 \kappa\left\|x-x_{0}\right\|}}{1-\kappa_{0} / \kappa} .$ |

\]

To derive the relation it is necessary to assume here that the system is inside
a long interval of the length $L(L \kappa \gg 1)$ and to integrate both sides of the

above equation, leading to \qquad| $\frac{1}{L} \int_{-L / 2}^{L / 2} G^{+}(x x \mid i \kappa) d x$ | $=\frac{-1}{2 \kappa}+\frac{1}{L} \frac{-\kappa_{0}}{2 \kappa^{3}} \frac{1}{1-\kappa_{0} / \kappa}$ |
| ---: | :--- |
| | $=\frac{-1}{2 \kappa}+\frac{1}{L} \frac{-1}{2 \kappa} \frac{d}{d \kappa} \log \left(1-\kappa_{0} / \kappa\right)$ |
| | $=\frac{-1}{2 \kappa}+\frac{1}{L} \frac{d}{d E} \log \left(1-\kappa_{0} / \kappa(E)\right)$. |

Here, we have denoted the free electron density of states as $N^{0}(E)$, which
is given by

ϑ at $k=0$ as indicated in (3.20) and (3.20') (also in Fig. 4) is caused from the presence of the one simple pole, $k=i \kappa_{0}\left(\kappa_{0}>0\right)$ located on the positive imaginary axis, a fact which shows that the number of "allowed" states is counted in the integrated density of states consistently just by one at the continuum edge $E=0$ for the attractive case.

In terms of $N^{0}(E)$ the optical theorem (3.14) may be re-expressed as

$\frac{-1}{L} \operatorname{Im}\left(\varphi_{k} \boldsymbol{T} \varphi_{k}\right)=\frac{\pi}{L}\left|\left(\varphi_{k} \boldsymbol{T} \varphi_{-k}\right)\right|^{2} N^{0}(E) \quad(\equiv 1 / \tau(E))$

$=\frac{1}{L} \frac{4 \pi \kappa_{0}^{2}}{\square+\kappa_{0} /\left.i k\right|^{2}} N^{0}(E)$,

$(97 \cdot \varepsilon)$

 әлеч әм ЧЈ!чм 'suo!

 shall take up this question from a more analytic point of view in later sections.

§4. Virtual localized states near the Fermi level

 displacement due to impurities dissolved in a metal. It was stimulated by extensive studies of localized magnetic states, as has been well summarized in a monograph written by Kondo. ${ }^{14)}$ Perhaps the most interesting question

 of this argument to the spin polarization effect through coupling between

to the present owing to a mathematical difficulty in dealing with the $s-d$

 how an adequate meaning can be assigned to the word "localization". An interesting demonstration of the localization effect was made first by Ander-

 mental questioning in the subject of localized states in solids. Here we restate the compensation theorem associated with a virtual state in a continuous spectrum, and then study its nature of localization from a quantum diffusion point of view.
We begin by considering the trace of a Green operator (or, a resolvent) associated with a matrix Hamiltonian of the form

 this is already partially diagonalized, non-vanishing matrix elements of \boldsymbol{H} only appearing in the first row and column, the Green operator $\boldsymbol{G}=(\boldsymbol{E}-\boldsymbol{H})^{-1}$ of the form

 i.e., the following two sets of linear equations for all the elements of \boldsymbol{G} : $\left(E-E_{d}\right) G_{d d}-\sum_{k^{\prime}} V_{d k^{\prime}} G_{k^{\prime} d}=1, \quad-V_{k^{\prime} d} G_{d d}+\left(E-E_{k^{\prime}}\right) G_{k^{\prime} d}=0$

(eq•市)

$$
\left(E-E_{d}\right) G_{d k}-\sum_{k^{\prime}} V_{d k^{\prime}} G_{k^{\prime} k}=0, \quad-V_{k^{\prime} a} G_{d k}+\left(E-E_{k^{\prime}}\right) G_{k^{\prime} k}=\delta_{k^{\prime} k}
$$

$$
(4 \cdot 3 \mathrm{~b})
$$

We eliminate the off-diagonal element $G_{k^{\prime} d}$ in the first set, $G_{k^{\prime} k}\left(k^{\prime} \neq k\right)$ and

Density of States in Aperiodic Solids
which together with the expression for $G_{d d}=1 / f(E)$ forms a typical selfenergy representation of the diagonal part of a Green operator. Noting that $\left|V_{k d}\right|^{2}=O(1 / N)$, we can see that in this one-center problem the self-energy for the conduction states gives a correction to its energy only in order of $1 / N, *)$ whereas the self-energy for the d state a correction of finite magnitude in the limit $N \rightarrow \infty$. Let us list up the densities of states for several species which are concerning presently.

 (b) the perturbed conduction states: $\Omega_{c}(E)=\frac{-1}{\pi} \operatorname{Im} \sum G_{k}(E+i 0)$, (c) the total: $\Re_{(E)}=\mathscr{N}_{c}(E)+\mathscr{N}_{d}(E)$, (d) the unperturbed conduction states: $\mathscr{I}_{\mathrm{rree}}(E)=\frac{-1}{\pi} \operatorname{Im} \sum_{k} \frac{1}{E-E_{k}+i 0}$A phase-shift relation is shown to be satisfied between

$$
\mathscr{N}(E)=\mathscr{N}_{\mathrm{free}}(E)+\frac{d}{d E} \frac{-1}{\pi} \operatorname{Im} \log f(E+i 0) .
$$

(4.9)

Anderson argued that, if the initially chosen d level is located in energy inside

 $\Im_{a}(E)=\frac{1}{\pi} \frac{\Delta}{\left(E-E_{d}\right)^{2}+\Delta^{2}}$,

(4•10)

$$
\left({ }^{\varepsilon} 0 T \cdot \square\right)
$$ may be assumed constant independent of E. But this is equivalent to considering that the excess total density, i.e., its deviation from the free con-duction-electron density is mostly incorporated into the expression (4.9), i.e., into the d-electron density, or equivalently

(4•11)

*) In the first expression of ($4 \cdot 7 \mathrm{c}$) the sum over the conduction states k^{\prime} avoids the term $k^{\prime}=k$. This

which yields an interpretation that the initially empty d level above the Fermi surface is now partially filled, after the interaction is switched on, to the amount given in the above. (Similarly, if the d level is below the E_{f}, the initially
 sically to the processes of dissolving a d-level atom into the host metal.) At the first sight of the expression for $G_{k k}$ given by ($4 \cdot 7 \mathrm{c}$) which indicates
the self-energy for each conduction state to be $\Delta E_{k}=\left|V_{k d}\right|^{2} / f(E)$ $\simeq\left|V_{k a}\right|^{2} /\left(E_{k}-E_{d}\right)$
density of the same magnitude as (4.15) to the conduction-electron density, $\int_{-\infty}^{E_{f}} \mathscr{N}_{c}(E) d E$. This is not the case indeed, and Anderson's demonstration of Eqs. (4.12) and (4.13) and hence of Eq. (4•11) shows clearly that the excess density contributes to the integral of $\mathscr{\Omega}_{d}(E)$ instead of $\Omega_{c}(E)$. This is just
what is meant by the "localization" of the excess conduction-electron density round the dissolved d-level atom. It should be stressed that in this interpretation the explicit setting of the d orbital is vital, because otherwise an appreciable excess density represented by the phase shift term must be assigned to the true conduction-electron density which has a spatially uniform component in order of magnitude $1 / N$. By a perturbation-theoretic consideration, in fact, Anderson demonstrated also that a precise cancellation occurs between

 theorem". Note that this latter admixture effect itself makes the "localized" nature of the d orbital obscured, which may be interpreted as the formation of a virtual (or resonance) state in the sense to be explained shortly. In the above respect, therefore, one may still ask how it is possible to
 is really a central one in the whole subjects of the theory of disordered systems.
 although several plausible criterions have been proposed by Thouless. ${ }^{19)}$ Here, however, it is interesting to quote the approach of "quantum diffusion"

 $i \frac{d u}{d t}=\boldsymbol{H} u \quad\left(i \frac{d u j}{d t}=\sum_{j^{\prime}} H_{j j^{\prime}} u_{j^{\prime}}\right)$,

(4•17)

and take a particular solution $u_{j n}(t)$ which satisfies the initial condition $u_{j n}(t=0)=\delta_{j n}$ Then, the transition probability can be defined for the quantum transition from the site n to m during the time interval between $t=0$ to t :

$$
P_{n \rightarrow m}(t)=\left|u_{m} u_{n}(t)\right|^{2}
$$

(4•19)

Here in the latter expression of the operator form the quantity $\hat{\rho}_{n}$ denotes the

160
the time evolution shall be tested, according to Ishii, by looking at the particular probability
$P_{\boldsymbol{n} \rightarrow \boldsymbol{n}}(\boldsymbol{t})=\operatorname{Tr}\left(\hat{\boldsymbol{\rho}}_{\boldsymbol{n}} e^{-\boldsymbol{i t H}} \hat{\rho}_{\boldsymbol{n}} e^{\boldsymbol{i t \boldsymbol { H }}}\right)$

(4•19a)

for a long period $0 \leq t \leq \infty$, i.e., by distinguishing two cases such that
(I) $\varlimsup_{t \rightarrow \infty} P_{n \rightarrow n}(t)>0, \quad$ (localized)

(II) $\varlimsup_{t \rightarrow \infty} P_{n \rightarrow n}(t)\left(=\lim _{t \rightarrow \infty} P_{n \rightarrow n}(t)=0\right)$. (not localized)

In practice, the limit at t infinity of the time-dependent quantity may be to put
customary to put

 obeys a linear equation of the type (4•7). Thus instead of (I) and (II)*) we may have

(II') $\lim _{8 \rightarrow 0} s \int_{0}^{\infty} e^{-s t} P_{n \rightarrow n}(t) d t=0 . \quad$ (not localized)

 probability of staying at site $n, P_{n \rightarrow n}(t)$, has its Laplace transform which contains δ-function type singularities at $s=0$, then the site n must be localized.

 the circumstance of taking the limit of the system volume infinite before the $s \rightarrow 0$ limit.

