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Density-of-states Monte Carlo method for simulation of fluids
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A Monte Carlo method based on a density-of-states sampling is proposed for study of arbitrary
statistical mechanical ensembles in a continuum. A random walk in the two-dimensional space of
particle number and energy is used to estimate the density of states of the system; this density of
states is continuously updated as the random walk visits individual states. The validity and
usefulness of the method are demonstrated by applying it to the simulation of a Lennard-Jones fluid.
Results for its thermodynamic properties, including the vapor—liquid phase coexistence curve, are
shown to be in good agreement with high-accuracy literature data20@2 American Institute of
Physics. [DOI: 10.1063/1.14630595

INTRODUCTION when that energy level is visited. By controlling that factor in
a systematic manner, these authors were able to generate the

The free energy landscapes of complex systems, such ggnsity of states of an Ising lattice system to high accuracy in
proteins or glasses, are characterized by the existence gf geif-consistent way. We refer to this approach as the
deep, local free energy minima. These minima pose Sig”iﬁdensity-of—statesDOS) Monte Carlo method.
cant obstacles for molecular simulations; once a system is o simulations on a lattice. the DOS Monte Carlo
trapped in & minimum, conventional algorithms are unable Gnethod promises to offer significant advantages over previ-
explore configurations pertaining to other, relevant regions of gy available techniques. It is therefore of interest to ex-
phase space. Several Monte Carlo methodologies have begpyre whether analogous ideas can be used in a continuum, in

developed in the last decade to circumvenr:;cozfthe samplinghe context of a realistic fluid. Several challenges must be
problem. Examples include expanded ensembfespltica- o ercome: first, random moves on a lattice system can only

nonical algorithms, and parallel tempering formalisrfisAll give rise to a small set of discrete energy changes, thereby
of tf_\ese techmque; _hgve |mprove_d considerably our ablllt3éimp|ifying considerably the nature of the simulations. Ran-
to simulate the equilibrium properties and structure of comyom gisplacements in a continuum result in unpredictable
plex matenals, including polymers, proteins in solution, Orenergy changes, and it is unclear whether the DOS Monte
organic glasses. ) ) . Carlo method can be implemented at all. Second, and per-
Most of these techniques have relied on the Metropolig)ans more important, the DOS Monte Carlo method gener-
et al. original prescriptior?,in which trial configurations of & 4te5 an estimate of the density of states to within a multipli-
system are accepted or rejected according to probability dissative constant. Such a constant depends on the particular
tributions pertaining to conventional statistical mechanical|ength of a simulation, on system siaelume, and on den-
ensemblegor minor alterations therepfA notable exception  gjr (number of particles On a lattice, it is common practice
is provided by multicanonical methods, in which trial con- ¢, st,qy systems of constant composition. Furthermore, the
figurations are accepted according to multlcanomcal Welght§ystem is generally assumed to be incompressible. Real flu-
constructed in such a way as to “flatten out” high energyiqs however, are not incompressible, and their study over
barriers between distinct configurations. Unfortunately, they,y reasonable range of density would require that the abso-
reqwr_ed mult|can_on|cal weights must be determ]ned_throgglmte density of stategand its multiplicative constantbe
a tedious and highly computationally demanding iterativey,non_ A naive extension of the lattice DOS method to a real
process. In multicanonical methods as well as in more cong,iq would therefore require that multiple simulations be
ventional Monte Carlo techniques for molecular simulation,;onqycted at different densities, and that the resulting densi-
the condition of detailed balance is satisfied by constructionag of states corresponding to each calculation be matched

R_e_cently, however, Wgng, and Lanaaproposed @ with each other in some fashion to estimate each multiplica-
promising approach for lattice systems that eliminates SOMg, e constant. This procedure would be prone to uncertainties

of the shortcomings of the original multicanonical prescrip-re|ated to the manner in which different thermodynamic
tion. The key to that approach is to accept trial configurationg;stes gre combined, it would be time consuming, and it

of the system according toranning estimate of the density o4 not offer significant advantages over thermodynamic
of states; by design, their formalism does not strictly e”forc‘?ntegration or histogram reweightifg.

