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DENSITY OF THE SELF-ADJOINT ELEMENTS WITH
FINITE SPECTRUM IN AN IRRATIONAL ROTATION
C*ALGEBRA

MAN-DUEN CHOI and GEORGE A. ELLIOTT

Abstract.

It is shown that, for a dense set of values of the irrational number 6, any self-adjoint element of the
irrational rotation C*-algebra 4, can be approximated in norm by one which has finite spectrum
(and, what is more, by one which has Cantor spectrum).

1. Recently, certain C*-algebras have been shown to have the property that
the subset of self-adjoint elements with finite spectrum is dense (in the set of all
self-adjoint elements). This was shown in [5] for the Bunce-Deddens algebras,
and in [7] for the multiplier algebras of matroid C*-algebras (i.e., of AF algebras
stably isomorphic to UHF algebras).

The purpose of this paper is to show that this property holds also for at least
some of the irrational rotation C*-algebras. The first step is to verify a related
property in the rational case.

THEOREM. For any rational number 6 = p/q with(p, q) = 1, the set of self-adjoint
elements of the rotation algebra Ay with q distinct eigenvalues in every irreducible
representation is dense.

2. COROLLARY. The subset of R\ Q consisting of those numbers 8 such that the
set of self-adjoint elements of the rotation algebra Ag with finite spectrum is dense, is
dense in R\ Q.

Proor. The proof will be given, in a more general context, in Section 6, below.
It will also be shown that the subset of R\ Q consisting of those numbers 6 such
that the set of self-adjoint elements of 4, with Cantor spectrum is dense, is dense.
The proof is based on the fact that the family (Ag)pe(o, 17 15 in @ natural way
acontinuous field of C*-algebras, pointed out in [10] (see also [11],[12] and [8];
see [ 18] for two generalizations of this result). The continuous fields introduced
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in [10] are quite easy to describe: by Proposition 10.2.3 of [9] it is enough to
describe a subspace of fields which have continuous norm and are dense in each
fibre Ag; such a subspace is the space of polynomials in the two canonical
generators u and v, with vu = 2™ yp; continuity of the norm of such a polynomial
(as a function of 8) was proved in [10].

We shall need to use two properties of the continuous field of C*-algebras (A4,).
The first is as follows. Recall (see, e.g., [8]) that if 8 is rational, # = p/q with
(p, q9) = 1, then each irreducible representation of A4, is of dimension g; in particu-
lar, each self-adjoint element of A, has exactly g eigenvalues, including multiplic-
ity, in each irreducible representation of 4y. The property we shall need is that for
each continuous field of self-adjoint elements h, each 6, and each ¢ > 0, there
exists a rational number &', with [§ — 8’| < ¢, such that the eigenvalues of /(f') in
an irreducible representation of 4,4, considered in decreasing order, with multi-
plicity, vary by no more than ¢ as the representation varies. That this property
holds follows from the definition of the continuous field (4,) together with the
fact that, for each rational number p/q with (p,q) = 1, there exists a complete
family of irreducible representations of 4,, on the fixed Hilbert space C? such
that the images of the canonical unitaries u and v vary in norm by at most 1/g.
Here we use the Weyl spectral variation inequality for hermitian matrices (see e.g.
[2]). Such a family of representations of A, is given by mapping u and vinto z, U
and z,V, respectively, where U is the diagonal matrix diag(l,p,...,p?"})
(p = €2™P), V is the cyclic permutation matrix which moves the standard basis
(ey,...,¢,) into the basis (ey41,...,€, €;,...,¢,), and z; and z, are complex
numbers of absolute value one such that z; = ™% with 0 < ¢; < 1/g. (See e.g.
[81.)

The second property that we shall need is that a continuous field of elements
has continuous canonical trace (see [10]). For a polynomial in the canonical
unitaries, the canonical trace is just the constant term (which is independent of 6).

The corollary now follows from Theorem 6 below.

3. REMARK. Among other things, it is shown in [13] that the unitary group of
a separable simple unital approximately finite-dimensional C*-algebra, modulo
its centre, is a simple group. An obvious question is whether this is also true in an
irrational rotation C*-algebra. The proof given in [13] remains valid (if one
recalls certain well known facts about the rotation C*-algebras), except for
the proof of 9.6 of [13], which requires knowing that any self-adjoint element
can be approximated by one with finite spectrum. Hence by Corollary 2,
U(A4,)/Centre U(A,) is a simple group for a dense set of § in R\ Q.
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4. The following result subsumes Theorem 1.

