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BRIEF REPORTS

Communications; however, the same standards of scientific quality apply. (Addenda are included in Brief Reports. ) A Brief Report may

be no longer than four printed pages and must be accompanied by an abstract. The same publication schedule as for regular articles is
followed, and page proofs are sent to authors.

Density of states of a damped quantum oscillator

A. Hanke* and W. Zwerger
Sektion Physik, Universitat Miinchen, Theresienstrasse 37, D 80333-Munchen, Federal Jtepublic of Germany

(Received 2 June 1995)

We calculate the density of states of a damped quantum-mechanical harmonic oscillator which is de-

scribed by a Caldeira-Leggett type model with Ohmic dissipation and a Drude-like cutoff. From the ex-

act expression for the associated partition function, we derive the asymptotic behavior of the density of
states using Tauberian theorems. An effective algorithm to evaluate the density of states is presented

and examples are given. It is pointed out that the calculated density of states is an experimentally acces-

sible quantity.

PACS number(s): 05.40.+j

INTRODUCTION verse transformation

co~A, +(co +/co~ )X co~co —0, (2)

which can be obtained exactiy, e.g. , by means of Cardan's

formula [6]. The A, ; are in general complex numbers but

have positive definite real parts if y )0.
The partition function Z(p) defines the density of states

p( s ) by the Laplace transform

Z(p) = f p(E)e ~'dE (3)

and in principle p(E) is uniquely determined by the in-

Dissipative quantum systems have been studied quite
extensively in the past decade [1]. A particularly simple

and completely solvable example of such a system is the

damped harmonic oscillator, where a single quantum-

mechanical harmonic oscillator is coupled linearly to an

infinite set of bath oscillators [2,3]. The coupling is ad-

justed such as to give a damped dynamics with a phe-

nomenological damping coefficient y. The reduced parti-
tion function Z of this system with Drude regularization
is known exactly [1]. It can be obtained in various ways,
e.g., by imaginary time path integral methods [4] or sto-

chastic modeling [5], and reads

p I (PA, , /2')l (PA, /2~)I (PX /2m )

Z(P) = (1)
4m I (Pco, /2ir)

where p= 1/T, co is the frequency of the bare oscillator,
and co, is a Drude-like frequency cutoff (we choose units

such that k~ =6=1). I (z) is the usual gamma function

and A,;, i = 1,2, 3, are the roots of the cubic equation

p(E)= . f Z(p)e~'dp, (4)
2wl c—i ~

where c )0 is a real constant. Surprisingly, this

quantity —to our knowledge —has not been calculated

before. It is the purpose of this Brief Report to calculate

p(E) explicitly for the exactly solvable harmonic oscillator

case. This allows one to study quantitatively within a

simple model how the discrete spectrum of the undamped

oscillator

p~o~(E)= g 5(s —(n+ —,')co)
n)0

is broadened by a finite dissipation y) 0. Besides this

theoretical interest we will see that the density of states of
a damped oscillator is also accessible by experiments.

A direct numerical evaluation of the right-hand side

(RHS) of Eq. (4) is rather difficult since the I functions

appearing in (1) with their complex arguments are strong-

ly oscillating as p is increased. Therefore, we derive some

exact results and a series representation of the rhs of Eq.
(4) which allows one to evaluate p(s) without much nu-

merical effort. It turns out that within our approach it is

very easy to show, e.g. , that the damped system has a

unique ground state and in addition a purely absolute

continuous spectrum. In general a proof of such proper-
ties involves mathematically more sophisticated tech-

niques [3] and has failed so far for more complex quan-

tum systems with dissipation, cf., e.g. , [7].Finally we dis-

cuss our results and comment on possible experimental

relevance.

EXACT RESULTS

*Present address: Fachbereich Physik, Bergische Universitat

Wuppertal, D-42097 Wuppertal, Federal Republic of Germany.

From (1) the free energy F associated with Z(p) is

trivially given by
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F(T)= —T. ln
4n T

A2
+lnr +lnr

277T 2~T

unique ground state with energy E0 and in addition a
purely absolute continuous (in fact C ")spectrum (Eo, oo ).

