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Density-of-states Monte Carlo method for simulation of fluids
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A Monte Carlo method based on a density-of-states sampling is proposed for study of arbitrary
statistical mechanical ensembles in a continuum. A random walk in the two-dimensional space of
particle number and energy is used to estimate the density of states of the system; this density of
states is continuously updated as the random walk visits individual states. The validity and
usefulness of the method are demonstrated by applying it to the simulation of a Lennard-Jones fluid.
Results for its thermodynamic properties, including the vapor–liquid phase coexistence curve, are
shown to be in good agreement with high-accuracy literature data. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1463055#
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INTRODUCTION

The free energy landscapes of complex systems, suc
proteins or glasses, are characterized by the existenc
deep, local free energy minima. These minima pose sig
cant obstacles for molecular simulations; once a system
trapped in a minimum, conventional algorithms are unable
explore configurations pertaining to other, relevant region
phase space. Several Monte Carlo methodologies have
developed in the last decade to circumvent the samp
problem. Examples include expanded ensembles,1,2 multica-
nonical algorithms,3 and parallel tempering formalisms.4 All
of these techniques have improved considerably our ab
to simulate the equilibrium properties and structure of co
plex materials, including polymers, proteins in solution,
organic glasses.

Most of these techniques have relied on the Metrop
et al.original prescription,5 in which trial configurations of a
system are accepted or rejected according to probability
tributions pertaining to conventional statistical mechani
ensembles~or minor alterations thereof!. A notable exception
is provided by multicanonical methods, in which trial co
figurations are accepted according to multicanonical weig
constructed in such a way as to ‘‘flatten out’’ high ener
barriers between distinct configurations. Unfortunately,
required multicanonical weights must be determined thro
a tedious and highly computationally demanding iterat
process. In multicanonical methods as well as in more c
ventional Monte Carlo techniques for molecular simulatio
the condition of detailed balance is satisfied by construct

Recently, however, Wang, and Landau6 proposed a
promising approach for lattice systems that eliminates so
of the shortcomings of the original multicanonical prescr
tion. The key to that approach is to accept trial configuratio
of the system according to arunning estimate of the density
of states; by design, their formalism does not strictly enfo
detailed balance. A random walk in energy space is use
evenly visit each energy level. The density of states of
energy level is modified by an arbitrary convergence fac

a!Electronic mail: depablo@engr.wisc.edu
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when that energy level is visited. By controlling that factor
a systematic manner, these authors were able to generat
density of states of an Ising lattice system to high accurac
a self-consistent way. We refer to this approach as
density-of-states~DOS! Monte Carlo method.

For simulations on a lattice, the DOS Monte Car
method promises to offer significant advantages over pr
ously available techniques. It is therefore of interest to
plore whether analogous ideas can be used in a continuum
the context of a realistic fluid. Several challenges must
overcome: first, random moves on a lattice system can o
give rise to a small set of discrete energy changes, ther
simplifying considerably the nature of the simulations. Ra
dom displacements in a continuum result in unpredicta
energy changes, and it is unclear whether the DOS Mo
Carlo method can be implemented at all. Second, and
haps more important, the DOS Monte Carlo method gen
ates an estimate of the density of states to within a multi
cative constant. Such a constant depends on the partic
length of a simulation, on system size~volume!, and on den-
sity ~number of particles!. On a lattice, it is common practic
to study systems of constant composition. Furthermore,
system is generally assumed to be incompressible. Real
ids, however, are not incompressible, and their study o
any reasonable range of density would require that the a
lute density of states~and its multiplicative constant! be
known. A naive extension of the lattice DOS method to a r
fluid would therefore require that multiple simulations b
conducted at different densities, and that the resulting de
ties of states corresponding to each calculation be matc
with each other in some fashion to estimate each multipli
tive constant. This procedure would be prone to uncertain
related to the manner in which different thermodynam
states are combined, it would be time consuming, and
would not offer significant advantages over thermodynam
integration or histogram reweighting.7

In this work we propose a DOS formulation that a
dresses these issues. Its implementation is demonstrate
the context of a Lennard-Jones fluid, for which hig
accuracy thermodynamic data area available. It is shown
the proposed simulation technique is able to generate
5 © 2002 American Institute of Physics

IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



rg
a

t
tly

s
om
a

g
a

i
.

to
o

r

at
el

th
r

e

he
t

nt
t
av
r

o

d-
ce
a
i

de
o-

tro-

, a
and

-
de-
o-

ent
g
the

of
eds.

f
-
is
a

the
em
ical

-

by
f
can

ody-

8746 J. Chem. Phys., Vol. 116, No. 20, 22 May 2002 Yan, Faller, and de Pablo
partition function of the system over a wide range of ene
and density, which comprises an infinitely dilute gas and
dense liquid. This is achieved within a single simulation, a
small fraction of the computational demands of curren
available simulation techniques.