THEOREM. Let A be a separable homogeneous C*-algebra of order ne {1,2,...}.
Suppose that the spectrum of A is of dimension at most two. Then the set of
self-adjoint elements of A with n distinct eigenvalues in every irreducible representa-
tion of A is dense.

Proor. The following two general facts about dimension, which it seems
convenient to take as a definition, allow us to pass to the case that A4, the spectrum
of 4, is a finite CW-complex. First, a locally compact metric space has dimension
at most d if, and only if, it is the union of a sequence of compact subsets with
dimenston at most d. Second, a compact metric space has dimension at most d if,
and ouly if, it is the projective limit of a sequence of finite CW-complexes
composed of simplices of dimension at most d.

Let us note that if A is the union of a sequence of compact subsets such that the
conclusion holds for each of the corresponding quotients of A4, then the con-
clusion holds for A. (Once a self-adjoint element of A is approximated by one
which, in the quotient corresponding to one of the compact subsets, has n distinct
eigenvalues in every irreducible representation (of this quotient), then any other
approximant close enough to this one will have the same property. Thus,
assuming the result for each compact subset in the sequence, if h = h*e 4, we
may approximate h by h, = h¥ € A such that h; has the desired property over the
first compact subset, and then approximate h; by h, = h% € A such that h, has the
property over the second compact subset, and is sufficiently close to h, that it also
has it over the first compact subset, and we may continue in this way. If we make
the approximations sufficiently close, then they will converge to a limit
h., = h* € A which is close to h and also has the desired property over every
compact subset in the sequence, and, therefore, by hypothesis, over the whole
spectrum.)

In particular, it follows that we may suppose that 4 is compact. Furthermore,
since the continuous field of C*-algebras defined by A is locally trivial, we may
suppose that 4 is isomorphic to the C*-algebra of all continuous n x n matrix
valued functions on A.

Since the conclusion is preserved under passing to inductive limits, it follows
that we may suppose that A is a finite CW-complex of dimension at most two, i.e.,
a triangulated space. Hence by the observation above, we may suppose that Ais
a single simplex, i.e., a point (this case is trivial), an interval, or a triangle.

Consider first the case that the dimension of the simplex is one, i.e., that it is an
interval. Let h = h* e A. Replacing h by a close approximant, and passing to
a subinterval, we may suppose that his linear, as a matrix-valued function on the
interval. In this case, it is possible to make an analytic choice of eigenvalues and
eigenprojections for h, that is, to choose n eigenvalues for h at each point, and
corresponding one-dimensional eigenprojections, in such a way that the result-



76 MAN-DUEN CHOI AND GEORGE A. ELLIOTT

ing n real-valued functions and n projection-valued functions on the interval are
analytic (i.e. have entire analytic extensions); see Theorem 6.1 of [16]. Further-
more, we may suppose that the n eigenvalues of h are distinct at at least one point,
so that by analyticity they are distinct at all except finitely many points. Passing
to a subinterval again, we may suppose that the eigenvalues of h are distinct
except at one point.

In order to perturb h to remove this singular point, at which some of the
eigenvalues coincide, we may suppose that in fact only two of the eigenvalues
coincide. The reduction to this case can be achieved by adding small constants to
each of the n eigenvalues of h, considered as analytic functions on the interval, so
that at most two of the resulting analytic functions are equal at any point of the
interval. (Recall that any two analytic functions on the interval can coincide at
only finitely many points.) Adding the corresponding linear combination of the
n eigenprojections to h, we obtain a small perturbation of h, at most two
eigenvalues of which coincide at any point of the interval. Since only finitely
many of these new singular points arise, after passing to a subinterval as before we
need consider only the case that there is one such point.

The case that only two eigenvalues of h coincide at the singular point is easy to
deal with. We may suppose that n = 2, i.e. that h is a 2 x 2 matrix valued
function. Choose a unitary ue A which interchanges the two one-dimensional
eigenprojections of &; this uses only that these eigenprojections have been chosen
to be continuous functions on the interval. For any ¢ > 0 the self-adjoint element
h + &(u + u*)has distinct eigenvalues at every point. (This just amounts to saying
that, for arbitrary real numbers a and b, and arbitrary ¢ & 0, the 2 x 2 matrix
|:Z Z:l has distinct eigenvalues.)