Now, let us apply the above criterion to the present example of Anderson's virtual state:

*) A third form of the criterion actually adopted by Ishii as "weak absence" of diffusion is the following:

 ($\left.\mathrm{I}^{\prime \prime}\right) \quad \int_{0}^{\infty} P_{n \rightarrow n}(t) d t=\infty, \quad$ (localized)($\mathrm{II}^{\prime \prime}$) $\int_{0}^{\infty} P_{n \rightarrow n}(t) d t<\infty$. (not localized)
The logical sequence of the three forms of the criterion is clearly
$\begin{aligned}\left(\mathrm{I}^{\prime}\right) & \Longrightarrow(\mathrm{I}) \\ \left(\mathrm{II}^{\prime}\right) & \Longleftrightarrow(\mathrm{II})\end{aligned} \Longleftrightarrow\left(\mathrm{I}^{\prime \prime}\right)$,
(II') $\Longleftarrow(\mathrm{II}) \Longleftarrow$ ($\left.\mathrm{II}^{\prime \prime}\right)$.

and for any interval $\left(E_{1}, E_{2}\right)$ of E where $\mathscr{I}_{\text {free }}(E) \neq 0$ and continuous the integral is bounded, i.e.,

$\left|\int_{E_{1}}^{E_{2}} \frac{1}{f(E+i s)} \operatorname{Im} \frac{1}{f(E-i 0)} d E\right|<\infty$,

$(S G \cdot \nabla)$

This implies the fact that a contribution to the integral in ($4 \cdot 21$) from the absolute) continuous part of the free-electron spectrum has no δ-function type singularity and hence is ineffective on the localization.
 continuity on crossing the axis and its continuation necessitates a many

 the metal, and, if this is the case,

$(4 \cdot 26)$

-punoq paz!ן state orbital, respectively.
Thus, it may be said that the word "localization" in terms of the quantum diffusion is actually not compatible with the originally intended meaning. A fully satisfactory assignment must be said to remain unsolved. However,

163
wish to give here a remark about how to associate the d-electron density in thermal equilibrium with the time-dependent transition probability. This is to demonstrate the way of the excess density formation in a time-dependent manner of the dissolving process of a foreign atom into a metal: Let $P_{\alpha \rightarrow \alpha}(t)$ be the quantum transition probability that a pure eigenstate
α of the Hamiltonian before dissolving could be found at the time t in any

(4.27)

$\left\langle P_{a}(t)\right\rangle=\sum_{\alpha} W_{\alpha} P_{\alpha \rightarrow a}(t)$.

Then, the excess density $\Delta \rho$ in (4.13) can be identified by
$\lim _{t \rightarrow \infty}\left\langle P_{d}(t)\right\rangle=\frac{1}{\pi} \int_{\text {cont }} \frac{1}{e^{\beta(E-\mu)}+1} \operatorname{Im} \frac{-1}{f(E+i 0)} d E$

where the contribution from the bound-state pole (if it exists) is excluded in the integration which is carried only over the continuous spectrum. The proof of this statement may be obtained by writing the right-hand side of (4.27) in the (second-quantized) operator form as
$=\operatorname{Tr}\left(\hat{\rho}_{a} e^{-i t} \mathscr{H}_{e^{i t}} t \mathscr{H}_{0} e^{-\beta} \mathscr{H}_{0} e^{-i t} \mathscr{H}_{0} e^{i t} \mathscr{H}\right)$
$\xrightarrow{t \rightarrow \infty} \operatorname{Tr}\left(\hat{\rho}_{d} \boldsymbol{W}_{+} e^{-\beta \mathcal{H}_{0} \boldsymbol{W}_{+}^{\dagger}}\right)$,

$(66 Z \cdot$ ®) $(67 \cdot ซ)$

($08 \cdot$ • $)$
(4•31)
§5. Density-of-states formulas by the coherent

potential method

 term in the Friedel sum relation taken up in § 2.4 in such a way that it may be

ful quantity. There have been considerable studies aiming at such expressions along the line of calculating the trace of the Green operators associated with a chosen model of disordered systems. In most of such theories the Green operator is expanded in power series of a disordered part of the Hamiltonian лер!

 It has appeared that the approximation is equivalent to the coherent potential theory. ${ }^{24)}$
By an extensive graphical analysis of perturbation series applied to a
 and the rest n by B-atoms (i.e., a binary alloy), Yonezawa arrived at a selfconsistent relationship between an ensemble averaged Green operator \boldsymbol{G} and its self-energy part \boldsymbol{S} as follows:

$G(E)_{k k^{\prime}}=\frac{\delta_{k k^{\prime}}}{E-E_{k}-S_{k}(E)} \equiv G_{k}(E) \delta_{k k^{\prime}}$,
 (5•1a)

 (5•1b)

 (5•1b)}

 of the ρ 's have been replaced by $Q_{s}(c)$ in ($\left.5 \cdot 1 \mathrm{~b}\right)$, where

$Q_{s}(c)=\sum_{m=1}^{s}(-1)^{m-1} \frac{(s+m-2)!}{m!(s-m)!(m-1)!}$

$\xrightarrow{2}$

$$
\begin{aligned}
& \qquad c=\frac{n}{N} \\
& \text { The set of polynomials }\left\{Q_{s}(c)\right\} \text { is characterized by a generating function } \\
& \text { of the form }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\qquad \begin{aligned}
I(z, c) & =\sum_{s=1}^{\infty} Q_{s}(c) z^{8-1} \\
& =\frac{1}{2 z}\left\{z-1+\left[(1-z)^{2}+4 c z\right]^{1 / 2}\right\}
\end{aligned} \\
\text { with } \begin{array}{l}
I(0, c)=Q_{1}(c)=c,
\end{array} \\
\text { which satisfies the identity } \\
I(z, c)+I(-z, 1-c)=1 .
\end{array} \text { (5.4b)} \begin{array}{l}
\text { Therefore, if we define a self-energy operator } S(E) \text { by extending the ex- }
\end{array} \\
& \begin{array}{l}
\text { Therefore, if we define a self-energy operator } \boldsymbol{S}(E) \text { by extending the ex- } \\
\text { pression (} 3 \cdot 1 \mathrm{~b} \text {) to inclusion of off-diagonal elements thus }
\end{array}
\end{aligned}
$$

$$
\boldsymbol{S}(E)=N \boldsymbol{V} \sum_{s=1}^{\infty} Q_{s}(c)(\boldsymbol{G} \boldsymbol{V})^{s-1}
$$

$$
=N V_{k k}-N\{\boldsymbol{V} \cdot I(-\boldsymbol{G} \boldsymbol{V}, 1-c)\}_{k k} .
$$

$$
\begin{aligned} S_{k}(E) & =S(E)_{k k}=N\{\boldsymbol{V} I(\boldsymbol{G} \boldsymbol{V}, c)\}_{k k} \\ & =N V_{k k}-N\{\boldsymbol{V} \cdot I(-\boldsymbol{G} \boldsymbol{V}, 1-c)\} k k\end{aligned}
$$

This indicates that the averaged Green operator is invariant under the sym-
This indicates that the averaged Green operator is invariant under the symmetry transformation

[^3]\[

$$
\begin{aligned}
& (q 6 \cdot \mathrm{~g}) \\
& \left(\mathrm{e}_{6} \cdot \mathrm{~g}\right)
\end{aligned}
$$
\]

166
and $\boldsymbol{\zeta}$ is related to $\boldsymbol{\eta}$ in another way: $\boldsymbol{V} \boldsymbol{\zeta}=\boldsymbol{V}(\boldsymbol{l}-\boldsymbol{\eta})$. If we introduce a parameter $\boldsymbol{\sigma}$ in place of $\boldsymbol{\eta} \boldsymbol{\eta}$, which appears more convenient in the operator relation

$S(E)=N V \cdot \sigma$,

therefore, $\boldsymbol{\sigma}$ is related with itself through $G V$ by
or, conversely,

$\boldsymbol{G} V=-\frac{c}{\boldsymbol{\sigma}}-\frac{1-c}{\sigma-1}$
 (5.11)
 Another way of putting this equation to connect with the original CPA formulation ${ }^{24)}$ that the effective T matrix vanishes on the average is the following:

$\frac{(1-c)(-\boldsymbol{\sigma})}{1-\boldsymbol{G} \boldsymbol{V} \cdot(-\boldsymbol{\sigma})}+\frac{c(1-\boldsymbol{\sigma})}{1-\boldsymbol{G} \boldsymbol{V} \cdot(1-\boldsymbol{\sigma})}=0$