DENSITY OF STATES MONTE CARLO METHOD

On a lattice, a DOS Monte Carlo method generate
random walk in energy space by flipping spins in a rand
manner. A trial flip is accepted according to criteria th
eventually result in a flat distribution of energy. Generatin
flat energy distribution requires that microscopic states h
ing internal energyE be visited with a probability inversely
proportional to the density of states,g(E). Accepting trial
spin flips with probability

p~E1→E2!5minF1,
g~E1!

g~E2!G ~1!

~whereE1 andE2 are the energies before and after the spin
flipped! would therefore result in a flat energy distribution

Unfortunately, the density of statesg(E) is not knowna
priori . The central idea in the DOS Monte Carlo method is
construct the density of states on the fly. At the beginning
a simulation, a constant density of states is assumed fo
energy levels. As the simulation proceeds, theinstantaneous
values ofg(E) are used to accept trial flips. Every time th
an energy levelE is visited, the density of states for that lev
is modified according tog(E)→g(E)* f , where f .1 is an
arbitrary convergence factor. An energy histogramH(E) is
accumulated during the course of the simulation. When
histogram becomes sufficiently flat, the convergence facto
reduced to a finer value, e.g.,f i 115Af i ; the histogramH(E)
is reset to zero, and the simulation is continued. This proc
is repeated until the convergence factorf becomes arbitrarily
small @say, less than exp(1028)].

In the many-body fluid formulation proposed here, t
number of particles or molecules in the system is allowed
fluctuate. We consider a phase space characterized by i
nal energyE and number of particlesN. To sample relevan
regions of phase space efficiently, our strategy is to h
each pair of (N,E) points be visited uniformly. In othe
words, a microscopic state havingN particles and energy
level E should be visited with probability 1/g(N,E), where
g(N,E) represents the two-dimensional degeneracy
(N,E) states.

For simplicity, only two types of trial moves are consi
ered. The first type of move consists of simple trial displa
ments, in which the coordinates of a randomly chosen p
ticle are altered by a small random amount. A trial move
then accepted or rejected according to

p~E1 ,N→E2 ,N!5minF1,
g~E1 ,N!

g~E2 ,N!G . ~2!

The second type of move consists of trial insertions or
struction of particles. For a trial insertion, a particle is intr
duced into the system at a random position. This move
accepted with probability
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p~N→N11!5minF1,
V

~N11!L3

g~N,Eold!

g~N11,Enew!
G , ~3!

whereV is the volume of the system, andL is the de Broglie
thermal wavelength. In Eq.~3!, Eold and Enew represent the
energies of the system before and after a particle is in
duced, respectively, andg(N,Eold) andg(N11,Enew) are the
corresponding densities of states. For a trial destruction
randomly chosen particle is removed from the system,
the move is accepted with probability:

p~N→N21!5minF1,
NL3

V

g~N,Eold!

g~N21,Enew!
G . ~4!

It is of interest to remark that traditional, Metropolis
type simulation techniques penalize trial insertions or
structions of particles by a factor proportional to the exp
nential of the energy, exp(2bDE), whereDE represents the
change in energy created by the trial move, and whereb
51/k BT (T is the temperature!. If DE exceeds a fewkBT,
the trial move is generally rejected. That factor is abs
from the algorithm proposed in this work, thereby facilitatin
considerably the creation or destruction of molecules and
sampling of high-density configurations.

A running estimate of the two-dimensional density
states is continuously updated as the simulation proce
When a configuration havingN particles and energyE is
visited, the current value ofg(N,E) is multiplied by a con-
vergence factorf. A two-dimensional histogram of number o
particles and energyH(N,E) is constructed. When that his
togram is deemed to be sufficiently flat, the histogram
discarded and the simulation is continued, this time with
smaller convergence factor.

Having generated a density of states according to
procedure outlined above, a partition function for the syst
can be constructed at any given temperature and chem
potential according to

J~T,m!5(
N

(
E

g~N,E!e2bE1Nbm. ~5!