detailed balance. A random walk in energy space is used t0 |4 this work we propose a DOS formulation that ad-

evenly visit each energy level. The density of states of anyesses these issues. Its implementation is demonstrated in
energy level is modified by an arbitrary convergence factorihe context of a Lennard-Jones fluid, for which high-

accuracy thermodynamic data area available. It is shown that
dElectronic mail: depablo@engr.wisc.edu the proposed simulation technique is able to generate the
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partition function of the system over a wide range of energy vV g(N,E°")

and density, which comprises an infinitely dilute gas and a  p(N—N+1)=min| 1, ’ , 3
. .. . - . . . N+1)A3a(N+1E"®

dense liquid. This is achieved within a single simulation, at a (N+1)AZg(N+LE™)

small fraction of the computational demands of currently, herev is the volume of the system, ardis the de Broglie

available simulation techniques. thermal wavelength. In Eq3), E®® and E"" represent the
energies of the system before and after a particle is intro-
duced, respectively, arg{N,E°%% andg(N+ 1,E™") are the

DENSITY OF STATES MONTE CARLO METHOD corresponding densities of states. For a trial destruction, a

randomly chosen particle is removed from the system, and
On a lattice, a DOS Monte Carlo method generates ahe move is accepted with probability:

random walk in energy space by flipping spins in a random
manner. A trial flip is accepted according to criteria that
eventually result in a flat distribution of energy. Generating a
flat energy distribution requires that microscopic states hav-
ing internal energyE be visited with a probability inversely It is of interest to remark that traditional, Metropolis-
proportional to the density of stateg(E). Accepting trial type simulation techniques penalize trial insertions or de-
spin flips with probability structions of particles by a factor proportional to the expo-
nential of the energy, exp(BAE), whereAE represents the
9(Eq) ; ;
, } 1) change in energy created by the trial move, and whgre
9(E2) =1/kgT (T is the temperatuje If AE exceeds a fevkgT,
(whereE, andE, are the energies before and after the spin ighe trial move is generally rejected. That factor is absent
flipped would therefore result in a flat energy distribution. from the algorithm proposed in this work, thereby facilitating
Unfortunately, the density of statg¢E) is not knowna  considerably the creation or destruction of molecules and the
priori. The central idea in the DOS Monte Carlo method is tosampling of high-density configurations.
construct the density of states on the fly. At the beginning of ~ A running estimate of the two-dimensional density of
a simulation, a constant density of states is assumed for afitates is continuously updated as the simulation proceeds.
energy levels. As the simulation proceeds, ithetantaneous When a configuration havind{ particles and energf is
values ofg(E) are used to accept trial flips. Every time that Visited, the current value af(N,E) is multiplied by a con-
an energy leveE is visited, the density of states for that level vergence factof. A two-dimensional histogram of number of
is modified according tg(E)—g(E)*f, wheref>1 is an  particles and energi(N,E) is constructed. When that his-
arbitrary convergence factor. An energy histograifE) is ~ togram is deemed to be sufficiently flat, the histogram is
accumulated during the course of the simulation. When thagliscarded and the simulation is continued, this time with a
histogram becomes sufficiently flat, the convergence factor i§maller convergence factor.
reduced to a finer value, e.d;,. ;= \/f;; the histogranH (E) Having generated a density of states according to the
is reset to zero, and the simulation is continued. This proceggrocedure outlined above, a partition function for the system
is repeated until the convergence fadttlecomes arbitrarily can be constructed at any given temperature and chemical

NA3 g(N,EOld)

N—N-—1)=min| 1,
p( ) V g(N=LE™)

1

- 4

p(E;—E)=min 1

small[say, less than exp(16)]. potential according to
In the many-body fluid formulation proposed here, the
number of particles or molecules in the system is allowed to = (T,u)= >, > g(N,E)e FE*NAK, ®)
N E

fluctuate. We consider a phase space characterized by inter-

nal_energyE and number of _pa_lrticlesl. To sample r_elevant The partition function determined from Ed5) is only
regions of phase space efficiently, our strategy is 0 havgnown to within an arbitrary constant multiplier. Our simu-
each pair of N,E) points be visited uniformly. In other |51i0n however, comprises the special case0; the den-
words, a microscopic state having particles and energy iy of states for that case is known to be unity, thereby
level E should be visited with probability §(N,E), where  ,6yiding a means to the determine the absolute valug of
9(N,E) represents the two-dimensional degeneracy °€0r all other states. Thermodynamic properties of interest can
(N,E) states. subsequently be determined from knowledge =T, u).