Note that the generating function (5.4a) with $z=\boldsymbol{G} \boldsymbol{V}$ is nothing but one portion
of the explicit solutions of Eq. $(5 \cdot 11)$ satisfying the condition ($5 \cdot 4 \mathrm{~b}$). әұ! approximation theory which has the following implications:
(a) The self-energy of the Green operator contains only a single-site potential; (b) It satisfies the dual symmetry, namely $\overline{\boldsymbol{G}} \overline{\boldsymbol{V}}=\boldsymbol{G} \boldsymbol{V}$ with $\overline{\boldsymbol{V}}=-\boldsymbol{V}, \overline{\boldsymbol{\sigma}}=\mathbf{1}-\boldsymbol{\sigma}$, $\bar{c}=\mathbf{l}-c$ and $\overline{\boldsymbol{G}}=\boldsymbol{G}$;
(c) $\boldsymbol{G} \boldsymbol{V}$ as interpreted as a function of the parameter $\boldsymbol{\sigma}$ has no singularity other than $\boldsymbol{\sigma}=0$ or $\boldsymbol{\sigma}=1$ where it has a simple pole-a necessary and sufficient singularity from the single-site occupation point of view.*)

5.2 Construction of the formulas

 Green operator and its self-energy implied in Eqs. (5.la) and (5.1b) is solvable explicitly, when the single-site potential V is a "separable" form; $V_{k k^{\prime}}=$ $N^{-1} \sqrt{v_{k}} \sqrt{v_{k}}$, (thus applicable to a δ-potential model or same kinds of approximations, and to a mass-defects disorder problem of vibrations, etc.). In such cases one can take advantage of a lemma, saying that for any function F of the operator $\boldsymbol{G V}$,

[^4]\[\)| Density of States in Aperiodic Solids |
| :--- |
| $\{V \cdot F(\boldsymbol{G} \boldsymbol{V})\}_{k k^{\prime}}=V_{k k^{\prime}} F(z),$ |

\]

where
$z=\frac{1}{N} \sum_{k} v_{k} G_{k}(E)$.
The proof of this is easy, by considering polynomials and hence any con-
vergent power series. The simplest one is

$$
(\boldsymbol{V} \cdot \boldsymbol{G} V)_{k k^{\prime}}=\frac{1}{N} \sqrt{v_{\boldsymbol{k}}}\left(\frac{1}{N} \sum_{k} v_{k} G_{k}(E)\right) \sqrt{v_{k^{\prime}}}=V_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \text {, }
$$

(5.13)
and similar matrix products apply repeatedly to any order. Thus, for example,
$(\boldsymbol{V} \cdot \boldsymbol{\sigma})_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=\{\boldsymbol{V} \cdot I(\boldsymbol{G} \boldsymbol{V}, c)\}_{\boldsymbol{k} \boldsymbol{k}^{\prime}}=V_{\boldsymbol{k} \boldsymbol{k}^{\prime}} I(\boldsymbol{z}, c)$

$$
(V \cdot G V)_{k k^{\prime}}=V_{k k^{\prime}} \cdot\left(-\frac{c}{\sigma(z)}-\frac{1-c}{\sigma(z)-1}\right)
$$

$\left(9[\mathrm{G}) \quad \cdot \frac{\mathrm{L}-\rho}{\mathrm{O}-\mathrm{L}}-\frac{\rho}{\rho}-=z\right.$
 that is

$$
z=\frac{1}{N} \sum_{k} \frac{V_{k}}{E-E_{k}-v_{k} \sigma} .
$$

Therefore, the problem reduces to a self-consistency determination of the c-number parameter σ from Eqs. ($5 \cdot 16$) and ($5 \cdot 17$). In the following, we discuss a simple example of constant matrix elements, $V_{k k^{\prime}}=v / N$, for il-
 band or Frenkel exciton in a mixed crystal. ${ }^{26)}$
 portional to $-\operatorname{Im} z(E+i 0)$. Define, therefore, the quantity $z_{A}(E)$ for the $\sigma=0$ limit (the perfect A-lattice) as

($8 \mathrm{~L} \cdot \mathrm{G}$)

[^5]$$
(6 I \cdot g)
$$
168
Or, denoting the inverse function of z_{A} by ϕ_{A}, we may have
$$
E=\phi_{A}(z)+v \sigma .
$$
Equations $(5 \cdot 16)$ and $\left(5 \cdot 19^{\prime}\right)$ may be considered as a representation of the z vs. E
relation through an analytic parameter σ : A complete determination of z
as a function of E is to be given by inserting $\sigma(E)$ thus solved into the ex-
pression $(5 \cdot 19) ; z_{A}(E-v \sigma(E))$. To get a density-of-states vs. phase-shift
relation let us introduce a subsidiary energy variable $u: E-v \sigma(E) \equiv u$, or
$$
E=u+v \sigma .
$$
Then,

\[\)| $\left(5 \cdot 19^{\prime \prime}\right)$ |
| :--- |

\]

and we may write

$$
z(E) d E=z_{A}(u) d u+\left(-\frac{c}{\sigma}-\frac{1-c}{\sigma-1}\right) v d \sigma,
$$

where we have used the two expressions (5•19) and (5•16) for z in the first and second parts, respectively, of the right-hand side. Or, noting that $z(E)$
 $\boldsymbol{G}_{A}(E)$, respectively, we may rewrite ($5 \cdot 20$) also as follows:

$\left(5 \cdot 20^{\prime}\right)$

We assume that $z(E)$ and $z\{u(E)\} \rightarrow 0$ as $E \rightarrow-\infty$ to which corresponds the value $\sigma=c$ in (5•16). Then, upon integrating both sides of (5•20') from $E=-\infty$ to E along a straight line located just above the real axis,

$$
(\mathrm{I} \sigma \cdot \mathrm{~g})
$$

This is the first form of our aimed formula. It is seen to satisfy the dual symmetry, because $\boldsymbol{G}_{B}(E)=\boldsymbol{G}_{A}(E-v)$ and a shift of the variable of integration of the $\operatorname{Tr} \boldsymbol{G}_{\boldsymbol{A}}(E)$ assures

[^6]Density of States in Aperiodic Solids
$\boldsymbol{G}_{\mathrm{virtual}(E)}=\boldsymbol{G}_{A}(E-c v)=\boldsymbol{G}_{B}(E+(1-c) v)$

$=\boldsymbol{G}_{B}(E-\overline{\mathrm{v}})$.
The $\boldsymbol{G}_{\text {virtual }}\left(=\boldsymbol{G}_{\text {vir }}\right)$ is invariant under the symmetry transformation (5.8),
and thus, in place of (5.21), our formula is now
$\int^{E} \operatorname{Tr} \boldsymbol{G}\left(E^{\prime}\right) d E^{\prime}=\int^{E+c v-\boldsymbol{v a}(E)} \operatorname{Tr} \boldsymbol{G}_{\mathrm{vir}}$
$\int_{-\infty}^{E} \operatorname{Tr} \boldsymbol{G}\left(E^{\prime}\right) d E^{\prime}=\int_{-\infty}^{E+\boldsymbol{c v - v} \boldsymbol{v}(E)} \operatorname{Tr} \boldsymbol{G}_{\mathbf{v i r}}\left(E^{\prime}\right) d E^{\prime}$

that

$$
(\bigcirc \mathrm{SZ} \cdot \mathrm{G}) \quad \cdot(n)^{\mathrm{IA}} \boldsymbol{\partial} \perp \mathrm{~L} \frac{N}{\Lambda}=z \rightleftarrows(z) \phi=n
$$

 tion. This is to normalize the upper bound of the integration of $\operatorname{Tr} \boldsymbol{G}_{\mathrm{vir}}\left(E^{\prime}\right)$
up to the given energy E, and to make an approximation of expanding a fraction of the integral to lowest order in such a way that

$\sim \int_{-\infty}^{E}+(c-\sigma(E)) v \operatorname{Tr} \boldsymbol{G}_{\mathrm{vir}}(E+c v-v \sigma(E))$
$(5 \cdot 26)$
The approximation in the above may be allowed, if the $\operatorname{Tr} \boldsymbol{G}_{\mathrm{vir}}(E)$ is a smooth function of E (generally not assured depending on the range of E). Accordingly, we have

$$
\int_{-\infty}^{E}\left\{\operatorname{Tr} \boldsymbol{G}\left(E^{\prime}\right)-\operatorname{Tr} \boldsymbol{G}_{\mathrm{vir}}\left(E^{\prime}\right)\right\} d E^{\prime}
$$

$=N\left\{(c-\sigma(E)) z(E)+c \log \frac{c}{\sigma(E)}+(1-c) \log \frac{1-c}{1-\sigma(E)}\right\} .(5 \cdot 27)$

 terms are equal to the integral

Density of States in Aperiodic Solids 171
Density of States in Aperiodic Solids 171
әч丬 јо әәиеวч!
 up in a later discussion.

> 5.3 Application to the three examples
Let us specialize our prototype formulas derived so far to the three examples in $\S 2.4$ to get a convenient form for each case.