Now consider the case that the dimension of the simplex is two, i.e., that it is
a triangle. (The argument that follows is also valid in the case of dimension one.)
In order to deal with this case, we shall establish the following property of the
closed subset of hermitian n x n complex matrices with at least one multiple
eigenvalue. Denote the subset of such matrices by H*, and the real linear space of
allhermitian n x ncomplex matrices by H. We shall show that H* is a finite union
of embedded submanifolds of H, each of codimension at least three.

The fact that H* is a finite union of embedded submanifolds of H, putting aside
for the moment the assertion concerning the codimensions, actually follows just
from the fact that H® is the zero set of a polynomial on H (namely, the resultant,
i.e., the product of all differences of eigenvalues 4; — 4; with i different from j,
which by symmetry is a (real) polynomial in the real and imaginary parts of the
matrix entries). (Inside the zero set of an arbitrary polynomial, or finite set of
polynomials, the singularities form a new zero set of lower (maximal) dimension;
see the proof of Theorem 5.3 of [14].)



DENSITY OF THE SELF-ADJOINT ELEMENTS WITH FINITE SPECTRUM . .. 77

Rather than using the properties of an arbitrary zero set, let us express H*
explicitly as a finite union of submanifolds of H. For each partition of n, i.¢. each
decomposition n = n; + ... + m, where n;e{1,2,...,n}, excluding the finest par-
tition,n = 1 4 ... + 1, consider the set of hermitiann x ncomplex matrices with
this pattern of multiplicities of eigenvalues. It is obvious that the union of these
sets, one for each partition of n(except forn = 1 + ... + 1),isequal to H*. (Itisin
fact a disjoint union; one can also make the union a disjoint one for an arbitrary
zero set, but not in such a natural way.)

Let us check that each of the subsets defined in this way, associated with
a partition of n, is an embedded submanifold of the real linear space H. In other
words, some open neighbourhood of each point (in the relative topology) should
be conjugate by a homeomorphism of H to an open subset of a linear subspace of
H. Of course, we also want the codimension of this subspace to be at least three.
In fact, if the partitionis n = n; + ... + n, then the codimension of the subspace,

i.e., of the submanifold, is
k
<Z n,2> — k.
i=1

(And since some n; is at least two, this is at least three.) The coordinates
perpendicular to the submanifold at a point are obtained by adding hermitian
matrices which commute with the matrix at that point, and have trace zero inside
each eigenprojection of the matrix at that point. For small nonzero values of
these coordinates, the matrix has a different eigenvalue pattern from (n,,...,n,).
The dimension of the space of such matrices inside the ith eigenprojection is
n? — 1.

Let us now show that any continuous function from a triangle into H can be
perturbed in such a way as to avoid finitely many embedded submanifolds of
codimension at least three, and, therefore, in particular, to avoid H*, as desired. It
is clearly enough to show that the function can be perturbed to avoid countably
many compact subsets of H, each of which is conjugate by a homeomorphism of
H to a subset of some linear subspace of codimension three. Since the subsets are
compact, it is actually enough to be able to avoid just one, by an arbitrarily small
perturbation; one can then avoid a whole sequence, in succession, by first
avoiding the first, and then avoiding the second while staying at nonzero distance
to the first, and so on, by perturbations that become so small that the resuit
converges. After a conjugation by a homeomorphism of H, it is enough to avoid
a linear subspace of H of codimension three. Perturbing the function on the
triangle so that it is piecewise linear, and then projecting into the orthogonal
complement of the subspace, we have a piecewise linear function from a triangle
into R3. The image of such a function is a finite union of triangles and is therefore
nowhere dense in R3. In particular, after translation of the function by an
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arbitrarily small amount, in a suitable direction orthogonal to the subspace, the
projection into R* must avoid 0. In other words, the function from the triangle
into H, perturbed by a small amount in this way, avoids the linear subspace, as
desired.