The partition function determined from Eq.~5! is only
known to within an arbitrary constant multiplier. Our simu
lation, however, comprises the special caseN50; the den-
sity of states for that case is known to be unity, there
providing a means to the determine the absolute value oJ
for all other states. Thermodynamic properties of interest
subsequently be determined from knowledge ofJ(T,m).
For example, the thermodynamic pressure and the therm
namic internal energy can be calculated according to

p~T,m!5
kBT

V
logJ~T,m! ~6!

and

U~T,m!5

(
N

(
E

Eg~N,E!e2bE1Nbm

(
N

(
E

g~N,E!e2bE1Nbm

. ~7!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The compressibility of the fluid can also be inferre
from g(N,E) by considering fluctuations in the number
particles according to

k~T,m!52
1

V S ]V

]p D
N,T

5
V

k BT

^N2&2^N&2

^N&2
, ~8!

where

^N&5

(
N

(
E

Ng~N,E!e2bE1Nbm

(
N

(
E

g~N,E!e2bE1Nbm

~9!

and

^N2&5

(
N

(
E

N2g~N,E!e2bE1Nbm

(
N

(
E

g~N,E!e2bE1Nbm

. ~10!

In many applications, it is of particular interest to dete
mine the precise location of first or second order thermo
namic phase transitions. In the particular case of a sim
fluid, to calculate the liquid–vapor binodal curve, a simp
two-state construction can be used. At a temperature
below the critical point, the equilibrium density distributio
exhibits two distinct peaks; a threshold number of partic
N0 can be designated, such that allN<N0 states can be
regarded as pertaining to a ‘‘vapor’’ branch, and allN.N0

states as belonging to a ‘‘liquid’’ branch. The pressures c
responding to these two branches can be calculated acc
ing to

pV~T,m!5
kBT

V
log (

N<N0
(
E

g~N,E!e2bE1Nbm, ~11!

pL~T,m!5
k BT

V
log (

N.N0
(
E

g~N,E!e2bE1Nbm. ~12!

For any given temperature, a phase coexistence p
can be found by carefully tuning the value of chemical p
tential m0 in such a way as to satisfy the conditio
pV(T,m0)5pL(T,m0). The coexistence densities of the v
por and liquid phases can then be calculated as

rV~T!5

(
N<N0

(
E

Ng~N,E!e2bE1Nbm0

V (
N<N0

(
E

g~N,E!e2bE1Nbm0

, ~13!

rL~T!5

(
N.N0

(
E

Ng~N,E!e2bE1Nbm0

V (
N.N0

(
E

g~N,E!e2bE1Nbm0

. ~14!

Note that the equilibrium pressure obtained from E
~11! and ~12! differs from that obtained from Eq.~6! by a
term2kBT log 2/V, which arises from finite-size effects. Fo
systems having a large enough volume, however, this dif
ence is negligible.
Downloaded 06 Mar 2007 to 128.104.198.190. Redistribution subject to A
-
-
le

ll

s

r-
rd-

int
-

.

r-

One particular problem that must be addressed in
method proposed above is that the relevant range of ener
strongly dependent on the number of particles in the syst
The energy levels accessible to a two-particle system
different than those accessible to a 100-particle system
determine energy ranges for different system sizes, two s
preliminary DOS simulations are run, one at the lowest te
perature, and the other at the highest temperature. The
of these simulations is to achieve a flat distribution ofN, as
opposed to trying to make the (N,E) histogram flat; the en-
ergy distribution is dictated by a conventional Boltzma
weight. A flat N distribution would be obtained if each m
croscopic state withN particles was visited with probability
1/Q(N), whereQ(N) is the canonical partition function~of a
system havingN particles!.

The scheme followed in these preliminary runs is simi
to that adopted above: a table of partition functions is c
structed, with entries for each value ofN. At the beginning of
a simulation, the partition functions are set to unity for
entries ofN. Two types of moves are used: particle displac
ments, accepted according to conventional Metropolis cr
ria, and particle insertion or destruction moves, accep
with probability

p~N→N11!5min F1,
V

~N11!L3

Q~N!

Q~N11!

3exp~2bDE!G ~15!

and

p~N→N21!5min F1,
NL3

V

Q~N!

Q~N21!
exp~2bDE!G ,

~16!

whereDE is the energy change associated with the trial p
ticle insertion or destruction. Upon each visit to a micr
scopic state, the correspondingQ(N) is updated by multiply-
ing it by an arbitrary convergence factorf. The minimum and
maximum values of energy corresponding to each numbe
particles are tracked during the simulation; the minimum
ergy at the lowest temperature and the maximum energ
the highest temperature define the relevant energy rang
be used in the two-dimensionalg(N,E) DOS production
simulations.

Since the purpose of the preliminary runs is to determ
the energy range, it is not necessary to generate a perfe
flat histogram. The only requirement is that each numbe
particles be visited with enough frequency. It is important
emphasize, however, that the scheme described above
Q(N) is very useful on its own right, for example, for ca
culation of the chemical potential of a fluid. If this DO
Q(N) simulation is run until convergence is achieved~i.e.,
until theN histograms are flat and the convergence factorf is
small enough!, the result is the free energy of the system
a function of N. This information is particularly useful in
expanded ensemble simulations,1,2 where the weights assoc
ated with individual expanded states~which are closely re-
lated to free energies! must be determined before a produ
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tion simulation. In the scheme described here, there is
need to determine those weights, as they would be de
mined directly through the course of the simulation.