(1) Harmonic vibrations in a binary alloy

The formulation in the preceding subsection may be applied, if the following changes of notations in $\S 2$ (in particular the presentation of the secular equation ($2 \cdot 3 \mathrm{c}$)) are made:

$\left.{ }^{\text {e }} \boldsymbol{T} \varepsilon \cdot \mathrm{S}\right)$

 (5.31c)
 (PIE•S)

It is convenient here to introduce a parameter μ to replace σ such that

$E_{k}+S_{k} \equiv \frac{M}{\mu} E_{k} \rightleftarrows \sigma=\frac{m}{M-m}\left(\frac{M}{\mu}-1\right)$

 $\omega_{k}^{2}\left(=E_{k}\right)$ is proportional to l / M, the above representation of the energy spectrum has the meaning of a lattice vibration of the same lattice structurewith M being replaced by μ. In terms of μ, then, the z vs. σ relation (3.16)

On the other hand, from (3.31) and (3.32)

$(68 \cdot \mathrm{c})$	
$(8 \varepsilon \cdot \mathrm{G})$	
	чэ!чм шол
$(2 ¢ \cdot G)$	
pue -nt әч	
$(998 \cdot \mathrm{C})$. $\frac{(m-n)(W-n)}{(0 n-n) n}=Z$
(e9\% $\cdot \mathrm{S}$)	
$(s ¢ \cdot g)$	
$(\mp \mathcal{C} \cdot \mathrm{S})$	${ }^{\prime} W^{(\rho-1)}+u s=0 n$
($\mathrm{q} \varepsilon \varepsilon \cdot \mathrm{g}$)	
	әдәчм
(e¢¢ ¢ $)^{\text {) }}$	$\frac{\left(m-n^{\prime}\right)\left(W-n^{\prime}\right)}{\left(0 n^{\prime}-n^{\prime}\right) n^{\prime}}=\frac{m-n^{\prime}}{n(\rho-\mathrm{L})}+\frac{W-n^{\prime}}{n^{\prime} \rho}=Z$

$\stackrel{N}{-}$

 mass μ_{0} (i.e., of the virtual lattice) is given by

$E_{k}\left(=\omega_{k}^{2}\right)=\frac{1}{\mu_{0}} \sin ^{2}\left(\frac{k d}{2}\right)$.

[^7]

in which the constant mean mass μ_{0} is given in (5.34) and all the others $\bar{\mu}_{0}$ μ_{1}, μ_{2}, and μ_{3} in some way. the "mass' variable μ, a complex root of which yields, when inserted into Eq. ($5 \cdot 44$ b), a direct solution for the density of states (actually the frequency spectrum) of the CPA lattice vibration of a linear-chain binary alloy. Figure 6 shows a numerical result $\begin{array}{ll}\text { of such } & \text { density-of-states curves after } \\ \text { Taylor. }{ }^{28)} & \text { It would be an interesting }\end{array}$ exercise to grasp how such curves come out by considering the mapping structure be-

 This is essentially the limiting case $c \rightarrow 0$ of the illustrative example, $v_{k}=v$ (independent of k), given in Eqs. ($5 \cdot 16) \sim(5 \cdot 30)$, inasmuch as the free electron spectrum extends to $E \rightarrow+\infty$ as $|k| \rightarrow+\infty$, which corresponds to an infinitely large Brillouin zone. In the limit $c \rightarrow 0$, the parameter constitutive equations (5.25 a) and (5.25 b) are replaced by

> (q q. $\cdot \mathrm{c}$)

where the A-lattice basis has been chosen rather than the virtual lattice for obvious reason. Accordingly, the expressions ($5 \cdot 29$) and ($5 \cdot 30$) become
$\int^{E}\left\{\operatorname{Tr} \boldsymbol{G}\left(E^{\prime}\right)-\operatorname{Tr} \boldsymbol{G}_{A}\left(E^{\prime}\right)\right\} d E^{\prime}=-N c \sum_{c}^{\infty} \frac{1}{s} \operatorname{Tr}\{\boldsymbol{G}(E) \cdot \boldsymbol{V}\}^{8}$

(97. s)

$$
\rho(E)-\rho_{A}(E)=-\frac{c}{\pi} \arg (1-z(E+i 0)) .
$$

To apply these formulas to a system of free electrons moving under the action
of randomly distributed δ-potentials (expressed in Eq. $(3 \cdot 1)$), the trace operation
is considered as limited inside a long interval L, being divided by L, and then
L is made to infinity. The concentration factor c is accordingly redefined as

$(5 \cdot 47)$

relations ($5 \cdot 45 \mathrm{a}$) and ($5 \cdot 45 \mathrm{~b}$) are summarized by a single equation of the form

O|

(5.48)

$(87 \cdot \mathrm{c})$	

 modified form to three dimensional case by Yonezawa. ${ }^{31)}$ Also, several

 of states associated with the impurity band. ${ }^{32)}$

 of the cubic equation $\left(5 \cdot 48^{\prime}\right), z(E)$, which satisfies

$(5 \cdot 49)$

$$
(\mathrm{L} \cdot \mathrm{G})
$$

If we now remind ourselves of the self-consistent technique in determining the $\operatorname{Tr} \boldsymbol{G}$ implied in $(5 \cdot 45 \mathrm{a}, \mathrm{b})$ (see also $(5 \cdot 18)$ and $(5 \cdot 19)$ which are the origin of the technique), we observe that

$$
(\mathrm{I} \cdot \mathrm{~s})
$$

$\stackrel{0}{2 \times 0 \nu 7}$

 ұиәәธ!
 is shown to be perfect, if we rewrite the sum over the $G_{k}(E)$ in such a way that

$$
-\frac{1}{L} \sum_{k} G_{k}(E)=-\frac{1}{L} \sum_{\boldsymbol{k}} G_{k}(E-v \sigma(E))
$$

It is clear that the usual Born approximation is a consequence of this formalism
valid when $|\kappa| \gg\left|\kappa_{0}\right|$ and $N(E) \simeq N^{0}(E)$, and therefore

$$
(\varepsilon s \cdot g)
$$

Density of States in Aperiodic Solids
$\int_{-\infty}^{E}\left\{\operatorname{Tr} G\left(E^{\prime}\right)-\operatorname{Tr} G^{0}\left(E^{\prime}\right)\right\} d E^{\prime}=c \log \left(1-\kappa_{0} / \kappa(E)\right)$,

$$
E=-\kappa^{2}-\frac{2 c \kappa_{0} \kappa}{\kappa-\kappa_{0}},
$$

$(S G \cdot G)$

 \log arithmic term yields a better approximation than the form $\log \left(1-\kappa_{0} / \kappa^{\circ}(E)\right)$

 $\log \left(1-\kappa_{0} / \kappa(E)\right)$ and $\log \left(1-\kappa_{0} / \kappa^{\circ}(E)\right)$ is insignificant.

Some examples of the calculated density of states according to the formulas
$\left(5 \cdot 51^{\prime}\right)$ and $\left(5 \cdot 48^{\prime}\right)$ are shown in Fig. 7. The integrated density of states of the same model was compared with the free-electron square-root shape by Klauder as quoted in Halperin's paper, ${ }^{36)}$ which can be viewed from the present standpoint just to illustrate the Friedel relation $\left(5 \cdot 46^{\prime}\right)$.

178
H. Hasegawa

јеұәи в и! јәлә! ! retreated from the CPA point of view by considering the following matrix equation:

 to the d - and s-electronic states, respectively, where the indices j and k designate the lattice sites and the wave number, respectively. Thus we are dealing with a tight-binding electron system in an $A-B$ alloy composed of A-atoms with an s orbital and B-atoms with the same s and another d orbital. The $s-d$ mixing matrix element $V_{j k}$ may assume the form

$V_{j k}=\frac{v}{\sqrt{N}} e^{i k . j}$

$$
(2 S \cdot S)
$$

 of the G-matrix in a similar manner as in $\S 4$, we have

$\left(E-E_{d}\right) G_{j^{\prime} j}^{(d)}-\sum_{\left(j^{\prime \prime},\right.} \frac{1}{N} \sum_{k} \frac{v^{2} e^{i k .\left(j^{\prime}-j^{\prime \prime}\right)}}{E-E_{k}} G_{j^{\prime} j}^{(d)}=\delta_{j^{\prime} j}$,

$$
\begin{aligned}
& \text { where } \rho_{(0)}\left(k^{\prime \prime}-k\right) \text {, the density projector, is the same as in }(2 \cdot 3 \mathrm{~d}) . \\
& \text { A conventional argument to get a simole. uncorrelated form of } G^{(d)} \text { is }
\end{aligned}
$$

 to a result

$$
G_{j^{\prime} j}^{(d)}=\delta_{j^{\prime} j} G_{d}(E),
$$

$$
(5 \cdot 59)
$$

where $G_{d}(E)$ is given by (4.7 a). This is of course unsatisfactory and is subject to an examination whether its validity could be deduced or not, in the dilute limit of the d atoms, from a more general stand point. For this purpose let us perform a Fourier-transform of Eq. (5.58 a):

$$
G_{k^{\prime} k}^{(d)}=\frac{1}{N} \sum_{j^{\prime} j} e^{i\left(k^{\prime} \cdot j^{\prime}-k \cdot j\right)} G_{j^{\prime}, j}^{(d)} .
$$

$(09 \cdot \mathrm{c})$
Making use of the density projector, we can write the equation for $G_{k^{\prime} k}^{(d)}$ in a form
$\left(E-E_{d}-\frac{v^{2}}{E-E_{k^{\prime}}}\right) G_{k^{\prime} k}^{(d)}+\sum_{k^{\prime}} \frac{v^{2}}{E-E_{k^{\prime}}} \rho_{(\bar{j})}\left(k^{\prime \prime}-k^{\prime}\right) G_{k^{\prime \prime}{ }_{k}}^{(d)}=\delta_{k^{\prime} k}, \quad\left(5 \cdot 58^{\prime}\right)$
179
Density of States in Aperiodic Solids
where $\{\bar{j}\}$ represents the dual configuration of $\{j\}$, i.e., all of those sites un-

 the self-energy: We have the k-diagonal representations for the ensemble-
averaged $G^{(s, d)}$ in terms of the self-energy parameters σ and $\tilde{\sigma}$ in the form

the type ($5 \cdot 16$) and ($5 \cdot 17$).
Let us denote the concentration of the d-level atom (B-atom) by $c=n_{a} / N$
(the number of the B-atoms divided by the total lattice sites), and analyze the
 function $z_{0}(E)$ defined by

$$
z_{0}(E) \equiv \frac{1}{N} \sum_{k} \frac{1}{E-E_{k}} .
$$

Case $c \rightarrow 0$ limit

(5.62)