For simplicity, only two types .of trial moves are QOHSid' For example, the thermodynamic pressure and the thermody-
ered. The first type of move consists of simple trial displacet,amic internal energy can be calculated according to
ments, in which the coordinates of a randomly chosen par-

ticle are altered by a small random amount. A trial move is _ kgT
then accepted or rejected according to P(T p) =~/ 109 = (T, 1) ©®)
| 9(E1,N) and
E{,N—E>;,N)=min 1——|. 2

P(E;,N—E3,N) 9(E5,N) 2
The second type of move consists of trial insertions or de- % ; Eg(N,E)e  PEFNAx
struction of particles. For a trial insertion, a particle is intro- U(T,n)= ) 7)
duced into the system at a random position. This move is 2 2 g(N,E)e FE+NBu
accepted with probability N E
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The compressibility of the fluid can also be inferred One particular problem that must be addressed in the
from g(N,E) by considering fluctuations in the number of method proposed above is that the relevant range of energy is
particles according to strongly dependent on the number of particles in the system.

) ) The energy levels accessible to a two-particle system are

(T, )= — l(ﬂ) :L (N9 —=(N) , ®) different than those accessible to a 100-particle system. To

Vidp NT kgT (N)? determine energy ranges for different system sizes, two short
preliminary DOS simulations are run, one at the lowest tem-
perature, and the other at the highest temperature. The goal
S SN _BE+NB of these simulations is to achieve a flat distributior\pfas
< 9(N,E)e opposed to trying to make th&l(E) histogram flat; the en-
(N)= 9 ergy distribution is dictated by a conventional Boltzmann
> > g(N,E)e BEFNBu weight. A flatN distribution would be obtained if each mi-
N E croscopic state withN particles was visited with probability
and 1/Q(N), whereQ(N) is the canonical partition functiofof a
system having\N particles.
2 2 N2g(N,E)e BE+NAx The scheme followed in these preli_rr_1inary runs is _similar
to that adopted above: a table of partition functions is con-

(N?)= . (10 structed, with entries for each valuedfAt the beginning of

2 2 g(N,E)e PE+NAL a simulation, the partition functions are set to unity for all
NOE entries ofN. Two types of moves are used: particle displace-

In many applications, it is of particular interest to deter- ments, accepted according to conventional Metropolis crite-
mine the precise location of first or second order thermody+ia, and particle insertion or destruction moves, accepted
namic phase transitions. In the particular case of a simplaith probability
fluid, to calculate the liquid—vapor binodal curve, a simple

two-state construction can be used. At a temperature well - \ Q(N)
. X o o o T T P(N—N+1)=min| 1,
below the critical point, the equilibrium density distribution (N+1)A2Q(N+1)
exhibits two distinct peaks; a threshold number of particles
Ny can be designated, such that BlN, states can be
regarded as pertaining to a “vapor” branch, and Mdi-Ng xexp— BAE) (15)
states as belonging to a “liquid” branch. The pressures cor-
responding to these two branches can be calculated accordnd
ing to 3
KaT P(N—N—-1)=min| 1 AT exp( BAE)}
B _ —NT= "V ON—1) a ’
pY(T.u)=—-log > X g(N,E)e PENAe (1) vV QIN-1)
\Y N=Ny E (16)

L _ kgT pENg whereAE is the energy change associated with the trial par-

p (T,M)—T|OQN§ EE: g(N,E)e #. (12 ficle insertion or destruction. Upon each visit to a micro-

° scopic state, the correspondi@gN) is updated by multiply-

For any given temperature, a phase coexistence poinifg it by an arbitrary convergence factoThe minimum and
can be found by carefully tuning the value of chemical po-maximum values of energy corresponding to each number of
tential o in such a way as to satisfy the condition particles are tracked during the simulation; the minimum en-
PY(T, o) =P (T, 10). The coexistence densities of the va- ergy at the lowest temperature and the maximum energy of

por and liquid phases can then be calculated as the highest temperature define the relevant energy range to
be used in the two-dimensiong(N,E) DOS production
> > Ng(N,E)e FEFNBuo simulations.
pV(T)= N=No E ’ (13) Since the purpose of the preliminary runs is to determine
VS S g(N,E)e FE-NBuo the energy range, it is not necessary to generate a perfectly
NSN, “E ’ flat histogram. The only requirement is that each number of
particles be visited with enough frequency. It is important to
2 Ng(N,E)eBE+Nbxo emphasize, however, that the scheme described above for
L N>Ny E Q(N) is very useful on its own right, for example, for cal-
p-(T)= . (14 culation of the chemical potential of a fluid. If this DOS
VN>2N % g(N,E)e FENAro Q(N) simulation is run until convergence is achievée.,
0

until theN histograms are flat and the convergence fatisr
Note that the equilibrium pressure obtained from Egssmall enough the result is the free energy of the system as
(11 and (12) differs from that obtained from Eq6) by a  a function of N. This information is particularly useful in
term —kgT log 2\, which arises from finite-size effects. For expanded ensemble simulatidrfswhere the weights associ-
systems having a large enough volume, however, this differated with individual expanded statéshich are closely re-
ence is negligible. lated to free energigsnust be determined before a produc-
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E/e FIG. 2. Phase diagram of the truncated Lennard-Jones fluid. The solid line