5. REMARK. Consideration of the simplest three-dimensional case, i.e. the
C*-algebra M,(C(B?)) = C(B3, M,) of continuous 2 x 2 matrix valued functions
on the unit ball in three-dimensional Euclidean space, shows that the restriction
on the dimension in Theorem 4 cannot be relaxed. The self-adjoint matrix valued
function (4, y, v)p—»[ A . pAw

u—iv. =2
one with distinct eigenvalues at every point. To prove this, it is enough to show
that any sufficiently small perturbation of the identity function x ~—» x on B® must
map some point into 0. Let x — x — g(x) be such a perturbation, with ||g(x)] = 1
forall xe B3,i.e.,g: B> — B>. Then by the Brouwer fixed-point theorem, for some
x € B® we have g(x) = x,i.e. x — g(x) = 0, as stated.

], for instance, cannot be approximated by

6. In view of the proof of Theorem ! (see Theorem 4), it is natural to prove
Corollary 2 in the following more abstract form.

THEOREM. Let (A(t)) be a continuous field of C*-algebras over the compact
Hausdorff space T. Suppose that the C*-algebra of continuous fields of elements is
separable. Suppose that for each element s of a dense subset S of T, the fibre algebra
A(s) is homogeneous of order n(s) and has spectrum of dimension at most two.
Suppose that for every continuous field h of self-adjoint elements, every t € T, every
neighbourhood N of t, and every ¢ > 0, there exists se NN S such that the
eigenvalues of h(s) in the irreducible representations of A(s), considered in decreas-
ing order (with multiplicity), vary by at most e. Then for a dense set of te T, the
self-adjoint elements of A(t) with finite spectrum are dense.

Suppose, furthermore, that the order n(s) of A(s)is greater than any given number
for s in a dense subset of S. Suppose that there is a continuous field (t(t)) of faithful
tracial states. Then for a dense set of t€ T, the self-adjoint elements of A(t) with
Cantor spectrum are dense.

ProOF. Let h = (h(t)) be a continuous field of self-adjoint elements, and let
£ > 0. Let us show that, under the hypotheses of the first part of the theorem,
there exists a dense open subset T, of T such that for every t€ Ty there is
a self-adjoint element of A(t) with finite spectrum strictly within distance ¢ of h(t).
Let us show also that, under the additional hypotheses of the second part of the
theorem, T, may be chosen so that for every t € Ty, there is a self-adjoint element of
A(z) with finite spectrum strictly within distance ¢ of h(t) and such that, further-
more, the value of the trace 1(t) on each minimal spectral projection of this
element is strictly less than &.
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Note first that, if we denote by T the set of t € T for which approximation of h(t)
as above is possible (with or without the restriction on the traces of the minimal
spectral projections of the approximant), then T, is open. (This uses only that h is
a continuous field of self-adjoint elements, with respect to a continuous field of
C*-algebras, and that 7 is a continuous field of traces.) It follows that we need
only show that T; as defined in this way is dense. Since Tj is open, it is the same to
show that T, N S is dense.

Fix te T, and let N be a neighbourhood of ¢ in T. By hypothesis, there exists
se€ N n S such that the eigenvalues of h(s) in the irreducible representations of the
(homogeneous) C*-algebra A(s), considered in decreasing order, vary by at most
&/8. By Theorem 4, there exists k = k* € A(s) with | h(s) — k|| £ ¢/8 and such that
the eigenvalues of k in any irreducible representation of A(s) are distinct. By the
Weyl spectral variation inequality for hermitian matrices (see [2]), the eigen-
values of k in the irreducible representations of A(s) vary by at most

e/8 + 2||h(s) — k| < 3¢/8.

It follows that k is within 3¢/8 of a self-adjoint element k’ of A(s) such that the
eigenvalues of k' in all irreducible representations of A(s) are the same, and are
distinct. (The eigenvalues of k' may be taken to be those of k in any single
irreducible representation of A(s).) We have

Ih(s) — K'll < IIh(s) — ki + [k — Kl = ¢/8 + 3e/8 =¢/2 <&

This shows that, when T, is defined as above, in the context of the first part of the
theorem (i.e. without reference to the traces of spectral projections), s€ Ty. Since
the minimal spectral projections of k' have dimension one in every irreducible
representation of A(s), they have trace 1/n(s) for every tracial state on A(s) and in
particular for 1(s). By hypothesis, we may choose s so that n(s) > 1/e, ie.,
1/n(s) < &. Then also se T, when Tj is defined as above in the context of the
second part of the theorem. Since se N, and N is an arbitrary neighbourhiood of
tin T, and t is arbitrary, this shows that T is dense in T.

Now choose a dense sequence hy, h,,... of continuous fields of self-adjoint
elements, and a sequence &, > &, > ...converging to 0. Denote by T,,n =
1,2,..., the dense open subset T, of T constructed as above with h, in place of
h and ¢, in place of e. The intersection {) T, is dense in T, since T'is a compact
Hausdorff space. It is immediate that the dense set () T,, fulfils the requirement of
the first part of the theorem.

Let us show that the dense set [ T, fulfils the requirement of the second part of
the theorem. Fix te()T,, and note that any self-adjoint element of A4(t) can be
approximated arbitrarily closely by a self-adjoint element with finite spectrum,
which can be chosen in such a way that the value of the faithful tracial state ©(t) on
each minimal spectral projection is arbitrarily small. Hence by Lemma 7 which
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follows, any self-adjoint element of A(t) can be approximated by a self-adjoint
element with Cantor spectrum.

7. LEMMA. Let A be a C*-algebra, and let ¢ be a faithful state on A. (Such a state
exists, for example, if A is separable.) Suppose that any self-adjoint element of
A can be approximated arbitrarily closely by a self-adjoint element with finite
spectrum, and that this element can be chosen such that the value of ¢ on each of its
minimal spectral projections is arbitrarily small. Then any self-adjoint element of
A can be approximated by one with Cantor spectrum.

PrROOF. Leth = h*e A,and lete > 0. Choose h; = h¥ € A with finite spectrum
such that ||h — h, || £ ¢/2, and such that the value of ¢ on each minimal spectral
projection of h, is strictly less then 1/2. Denote the smallest distance between two
distinct points of the spectrum of h; by 3s, = 3s(h,).

Choose h, = h% € A with finite spectrum such that

Ay — by || £ min {51/2, 3/22},

and such that the value of ¢ on each minimal spectral projection of k, is at most
1/2%. Recall that the HausdorfT distance between the spectra of two self-adjoint
elements of a C*-algebra is at most equal to the distance between the elements. In
particular, as |th; — h, || < sy, it follows that for each gap in the spectrum of h; at
least the middle third of this gap is contained in a gap in the spectrum of h,. Now
choose h, much closer to hy, close enough that for each consecutive pair of gaps
in the spectrum of h, (including the unbounded gaps at either end), the spectral
projection of h, corresponding to the interval between the middle thirds of these
gaps (or between the middle third of one and + o) is close to the spectral
projection of h; corresponding to the same interval (which is a minimal spectral
projection of A, and so the value of ¢ on it is strictly less than 1/2), close enough
that the value of ¢ on this spectral projection of h, is strictly less than 1/2. Denote
the distance from h, within which h, must lie for this to happen by §,. Choose h,
so that in fact

|y — hy|l < min {51/2, 61/2, 8/22}-

Continuing in this way, for each n = 3,4,... choose inductively h, = h¥e A
with finite spectrum such that

Ihy—y — hyll < min {s,/2""1,8,/2" L 6/2%m=1,...,n — 1},

where s,, = s(h,,), and J,, is defined in analogy with the case m = 1 as follows.
Note first that

“hm_hn" < Sy, M= 1,...,"— 1,
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so that the middle third of each gap in the spectrum of k,, is contained in a gap in
the spectrum of ,. Choose J,, so that whenever h, is such that this is true, and also
|hm — hell = O, then necessarily the value of ¢ on the spectral projection of h,
corresponding to the interval between the middle thirds of any two consecutive
gaps in the spectrum of h,, is strictly less than 1/m.

The sequence (h,) is clearly Cauchy. Denote the limit by k.. We have

”h - hoo ” é &,
and foreachm = 1,2,...,

M — Bl < min {s,,, o}
It follows that, for each m, the middle third of each gap in the spectrum of h,, is
contained in a gap of the spectrum of h, and, furthermore, the value of ¢ on the
spectral projection of h, corresponding to the interval between the middle thirds
of any two consecutive gaps in the spectrum of h,, is less than 1/m. As we shall now
show, this, together with the fact that ¢ is faithful on A, implies that the spectrum
of h, is a Cantor set.

Suppose that the spectrum of 4, contains a connected subset, I, which is either
an isolated point or a whole interval. We shall deduce a contradiction. Choose
a continuous function f on R with 0 £ f < 1 which is nonzero at some point of
I and is zero on the relative complement of I in the spectrum of . For any m,
there must exist two consecutive gaps in the spectrum of h,, the middle thirds of
which lie on either side of I. The value of ¢ on the spectral projection of h_,
corresponding to the interval between the middle thirds of these gaps (or between
the middle third of one of them and + oo, if the other gap abuts on 4 o0) is less
than 1/m. Hence ¢(f(h,,) = 0. But by the choice of f, f(h,,) F 0. This shows that
I as above cannot exist. In other words, the spectrum of h,, is a Cantor set.

8. M. Rerdam has pointed out to us that Lemma 7 leads to the following
result. While this result does not seem itself to imply the second part of Theorem
6 (although it shows that the additional hypotheses of the second part of
Theorem 6 can be replaced by, for example, the hypothesis that every fibre
algebra A(f) with ¢ € S is simple), it does yield the second part of Theorem 9, below.

COROLLARY. Let A be a C*-algebra with no nonzero elementary subquotient.
( This holds if A is simple and not elementary, and if it holds for A it holds for A ® B
for any C*-algebra B.) Suppose that the self-adjoint elements of A with finite
Spectrum are dense. Then the self-adjoint elements of A with Cantor spectrum are
dense.

ProoF. First, consider the case that A4 is separable. Choose a faithful state ¢ on
A. Clearly, in view of Lemma 7, it is sufficient to show that any projection e in
A majorizes a projection f with ¢(f)/¢(e) approximately equal to 1/2. Passing to
eAe we may suppose that e = 1. (The hypotheses on A still hold; see [17].)
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To find a projection f in 4 with ¢(f) close to 1/2, it is sufficient to do this in the
weak closure of 4 in the representation determined by ¢. Indeed, if F = F* =
F?eny(A)” and n4(h,) — F strongly, where h, = h¥ € A has finite spectrum, then,
with y the characteristic function of the interval [1/2,2], x(h,)€ 4, and as y is
continuous on a neighbourhood of the spectrum of F, by a result of Murray and
von Neumann and Kaplansky ([15], Theorem 2),

Ty (x(ha)) = x(my(hy)) — F strongly.

By the first hypothesis on A, which now amounts to saying that 4 has no
nonzero finite-dimensional quotient, ,(4)" has no nonzero finite direct sum-
mand of type I. From this we conclude that 7, (A)” contains a subfactor of type I,.
A simple computation shows that an arbitrary state on a factor of type I, takes

0
the value 1/2 on some projection. (The state with density matrix l:g f— #:| is

11
equal to 1/2 on the projection [ ) 1].)

Now, consider the case that A4 is not separable. To reduce the problem to the
separable case, it is sufficient to show that any countable subset of A is contained
in a separable sub-C*-algebra fulfilling the same conditions as A. (Cf. [3], where
it is shown that a countable subset of a simple C*-algebra is contained in
a separable simple sub-C*-algebra.) Let C be a separable sub-C*-algebra of 4,
and let us enlarge C until it fulfils the conditions of the corollary. If we do this for
the two conditions separately, then, constructing an increasing sequence
C < C, € C, c - where the odd C’s fulfil one and the even C’s the other, we will
have that the closure of the union of the C’s fulfils both conditions. It is obvious
how to do this for the second condition. To do it for the first condition, let us first
reformulate this as follows: no hereditary sub-C*-algebra has a nonzero
finite-dimensional quotient. It is sufficient to consider singly generated hered-
itary sub-C*-algebras, and, in the separable case, it is sufficient to consider the
hereditary sub-C*-algebras generated by the elements in a countable approxi-
mate unit of the Pedersen ideal.

Now, given a separable sub-C*-algebra C, let us construct a larger one which
fulfils the first condition. Choose an approximate unit (¢, c,,...)in the Pedersen
ideal of C. It is sufficient to construct a larger separable C*-algebra for which
(c1,¢3,...) is still an approximate unit, and such that for no n does the hereditary
sub-C*-algebra generated by c, have a nonzero finite-dimensional quotient.
Hence, it is sufficient to find a separable sub-C*-algebra containing ¢,Cc,, for
which ¢, is a strictly positive element, and which has no nonzero finite-dimen-
sional quotient. Replacing 4 by ¢, Ac,, we may ignore c,. We shall construct an
increasing sequence C = C, = C, < ... of separablé sub-C*-algebras such that
C, has no irreducible representation of dimension n or less. It follows, first, that
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C, has no nonzero representation at all of dimension n or less, and, hence, that
C,, the closure of the union of the C’s, has no nonzero finite-dimensional
representation, as desired.

First, since 4 has no one-dimensional quotient, A is the closed two-sided ideal
generated by its commutators (elements ab — ba). Hence, C is contained in
a separable C*-algebra C, which is the closed two-sided ideal generated by its
commutators, and, in other words, such that C, has no one-dimensional irreduc-
ible representation. Next, since 4 has no quotient isomorphic to M; or to M,, A is
the closed two-sided ideal generated by the range of the polynomial P,, where
P, = 0Ois the polynomial identity which holds for M, but not for M, (see [1]). It
follows that C, is contained in a separable sub-C*-algebra C, with the same
property, equivalently, such that C, has no quotient isomorphic to M, or to M,.
Continuing in this way, we obtain an increasing sequence C< C; = C, ... of
separable sub-C*-algebras such that C, has no quotient isomorphic to any of
M, M,,...,M,, as desired.

9. Theorem 1 can also be used, much as in the proof of Corollary 2, to give
a new proof that in the Bunce-Deddens algebras the self-adjoint elements with
finite spectrum are dense ([5]). This proof proceeds directly, rather than by first
showing that each hereditary sub-C*-algebra has an approximate unit consisting
of projections (and then using the fact, proved in [4], that this is sufficient).
Using Theorem 4, one obtains the following result.

THEOREM. Let A, € A, < ... be a sequence of separable homogeneous C*-alge-
bras of orders ny, n,,.... Suppose that each A, has spectrum of dimension at most
two. Suppose that for each i, for each self-adjoint element h of A;, and for each
€ > 0, there existsj > i such that the eigenvalues of h in the irreducible representa-
tions of A;, considered in decreasing order (with multiplicity), vary by at most e.
Then the inductive limit C*-algebra, lim A;, has the property that the self-adjoint
elements with finite spectrum are dense.

Suppose, furthermore, that Ii_rp A; is not elementary. Then in li_IIl A; the self-
adjoint elements with Cantor spectrum are dense.

Proor. The proof is similar to the proof of Theorem 6, but is simpler.

Let h be a self-adjoint element of 4, and let ¢ > 0. By hypothesis, there exists
J > isuch that the eigenvalues of hin the irreducible representations of 4; vary by
at most ¢/8. By Theorem 4 (with 4; in place of A), there exists k = k* € A; with
lh — k| < £/8 such that the eigenvalues of k in each irreducible representation of
A;are distinct. By the Weyl spectral variation formula for hermitian matrices (see
[2]), the eigenvalues of k in the irreducible representations of 4; vary by at most

e/8 +2|h — k| < 3¢/8.
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It follows that k is within 3¢/8 of a self-adjoint element k' of 4; such that the
eigenvalues of k' in all irreducible representations of 4; are the same, and are
distinct. (The eigenvalues of k" may be taken to be those of k in any single
irreducible reprexentation of A;.) We have

Ih— K| < Ik — kil + |k — k| = 3¢/8 + 3¢/8 = ¢/2 <,

as desired.

The second statement follows by Corollary 8, since the hypotheses of the first
part of the theorem imply that ligl A; is simple. (See proof of (i) = (ii) of Theorem
10.)

10. Theorem 9 can be applied to embeddings of the following kind (which
occur in the sequence defining a Bunce-Deddens algebra).

THEOREM. Let A; S A, < ... be a sequence of homogeneous C*-algebras. Sup-
pose that the spectrum of each A; is a compact, connected Riemannian manifold.
Suppose that, for eachi = 1,2,..., for each irreducible representation n of A, there
is exactly one irreducible representation p of A; . such that the restriction of p to
A; contains 7, and that the multiplicity of m in p|A,, if it is not zero, is one. Suppose
that the mapping from A, into A; ., that is defined by the preceding hypothesis,
which is necessarily continuous, and in fact a local homeomorphism, preserves the
Riemannian metric, for eachi = 1,2,.... Then the following three conditions are
equivalent:

(i) for each self-adjoint element h of A;, and each ¢ > 0, there exists j > i such
that the eigenvalues of h in the irreducible representations of A;, considered in
decreasing order (with multiplicity ), vary by at most &;

(ii) the inductive limit C*-algebra, 1i_1_1’1 A;, is simple;

(iii) the diameter of A; converges to zero.

Proor. We shall use the following, more familar reformulation of the condi-
tion that li_r_)n A; is simple (which uses compactness of the spectra, but no assump-
tion on the embeddings): for each open subset U of 4;, there exists j > i such that
for every pe A ;» the restriction of p to 4; contains some element of U.

(It is in fact by this criterion that the Bunce-Deddens algebras are most easily
seen to be simple.)

Ad (i) = (ii). (This does not use the assumptions on the spectra or the
embeddings.) Let U be an open subset of 4;. Choose h = h* € A; with support
contained in U, and let j > i be such that the eigenvalues of 4 in the irreducible
representations of A; vary by at most ||k|}/2. Then p(h) & O for every peA s
whence p | A; contains some element of U.

Ad (ii) = (iii). This is immediate.

Ad (iii) = (i). Suppose that the diameter of A; converges to zero. Let h be
a self-adjoint element of A4;, and let ¢ > 0. Since the continuous field of
C*-algebras defined by A, is locally trivial, by the Weyl spectral variation
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inequality (see [2]) the eigenvalues of n(h), considered in decreasing order,
depend continuously on 7 e 4;. Hence, by compactness, there exists § > 0 such
that for each subset V of 4; of diameter at most J, the eigenvalues of n(h),
considered in decreasing order, vary by at most ¢ for me V. Choosej > isuch that
the diameter of 4; is at most §/2. Let us show that the eigenvalues of 4 in the
irreducible representations of 4;, considered in decreasing order, vary by at
most &.

Note that for any two ordered pairs of real numbers (1,, ;) and (u,, u,) with
Ay 2 Ay and py 2 pa,

max (|gy — Al {2 — A2l) £ max (u; — Azl 112 — A4)).

Hence by induction, for any two n-uples A = (4,,...,4,)and g = (u4,. . ., u,) with
Ay 2...Z Aandy; =... = u,, the distance from A to u in the supremum norm
is less than or equal to the distance from / to any rearrangement of u.

It follows from the preceding (classical) fact that to prove that the eigenvalues
of p(h) vary by at most ¢ when they are considered in decreasing order, it is
sufficient to prove that they vary by at most ¢ when they are considered in just
some order, possibly depending on p.

From the hypotheses, which also extend to the embedding A; = A4;, it follows
that 4 ;is the quotient space of 4; with respect to a finite group G acting freely and
isometrically on A;. Since 4 ; has diameter at most /2, there is a fundamental
domain V for G of diameter at most J. (To see this, choose peflj. Then A ;is
contained in the closed ball with centre p and radius d/2. Choose 7 in the
preimage of p in A4; (i.e., in the fibre over p). Then the closed ball in 4; with centre
n and radius 6/2 maps onto 4 janyp, € A ;is connected to p by a path of length at
most §/2, and this lifts to a path of the same length in A4;, with one end at . This
ball in 4; has diameter at most 8/2 + /2 = J, and therefore any fundamental
domain V inside it (i.e. any selection of one p(;int from each orbit under G) also
has diameter at most §.) Then also g(V) has diameter at most & for each ge G.

Since A4; is the disjoint union of g,(V), g»(V),...,gx(V) where g,,...,g; is an
enumeration of the elements of G, so that every fibre has exactly one point in each
gm(V), for each pe A; we have

pIA,-EﬂG‘).-.@ﬂf,

where 7%, € g, (V).

It is now clear how to label the eigenvalues of p(h). Begin with the eigenvalues
of % (h), in decreasing order, and then take the eigenvalues of 74 (h), and so on, up
to nf(h). Since g,, is isometric, the diameter of g,(V) is at most 5. Hence, as
nh € gm(V), the variation of the eigenvalues of n%,(h) is at most &. In other words,
the variation of the eigenvalues of p(h), ordered in this way, is at most ¢, as desired.

11. The question arises, to which subhomogeneous C*-algebras can the re-
sults of this paper be extended? While this is not clear in the case of Theorem 10, in
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the case of Theorem 4, and therefore also Theorems 6 and 9, inspection shows
that the proof is valid for subhomogeneous C*-algebras defined by continuous
fields of finite-dimensional C*-algebras satisfying Fell’s condition, for which the
fibres are simple except at finitely many points. In particular, this includes the
noncommutative spheres (or orbifolds) of [6] for rational values of the par-
ameter. Therefore one has an analogue of Corollary 2 for irrational noncom-
mutative spheres.
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