The self-consistent equations (5.16) and (5.17) for the $G_{k}^{(s)}$ can be written

\[\)| $z=\frac{v^{2}}{E-E_{d}} z_{0}\left(E-\frac{v^{2} \sigma}{E-E_{d}}\right)=-\frac{c}{\sigma}-\frac{1-c}{\sigma-1},$ |
| :--- |
| where, from $(5 \cdot 45 \mathrm{~b}), \sigma=c /(1-z) \text { to first order in } c \text {. Similarly, for the } G_{k}^{(d)}$ |
| $\tilde{z}=\frac{-v^{2}}{E-E_{d}} z_{0}\left(E-\frac{v^{2}}{E-E_{d}}(1-\tilde{\sigma})\right)=-\frac{1-c}{\tilde{\sigma}}-\frac{c}{\tilde{\sigma}-1},$ |
| $\tilde{\sigma}=1-\frac{c}{1+\tilde{z}} \text { to first order in } c .$ |

\]

Thus,

\[\)| $\frac{1}{N} \sum_{k} G_{k}^{(s)}(E)=z_{0}(E)-c v^{2} \frac{d z_{0}(E)}{d E} /\left(E-E_{d}-v^{2} z_{0}(E)\right),$ |
| :--- |
| $\frac{1}{N} \sum_{k} G_{k}^{(d)}(E)=\frac{1-c}{E-E_{d}}+\frac{c}{E-E_{d}-v^{2} z_{0}(E)} .$ |

\]

180

H. Hasegawa

is what we have expected from the conventional argument omitting the offis what we have expected from the conventional argument omitting the off-
diagonal part, $j^{\prime \prime} \neq j$, in the sum in $(5 \cdot 58$ a). It expresses the density-of-states function for the dissolved d atoms in the dilute limit which is precisely equal to c times the $G_{d}(E)$ in $(4.7 \mathrm{a})$ calculated in the single d-atom treatment. What

$\operatorname{Tr} \boldsymbol{G}(E)=\operatorname{Tr} \boldsymbol{G}^{\mathbf{0}}(E)$

 of $(1 / N) \operatorname{Tr} \boldsymbol{G}^{(d)}(E)$ to first order in c :

Thus the self-energy for the former is proportional to the latter and also vice versa, so the relation may be expressed as

$\frac{N_{\delta}(E)}{\tau_{s}(E)}=\frac{N_{d}(E)}{\tau_{d}(E)}$,

$N_{s}(E)=\frac{-1}{\pi} \operatorname{Im} z_{0}(E)$
$N_{d}(E)=\frac{-1}{\pi} \operatorname{Im} \frac{c}{E-E_{d}-v^{2} z_{0}(E)}$.
Case $c \rightarrow 1$ limit
os pur ‘ $0=\underset{\sim}{o}$ pue $[=0$ әлеч әм $[=$ д д!
$\stackrel{\sim}{\infty}$

182

H. Hasegawa

 respectively, as arising from one of the self-energy correction to the perfect

 with replacing the function $z_{0}(E)$ by $-z_{1}(E)$.

We conclude this section by rewriting the derived relations (5.65) and (5.72) in the familiar Friedel sum form as follows:

$\frac{1}{N} \int_{-\infty}^{E}\left\{\operatorname{Tr} \boldsymbol{G}\left(E^{\prime}\right)-\operatorname{Tr} \boldsymbol{G}^{\mathbf{0}}(E)\right\} d E^{\prime}$

$=c \log \left(1-\frac{v^{2}}{E-E_{d}} z_{0}(E)\right)$

(1-) $1+\frac{v^{2}}{E}$

(5.73b)

 for the detailed balance relation between the two $s-d$ relaxation constants.

6. A general treatment of one-dimensional

transmission problems

 in terms of the imaginary part of a certain logarithmic function which may be interpreted as the total sum of phase shifts of every scattering of the dynamical

 -лə!иеq ןе!

 interval of length L, called the scattering region, outside of which the particle

®

Density of States in Aperiodic Solids

$V(x)=0$	scattering region $V(x) \neq 0$	$V(x)=0$
$x=a$	$x=0$	$x=b$
$A_{t}(k) e^{-i k x}$	$\longleftarrow \psi_{k}+(x) \longrightarrow$	$e^{-i k x}+A_{r}(k) e^{i k x}$
$e^{i k x}+\tilde{A}_{r}(k) e^{-i k x}$	$\longleftarrow \tilde{\psi}_{k^{+}}(x) \longrightarrow$	$\tilde{A}_{t}(k) e^{i k x}$
$A_{t}(-k) e^{i k x}$	$\longleftarrow \psi_{k^{-}}(x) \longrightarrow$	$e^{i k x}+A_{r}(-k) e^{-i k x}$
$e^{-i k x}+\tilde{A}_{r}(-k) e^{i k x}$	$\longleftarrow \tilde{\psi}_{k}-(x) \longrightarrow$	$\tilde{A}_{t}(-k) e^{-i k x}$

Setting up two incident plane waves with a wave number k and considering

 are listed which may be obtained just by inverting the sign of k in the former expressions. The reflection and the transmission coefficients can be deter-
 tion of the type $(3 \cdot 1)$.
t is well-known that any two such solutions ψ_{1} and ψ_{2} satisfy a conservation of current, i.e.,

$$
([\cdot 9)
$$

$$
\left(\begin{array}{cc}
A_{t}(k) & A_{r}(k) \\
\tilde{A}_{r}(k) & \tilde{A}_{t}(k)
\end{array}\right) \cdot\left(\begin{array}{cc}
A_{t}(-k) & \tilde{A}_{r}(-k) \\
A_{r}(-k) & \tilde{A}_{t}(-k)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$\tilde{A}_{t}(k)=A_{t}(k)$.
$(\varepsilon \cdot 9)$
 problem, since

$\left(\begin{array}{cc}A_{t}(k) & A_{r}(k) \\ \tilde{A}_{r}(k) & \tilde{A}_{t}(k)\end{array}\right)=\left(\begin{array}{cc}\left(\psi_{k}^{-} \psi_{k}^{+}\right) & \left(\psi_{k} \tilde{\psi}_{k}^{+}\right) \\ \left(\tilde{\psi}_{k}^{-} \psi_{k}^{+}\right) & \left(\tilde{\psi}_{k} \tilde{\psi}_{k}^{+}\right)\end{array}\right)$

[^8]184
$$
\left\{A_{t, r}\left(k^{*}\right)\right\}^{*}=A_{t, r}(-k)
$$
thus together with $(6 \cdot 2)$ and (6.3)
 $$
\mathcal{S}(k) \cdot t \mathcal{S}(-k)=1 \quad(t \mathcal{S} \text { denotes the transpose of } \mathcal{S}) \text {, }
$$
leading to the fundamental fact that the \mathcal{S} is unitary when $k=$ real, a sum-
marized statement of the probability conservation (3•18).
A consideration of the analyticity of \mathcal{S}-matrix as a function of k as well
as E developed in early days by Wigner, ${ }^{4}$) Schützer and Tiomno, ${ }^{38)}$ van
Kampen ${ }^{39)}$ and Toll ${ }^{40)}$ provides a guiding principle to the present study. ${ }^{*}$)
Our main program is to find a representation of the $\mathcal{S}(k)$ in terms of analytically
simpler functions. For this purpose let us consider a pair of solutions, $\alpha(x, E)$
and $\beta(x, E)$, of the second-order differential equation which satisfy the initial

\[

$$
\begin{array}{ll}
a(0, E)=1, & \beta(0, E)=0 \\
a^{\prime}(0, E)=\left(\frac{d a}{d x}\right)_{x=0}=0, & \beta^{\prime}(0, E)=1
\end{array}
$$
\]

 leads us to get an expression for $A_{r}(k)$ and $\tilde{A}_{r}(k)$, and then from the conservation relation (6.2) and (6.3)
(6.9)

$(0[\cdot 9)$

 wave number $k\left(=E^{1 / 2}\right)$ as follows:

\section*{$A_{r}(k)=-\frac{C+B k^{2}+(A-D) i k}{C-B k^{2}-(A+D) i k} e^{-2 i k b}$
 | | $\stackrel{0}{\theta}$ |
| :--- | :--- |
| | $\dot{\theta}$ |}

[^9]| 10 |
| :--- |
| 0 |
| 1 |

9)	
(e8	$\left(7{ }^{\prime} p\right)^{v} d$
$(.7[\cdot 9)$	
($7 \mathrm{~L} \cdot 9$)	
	$\left(\begin{array}{ll} (\exists) G & (\exists) D \\ (\exists) g & (\xi) V \end{array}\right.$
(PLI•9)	${ }^{\prime}(n-q) y 3 z-a \frac{q ?(G+V)-{ }_{z} q G-つ}{q ?(G+V)+{ }_{z} q G-j}$
(PLI•9)	