FIG. 1. Two-dimensional density of states of the truncated Lennard-JoneShows the results of this work; the triangles depict literature data for the
fluid. Different lines correspond to a different number of particles. The Same systen{Ref. 8. The dashed lines are isobars calculated from the
number of particles increases monotonically from right to left. density of states.

tion simulation. In the scheme described here, there is no
need to determine those weights, as they would be deteffhis apparently paradoxical feature is actually due to the fact

mined directly through the course of the simulation. that the de Broglie thermal wavelength is set to unity in our
simulations.

Figure 2 shows the phase diagram of the truncated

APPLICATION TO LENNARD-JONES FLUIDS Lennard-Jones fluid. The solid line was calculated from the

. . ) . density of states determined in this work; the triangles show
The remainder of this article describes results from th y 9

L ) Niterature results for the same systérithe agreement be-
application of the DOS method outlined above to the particus y 9

lar case of a truncated Lennard-Jones fluid. This model ext_vveen the two sets of data is good. The figure shows several

. isobars, also calculated from the density of states. These iso-

hibits most of the main features that one expects to find "hars are in excellent agreement with pressure calculations
most realistic fluids, and offers the advantage that high; 9 P

. . . : .from conventional canonical-ensemble simulatignssults
accuracy simulation data are available for its thermodynamic

properties. The potential energy of interaction between '[WonOt shown. The |§othermal c_ompre55|p|llty of the system,
. . calculated according to E¢B), is shown in Fig. 3 as a func-
particles is of the form : ) .
tion of density along several isobars. These results are also
0, r=rg consistent with those of conventional simulations. A distinct

(U 12 (0)6 (17) peak can be observed in the compressibility nea0.3. As
)

expected, the peak becomes more pronounced as the pressure
approaches the critical pressure of the systamd fluctua-

wherer is the distance between the particles, apds the  tions become more prominént

cutoff distance. To compare our results to those reported in

the literature, we use,=2.5¢0. The box length of the system

is set toL=50¢.

Before a simulation is conducted, a relevant range of
interest for the number of particles and the energy must be
specified. In this work, that range is set to be between 0 to p'=0.15
110 for the number of particles, which covers the density
range p*=0-0.88. The range of energy comprisEse
=—690 at one end of the spectrum, datk= 10 at the other
end; this range corresponds to temperatures in the range < 1ol
0.5<T*<1.5.

In contrast to a spin lattice, the potential energy of a
Lennard-Jones fluid is continuous; a discretization of the en-

u(r)=

46 r<rc;

20 T T T

151

ergy must therefore be introduced. In this work, an energy °

bin size ofe is used to construct the density of states and the

required histograms. Approximatelyx510’ Monte Carlo 0

steps were used to generate the complete density of states. 0 02 0.4 06 0.8
Figure 1 shows the density of states as a function of P’

energy and number C_Jf partic'?s- Note that' for mastK) _FIG. 3. Compressibility of the truncated Lennard-Jones fluid as a function
pairs, the corresponding density of states is less than unityf density, along various supercritical isobars.
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CONCLUSIONS compressibility are all in agreement with results of conven-
tional simulation techniques. For this fluid, the entire range
f temperature and density considered in this work can be
enerated in several hours of computer time.

A density of states Monte Carlo method has been pre
sented for simulation of the thermodynamic properties 05
realistic fluids over wide ranges of density and energy. Thi . .
method permits calculation of virtually all of the thermody- While in this work the DOS Monte Carlo method has

namic properties of a system, including its phase behavior, a%nly been a}pplied to a simple fluid, our prelimina}ry resglts
a function of density or temperature; all of this information is or polymeric systems, glasses, and model proteins indicate

generated from ainglesimulation. Furthermore, by virtue of that the method offers considerable promise for simulation of

the way in which trial configurations are generated, states Otruly complex fluids.
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