RESIDUUM ANALYSIS

A3+lnI
277T

~c—lnI
2~T

By means of an asymptotic expansion [8] of the function
lnI (z) for large arguments z we find the asymptotic
behavior

With the help of formula (6.60) of Ref. [1] Eo can also be

written in the alternative form

c0— da ln
2& 0

1+a +yco, a/(co, co+aco )

A

This shows that the ground state energy E0 is an increas-

ing function of the dissipation y and co, . The T correc-
tion to F(T) at low temperatures is characteristic for a

system with Ohmic dissipation. It leads to a linear

specific heat as T~O, indicating that the spectrum has
no gap above the ground state. To study this in more de-

tail we investigate the asymptotic behavior of p( e ) for
E~eo+ and e~ oo. We define functions X(P) and A(x),
x &O, by

F(T)—Eo
— T, T~O,

where the ground state energy c0 is given by

en= [A, !in(co, /A, , )+A2ln(ni, /A2)+kiln(n!, /A3)[ .
1

27T

I)~+i I ( nk, z/A,
—
, )I ( —nk, i/A, , )

R„ i=
g (n —I)! I ( neo, /—A, )

(16)

Let us now apply the residue theorem in order to cal-
culate the rhs of Eq. (4). First we note that either one of
the roots A, of Eq. (2) is real while the other two are com-

plex conjugate with nonvanishing imaginary parts or they
are all real. In the first case we call the oscillator under-

damped, otherwise OUerdamped. It turns out that in the
limit ~, &&u, y this corresponds to the standard classical
definition y /2 & co or y /2 )co, respectively [6]. The
characterizing feature of the underdamped case is that
p(e) is an oscillating function of E; see below.

VVe first discuss the underdamped case. The partition
function Z(P) in Eq. (1) has a simple pole at Pc=0 with

residue R o
= I /co and further poles P„,. = —2~n /1, ,

n H5, i =1,2, 3. Let A,
&

and A,2=A,
&

be the complex con-

jugate roots with nonvanishing imaginary parts. The
poles P„; are located on different axes in the complex half
plane ReP & 0; see Fig. 1. We now deform the integration
path in the line integral on the rhs of Eq. (4) to C' and
add line integrals along Cz and Cs which give no contri-
bution according to Cauchy's integral theorem. In the
usual way we then arrive at

1
p(E)= —+ g g R„;exp( —2rrnE/A. ;),

n=li =1

where the residues R„;=—Res(Z(P), P„, ) are easy to cal-
culate since all poles P„; are simple. We find

Z(P)=e !~=:e '[1+X(P)]

X(P)=:f %(x)e ~"dx .
0

This implies that

p(E) =6(E—Eo)+%(E—Eo)0(E—so),

(10)

(12)

and analogous expressions for R„2 and R„3 by a permu-
tation of indices. Since Imk, ,&0 and Rek.i) 0 the func-
tion p(E) is oscillating with exponentially decreasing am-

plitudes (remember that A,2=A.! and A, 3 is real).
Note that the two axes corresponding to the complex

conjugate roots move towards the negative real axis as
the damping coefficient y is increased. The negative real

where 5(e —
eo) is the Dirac delta distribution centered at

Eo and 0(x)= 1 if x )0 and zero otherwise. From (7) and

since Z(P)-Z, !(P)= I/Pc@ in the classical limit P~O we

may conclude that the function X(13) vanishes like

year/6' P for P~ oo while in the classical limit P~O it
diverges like I/junco. We now apply Tauberian's theorem

[9] which determines the behavior of A(x) for small ar-

guments where

%(x)—,x ~0+,
6'

and in the limit x —+ ~, where

1 & 1W(x')dx' ——,x —+ oo
X 0 CO

(14)

(here x =E—
Eo; see above). In the next section we show

that A(x) is absolutely continuous in (0, oo ). Therefore,
as expected on physical grounds [3], p(c, ) displays a

FICx. l. Integration paths in the complex P plane for an un-

derdamped oscillator with 0 & y & y, .
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( )
5(e—

q) 5 (c—co)

FICx. 2. Density of states p(c) for an underdamped oscillator
with co= 1, y =0.2, and co, =10. Of course, the 5 peak has been

added by hand.

FIG. 3. Density of states p(c) for an overdamped oscillator
with m=1, y=5, and co, =10.

R„&exp
27T71 C 1

exp
1

2~n (
—
E —

Eo)

(17)

for large n (similarly for i =2, 3). Since the A. ; have posi-

tive definite real parts the terms in the sum of Eq. (15) de-

crease exponentially fast for large n if c.) co. Thus the

series and also the series of the derivatives with respect to
e are absolutely and uniformly convergent in (Eo, ~ }.
Therefore the density of states p(E) is a continuously
differentiable (in fact C" ) and hence absolutely continu-
ous function of E in (Eo, ~ ). This implies that apart from

the ground state there are no further embedded eigen-

states, cf. [3].
DISCUSSION

To give an example we use Eq. (15) to evaluate p(E) for
an underdamped (co= 1, y=0. 2, co, =10) and an over-

damped case (co= 1, y =5, co, = 10); see Figs. 2 and 3, re-

spectively. The behavior of p(E) is as expected from the
results above: The ground state remains as a separate 5
function centered at the ground state energy co which is

shifted upwards compared with the undamped case where
Eo=0.5 for co=1; cf. Eq. (9) (c,o=0.57 in the under-

damped, so=1.95 in the overdamped case). Evidently
the excited states of the bare oscillator are broadened by

axis is reached for a value y =y, which separates the un-

derdamped from the overdamped case. If all I,, are real,
expression (15) for p(c, ) together with (16) still holds (for
simplicity we assume that all poles are different and thus

simple). Since all A, , are real, p(e) is now monotonically

decreasing.
From (15) we see that p(c, )-1/co for e~ oo, in accor-

dance with (14}. In order to show that p(E) is an abso-

lutely continuous function of e in (Eo, ~ ) we apply the

asymptotic expansion [8] of lnI (z) for large arguments z
to the I functions appearing on the rhs of Eq. (16). Us-

ing relations between the A, ; [6] we find the asymptotic es-

timate

the damping and the discreteness of the original spectrum
completely disappears at large energies where

p(E~ oo )
= 1/co. Note that this is just the auerage density

of states consistent with the undamped case where the
discrete levels appear regularly with distance co (i.e., the

steps of size 1 in the integrated density of states are re-

placed by a straight line). At low energies E~EO+ the

continuous part of p(e) starts with a finite value

ym/6' (=0.1 in the underdamped, =2.6 in the over-

damped case), as expected from (13). The positions of the

peaks in the underdamped case and the scale of the ex-

ponential decay follow from the imaginary and real parts
of the A,;.

Apart from the intrinsic interest in studying the evolu-

tion from a discrete point spectrum to a continuum by
dissipation, the density of states also determines the ab-

sorbed power in an experiment where the oscillator is

driven by an external perturbation. Indeed, the absorp-
tion of an external field with frequency coo will be propor-
tional to p(EO+coo). Experiments of this type were per-

formed in a current-biased Josephson junction where the
damped oscillator consists of the phase difference of the
order parameter on both sides of the junction in the
metastable zero voltage state [10]. The phase difference

may be represented as a quantum-mechanical particle in

a cubic potential, subject to (weak) dissipation; cf. also

[I]. In these experiments the escape rate from the zero
voltage state was measured when a microwave current at
fixed power P and frequency coo was applied. Using a de-

vice of the same type at small dc current where the es-

cape is negligible it should be possible to observe the ab-

sorbed microwave power when the frequency coo is

changed. Thus in principle it shou1d be possible to mea-

sure the density of states calculated here by an experi-
ment in which a current-biased junction is driven by a
microwave field.
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