(b) its zeros as well as poles are all simple and located on the real axis,
(c) its derivative is real positive at every regular point of the real axis,
(d) it yields an absolutely convergent Mittag-Leffler series
$R(E)=\alpha E+\beta+\Sigma\left(\frac{\gamma_{\mu}^{2}}{E_{\mu}-E}-\frac{\gamma_{\mu}^{2}}{E_{\mu}}\right)$
with real constants, $a(\geq 0), \beta, \gamma^{\prime}$ s and E_{μ} 's.
Its profile is just like as illustrated in Fig. 1. Its best example we have met is the function $f(E)$ defined in $(4 \cdot 6)$ under the assumption of the discreteness of E_{k}. Examples of R-functions here are $a^{\prime}(a, E) / a(a, E), a(b, E) / a^{\prime}(b, E)$, $A(E) / C(E), B(E) / D(E)$ and so on (see the footnote related to Eq. (6.19)).
 finite k-plane, the poles of which are identified with all the zeros of the common denominator, an entire function of k denoted by

$$
\begin{aligned}
& \qquad f(k) \equiv C\left(k^{2}\right)-B\left(k^{2}\right) k^{2}-\left(A\left(k^{2}\right)+D\left(k^{2}\right)\right) i k, \\
& \text { whose locations are either } \\
& \text { (I) on the imaginary axis (all simple), or } \\
& \text { (II) inside of the lower half plane situated symmetrically with respect } \\
& \text { to the imaginary axis (see Fig. 6). } \\
& \text { Thus, all the } \mathcal{S} \text {-matrix elements and hence } \operatorname{det} \mathcal{S}(k) \text { are holomorphic in the } \\
& \text { upper half of the } k \text {-plane except at the simple poles indicated in (I). In } \\
& \text { particular, the function det } \mathcal{S}(k) \text { yields a product expansion of the form }
\end{aligned}
$$

$$
\operatorname{det} \mathcal{S}(k)=-\frac{f(-k)}{f(k)} e^{-2 u k(b-a)}
$$

$=-e^{-2 d k . l} \prod_{\nu} \frac{k+i \kappa_{\nu}}{k-i \kappa_{\nu}} \cdot \prod_{\nu} \frac{\left(k+K_{\nu}\right)\left(k-K_{\nu}^{*}\right)}{\left(k-K_{\nu}\right)\left(k+K_{\nu}^{*}\right)}$

(6.16)

(と9I-9)

where $i \kappa_{\nu}$'s and $K_{\mu^{\prime}} \mathrm{s}\left(\operatorname{Re} K_{\mu}>0, \operatorname{Im} K_{\mu}<0\right)$ are the stated zeros of $f(k)$ in (I) and (II), respectively. (The physical meaning of these zeros are the bound
 level" discussed in $\S 4$ is a typical example for the latter.)
(Кұ!ме

or to $\tilde{\psi}_{k}(x)$ at $x \rightarrow+\infty$, their amplitudes decaying exponentially to each direc-

Density of States in Aperiodic Solids 187

$$
(L[\cdot 9)
$$

$$
(8[\cdot 9)
$$

 order linear differential equations provides a useful formula:*)

$$
\frac{1}{W\left(\psi_{k}^{+}, \tilde{\psi}_{k}^{+}\right)} \int_{a}^{b} \psi_{k}^{+}(x) \tilde{\psi}_{k}^{+}(x) d x
$$

 $(x x \mid k) d x \equiv \operatorname{Tr} \boldsymbol{G}^{+}(E) . \quad$ Using Eqs. $(6 \cdot 11 \mathrm{c}),(6 \cdot 15)$ and (6.18) and noting that $k=E^{1 / 2}$, we can rewrite (6.19) as

$\left.\operatorname{Tr} \boldsymbol{G}^{+}(E)=-\frac{d}{d E} \log \left\{e^{i k(b-a}\right) A_{t}(k)\right\}$

188

H. Hasegawa

The second term on the right may be interpreted to exhibit a boundary effect
 vary depending on the energy E. The phase shift associated with this scattering may be introduced by means of the transmission coefficient $A_{t}(k)$ for the physical reason that it connects the incident and transmitted components of the wave as discussed in the example of $\S 3$. Here let us write

$$
A_{t}(k)=e^{i \vartheta(k)}
$$

(6.21)

$\vartheta(k)$ being a complex function of the complex variable k which satisfies

$$
(6 \cdot 22)
$$

Consequently, the integral of the both-hand sides of ($6 \cdot 20$), divided by the interval $b-a=L$ is now of the form

$\frac{1}{L} \int^{E} \operatorname{Tr} \boldsymbol{G}^{+}\left(E^{\prime}\right) d E^{\prime}=-i k-\frac{i}{L} \vartheta(k)$

$$
+[\text { boundary term }]
$$

$$
\left[\text { boundary term] }=\frac{1}{L} \int^{k(E)} \frac{1}{1-i k R\left(k^{2}\right)} \frac{d k}{k},\right.
$$

 poles to possible zeros of the analytic function $A_{t}(k)$. To be important, however, the representation (6.11 c) shows clearly that only the zero of this function

 $k=0$. Another important characteristic of the $A_{t}(k)$ is that

$$
\begin{aligned}
& \qquad A_{t}(k) \xrightarrow{|k| \rightarrow \infty} 1 \quad 0<\arg k<\pi, \\
& \text { which may be verified from the free-particle asymptotic form of the matrix in } \\
& \text { (} 6 \cdot 12^{\prime} \text {) for }|E| \rightarrow \infty \text { in the physical sheet. Thus the } \vartheta(k) \text { may be regarded as } \\
& \text { a one-valued analytic function inside of the contour } \Gamma \text { indicated in Fig. } 8 \text {, } \\
& \text { where }
\end{aligned}
$$

189

$\left.(96 \cdot 9) \quad \cdot u\left(\frac{Z}{I}-u\right)=\left((-0)_{6}-(+0) \sigma^{2}\right) \frac{G}{I}=\right)(0)_{6} \partial \mathrm{X}$

Ұŋ! at $k=0$ is an indicator of the total number of the bound states localized in the

 uə and is related to the fact that

$A_{t}(k=0)=0$ and $\operatorname{det} \mathcal{S}(k=0)=-1$.
 $(97 \cdot 9)$

 $\frac{1}{L} \int^{k(E)} \frac{R d k}{1+k^{2} R^{2}}$

 Levinson's theorem ($6 \cdot 25$) to specify the lower bound in such a way that the integrated density of states at $E=0$ shall be equal to the number of the bound states n, thus
$\int_{-\infty}^{E} \frac{-1}{L} \operatorname{Im} \operatorname{Tr} G^{+}\left(E^{\prime}\right) d E^{\prime}=k(E)+\frac{1}{L} \operatorname{Re} \vartheta\{k(E)\}$
For a large system $(L \rightarrow \infty)$ the third term on the right which represents the boundary effect may be ignored compared to the other two, and so

(6.27)

$\int_{-\infty}^{E} \frac{-1}{L} \operatorname{Im} \operatorname{Tr} \boldsymbol{G}^{+}\left(E^{\prime}\right) d E^{\prime}=k(E)+\frac{1}{L} \operatorname{Re} \vartheta\{k(E)\}$
8
The second expression of the series of arctangents in the above can be obtained from the product expansion ($6 \cdot 16)^{*)}$ and by using the relation

$=k(E)\left(1-\frac{\ell}{L}\right)$

H. Hasegawa

$\operatorname{det} \mathcal{S}(k)=\frac{A_{t}(k)}{A_{t}(-k)}=\exp \{i(\vartheta(k)-\vartheta(-k))\}$

 $\left|A_{t}(k)\right| \leqq l$ on the real k-axis, which implies the inequality

$\operatorname{Im} \vartheta(k) \geq 0 . \quad(k=$ real $)$

(6-29)

 an effect of dissipation of the momentum of the Schrödinger particle in the

 number of reflections that the particle undergoes virtually inside of the scattering region. Toll40) made a similar argument concerning a general response

$$
\text { *) The poles of the analytic function } A_{t}(k) \text { on the imaginary axis as classified in (I), the bound-state }
$$ zeros of $f(k)$, have a twin structure such that to each bound-state pole $i \kappa_{\nu}(\nu=1,2, \cdots n-1)$ on the $+i$ axis there corresponds another pole $i \tilde{i}_{\nu}\left(\tilde{\kappa}_{\kappa}<0\right)$ on the $-i$ axis except one denoted by $\kappa 0$ so

that the total number of these simple poles, (I), is $2 n-1$. It is possible to arrange them in such a way that

$$
\kappa_{0}<\left|\tilde{\kappa}_{1}\right|<\kappa_{1}<\left|\tilde{\kappa}_{2}\right|<\cdots<\left|\tilde{\kappa}_{n-1}\right|<\kappa_{n-1} .
$$

$$
\begin{aligned}
& \text { Consequently, the poles and zeros of the function } \operatorname{det} \mathcal{S}(k)=A_{t}(k) / A_{t}(-k) \text { on the imaginary axis } \\
& \text { are situated just alternatingly (see van Kampen } \left.{ }^{39}\right) \text {). Every arctangent in the series }\left(6 \cdot 27^{\prime}\right) \text { takes its }
\end{aligned}
$$

$$
\begin{aligned}
& \text { are situated just alternatingly (see van Kampen } \\
& \text { principal value and conforms to Levinson's theorem }(6 \cdot 25) \text {. }
\end{aligned}
$$

 'әи!̣ әч! әsләли! st! 'леן

$z(E) \equiv \frac{1}{L} \operatorname{Tr} \boldsymbol{G}(E)$
 (0\&•9)
 (r0e.9)

 $$
z / \mathrm{I}-(\exists--) \frac{6}{\mathrm{~L}-}=(\exists)^{0 z}
$$

 if the boundary term is neglected. Let us consider the factor l / L as a per-turbation parameter and find the converted form of the Friedel relation (6.30) up to first order in $1 / L$ such that

(IE•9)

 ${ }^{\cdot(z)}{ }^{1}{ }^{H} \frac{T}{\mathrm{~T}}+{ }^{(z)}{ }^{0}{ }_{Z}=G$

Thus we can summarize the physical roles of the real and imaginary parts of $(d / d k) \vartheta$ by writing

density of states

(6.33)
($\ddagger E \cdot 9$)
192
In terms of the bound- and resonance-states poles $i \kappa_{\nu}, i \tilde{\kappa}_{\nu}$ and K_{ν} we have also
variant under linear fractional transformations of the $R(E)$ which produces
 if interpreted in the present transmission problem. Thus the boundaryinsensitive phase-shift function $\vartheta(k)$ could be deduced essentially from this family of analytic functions.
In conclusion, it may be remarked that the present analysis indicates clearly, in the above-mentioned situation of the uniformity of the system,
 system, as may be seen from the expression ($6 \cdot 23$).