APPLICATION TO LENNARD-JONES FLUIDS

The remainder of this article describes results from
application of the DOS method outlined above to the parti
lar case of a truncated Lennard-Jones fluid. This model
hibits most of the main features that one expects to find
most realistic fluids, and offers the advantage that hi
accuracy simulation data are available for its thermodyna
properties. The potential energy of interaction between
particles is of the form

U~r !5H 0, r>r c

4eF S s

r D 12

2S s

r D 6G , r ,r c ,
~17!

where r is the distance between the particles, andr c is the
cutoff distance. To compare our results to those reporte
the literature, we user c52.5s. The box length of the system
is set toL55s.

Before a simulation is conducted, a relevant range
interest for the number of particles and the energy mus
specified. In this work, that range is set to be between 0
110 for the number of particles, which covers the dens
range r* 50 – 0.88. The range of energy comprisesE/e
52690 at one end of the spectrum, andE/e510 at the other
end; this range corresponds to temperatures in the ra
0.5,T* ,1.5.

In contrast to a spin lattice, the potential energy o
Lennard-Jones fluid is continuous; a discretization of the
ergy must therefore be introduced. In this work, an ene
bin size ofe is used to construct the density of states and
required histograms. Approximately 53107 Monte Carlo
steps were used to generate the complete density of sta

Figure 1 shows the density of states as a function
energy and number of particles. Note that for most (N,E)
pairs, the corresponding density of states is less than u

FIG. 1. Two-dimensional density of states of the truncated Lennard-J
fluid. Different lines correspond to a different number of particles. T
number of particles increases monotonically from right to left.
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o
r-

e
-
x-
n
-
ic
o

in

f
e

to
y

ge

-
y
e

s.
f

ty.

This apparently paradoxical feature is actually due to the
that the de Broglie thermal wavelength is set to unity in o
simulations.

Figure 2 shows the phase diagram of the trunca
Lennard-Jones fluid. The solid line was calculated from
density of states determined in this work; the triangles sh
literature results for the same system.8 The agreement be
tween the two sets of data is good. The figure shows sev
isobars, also calculated from the density of states. These
bars are in excellent agreement with pressure calculat
from conventional canonical-ensemble simulations~results
not shown!. The isothermal compressibility of the system
calculated according to Eq.~8!, is shown in Fig. 3 as a func
tion of density along several isobars. These results are
consistent with those of conventional simulations. A distin
peak can be observed in the compressibility nearr50.3. As
expected, the peak becomes more pronounced as the pre
approaches the critical pressure of the system~and fluctua-
tions become more prominent!.

es

FIG. 2. Phase diagram of the truncated Lennard-Jones fluid. The solid
shows the results of this work; the triangles depict literature data for
same system~Ref. 8!. The dashed lines are isobars calculated from
density of states.

FIG. 3. Compressibility of the truncated Lennard-Jones fluid as a func
of density, along various supercritical isobars.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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CONCLUSIONS

A density of states Monte Carlo method has been p
sented for simulation of the thermodynamic properties
realistic fluids over wide ranges of density and energy. T
method permits calculation of virtually all of the thermod
namic properties of a system, including its phase behavio
a function of density or temperature; all of this information
generated from asinglesimulation. Furthermore, by virtue o
the way in which trial configurations are generated, state
the system that would otherwise be difficult to sample~e.g.,
low temperatures or high densities! can be studied efficiently
and with remarkable accuracy. An additional benefit of
method is that prior knowledge of the behavior of the flu
~such as approximate location of phase boundaries! is not
required; a ‘‘blind’’ simulation is able to sample releva
configurations of the system with little, if any user-suppli
guidance.

For the particular case of a truncated Lennard-Jo
fluid, it has been shown that the procedure proposed in
work generates thermodynamic information in quantitat
agreement with high accuracy literature data for the sa
fluid. The coexistence curve, vapor pressure, and isothe
Downloaded 06 Mar 2007 to 128.104.198.190. Redistribution subject to A
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compressibility are all in agreement with results of conve
tional simulation techniques. For this fluid, the entire ran
of temperature and density considered in this work can
generated in several hours of computer time.

While in this work the DOS Monte Carlo method ha
only been applied to a simple fluid, our preliminary resu
for polymeric systems, glasses, and model proteins indic
that the method offers considerable promise for simulation
truly complex fluids.
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