 Friedel sum rule we have considered may be expressed in the form

$$
\int_{-\infty}^{E} \operatorname{Tr} \boldsymbol{G}\left(E^{\prime}\right) d E^{\prime}=\int_{-\infty}^{E} \operatorname{Tr} \boldsymbol{G}_{0}\left(E^{\prime}\right) d E^{\prime}+\log \operatorname{det} \boldsymbol{F}(E) .
$$

Here $\boldsymbol{F}(E)$ is an $n \times n$ matrix defined as a function of the energy variable E in a complex plane, and satisfies
(a) single-valued, analytic and regular (spanning an n-dimensional vector space, or $\operatorname{det} \boldsymbol{F}(E) \neq 0$) everywhere there except on the real axis, (b) $\operatorname{det} \boldsymbol{F}^{*}\left(E^{*}\right)=\operatorname{det} \boldsymbol{F}(E)$, (the principle of reflection)
(c) $\operatorname{Im} \operatorname{det} \boldsymbol{F}(E)<0$ for $\operatorname{Im} E>0$,
(d) $\lim \operatorname{det} \boldsymbol{F}(E)=1$ for $0<\arg E<2 \pi$,
(e) possible zeros of the $\operatorname{det} \boldsymbol{F}(E)$ on the real axis are simple and finite in number.
For the three examples taken up in $\S 2.4$ the matrix F is given explicitly as follows:
(l) Harmonic vibrations in a binary alloy

(7•2)
$F(E)_{j j^{\prime}}=\delta_{j j^{\prime}}-\frac{\kappa_{0}}{\kappa(E)} \exp \left\{-\kappa(E)\left|x_{j}-x_{j^{\prime}}\right|\right\}$, $\kappa(E)=(-E)^{1 / 2}$,
(3) Virtual localized states near the Fermi level

$F(E)_{j j^{\prime}}=\delta_{j j^{\prime}}-\frac{1}{E-E_{d}} \frac{1}{N} \sum_{k=1}^{N} \frac{v^{2}}{E-E_{k}} e^{\ell\left(x_{j}-x_{j}{ }^{\prime}\right) k}$
$F(E)_{j j^{\prime}}=\delta_{j j^{\prime}}-\frac{1}{E-E_{d}} \frac{1}{N} \sum_{k=1}^{N} \frac{v^{2}}{E-E_{k}} e^{i\left(x_{j}-x_{j}^{\prime}\right) x}$
194

H. Hasegawa

The analytic function $\operatorname{det} \boldsymbol{F}(E)$ of the properties (a) $\sim(\mathrm{d})$ is specific in physics,
 and may be called a "causal function". If, further, it satisfies another property (e^{\prime}) meromorphic everywhere in the finite E-plane,
then the minus sign of it is just a Wigner's R-function, as exemplified by the above (1) and (3). (These are actually rational R-functions with a finite number of poles.) In the example (2) the function $-\operatorname{det} \boldsymbol{F}(E)$ is not an R-function because of the double-valuedness of the function $\kappa(E)=(-E)^{1 / 2}$ which arises from the background continuous spectrum for the assumed infinite system.
It is really one most difficult point in constructing the theory of density of states that we must consider infinite systems, in other words, take the socalled "thermodynamic limit" of the R-functions associated with each finite

 all the singular points as well as the zeros of that function
A zero point of an R-function characteristic to a finite system before taking the thermodynamic limit is restricted to locate only on the real axis and represents an "allowed" state of the system. On going to the limiting infinite system, a zero point of the resulting causal function can never be predicted to locate on the real axis only, but a possibility arises that there

 and the non-physical sheets, respectively.
 (but of rather narrow applicabilities) to compute the thermodynamic limit, yielding an analytic function which fulfills the above-discussed requirement.

195
Density of States in Aperiodic Solids
\quad Density of States in Aperiodic Solids
$E=\phi(z)+(c-\sigma) v$,
$z=-\frac{c}{\sigma}-\frac{1-c}{\sigma-1}$,

$u=\phi(z) \rightleftarrows z$	$=\frac{v}{N} \operatorname{Tr} G_{\mathrm{vir}}(u)$
	$\equiv z_{0}(u)$.

 z and E may be established through a parameter σ as in Eqs. ($7 \cdot 4$) and (7.5), wheres $\phi(z)$ is obtainable from the inverse function of the known density-of-
states function $z_{0}(u)$ given in Eq. (7.6). It is then possible to discuss all the

 (Γ_{0} and Γ_{1} in Fig. 9) are the maps of the boundary lines on the real E-axis

 tive boundary contours C_{0} and C_{1} of the physical sheet of
the E-plane onto those on the σ-plane, i.e., along Γ_{0} and Γ_{1}, espectively. Note that the contour integrals of the function

 pectation that these contours avoid the possible singularities $\sigma=0$ and $\sigma=1$,

 fundamental sum rule by means of the CPA, namely

$$
\frac{1}{2 \pi i} \int_{C_{0}} z(E) d E=1-c,
$$

$$
\frac{1}{2 \pi i} \int_{C_{1}} z(E) d E=c .
$$

These relations imply, of course, that the total band may be split into two subbands separated by a finite gap, each component having an integral of

196
region of the σ-plane is singly-connected, for which only the following total sum rule holds
$\frac{1}{2 \pi i} \int_{C\left(=C_{0}+C_{1}\right)} z(E) d E=1$.
Or, in terms of the density of states $N(E)$ in any case

$$
\int_{-\infty}^{\infty} N(E) d E=1 .
$$

Similarly, on the basis of the analyticity in the physical region of the σ-plane, the CPA Green function satisfies
$\frac{1}{2 \pi i} \int_{C} G_{k}(E) d E=\frac{1}{2 \pi i} \int_{C} \frac{d E}{E-E_{k}-v \sigma(E)}$

$=\int_{-\infty}^{\infty} \frac{-1}{\pi} \operatorname{Im} G_{k}(E) d E=1$.

(7.9)
It is not a difficult task to make similar sum rules for every examples (1)~

 coefficient, as discussed in $\S 6$, that is

 This relation has been pointed out also by Reading and Sigel. ${ }^{12 \text {) }}$ By this analogy we can set for the CPA binary alloy also

$$
(7 \cdot 11)
$$

 length of the binary-alloy medium. For this to be the case, however, the following inequality should be proved:

$$
\left|A_{t}(E)\right| \leq 1\binom{E=\text { real and }}{\quad \text { belongs to the continuous spectrum }}
$$

We have not succeeded to give a general proof of this inequality in (7.11) from the general CPA construction. As discussed in $\S 6$, it is related to the real part of the trace of the Green operator instead of the imaginary part, and
 to remark a possibility to introduce a concept of entropy in the theory of disordered systems by considering $\log \left|A_{\boldsymbol{t}}\right|$ which may represent in a sense a
תu!
 "exponential growth" discussed by Borland, ${ }^{44)}$ Halperin, ${ }^{36)}$ Minami and Hori ${ }^{45)}$ Matsuda and Ishii46) and possibly other investigators in this field of researches.

Appendix
 -Details of the CPA analytic consideration of the frequency spectrum in a

 linear-chain binary alloy-We wish to present here an illustration convenient how to get the frequency
 $\frac{1}{N} \operatorname{Tr} \boldsymbol{G}(E)=\frac{1}{E} Z(E), \quad E=\omega^{2}, \quad$ (A•1) together with Eqs. ($5 \cdot 44 \mathrm{a}, \mathrm{b}$). The latter equations represent a functional relation between Z and E via the "mass" variable μ, rewritten here as follows: $\begin{aligned} E & =\frac{\mu_{0} \mu\left(\mu-\mu_{0}\right)^{2}}{2 \bar{\mu}_{0}\left(\mu-\mu_{1}\right)\left(\mu-\mu_{2}\right)\left(\mu-\mu_{3}\right)}, \\ Z & =\frac{\mu\left(\mu-\mu_{0}\right)}{(\mu-M)(\mu-m)},\end{aligned}$ where the several mass constants $\mu_{0}, \bar{\mu}_{0}$ and $\mu_{i}(i=1,2,3)$ are some combinations of the starting masses M and $m(m<M)$ of the constituent atoms whose concentrations are $1-c$ and c, respectively, such that

($\mathrm{e}_{\mathrm{F}}^{\mathrm{F}} \cdot \mathrm{F} \cdot \mathrm{V}$)
 $(q T \cdot V)$ $(\supset \sqcap \cdot \mathrm{V}) \quad \therefore \frac{m(\rho-\mathrm{T})+W^{\jmath}}{m_{W}}=\mathrm{t}_{n}$

 smaller one of the two roots in (A•4d)):

$$
\mu_{2}<m<\mu_{1}<\mu_{0}<\mu_{3}<M .
$$

$E \left\lvert\, E_{0}=1+\frac{\alpha_{1}}{\mu-\mu_{1}}+\frac{\alpha_{2}}{\mu-\mu_{2}}+\frac{\alpha_{3}}{\mu-\mu_{3}}\right.$,

$$
(\mathrm{A} \cdot 5)
$$

®
> ig. 10. A mapping between the complex E-plane and the μ-plane similar to Fig. 9 through Eq. (A.2) or (A.2'), showing the way how the real E-axis is mapped onto several curves in the μ-plane, i. e.,
the real μ-axis and the closed contours Γ_{0} and Γ_{1}. Note that the the real μ-axis and the closed contours Γ_{0} and Γ_{1}. Note that the
order and the orientation of the contours Γ_{0} and Γ_{1} are just opposite order and the orientation of the contours Γ_{0} and Γ_{1} are just opposite
to the situation in Fig. 9 for the reason of the definition of the variable μ which is, apart from a constant factor, reciprocal to σ (see
Eq. $(5 \cdot 32)$).
$E_{0}=\frac{\mu_{0}}{\mu_{0}}$

Density of States in Aperiodic Solids

respond to the real E-axis. This is indicated in the lower part of Fig. 10, where the two contours Γ_{0} and Γ_{1} correspond to the respective intervals C_{0}

 explicitly demonstrated in the present example by recalling the differential formula (5.38), i.e.,
$\frac{1}{N} \operatorname{Tr} \boldsymbol{G}(E) d E=Z(E) \frac{d E}{E}$

$$
(9 \cdot \forall) \quad \quad \quad n p\left(\frac{m-n}{\rho-\mathrm{I}}+\frac{W-n}{\rho}\right)-n p(n)^{\circ} r_{0} \perp^{\perp} \frac{N}{\mathrm{~L}}=
$$

(A.7)

(A.8)

 From a careful study of these expressions the stated analyticity can be es-
 оsโе әұо that (A.7) gives another mapping from u - to μ-planes by which the real u -

(A.9)

Consequently, we have
$\frac{1}{2 \pi i} \int_{\Gamma_{0}} \frac{1}{N} \operatorname{Tr} \boldsymbol{G}\{E(\mu)\} \frac{d E}{d \mu} d \mu=1-c$,
8

\section*{H. Hasegawa

$\frac{1}{2 \pi i} \int_{r_{1}, \frac{1}{N}} \operatorname{Tr} G\left\{E(\mu) \frac{d E}{d \mu} d \mu_{=c}\right.$

$\frac{1}{2 \pi i} \int_{r_{1}, \frac{1}{N}} \operatorname{Tr} G\left\{E(\mu) \frac{d E}{d \mu} d \mu_{=c}\right.$

which are the desired sum rules. Another sum rule about the Green function
(A-8) can be derived in a similar manner. (A•8) can be derived in a similar manner

 physically the polarizability of the binary alloy which is different from the frequency spectrum in the usual meaning. In terms of the present mass variable μ his spectral function is obtainable just by dividing our Z-function

 writer met when started to investigate the analytic problem of the CPA theory.
Acknowledgement
It is a pleasure to thank Dr. F. Yonezawa for useful discussions and
a colaboration ${ }^{48}$) in the early stage of the present studies.

References

H. Weyl, Math. Ann. 71 (1912), 441.
E. P. Wigner, Ann. Math. 53 (1951), 36.
P. Debye, Ann. Phys. Lpz. (4) 39 (1912), 789.
A. Sommerfeld, Z. Phys. 47 (1928), 1.
A. A. Maradudin, E. W. Montroll and G. H. Weiss, Solid State Physics Suppl. 3, ed. by F. Seitz
and D. Turnbull (Academic Press, N.Y., 1963).
Moriguchi et al., S $\bar{u} g a k u$ Koshiki II, Iwanami Zensho 229, p. 188 .
A. A. Maradudin, E. W. Montroll and G. H. Weiss, Solid State Physics Suppl. 3, ed. by F. Seitz
and D. Turnbull (Academic Press, N.Y., 1963).
Moriguchi et al., Sūgaku Koshiki II, Iwanami Zensho 229, p. 188 .
Hori and T. Asahi, Prog. Theor. Phys. 17 (1957), 523
K. Sawada, K. A. Brueckner, N. Fukuda and R. Brout, Phys. Rev. 108 (1957), 507.
See also R. Brout and P. Curruthers, Lectures on the Many-Electron Problems (N.Y. Interscience
ub., 1963).
I. M. Lifshitz, Soviet Phys.-Uspekhi 7 (1965), 549.
M. Lax and J. C. Phillips, Phys. Rev. 110 (1958), 41

1) L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Sec. 128, 2nd ed. (Pergamon Press, 1958). 12) J. F. Reading and J. L. Sigel, Phys. Rev. B5 (1972), 556.
2) J. Friedel, Phil. Mag. 43 (1952), 153.
ee also Supple VII, Ser. X, Del Nuovo Cim. (1958), 287.
(1969), p. 183.
P. W. Anderson, Phys. Rev. 124 (1961), 41.
P. W. Anderson, Phys. Rev. 109 (1958), 1492

. C. Langreth, Phys. Rev. 150 (1966), 516.
于 家
Density of States in Aperiodic Solids 201
19）D．J．Thouless，Amorphous and Liquid Semiconductors，ed．by M．H．Cohen and G．Lucovsky
K．Ishii，this issue： 1966），p． 487.
J．M．Jauch，Helv．Phys．Acta 31 （1958）， 127.
See also T．Kato in Ref．21）Chap．X．
F．Yonezawa，Prog．Theor．Phys． 40 （1968）， 734.
．Velický，S．Kirkpatrick and H．Eherenreich，Phys．Rev． 175 （1968）， 747
．Yonezawa and T．Matsubara，Prog．Theor．Phys． 35 （1966）， 357.
．Onodera and Y．Toyozawa，J．Phys．Soc．Japan 24 （1968）， 341.
R．W．Davies and J．S．Langer，Phys．Rev． 131 （1963）， 163.
M．Nakamura and F．Yonezawa，Prog．Theor．Phys． 47 （1972）， 1194.
Klauder，Ann．der Phys． 14 （1961）， 43.
Yonezawa，Prog．Theor．Phys． 31 （1963）， 35
H．Hasegawa and M．Nakamura，J．Phys．Soc．Japan 26 （1969）， 1362.
M．Saitoh，H．Fukuyama，Y．Uemura and H．Shiba，J．Phys．Soc．Japan 27 （1969）， 26.
H．Shiba，K．Kanda，H．Hasegawa and H．Fukuyama，J．Phys．Soc．Japan 30 （1971）， 972.
I．Halperin，Adv．Chem．Phys． 13 （1967）， 123.
T．Sasada and H．Hasegawa，Prog．Theor．Phys． 45 （1971）， 1072.
．Schützer and J．Tiomno，Phys．Rev． 83 （1951）， 249.
K．Yosida，Sekibun－hōteishiki－ron，Chap．1，Iwanami Zensho，p． 117.
ee also，P．Swan，Proc．Roy．Soc．A228（1955）， 10.
H．Hasegawa and A．Kishimoto，Tech．Report ISSP，Ser．B No． 15 （1973）， 105
E．Borland，Proc．Roy．Soc．A274（1963）， 529.
R．E．Borland，Proc．Roy．Soc．A274（1963）， 529.
S．Minami and J．Hori，Prog．Theor．Phys．Supp
H．M．Nussenzveig，＂Causality and Dispersion Relations Mathematics＂in Science and Engi－
neering Vol． 95 （Academic Press，N．Y．and London，1972）．
H．Hasegawa and F．Yonezawa，J．Phys．Soc．Japan 26，Suppl（1969）， 74.
ลิลิ

角争角守氐
$\underset{\sim}{\underset{\sim}{9}}$

[^0]: (eg. f)

[^1]:

[^2]:

[^3]: $E_{k} \rightarrow \bar{E}_{k}=E_{k}+V_{k k}, \quad \boldsymbol{V} \rightarrow \overline{\boldsymbol{V}}=-\boldsymbol{V}, \quad c \rightarrow \bar{c}=1-c$, which is the mentioned dual symmetry.
 The self-energy operator $\boldsymbol{S}(E)$ may be related to the usual T matrix in
 of $I(z, c)$ with respect either to c or to $1-c$, we have

[^4]: For this statement to receive a better understanding one must resort a representation of the pertinent
 quantity as a function of the complex variable a. See $\S 7$.

[^5]:

[^6]: (5.22)

 This symmetry leads to a more convenient representation by introducing the virtual crystal, defined by

[^7]:
 Accordingly, the function $Z(E)$ defined in (5.35) is calculated in the limit
 $N \rightarrow \infty$, as
 (8®ד•S)

 $Z=w\{w(w-1)\}^{-1 / 2}=\left(\frac{w}{w-1}\right)^{1 / 2}$,
 $w=\frac{\mu}{\mu_{0}} E$.
 $w=\phi(Z)=\frac{Z^{2}}{Z^{2}-1}$.

 ## where

 Therefore,
 Equations ($5 \cdot 36 \mathrm{a}, \mathrm{b}$) are found to be of the forms

[^8]: $\equiv \mathcal{S}(k)$,
 $(6 \cdot 4)$

 conjugate to each other, every matrix element of the \mathcal{S} satisfies

[^9]:

