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Various theoretical methods address transport effects in quantum dots beyond single-electron tunneling

while accounting for the strong interactions in such systems. In this paper we report a detailed comparison

between three prominent approaches to quantum transport: the fourth-order Bloch-Redfield quantum master

equation �BR�, the real-time diagrammatic technique �RT�, and the scattering rate approach based on the

T-matrix �TM�. Central to the BR and RT is the generalized master equation for the reduced density matrix. We

demonstrate the exact equivalence of these two techniques. By accounting for coherences �nondiagonal ele-

ments of the density matrix� between nonsecular states, we show how contributions to the transport kernels can

be grouped in a physically meaningful way. This not only significantly reduces the numerical cost of evaluating

the kernels but also yields expressions similar to those obtained in the TM approach, allowing for a detailed

comparison. However, in the TM approach an ad hoc regularization procedure is required to cure spurious

divergences in the expressions for the transition rates in the stationary �zero-frequency� limit. We show that

these problems derive from incomplete cancellation of reducible contributions and do not occur in the BR and

RT techniques, resulting in well-behaved expressions in the latter two cases. Additionally, we show that a

standard regularization procedure of the TM rates employed in the literature does not correctly reproduce the

BR and RT expressions. All the results apply to general quantum dot models and we present explicit rules for

the simplified calculation of the zero-frequency kernels. Although we focus on fourth-order perturbation theory

only, the results and implications generalize to higher orders. We illustrate our findings for the single impurity

Anderson model with finite Coulomb interaction in a magnetic field.

DOI: 10.1103/PhysRevB.82.235307 PACS number�s�: 73.23.Hk, 73.63.Kv, 73.40.Gk

I. INTRODUCTION

The experimental progress in fabrication of ultrasmall

electrical devices1–7 has made quantum dots one of the stan-

dard components in fundamental research and application

oriented nanostructures. Whereas high-resolution transport

measurements in the low-temperature regime have reached a

high degree of sophistication and reveal data dominated by

complex many-body phenomena,8–18 theoretical methods

are still struggling to describe these, mainly due to compet-

ing influences of strong local interactions and quantum

fluctuations.19–33 A common setup for transport studies is

drawn in Fig. 1�a�: the number of electrons on the device is

controlled capacitively via a gate voltage Vg, a difference in

the electrochemical potentials of the leads is created by a

bias voltage Vb. The measured quantity is the current I or the

differential conductance dI /dVb of the whole circuit, which

is usually represented in stability diagrams, where the

changes in current vs Vg and Vb are color coded �Fig. 1�b��.
The observed phenomena strongly depend on the strength of

the coupling of the nanodevice to the electronic reservoirs. In

the limit of extremely weak coupling, current at low bias is

completely blocked in wide ranges of the gate voltage, show-

ing up as so-called Coulomb diamonds �e.g., Fig. 1�b�,
central region�. Outside these regions of Coulomb blockade
only single electrons can be transferred sequentially onto or

out of the dot,34,35 a process called single-electron tunneling

�SET�. For simple systems �e.g., without orbital degenera-

cies� in this regime rate equations36 are the standard tech-

nique to calculate the occupations of the dot states, the cur-

rent, and other transport quantities.37 The transition rates are

calculated by Fermi’s golden rule, i.e., leading order pertur-

bation theory in the tunneling. For more complex quantum

dots with degenerate orbitals38–45 and/or noncollinear mag-

netic electrodes,46–49 coherences, i.e., nondiagonal density-

matrix elements, give crucial contributions to the transport

quantities and cannot be neglected. These are typical situa-

tions in molecular electronics and spintronics.50

Since the transparency of the contacts is a matter of the

material choice as well as of fortune, on the way to low

ohmic contacts, intermediate coupling strengths are

often observed, allowing for coherent tunneling of multiple

electrons.51 Also, there is the possibility to design structures

with tunable tunnel barriers, such that different coupling re-

gimes can be systematically accessed, allowing for more de-

tailed spectroscopic information to be extracted.8 Therefore,
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electron transport theory must go beyond lowest order per-
turbation theory in the tunneling while including many
charge states, their complex excitations and their quantum
coherence. In recent years, several advanced approaches that
address higher order effects have been developed based on
iterative real-time path-integral methods,52 scattering states53

combined with quantum Monte Carlo,54 or numerical55,56 or
analytical renormalization-group methods.24,27 Although
these new methods are promising, the standard generalized
master-equation �GME� approach still offers several advan-
tages. The GME describes the reduced density matrix
�RDM� of the quantum dot with transport kernels that are
calculated perturbatively. The GME can be derived using
various methods:57 the Nakajima-Zwanzig �Refs. 58 and 59�
projection operator technique �NZ�,60–62 the real-time dia-
grammatic technique �RT�,22,63,64 and the Bloch-Redfield
quantum master equation �BR� approach.65–67 Evaluating the
kernels up to fourth order in the tunneling Hamiltonian

�next-to-leading order�, one can account for all processes in-

volving coherent tunneling of one or two electrons. These

corrections to SET can be calculated either analytically for

simple models or, in complex cases, in a numerically effi-

cient way. In this case the GME is clearly limited to moder-

ate values of the tunnel coupling as compared to tempera-

ture. However, it has the benefit of nonperturbatively treating

both the interactions on the dot as well as the nonequilibrium

conditions imposed by the bias voltage. It can therefore pro-

vide crucial physical insights into measurements of nonlinear

transport through complex quantum dots, see, e.g., Refs. 68

and 69. More generally, even higher corrections can be ex-

plicitly formulated in any order of the tunneling by system-

atic diagram rules. Since the explicit form of the kernel is

known in this way, a renormalization-group theory for its

calculation can be formulated as well, allowing the nonequi-

librium low-temperature regime to be addressed,70 including

the Kondo effect.27 A class of contributions beyond fourth

order can also be included by expanding an equation of mo-

tion for the density matrix.71,72

This paper focuses on the BR and RT formulations of the

GME approach applied to transport in the fourth order of

perturbation theory and addresses crucial technical matters
and simplifications relevant for the description of complex
quantum dots. Several important concrete issues have moti-
vated this work.

�i� There is an ongoing discussion about the validity and
equivalence of approaches which can become obscured by
the complexity of the expressions involved when discussing
complex quantum dots. Clearly, the general form of the
quantum master equation is well known since several de-
cades. Still, a much debated issue is the actual task of sys-
tematically calculating higher order corrections to the trans-
port kernels occurring in this equation for general complex
quantum dot models. This paper emphasizes that the BR and
RT techniques are one-to-one equivalent. In contrast, the
scattering rate approach based on the generalized Fermi’s
golden rule and T-matrix �TM�, as formulated in the litera-
ture, differs from these two techniques.57 Although it also
relies on a fourth-order perturbative calculation, the results

do not coincide in general for identical models. The reason is

that the objects calculated perturbatively, i.e., the T-matrix

and the time-evolution kernel, respectively, are different ob-

jects whose relation needs to be clarified. In particular, the

divergences occurring in the TM method are intrinsic to the

method and not to the problem. We show that these go back

to a lack of cancellation of divergent, reducible contributions

to the transport kernels and that the regularizations proposed

in the literature cannot reproduce the exact fourth-order ker-

nel. We quantitatively demonstrate the resulting deviations

from the correct GME �BR or RT� result for the example of

a single impurity Anderson model in magnetic field and ana-

lytically show how the divergent TM expressions are auto-

matically regularized in the GME approaches. The GME ap-

proaches consistently account for all contributions to the

perturbation expansion of the transport kernels in a given

order. The importance of this was recently highlighted for the

well-studied nonequilibrium Anderson model, which was

found to exhibit a previously unnoticed resonance due to

coherent tunneling of electron pairs.31

�ii� The importance of nondiagonal elements in lowest

order calculations involving degenerate states has long been

recognized �secular contributions�, and continues to attract

attention in the context of transport. Only recently, the im-

portance of nonsecular terms �coherences between nonde-

generate states� was found to be crucial30 for fourth-order

tunnel effects. We generalize the discussion in Ref. 30 and

show how these nonsecular corrections can efficiently be in-

cluded into effective fourth-order transport kernels through

certain reducible diagrams.

�iii� Explicit expressions for the fourth-order transport

kernels for a very general class of quantum dots were derived

in Ref. 30. However, the numerical cost of evaluating these

expressions limits their applicability to systems where a rela-

tively small number of many-body excitations ��100� has to

be accounted for. Here we show how contributions to the

effective kernels can be grouped, making generally valid

cancellations explicit and resulting in fewer and simpler

terms in the perturbation expansion. From direct comparison

between numerical implementations of the expressions in

Ref. 30 and of our new “grouped” expressions, we find the

latter to be between 10 and 20 times faster, without introduc-

FIG. 1. �Color online� �a� Typical transport measurement circuit

setup. The source-drain bias voltage Vb drives a current I through

the quantum dot. Applying a voltage Vg to the gate electrode �in this

case a backgate beneath an insulating substrate� shifts the energy

required to add an additional electron to the dot by −e�Vg, where

−e is the electron charge and � the gate coupling. �b� The measured

differential conductance is usually presented in the form of a stabil-

ity diagram, i.e., in a gate voltage–bias voltage plane. Here we show

the characteristics for a single interacting, spin-split level, i.e., an

Anderson model in magnetic field, which we return to in Secs. V

and VI �see Fig. 8 for details�.
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ing any additional approximation. This allows the treatment

of more complicated and realistic quantum dot models. The

direct gain due to the reduction in the number of expressions

amounts to a decrease in the computation time by a factor of

4. However, the grouping structure can be exploited further

to make the numerical implementation more efficient, lead-

ing to the additional speedup. Moreover, the grouping gives a

basis upon which an explicit connection to TM expressions

can be revealed.

As will become clear in the course of this paper, our

newly found grouping intimately connects and enlightens the

above three issues, which warrants our systematic and ex-

tended discussion. The key ideas presented can be applied to

analyze higher order contributions as well as to similar per-

turbation and renormalization-group calculations for other

classes of problems.

The structure of the paper is as follows. In Sec. II we

discuss the model Hamiltonian of the setup Fig. 1�a� and

some pertinent notation. We then introduce the RDM de-

scribing the quantum dot as part of the whole system and the

generalized master �or kinetic� equation which describes its

time evolution. We summarize its general properties and the

common ground of the discussed approaches. We then turn

to the derivation of the generalized master equation using the

BR and RT techniques. The crucial role played by time or-

dering, irreducibility of contributions and analytic properties

�lack of spurious divergences� is emphasized. The deriva-

tions are given as compactly as possible because there exists

a broad formal study on different master-equation ap-

proaches by Timm,57 who also showed their equivalence. In

contrast to his work, our comparison continues in Sec. III on

a more explicit level with a mapping between terms arising

from the BR and RT diagrams. In Sec. IV we demonstrate

how the nonsecular contributions of coherences lead to im-

portant corrections in the fourth-order transport rates. Based

on this, Sec. V introduces a grouping of contributions to the

transport kernels, yielding significant simplifications due to

partial cancellations, which is followed by an analysis of

how the groups of diagrams contribute to fourth-order physi-

cal transport processes �cotunneling, pair tunneling, and level

renormalization and broadening�. In Sec. VI the derivation of

the TM is reformulated. The long-standing problem of a pre-

cise comparison with the RT technique in the context of

transport theory and the origin of divergences in the TM

approach is solved for the general case. The theoretical dis-

cussion in the last two Secs. V and VI is illustrated by the

tangible application to a single impurity Anderson model in

magnetic field.

II. MODEL AND GENERALIZED MASTER EQUATION

The standard model for a quantum dot system coupled to

contacts reads

Htot = H + HT + HR. �1�

The Hamiltonian

HR = �
l=s,d

�
�

�
q

��l�q − �l�cl�q
† cl�q �2�

models the reservoirs, i.e., the source and the drain contact.

The operator cl�q
† �cl�q� creates �annihilates� an electron in a

state q with energy �l�q in the source �l=s� or drain �l=d�
contact, where � denotes the spin projection. The bias volt-

age shifts the electrochemical potentials of the source and

drain leads such that �s−�d=eVb, where −e is the electron

charge. The coupling between the quantum dot and the leads

is described by the tunnel Hamiltonian

HT = �
l

HTl � �
l

�
�qm

�tlmqd�m
† cl�q + tlmq

� cl�q
† d�m� , �3�

where d�m
† �d�m� creates �annihilates� an electron in the

single-particle state m on the dot. The single-particle ampli-

tude tlmq for tunneling from an orbital state q in lead l to an

orbital state m on the dot is assumed to be independent of

spin. Finally, the dot is described by the Hamiltonian

H = �
a

Ea�a�	a� , �4�

where �a� is a many-body eigenstate of the dot with energy

Ea. The precise dependence of these energies on the applied

voltages arising from capacitive effects �see, e.g., Refs. 35

and 73� is irrelevant for the following discussion. Typically,

the gate voltage dependence is linear, Ea�−eVgNa, where Na

is the number of electrons for state a.

The diagonalized many-body Hamiltonian �4� together

with the tunnel matrix elements �TMEs� Tl�q
� �a ,a�� between

all the many-body eigenstates a ,a�,

Tl�q
+ �a,a�� ª �

m

tlmq	a�d�m
† �a�� , �5a�

Tl�q
− �a,a�� ª �Tl�q

+ �a�,a���, �5b�

form the crucial input to the GME transport theory, which

thereby incorporates local interaction effects nonperturba-

tively. Here Tl�q
� �a ,a�� is only nonzero if the state a differs

from a� in its electron number by Na−Na�
= �1. Typically,

the TMEs can be assumed independent of q but this is not a

prerequisite for the results of this work.

We focus on the regime of weak tunnel coupling and thus

split Htot in a free part H0=H+HR and a perturbation HT.

The condition for weak coupling is that the broadening �	l

induced by tunneling processes from and to lead l is small

compared to the thermal energy, i.e., �	l
kBT, where � and

kB are, respectively, the Planck and Boltzmann constants.

The broadening is defined by

	l =
2�

�
�
�q

�tlmq�2���l�q − 
� , �6�

where for the contexts in which we need it here �i.e., as a

measure of order of magnitude�, both the orbital �m� depen-

dence and the frequency �
� dependence are neglected. No-

tice that the analytical expressions we derive in this work are

a priori not subject to these restrictions. For simplicity, we

will further denote contributions on the order of 	l in general
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by 	. In this paper we will go beyond lowest order in 	,

allowing the regime of intermediate coupling to be ad-

dressed.

Throughout the paper, we will make use of the Liouville

�superoperator� notation, in addition to standard Hamiltonian

operator expressions. The former is merely an efficient book-

keeping tool on a general level, whereas the latter may be

more useful when evaluating matrix elements. For example,

for the dot Hamiltonian the abbreviation

LB ª

1

�
�H,B� �7�

defines the action of the Liouville superoperator in the

Schrödinger picture on an arbitrary operator B. It generates

the time evolution through eiLtB=e�i/��HtBe−�i/��Ht=B�t�
�Baker-Campbell-Hausdorff formula�. Analogous expres-

sions hold for the other Hamiltonians and, in particular, we

will need

LT
I �t�BI�t�� =

1

�
�HT

I �t�,BI�t��� , �8�

where BI�t��=e�i/���H+HR�t�Be−�i/���H+HR�t�=ei�L+LR�t�B is an

operator in the interaction picture. Notice that the time evo-

lution of the superoperator in the interaction picture is thus

LT
I �t� = ei�L+LR�tLTe−i�L+LR�t. �9�

A. Generalized master equation and steady state

The object of interest here is the RDM �Ref. 74�

��t� = TrR
�tot�t�� . �10�

It describes the state of the quantum dot incorporating the

presence of the leads, which are traced out of the total den-

sity matrix �tot, as prescribed by TrR. Once ��t� is known, the

expectation value of any observable can be calculated, as

discussed below. When the interaction HT is switched on at

time t= t0, the total density matrix �tot is the direct product of

the �arbitrary� initial state ��t0� of the quantum dot, and the

equilibrium state �R of the leads

�R =
e−HR/�kBT�

ZR

�11�

with ZR=TrR e−HR/�kBT�. After the interaction HT is switched

on, i.e., for times t� t0, correlations, which are on the order

of the tunnel coupling,74 build up between leads and quan-

tum dot, causing �tot to deviate from the factorized form

�tot�t� = e−iLtot�t−t0��tot�t0�

=��t��R�t� + ��t − t0�O�LT� . �12�

We emphasize that it is crucial to include in a kinetic equa-

tion for ��t�, the correlations O�LT��O�HT� between leads

and quantum dot consistently beyond linear order in HT, if

one is interested in going beyond lowest order. As we will

see in Secs. II B and II C, the RT approach incorporates them

automatically by directly integrating out the leads for times

t� t0 while for the BR one explicitly solves for the deviation

from the factorized state. Both the BR and the RT techniques

lead to the generalized quantum master equation �or kinetic
equation�, describing the time evolution of the RDM

�̇�t� = − iL��t� + 

t0

t

d�K�t − ������ . �13�

Here, the first term accounts for the time evolution due to the

local dynamics of the quantum dot. In the second time non-

local term, the time-evolution kernel K�t−�� is a superopera-

tor acting on the density operator. Convoluted in time with

����, it gives that part of the time evolution which is gener-

ated by the tunneling. We note that this form of the GME is

dictated by the linearity of the Liouville equation and the

partial trace operation.

The kernel to fourth order formally reads

K�t − ������ = − TrR
LTe−i�L+LR��t−��LT�����R�

+ 

t��2��1��

d�2d�1
TrR�LTe−i�L+LR��t−�2�LTe−i�L+LR���2−�1�LTe−i�L+LR���1−��LT�����R�

− TrR�LTe−i�L+LR��t−�2�LTe−i�L+LR��2�R TrR�ei�L+LR��1LTe−i�L+LR���1−��LT�����R��� . �14�

Below we will show how BR and RT �as well as the

Nakajima-Zwanzig projection operator approach, see

Appendix A�, when consistently applied, lead to this

result. The central topic of this paper is the explicit

evaluation of Eq. �14� and the significant simpli-

fications which can be achieved in the steady state limit

limt→� ��t�=�. In this limit, Eq. �13� becomes

lim
t→�

�̇�t� = 0 = − iL� + K� , �15�

where K=K�z= i0� and i0 denotes an imaginary infinitesimal,
and

K�z� = 

0

�

d�eiz�K��� �16�
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is the Laplace transform of the time-evolution kernel. Taking

matrix elements with respect to the many-body eigenstates of

the dot Hamiltonian, H, we obtain from Eq. �15� a set of

linear coupled equations for all states a ,a� of the RDM,

0 = − i�
aa�

�ab�a�b�
�Ea − Ea�

��aa�
+ �

aa�

Kbb�

aa��aa�
. �17�

Here, the matrix elements of K �or any other superoperator�
are defined by

Kbb�

aa�
ª 	b��K�a�	a����b�� , �18�

where we use square brackets to make clear that the kernel

superoperator must first act on �a�	a��, and then the matrix

elements of the resulting operator are taken. Each diagonal

element of the RDM equals the probability of finding the

system in a certain state. Thus, the normalization condition

�
a

�aa = 1 �19�

must be fulfilled. The restriction �Eq. �19�� allows the system

of linear equations obtained from Eq. �17� to be solved since

without it they are underdetermined due to the sum rule

�
b

Kbb
aa� = 0 ∀ a,a�. �20�

Physically, this guarantees that gain and loss of probability

are balanced in the stationary state.

The expectation value of any nonlocal observable can be

expressed in a form similar to Eq. �13�. In particular, we can

write the particle current flowing out of lead l �i.e., the num-

ber of electrons leaving lead l per unit time� as

Il�t� = 	Il�t�� = Tr

t0

t

d�KIl
�t − ������ , �21�

where KIl
�t−�� is the kernel associated with the current op-

erator

Il = −
i

�
�HTl,Nl� = −

i

�
�
�qm

tlmqd�m
† cl�q + H.c. �22�

with Nl=��qcl�q
† cl�q being the number operator in lead l.

Taking the steady state limit of Eq. �21�, the stationary

current is given by the zero-frequency component KIl

ªKIl
�z= i0� of the Laplace transform of the current kernel,

traced over in product with the stationary density matrix �,

Il = Tr
KIl
�� = �

b

�KIl
�bb

aa��aa�
. �23�

The current kernel can be calculated by simple modification

of the time-evolution kernel as discussed below in Secs. II B

and II C explicitly. We will now address the derivation of Eq.

�13� and of its kernel �Eq. �14�� up to fourth order in the

tunnel coupling. We focus here on two approaches, an itera-

tive procedure in the time domain,65–67 referred to as BR

approach, and the RT.22,63,64 The projection operator tech-

nique of Nakajima58 and Zwanzig,59 which has been ex-

plained and used in many works,60–62,75 is closely related and

equivalent to the BR approach and is discussed for complete-

ness in Appendix A.

The derivation of the kinetic equation requires no other

ingredient than the Liouville equation for the total density

matrix �tot,
74

�̇tot
I �t� = − iLT

I �t��tot
I �t� . �24�

For the purposes of this paper, it is most convenient to work

in the time domain and use the interaction picture. In addi-

tion, we make use of the property of the particular bilinear

coupling of Eq. �3� considered here that the lead average of

an odd number of interactions vanishes due to the odd num-

ber of lead field operators in HT.

B. Bloch-Redfield approach

The Bloch-Redfield approach65–67 is usually favored to

derive the second-order quantum master equation.74 Basi-

cally, one integrates Eq. �24� and reinserts it back into its

differential form to get

�̇tot
I �t� = − iLT

I �t��tot
I �t0� − 


t0

t

d�LT
I �t�LT

I ����tot
I ��� . �25�

We now extend this to fourth order76 by repeating the itera-

tion steps: we transform Eq. �25� to an integral equation,

�tot
I �t� = �tot

I �t0� − i

t0

t

d�LT
I ����tot

I �t0�

− 

t��1���t0

d�1d�LT
I ��1�LT

I ����tot
I ��� , �26�

which is once more reinserted into Eq. �24�. After integration

one arrives at

�tot
I �t� = �tot

I �t0� − i

t0

t

d�LT
I ����tot

I �t0�

− 

t��1���t0

d�1d�LT
I ��1�LT

I ����tot
I �t0�

+ i

t��2��1���t0

d�2d�1d�LT
I ��2�LT

I ��1�LT
I ����tot

I ��� .

�27�

We reinsert Eq. �27� back into the Liouville Eq. �24� and

perform the trace over the leads in order to obtain the RDM.

Thereby, terms involving in total an odd number of lead

operators vanish. Due to the relations �tot
I �t0�=�I�t0��R and

with Eq. �12� we obtain
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�̇I�t� = − 

t0

t

d�2 TrR�LT
I �t�LT

I ��2��I�t0��R�

+ 

t��2��1���t0

d�2d�1d�

� TrR�LT
I �t�LT

I ��2�LT
I ��1�LT

I ����I����R� + O��LT
I �6� .

�28�

The second-order contribution in Eq. �28� contains �I�t0� in-

stead of �I��� and lacks the convoluted form which the

fourth-order term has: thus in the stationary limit the initial

state �I�t0� does not seem to drop out. If one naively were to

neglect this difference and set �I�t0���I��� the fourth-order

kernel would contain spurious divergences �see Sec. VI�. In-

stead, one has to account for the correlations between dot

and reservoirs at times t� t0 up to order �LT
I �2 as expressed

by Eq. �26�. Taking the trace over the leads this equation

gives

�I��2� = �I�t0� − 

�2��1���t0

d�1d� TrR�LT
I ��1�LT

I ����I����R�

+ O��LT
I �4� . �29�

This shows also that Eq. �28� through �I�t0� still contains

higher order terms. Consistently neglecting these in Eq. �28�,
we can eliminate the dependence on the initial condition

from Eq. �28� and thus arrive at the GME in the interaction

picture

�̇I�t� = 

t0

t

d�KI�t − ���I��� �30�

with the time-evolution kernel defined by

KI�t − ���I��� = − TrR�LT
I �t�LT

I ����R�I���� + 

t��2��1��

d�2d�1�TrR
LT
I �t�LT

I ��2�LT
I ��1�LT

I ����R�I����

− TrR
LT
I �t�LT

I ��2��R TrR�LT
I ��1�LT

I ����R�I������ . �31�

Transforming the RDM to the Schrödinger picture by

�̇I�t� = ei�L+LR�t��̇�t� + iL��t�� �32�

and with the Liouville operators according to Eq. �9�, we

obtain the generalized master equation, Eq. �13�, and arrive

at expression �14� for the kernel.

The current, Eq. �21�, is given by

Il�t� = Trtot
Il
I�t��tot

I �t�� �33a�

=Tr

t0

t

dt�KIl

I �t − t���I�t�� , �33b�

where the current kernel in the interaction picture is given by

Eq. �31� with LT
I �t� replaced by Il�t�. In deriving this, as for

the density matrix, one must take care to keep the time-

ordered structure: since the current operator Il�t� is, as HTl,

linear in the lead operators �cf. Eq. �22��, we obtain Eq.

�33b�, correct up to fourth order, by inserting the third-order

iteration for �tot �Eq. �27�� into Eq. �33a�. Under the trace,

the first and third contributions are zero since they contain an

odd number of interactions. Next, as before, in the second

contribution of Eq. �27�, ��t0� has to be eliminated using Eq.

�29�, thereby generating a fourth-order correction term. Fi-

nally, in the fourth term one must consistently keep �tot���
������R, i.e., only here one can neglect the deviation from

the factorized form.

C. Real-time diagrammatic technique

The real-time approach has been discussed on a general

level in many works.22,63,64 Therefore the aim of this section

is to recall how one efficiently arrives at the kinetic equation

and its kernel by exploiting Wick’s theorem from the outset.

We start from the Liouville equation, Eq. �24�, for the full

system in the interaction picture and formally integrate it,

�tot
I �t� = Te−i�t0

t
d�LT

I ����tot
I �t0� , �34�

where T is the time-ordering superoperator. Using �tot
I �t0�

=�tot�t0�=�R
I �t0��I�t0�, and defining the superoperator

�I�t,t0� = TrR
Te−i�t0

t
d�LT

I ����R�t0�� , �35�

the time evolution of the reduced density matrix can formally

be written as

�I�t� = �I�t,t0��I�t0� . �36�

Expanding the time-ordered exponential superoperator,

the trace in Eq. �35� can be explicitly evaluated term by term

by Wick’s theorem: the trace over each string of reservoir

field operators becomes a product of pair contractions, indi-

cated in the following by contraction lines. For our purposes

here, one can simply formally consider the Liouvillians to be

contracted �meaning their reservoir part�, see Eq. �38� below.

We can then decompose �I�t , t0� into a reducible and an ir-

reducible part, depending on whether or not the contractions

separate into disconnected blocks. Collecting all irreducible

parts into the kernel KI�t− t�� one obtains in the standard way

a Dyson equation,
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�I�t,t0� = 1 + 

t��2��1�t0

d�2d�1K
I��2 − �1��I��1,t0� . �37�

It relates the full propagator �I�t , t0� to the free propagator,

which equals unity in the interaction picture, and to the irre-

ducible kernel KI. Applying the Dyson equation to ��t0� and

taking the time derivative, one arrives at the kinetic equation

in the interaction picture, Eq. �30�. Transformed back to the

Schrödinger picture we obtain the kinetic equation, Eq. �13�.
We have now obtained the kernel KI�t−�� formally as the

sum of irreducible contributions to the time-evolution super-

operators of different orders in the tunneling, which are writ-

ten down to fourth order,

K
I�t − �� = − L

T

I �t�L
T

I ���

+ �
t��2��1��

d�2d�1�L
T

I �t�L
T

I ��2�L
T

I ��1�L
T

I ���

+ L
T

I �t�L
T

I ��2�L
T

I ��1�L
T

I ���� , �38�

where L
T

I �t�L
T

I ���ªTrR�L
T

I �t�L
T

I ����R�.
.

The expectation value of the current �or of any operator�
is obtained in a similar fashion. We first introduce a super-

operator LIl

I =
1

2

Il

I , ·�, which is an anticommutator in contrast

to the superoperators governing the time evolution. The cur-

rent is then expressed as

Il
I�t� = Tr
�Il

I �t,t0��I�t0�� , �39�

where we introduced a current propagator

�Il

I �t,t0� = TrR
TLIl

I �t�e−i�t0

t
d�LI����R�t0�� , �40�

which differs from the propagator for the reduced density

operator only by the current vertex LIl

I �t� at the final time.

Collecting all parts of �Il

I which are irreducibly connected to

the latter vertex, one readily verifies that the remaining irre-

ducible parts at earlier times are those contained in the

propagator �I,

�Il

I �t,t0� = 

t��2��1�t0

d�2d�1KIl

I ��2 − �1��I��1,t0� . �41�

The current kernel KIl

I �t−�� is given formally as the sum of

irreducible contributions to the time-evolution superopera-

tors of different orders in the tunneling with the leftmost

interaction vertex replaced by the current superoperator. Ap-

plying this equation to ��t0� and taking the trace over the dot,

one arrives at the expression for the current in terms of the

new kernel and the reduced density matrix in the interaction

picture, Eq. �33b�. Transformed back to the Schrödinger pic-

ture we obtain Eq. �21�.

D. Comparison of the approaches

For the comparison between the BR and RT approaches, it

is most useful to consult Eqs. �31� and �38�. The second-

order terms, contained in both equations in the first line,

obviously match. The equivalence of the fourth-order terms

is more indirect: in the BR approach, the first term of Eq.

�31� is evaluated using Wicks’ theorem by building all pos-

sible contractions, including the reducible ones �contraction

between vertices at times t and �2 as well as �1 and ��. The

latter are then canceled by the second term. Precisely the

same happens in the projection operator approach �cf. Eq.

�A6��. The above conclusions hold in fact for any order of

perturbation theory as shown in Ref. 57. In contrast, the RT

approach avoids the inclusion and subsequent cancellation of

reducible parts which rapidly grow in number with the per-

turbation order.

We emphasize that there is one unique correct fourth-

order �time nonlocal� generalized master equation, in which

the kernel includes all fourth-order contributions, but no
higher order ones and which does not diverge in the station-

ary �zero-frequency� limit. This master equation can be de-

rived using either the BR or RT �or NZ� approaches and

there is no need to distinguish between these in the following

discussion. After this comparison on a formal level, we will

continue in Sec. III with a comparison on the level of the

individual contributions to the time-evolution kernel.

III. DIAGRAMMATIC REPRESENTATION

AND MAPPING BETWEEN BR AND RT

We now address the task of calculating all elements

K
bb�

aa��i0� of the time-evolution kernel in the stationary GME,

Eq. �17�. For our purposes, it will turn out to be advanta-

geous to first work in the time domain, i.e., to calculate

K
bb�

aa��t−��, which we decompose into contributions of suc-

cessive nonvanishing even orders n=2,4 , . . . in the tunnel

coupling,

�K�bb�

aa� = �K�2��bb�

aa� + �K�4��bb�

aa� + ¯ .

The section has a twofold aim. We first introduce the dia-

grammatic representation for the time-evolution kernel and

show how each BR contribution, obtained from Eq. �31�,
translates into a corresponding diagram in the RT approach

based on Eq. �38�. Apart from being of technical interest, this

is of key importance for the discussion in Sec. IV, where the

fourth-order kernel elements incorporating corrections to the

diagonal elements of the density matrix due to the nondiago-

nal elements are introduced. Second, we discuss the time-

dependent part of the kernel contributions in the Schrödinger

picture and its zero-frequency Laplace transform, on which

the simplified calculation of the effective fourth-order kernel

in Sec. V relies.

In the conventional RT approach one starts by considering

super matrix elements �cf. Eq. �18�� of the kernel77 and one

introduces a diagrammatic representation for the order n
=2,4 , . . . parts of the kernel,

�K�n��
bb�

aa��t − �� = .
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The diagram represents operators which act from the left and

right on the dot density operator ����, inducing an irreducible

time evolution of a pair of initial states a ,a� �associated with

����� to corresponding final states b ,b� �belonging to �̇�t��.
Time thus increases from right to left. The diagram can be

considered as a Keldysh contour, i.e., running from a→b,

then continuing backward from b�→a�, as indicated by the

directed line on the upper and lower parts. On the upper

�lower� part of the contour the time ordering agrees with �is
opposite to� the contour direction, indicating that operators

acting from the right on the density operator ���� come in

inverted order concerning time. This distinction is important

for the diagram rules. The shaded area indicates the sum of

all contributions involving the product of n tunnel operators

HT, starting at time � and ending at time t �this thus yields a

product of
n

2
broadening elements, which we indicate with

	n/2�. Starting from the RT expression for the time-evolution

kernel, Eq. �38�, simple rules are derived, given in Appendix

B 2, from which one can directly read off the analytical

expression for the zero-frequency Laplace transform of each

diagram.64

Hence, the diagram contains not only the information

about the contribution to the kernel K in the interaction pic-

ture but also to its Laplace transform K. To make a distinc-

tion, we will use the convention that we mean contribution to

K whenever we explicitly write down time labels in the dia-

gram. Otherwise it stands for the Laplace transformed ex-

pression, i.e., the contribution to K �this is the case every-

where in the following except for Fig. 2�.
In the BR approach one has to expand the superoperator

expression, Eq. �31�, in commutators with dot and electrode

operators. One then applies Wick theorem to integrate out the

electrodes, resulting in cancellations of terms. Finally super-

matrix elements are taken and the remaining expressions cor-

respond term by term to the RT diagrams. To emphasize the

close connection between the two approaches we now illus-

trate this explicitly by calculating second- and fourth-order

contributions to the time-evolution kernel in the BR ap-

proach. To this end, we first split the tunneling Hamiltonian

�3� into two parts,

�−1HT
I ��k� = Ak

+ + Ak
−,

describing tunneling into �p=+� and out of �p=−� the dot,

Ak
+

¬ Dk
+Ck

−
ª ��−1d�m

† ��k���tlmqcl�q��k�� , �42a�

Ak
−

¬ Ck
+Dk

−
ª �tlmq

� cl�q
† ��k����

−1d�m��k�� . �42b�

Here the index k numbers the time argument, with t and �
corresponding to k=3 and k=0, respectively. The summa-

tions over l ,m ,� ,q are implicitly understood. We insert this

into Eq. �31�, denoting �0
I
ª�I���,

K�2��t − ���I��� = − �
p0,p3

��+,−�

TrR�A3
p3,�A0

p0,�0
I �R�� , �43a�

K�4��t − ���I��� = �
p0,p1,p2,p3�
+,−�



t��2��1��

d�2d�1

� �TrR�A3
p3,�A2

p2,�A1
p1,�A0

p0,�0
I �R����

− TrR�A3
p3,�A2

p2,TrR
�A1
p1,�A0

p0,�0
I �R����R��� .

�43b�

We next expand the multiple commutators and collect the

fermionic operators of the leads, using that they anticommute

with the quantum dot operators, Ck
pkDk

p̄k =−Dk
p̄kCk

pk, where p̄k

=−pk. Using the cyclic property of the trace and Wick’s theo-

rem, the average of the lead fermionic operators is expressed

as a sum over products of pair contractions. This results for

Eqs. �43a� and �43b� in the expressions listed on the left

sides of Fig. 3. For the fourth order, the reducible contrac-

tions emerging from the last two terms in Eq. �31� cancel

each other. Using the time ordering of Fig. 2, Fig. 3 further

gives on the right sides the respective RT diagram for each

expression. The Hermitian conjugated terms, which have

been omitted in the figures, correspond to diagrams which

are vertically mirrored, i.e., all vertices on the upper contour

have to be moved to the lower one and vice versa.

The translation from the BR expressions in the interaction

picture into the RT diagrams works as follows. For each

operator Dk
pk standing on the left �right� of �0

I , draw a vertex

on the upper �lower� contour at time �k. For each contraction

	Ci
p̄iC j

p̄j�, requiring pi=−p j in order not to vanish, draw a

contraction line between the vertices representing Di
pi and

D j
pj. Notice that the ordering of the C operators in each con-

traction is consistently incorporated in the diagram: the pair

of C operators in the contraction have the same time ordering

as the corresponding D operators, unless the earlier vertex of

the two lies on the lower contour �this follows from the cy-

clic permutation under the trace�. Similarly, the sign of the

operator expression, �−1�n/2+nc+nl, is automatically contained

in the diagram through the number of contractions n /2 �n
=order of perturbation theory�, the number of crossing con-

traction lines nc, and the number of vertices on the lower part

of the contour nl.

The diagrams listed in Fig. 3 represent expressions which

are summed over the indices pk=�. Terms with specific val-

ues of the p’s are represented by diagrams where the con-

traction lines are directed by an arrow, pointing toward the

vertex corresponding to D+. Figure 4 shows an example for

the third fourth-order diagram in Fig. 3. From the diagrams it

is explicitly clear that all contributions which where not can-

celed are irreducible: between the first and the last vertices at

times t, respectively, �, there is no time point at which the

diagram could be separated into two parts without cutting a

contraction line.

(

K(4)
)aa

′

bb′
(t − τ) =

FIG. 2. Time ordering in a diagram associated with a fourth-

order process. Every term arising from the BR approach, Eq. �31�,
can uniquely be translated into a specific diagram. This gives a

one-to-one mapping between the BR and RT approaches. While the

time order is crucial for this mapping, the resulting diagram can

also directly be used to represent the Laplace transformed expres-

sion �see Fig. 3�.
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To obtain the stationary kernel Eq. �31� required in Eq.

�15� we first need to transform back to the Schrödinger pic-

ture �cf. Eq. �9�� by inserting

Dk
� � d�m

�†� ��k� = e�i/��H�kd�m
�†� e−�i/��H�k, �44a�

Ck
� � cl�q

�†� ��k� = e�i/��HR�kcl�q
�†� e−�i/��HR�k, �44b�

�I��k� = e�i/��H�k���k�e
−�i/��H�k. �44c�

For the further developments in this paper only the time-

dependent part of the resulting expression, and its Laplace

transform, is of importance. We can only factor out this part

after taking supermatrix elements �cf. Eq. �18�� of the kernel

contributions with respect to the energy eigenstates of the

quantum dot and insert complete sets of these states between

all the vertex operators D. The resulting expression is repre-

sented by a diagram labeled with these dot eigenstates on the

contour, as illustrated in Fig. 4. We calculate its Laplace

transform with respect to ��= t−� ��n−1= t , �0=��, collecting

for each time �k all energy contributions into one exponential

with argument −i�k�k /�,

�K�z��bb�

aa� � 

0

�

d��e�i/���0��

t��n−2¯��1�t−��

�d�n−2 ¯ d�1�
k=1

n−1

e−�i/���k�k �45�

Here the additional �0 contains both the Laplace variable z
= i0 and the energy difference Ea�

−Ea of the initial states on

the upper and lower part of the contour. Transforming vari-

ables to the time differences between vertices �̃kª�k−1−�k

decouples the integrals, showing that the energies �k

=�l=0
k �l fully determine the time-evolution factor and its

zero-frequency transform,

�K�z��bb�

aa� � �
k=1

n−1



0

�

d�̃ke
−�i/���k�̃k = �

k=1

n−1
1

�k

, �46�

This is the form of the zero-frequency Laplace transform of

the time-dependent factor only, as obtained from the diagram

rules in Appendix B 2, which is the most convenient starting

point for our analysis. The energy �k is obtained from a

diagram by making a vertical cut through the diagram be-

tween times �k and �k−1, and then adding to/subtracting from

z the energies of all directed lines which hit this cut from the

left/right. This includes the energies associated with contrac-

tion lines as well as the upper and lower parts of the contour.

Figure 4 demonstrates how this simple rule works for a spe-

BR expressions associated diagrammatic representation
(interaction picture) (Laplace transformed)
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FIG. 3. On the left we give the contributions to the time-evolution kernel K�2� and K�4� as they arise from the BR in the interaction

picture. Here, p= � , p̄=−p. The corresponding diagrammatic RT representations, standing directly for the Laplace transformed contribu-

tions to K�2� and K�4�, are shown on the right. All minus signs of the BR contributions are incorporated into the diagrams.

FIG. 4. �Color online� Example of one possible fourth-order

contribution to the kernel element K
bb�

aa�. Here, 
 and 
� are the

energies which are assigned to the fermion lines. Unless the inter-

mediate states of a diagram are labeled �like, for example, in Sec.

IV concerning reducible diagrams�, it is implicitly meant to contain

the sum over any intermediate state. As described in the main text,

the quantities �i can by read off from cuts through the diagram. For

our example: �0=Ea�
−Ea, �1= i0+Ed−Ea+
�, �2= i0+Eb�

−Ea−


+
�, and �2= i0+Eb�
−Ec−
.
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cific fourth-order diagram. A crucial point for the rest of the

paper is that diagrams which differ by breaking time order-

ing between the contours but keeping time ordering within
each contour, only differ by the arguments of the time-

dependent exponentials in Eq. �46�, i.e., in the �k. As Appen-

dix B 2 shows, the products of TMEs and electrode distribu-

tion functions and the overall phase factor are identical. The

simplifications discussed below are thus independent of these

factors and their precise form needs no further discussion.

IV. COHERENCES AND NONSECULAR

CORRECTIONS

For many simple quantum dot models, selection rules de-

riving from symmetries prevent the occupations of the dot

states from coupling to the coherences. Whenever two states

a and a� of the system differ by some quantum number

which is conserved in the total system �i.e., including the

reservoirs�, then their coherence �aa�
does not enter into the

calculation of the occupancies since Kbb
aa�=0 for all states.

The simplest example for such a quantum number is the

electron number which is conserved for a quantum dot

coupled to nonsuperconducting electrodes. The total spin

projection is also conserved for unpolarized or collinearly

polarized electrodes. For noncollinear polarizations, how-

ever, inclusion of the coherences is crucial in order to capture

spin-precession effects.46,78 In a similar way orbital degen-

eracies have been shown to affect the occupations through

the coherences.42,43 So in general, coherences cannot be ne-

glected. Making no specific assumptions about the coher-

ences, the only selection rule we enforce here is the one due

to the conservation of total charge. In the above mentioned

works, the tunneling is treated to lowest order �LT
2� and only

nondiagonal elements between degenerate states are kept.

The latter so-called secular approximation is usually phrased

as neglecting the rapidly oscillating terms corresponding to

coherences between nondegenerate states.74

In fourth order, however, an elimination of coherences

between nondegenerate states in the stationary limit requires

an expansion of the effective kernel for the occupations.

Such an expansion is consistent in the sense that the derived

effective kernel includes all contributions up to fourth order

�while a simple neglect of nonsecular coherences introduces

serious errors of the order LT
4�.30,79

We start by decomposing the density matrix into a secular
�energy diagonal� part �s and a nonsecular �energy nondiago-

nal� part �n. Here �n contains all matrix elements �aa�
be-

tween states with �Ea−Ea�
���n and �s all other elements

�including the diagonal components, a=a�, corresponding to

the populations�. The cutoff �n should be chosen large com-

pared to the tunnel broadening of the states, �n��	, the

precise requirement being that it should be large enough that

the next-to-leading order term in the expansion of Eq. �47�
below is comparable to a sixth-order term and can thus be

neglected. Our aim is to eliminate the nonsecular coherences

�n and include their effect as a correction to the kernel de-

termining the secular part. To this end we write Eq. �15� in

block matrix form,

�0

0
� = �− iLss + Kss

�2� + Kss
�4�

Ksn
�2� + Ksn

�4�

Kns
�2� + Kns

�4� − iLnn + Knn
�2� + Knn

�4����s

�n
� ,

where, see Eq. �17�, the free evolution of the system involv-

ing �L�
bb�

aa���Ea�
−Ea��ab�a�b�

is zero in the ns and sn blocks

by definition. Solving for �n one obtains

�n = − �− iLnn + Knn
�2� + Knn

�4��−1�Kns
�2� + Kns

�4���s, �47�

which obviously contains all orders in 	 due to the inverse.

Since by construction Lnn��	 we can expand Eq. �47� in

�	 /Lnn, finding that the lowest order term gives corrections

to the secular density matrix of order 	2 and is thus all that

should be kept in a consistent fourth-order expansion. Insert-

ing this in the equation for the secular part of the density

matrix we obtain an effective stationary kinetic equation for

the secular density matrix,

0 = �− iLss + Kss
�2� + Keff

�4���s �48�

with the effective fourth-order kernel

Keff
�4� � Kss

�4� + KN
�4�. �49�

Here

KN
�4� = Ksn

�2� i

− Lnn

Kns
�2� �50�

is the correction to the secular density matrix due to coher-

ences between nonsecular states. This makes explicit that

when going beyond lowest order, the secular approximation

is no longer valid and also coherences between nonsecular

states have to be accounted for. This was shown in Ref. 30

for the special case where the secular part is diagonal. Here

we extended the derivation to an arbitrary excitation spec-

trum, where the secular part may be nondiagonal, i.e., the

effective equation is not a master equation for occupancies. It

should be noted that in this case the kernel Kss
�4� must be

calculated including the elements which couple to secular

coherences. For the developments of the present paper it is

useful to introduce a diagrammatic representation of the non-

secular correction KN
�4�. We first note that the inverse of Lnn

is related to a diagram without tunneling lines by the dia-

gram rules, see Appendix B 2, evaluated at zero frequency

�z= i0�,

� i

− Lnn

�
aa�

aa�

=

i

Ea�
− Ea

� .

Note that this “free evolution” term is always finite since the

expansion is only carried out in the nonsecular subspace

where �Ea−Ea�
���	 and i0 can always be dropped. Repre-

senting a general second-order contribution diagrammati-

cally as

�K�2��
bb�

aa� � ,

the correction term due to coherences between nonsecular

states is given by
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�KN
�4��

bb�

aa�
= �

c,d�n

,

where the sum is restricted to states which are pairwise non-

secular, i.e., c and d with �Ed−Ec���	.

Thus, KN
�4� appears as a sum of all reducible fourth-order

diagrams with nonsecular intermediate free propagating

states c ,d. The evaluation can be performed by using the

diagram rules, Appendix B 2, as for an irreducible fourth-

order diagram. The effective fourth-order part of the kernel,

determining the secular part of the stationary density matrix

through Eq. �48�, can thus be calculated in the same way as

K�4�, with only the following modifications of the diagram

rules: �i� diagrams can be irreducible and reducible between
the first and last vertices; �ii� the intermediate states of re-

ducible diagrams are restricted to nonsecular free propagat-

ing intermediate states; and �iii� only secular initial and secu-

lar final states for the diagrams are possible. We finally note

that when calculating the current using the current kernel, the

contributions of the nonsecular coherences can be eliminated

in exactly the same way. The only modification required is to

replace the operator acting at the latest time by the corre-

sponding current operator.

We have thus eliminated the nonsecular coherences from

the transport calculation. This effective diagrammatic theory

for the secular part of the density matrix is the starting point

for the evaluation of diagrams in groups, rather than single

ones, which we turn to now. This will result in simplifica-

tions of the numerical evaluation of the kernels �Sec. V� and

allow the relation to the TM approach to be established

�Sec. VI�.

V. EFFICIENT DIAGRAM EVALUATION

We now focus on the explicit evaluation of the effective

fourth-order transport kernel �Eq. �48�� in the zero-frequency

limit,

Keff
�4� � Kss

�4� + KN
�4�, �51�

according to the modified diagram rules derived above. For

each supermatrix element of this kernel �cf. Eq. �18�� this

involves evaluation of all fourth-order diagrams for all pos-

sible combinations of all intermediate states on both propa-

gators. Already for quantum dot models with a moderate

number of states �10–100 this comes at a high numerical

cost. In this section we demonstrate a way to reduce the

computational cost drastically without introducing any ap-
proximation.

In Fig. 5 we show the 24 diagrams representing the 16

irreducible and 8 reducible diagrams of Kss
�4� and KN

�4�, respec-

tively. These represent all 192 contributions to the effective

kernel, Eq. �51�, since we do not specify the direction of the

two contraction lines �p indices� and only include one dia-

gram from each Hermitian conjugate pair. It is only by com-

bining diagrams from both Kss
�4� and KN

�4�, which is necessary

as explained in Sec. IV, that a structure is revealed upon

which our efficient diagram evaluation is based. The dia-

grams are sorted in Fig. 5 in three steps.

First, there are three diagram classes, G� 
A,B,C�.
These distinguish the three topologically different ways in

which the four vertices can be contracted, considering them

to lie on the contour �i.e., moving vertices between the upper

and lower parts of the contour via the latest time does not

alter the topology�.

FIG. 5. �Color online� The 16 irreducible fourth-order diagrams,

together with the eight reducible correction diagrams, can be sorted

by topology into three diagram classes G=A, B, and C. Within each

class, there are three groups G.�0�, G.�1�, and G.�2�, labeled by the

number of vertices on the upper part of the contour. In G.�1�, the

latest �leftmost� vertex distinguishes between stand-alone diagrams

�s� and triple diagram subgroups �t�.
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Second, these classes divide into groups G.�x�, x

� 
0,1 ,2�, based on the number of vertices x on the upper

part of the contour. �Diagrams with x= 
3,4� need not be

included in Fig. 5 since they are Hermitian conjugates to

diagrams in the x= 
1,0� groups.� The classes are thus con-

structed by forming the one-member group G.�0� where all

vertices lie on one part of contour �here taken to be the lower

part� and then successively shifting the vertices to the oppo-

site part of the contour via the latest time point.

Third, one distinguishes subgroups by the position of

the latest vertex, being either on the upper or lower part of

the contour: the groups G.�1� thus divide into a subgroup

G.�1��s� �single� and G.�1��t� �triple� of one and three

diagrams, respectively, whereas in the groups G.�0� and

G.�2� there exists only the one diagram, respectively,

three-diagram subgroup, such that G.�0��G.�0��s� and

G.�2��G.�2��t�.
A key point is that diagrams within a group G.�x� give

rise to expressions which in the interaction picture only dif-

fer by their time-dependent factor, and hence in Laplace

space only differ by their frequency dependent part. They

transform into one another by breaking time ordering be-

tween the different parts of the contour, i.e., freely shifting

around vertices without breaking time ordering on each part

of the contour. It follows from the diagram rules that they all

come with the same TMEs, electrode distribution functions,

and overall sign, cf. Sec. III. By considering only the time-

dependent part and its Laplace transform, we derive in Sec.

V A new diagram rules for evaluating an entire subgroup at

once, arriving at an expression as simple as that for a single

diagram. This halves the number of diagrams one needs to

evaluate—and actually the number can even be halved once

more. How to achieve this is explained in Sec. V B: one can

exploit that each diagram within a class is related to its hori-

zontal neighbor in Fig. 5 by moving the latest vertex up or

down. Together with a diagram-based �rather than rate-

based� looping this results in a speedup by a factor of 10–20

in actual numerical calculations. Finally, in Sec. V C we ex-

plain in what way the classes contribute to effective rates for

different physical processes and illustrate the importance of

this in the various transport regimes defined by the applied

bias and gate voltage.

A. Evaluating subgroups of diagrams

We start the efficient evaluation of the sum of diagrams of

a subgroup, G.�x��t�, by selecting a representative diagram

and labeling the times �k in all diagrams in the subgroup

based on this diagram. Here we take the topmost diagram in

Fig. 5 in each subgroup G.�x��t�, where all the vertices on the

upper part of the contour are positioned at the latest possible

times �as far as the subgroup allows for this�. This choice is

advantageous for the further developments in Sec. V B. We

read off the energy differences �k from this representative

diagram only, and Laplace transform the time-dependent part

of this individual fourth-order diagram �cf. Eq. �46��,



t��2��1���−�

d�2d�1d��
k=0

2

e�i/����k+1−�k��k+1

= �
k=1

3



0

�

d�̃ke
−�i/���k�̃k � �

k=1

3
1

�k

. �52�

The other diagrams within the subgroup G.�x��t� are related

by breaking the time ordering between vertices on different

parts of the contour but keeping the position of the latest

vertex fixed at time t. For our choice of the representative

diagram, this is equivalent to letting the vertex with time �2

move freely. Summing over the three diagrams then exactly

corresponds to freely integrating over �2, as is shown in Ap-

pendix C. Thus the zero-frequency Laplace transform of the

sum of all diagrams within a subgroup G.�x��t� is given by

G.�x��t� � 

−�

t

d�2

t��1���t0

d�1d��
k=0

2

e�i/����k+1−�k��k+1

=

0

�

d�̃3e−�i/����3−�2��̃3�
k=1

2



0

�

d�̃ke
−�i/���k�̃k

�
1

�3 − �2 + i0
�
k=1

2
1

�k

. �53a�

This result is just as simple as for a single diagram; the only

difference between Eqs. �53a� and �52� is the energy appear-

ing in the leftmost denominator. This is a central result of

the paper: we directly obtain the contribution of a whole

subgroup by modifying the diagram rule for the zero-

frequency propagator. One has to evaluate only the represen-

tative diagram and assign to the latest segment the pro-

pagator ��3−�2+ i0�−1 �instead of the usual �3
−1�. This simpli-

fication only works under two conditions: �i� we are in the

zero-frequency limit z→ i0 and �ii� all secular states are de-

generate in energy: either Ea−Ea�
��	 �nonsecular� or Ea

−Ea�

�	 �secular=degenerate� holds, i.e., Lss can be set to

zero. In Appendix C we show in detail how these conditions

enter, in particular, the proper handling of imaginary conver-

gence factors i0, and we discuss a worked out example for

subgroup C.�x��t�.
A point which still requires separate care is the secular

cases of the reducible diagrams in classes B and C. When

integrating freely over �2 we sum over all diagrams, includ-

ing the reducible ones. As discussed in Sec. IV this should

only be done when the intermediate states on the free propa-

gator part are nonsecular, i.e., when �2� i0 in B.�1/2��t� and

when �1+�3��2+ i0 in C.�1/2��t�. For intermediate dot

states for which this condition is not satisfied we must sum

up only the irreducible contributions. However, similarly to

the nonsecular case, this can be effected by a nontime-

ordered integration over �2. For B.�1��t� and B.�2��t� two

irreducible diagrams remain to be summed for the secular

case �2= i0,
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B.�x��t� � 

t��1���−�

d�1d�

−�

�1

d�2�
k=0

2

e�i/����k+1−�k��k+1

�
1

�3
2�1

. �53b�

The modified diagram rule in this case requires �3
−1 for the

center propagator �instead of the usual �2
−1�. Note that the

energies �k, k=1,2 ,3, are those of the reducible representa-

tive diagram, which is actually excluded from the sum. For

groups C.�1��t� and C.�2��t� only the irreducible representa-

tive diagram remains in the secular case �2=�1+�3− i0, and

the standard rule gives

C.�x��t� �
1

�3�2�1

. �53c�

The results �Eqs. �53a�–�53c�� can alternatively be obtained

by directly summing the Laplace transformed propagators of

the individual diagrams. This is shown in Appendix C using

general relations between the energy denominators of dia-

grams within a subgroup in the zero-frequency limit. This

could be of use in diagrammatic calculations of quantities

other than the density matrix and the current, e.g., current

noise80 and time-dependent observables.81 Finally, we note

that for analytic calculations one can further sum up the four

contributions from each group G.�1� to a single expression as

well, which is, however, of no further advantage for the nu-

merical implementation envisaged here since one exploits

relations �Eqs. �55a� and �55b�� as explained in Sec. V B.

The central result, Eq. �53a�, can be generalized to any

order of perturbation theory n, resulting in a relative compu-

tational gain which grows with n �see Appendix C�. By the

same three-step procedure as outlined for the fourth order,

the diagrams can be combined into subgroups with x vertices

on the upper part of the contour �x=0, . . . ,n /2� and y=n
−x on the lower one. All diagrams in the subgroup are gen-

erated by moving vertices around on the upper and lower

parts of the contour while keeping the contractions and the

vertex at the latest time t=�n−1 fixed. We sum over all dia-

grams in the subgroup by breaking the relative time ordering

of the vertices on the different parts of the contour,



t��n−2¯��y�−�

d�n−2 ¯ d�y

t��y−1¯���−�

�d�y−1 ¯ d��
k=0

n−2

e�i/����k+1−�k��k+1

= �
k=y+1

n−1



0

�

d�̃ke
−�i/����k−�y��̃k�

j=1

y



0

�

d�̃ je
−�i/���j�̃j

� �
k=y+1

n−1
1

�k − �y + i0
�
j=1

y
1

� j

. �54�

The subgroup can thus be summed by using the following

modified diagram rule. Determine the propagators for the

representative diagram as usual. Subtract the energy differ-

ence �y of segment y from all later ones, �k→�k−�y, k�y.

Here �y belongs to the segment separating the part of the

representative diagram with vertices only on the upper and

lower part of the contour, respectively �ignoring the fixed

latest vertex�. The systematic exclusion of reducible dia-

grams with secular intermediate states �cf. discussion of

classes B and C in fourth order above� can be done most

easily in Laplace space by extending the method presented in

Appendix C.

B. Gain-loss relations between diagram groups

and diagram-group based looping

We now shortly address another relation between dia-

grams, which can be exploited to increase the efficiency of

their evaluation by another factor 2. Each diagram in Fig. 5

has a horizontal neighbor, which is identical except for hav-

ing the last vertex on the opposite part of the contour. We

will refer to such a pair of diagrams as gain-loss partners, for

reasons which become clear in the following. Considering a

fixed set of intermediate states and assuming the final states

to be secular �i.e., either the same or energetically degener-

ate�, it is easily verified from the diagram rules �see Appen-

dix B 2� that moving the latest vertex to the opposite part of

the contour gives the same analytic expression but with the

opposite sign. This is illustrated in Fig. 6. This property of

pairs of diagrams implies the sum rule �20� for the kernel64

�which guarantees probability conservation of the density

matrix� but is not equivalent to it. In second order for diag-

onal diagrams as in Fig. 6 the property has a simple intuitive

interpretation: a tunneling event which changes the dot state

from a state a to a state b increases the rate by which the

occupation probability of the final state b changes while it

decreases the rate of change in occupation probability of the

initial state a. The rate for gaining probability in state b is

described by the left diagram in Fig. 6, adding to the kernel

element Kbb
aa. Its partner, the right diagram in Fig. 6, is ob-

tained by moving the latest vertex to the opposite part of the

contour and gives the related rate of probability “loss” for

state a. Notice that it adds to a different kernel element

�namely, Kaa
aa� exactly the negative of the “gain” contribution.

For numerical calculations this implies that if one simply

loops over all possible combinations of initial and final

states, the same quantity is calculated twice as a contribution

to two different kernel elements.

This can be avoided: for problems where only diagonal

kernel elements �Keff
�4��bb

aa need to be determined, one has

merely to calculate G.�0��s� and G.�2��t�. This enables a very

efficient evaluation as follows. For each diagram class we

take the G.�0��s� diagram and specify an initial state a=a�,

FIG. 6. �Color online� Example of the construction of gain and

loss partners in second order. From the diagram rules it follows that

the contribution of both diagrams are identical except for their sign.
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thereby fixing the final state b=b�=a as well �Fig. 7, left

most diagram�. We then determine all allowed intermediate

states c1 ,c2 ,c3 on the lower propagator. For each such pos-

sible sequence of states a ,ci, the TMEs need to be evaluated

only once per class. We furthermore have to calculate only

two energy-dependent functions, one for G.�0��s� and one for

G.�2��t�, and then use

G.�1��s� = − G.�0��s� , �55a�

G.�1��t� = − G.�2��t� , �55b�

see Fig. 7. The energy-dependent contributions times the

TMEs can now simply be added to the respective kernel

super matrix elements �Keff
�4��aa

aa, �Keff
�4��cici

aa , see Fig. 7. Imple-

mentation of this scheme, utilizing the grouping, gain-loss

relations and storage of/looping over nonzero TMEs only

results in the speedup of about a total factor of 10–20 for the

numerical calculations.

C. Contributions of diagram classes to physical processes

We now illustrate the importance of summing all dia-

grams of a given order in perturbation theory and the relative

influence of the groups of diagrams. This is relevant for un-

derstanding the impact of approximations, as well as the re-

lation to the rates calculated in the TM approach in Sec. VI.

For this the simplest model of an interacting quantum dot,

the Anderson impurity model, suffices. This model describes

a single level which can be populated by at most two �inter-

acting� electrons of opposite spin,

H = �
��
↑,↓�

��n� + Un↑n↓,

where n�=d�
†d� is the occupation number and U the strength

of the on-site Coulomb interaction �excess energy required

for double occupation�. The four many-body energy eigen-

states are �0� �empty level�, ��� �singly occupied levels�, and

�2� �doubly occupied level�, with energies E0=0, E�=��, and

E2=����+U. Under the influence of a magnetic field, the

spin degeneracy is lifted by the Zeeman splitting EZ=�↑−�↓.

Figure 8 shows the corresponding stability diagram, i.e.,

conductance dI /dVb plotted as function of Vg and Vb, result-

ing from the full calculation including all second- and fourth-

order contributions to the transport kernels. We focus on gate

voltages around the Coulomb blockade region where the dot

is singly occupied. In the chosen gate range the plot is left-

right symmetric �particle-hole symmetry� and due to the ad-

ditional symmetry with respect to bias inversion �source-

drain symmetry�, only positive bias voltages are shown. The

ground-state to ground-state transitions, determining the

edges of the singly occupied Coulomb blockade region, are

due to the SET processes �↑ �→ �0� and �↑ �→ �2�. SET tran-

sitions involving the spin-excited state �↓ � appear as lines

which are separated from the ground-state transition lines

�0�→ �↑ � and �2�→ �↑ � by the Zeeman energy EZ.

If the kernels were only calculated up to second order,

only the above-mentioned transport resonances would be

seen in the stability diagram. Fourth-order processes give

rise to three additional types of transport resonances, see the

numeration in Fig. 8.

�i� The horizontal step inside the Coulomb blockade re-

gion corresponds to the onset of inelastic cotunneling:8,82

when the bias voltage exceeds the spin splitting, eVb�EZ, a

coherent tunnel process can take place which transfers an

electron from the source to the drain electrode, leaving the

dot in the excited �↓ � state. This process involves only vir-
tual occupation of the energetically forbidden states �2� and

�0� and is therefore only algebraically suppressed by the en-

ergy of these states. However, as it involves two coherent

tunnel processes, it is proportional to the fourth power of the

FIG. 7. �Color online� Example of the gain-loss chain among

class C diagrams in fourth order.

FIG. 8. �Color online� Stability diagram �dI /dVb as a function

of Vg and Vb� for the Anderson impurity model in a magnetic field,

see setup in Fig. 1�a�. The dot single-particle energy for spin pro-

jection �= ↓ /↑ is given by ��=�0−e�Vg�EZ /2. Here we set the

Zeeman splitting to EZ=0.2U, the level offset to �0=0.25U. We

used symmetric tunnel rates associated with the leads, 	s=	d=	

=0.0004kBT /� and set the thermal energy to kBT=0.01U. We as-

sume equal capacitances associated with the source and drain tunnel

junctions and apply the bias symmetrically. The Coulomb blockade

regime, where the level is singly occupied, is the central triangular

region within the shown gate range. The positions of the second-

order transport resonances are marked by dashed gray lines, the

fourth-order transport resonances �emphasized by white dotted

lines� are �i� inelastic cotunneling, �ii� pair tunneling, and �iii� co-

tunneling assisted sequential tunneling �weakly seen continuation of

the Zeeman-lifted �↓ �→ �0 /2� excitation lines inside the Coulomb

blockade region�.
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tunnel Hamiltonian HT. Since the charge on the dot is the
same before and after the cotunneling process, the resonance
position is independent of Vg.

�ii� There are additional steps in the differential conduc-
tance inside the SET regime, which have the same gate de-
pendence as the SET resonances �color change along lines
ending at the upper figure corners�. These pair-tunneling
resonances31 correspond to direct transitions between the

states �0� and �2�, involving coherent tunneling of an electron

pair onto/out off the dot. Note that this becomes energetically

allowed at a lower bias voltage than the sequential addition/

removal of two electrons ��0�→ ���→ �2� / �2�→ ���→ �0��.
�iii� Finally, there are also gate-dependent peaks inside the

Coulomb blockade regime, the so-called cotunneling assisted

sequential tunneling �CAST or CO-SET� resonances.13,83

These correspond to SET transitions, where the initial state is

the excited �↓ � state. In second order only the ground state is

populated inside the Coulomb blockade regime, such that

this transition cannot take place. In fourth order, however,

the excited state can be populated due to a preceding inelas-

tic cotunneling process, and therefore resonance shows up

above the inelastic cotunneling threshold inside the Coulomb

blockade regime.

In addition to these resonance effects, fourth-order terms

both broaden and shift the SET resonances and give rise to a

finite conductance background due to elastic cotunneling

�same as inelastic cotunneling explained above but with ini-

tial and final states identical or of the same energy�.
We now analyze to which extent the diagram groups in

Fig. 5 contribute to specific rates for the physical processes

mentioned above. In Fig. 9 we illustrate for the initial state

�↑ � how the selection rules for charge and spin projections at

each vertex restrict the intermediate and the final states. In

general, the allowed charge number Nb of a final state b for a

given initial state a with charge Na is readily found for each

diagram group G.�x� by assigning specific directions to the

contraction lines and using charge selection rules only. Indi-

cating these charge numbers in the kernel by �Keff
�4��Nb,Na

we

obtain symbolically

�Keff
�4��Na,Na

� A.�0� + B.�0� + C.�0� + A.�2� + B.�2� + C.�2� ,

�56a�

�Keff
�4��Na�1,Na

� A.�1� + B.�1� + C.�1� , �56b�

�Keff
�4��Na�2,Na

� A.�2� + C.�2� . �56c�

From the restricted change in the charge numbers it is clear

that Eq. �56a� describes cotunneling, Eq. �56b� corrections to

SET, and Eq. �56c� pair tunneling. We note a subtlety for Eq.

�56a�: if in addition to the energies, the initial and final states
are also equal �a=b�, the rate must comply with the sum

rule, Eq. �20�,

�Keff
�4��aa

aa = − �
b�a

�Keff
�4��aa

bb. �57�

This means that elastic cotunneling rates cannot be separated

from the loss contributions which enforce the sum rule.

To gain more insight into the physics incorporated in the

different diagram groups, we now selectively leave out con-

tributions and calculate the resulting error in the current. By

pairwise neglecting horizontal neighbors in Fig. 5, i.e., gain-

loss partners �cf., Sec. V B�, the sum rule �Eq. �20�� is con-

served. However, the diagrammatic grouping reveals that

consistency is only guaranteed by neglecting entire classes of

contributions. This is illustrated by considering the contribu-

tions to the pair-tunneling rate, Eq. �56c�. Assume that one

considers neglecting the A.�2��t� contribution in Eq. �56c�.
Then, to preserve the sum rule, we drop in Eq. �56b� the

contribution of the A.�1��t� subgroup. However, this occurs

only in the combination A.�1�=A.�1��t�+A.�1��s� which

contains physically necessary79 partial cancellations between

the two terms: there are pair-tunneling contributions which

should not influence the SET rate, Eq. �56b�. We therefore

drop together with A.�1��t� also the A.�1��s� term, and due to

the sum rule correspondingly in Eq. �56a� the A.�0��s� term.

To keep consistency, we thus exclude all diagrams G.�2��t�,
G.�1��t�, G.�1��s�, and G.�0��s� of a certain class G.

In Fig. 10 we illustrate the impact of the above for the

Anderson model. Going from left to right we plot the abso-

lute error in the differential conductance dI /dVb resulting

from the neglect of either diagram class A, B, or C as a

whole. Here blue �red� color indicates that inclusion of the

specific diagram class reduces �enhances� the differential

conductance. Lines along which the color changes from red

to blue indicate an incorrect position of the resonance. The

occurrence of extended regions with uniform color �constant

differential error� additionally indicates that the current is

wrong at all voltages above this region.

The left panel in Fig. 10 reveals that, for the Anderson

model, class A does not have any influence below the inelas-

tic cotunneling threshold. The reason is that by their structure

the irreducible diagrams of the group A.�2��t� necessarily in-

volve a spin flip as shown in Fig. 9 and therefore cannot

contribute to the elastic cotunneling process �↑ �→ �↑ �. Class

A gives no major correction along the SET resonance lines as

FIG. 9. �Color online� Examples of diagrams with initial states

a=a�= �↑ �. We determine the charge numbers of the allowed inter-

mediate and the final states, using that at a vertex where a contrac-

tion line ends/starts the charge number changes by �1. Similarly,

the spin projection changes by �� /2 at this vertex, where � /2 is

the electrode spin index of the contraction. Using this restriction,

we find that the group A.�2� can only contribute to inelastic cotun-

neling �b=b�= �↓ �� while C.�2� also allows the elastic process

�b=b�= �↑ ��. Groups B.�1� and C.�1� yield broadening and level

renormalization of sequential tunneling processes, like �↑ �→ �0�:
B.�1� accounts for the possibility of a charge fluctuation in the ini-

tial state ��↑ �→ �0�→ �↑ ��, C.�1� for a charge fluctuation in the final

state ��0�→ �� �→ �0��.
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compared to classes B and C below. However, inside the
SET regime the increase in the conductance above the pair-
tunneling resonance shows a large deviation when the class
A contributions to pair tunneling are neglected. Finally, the
error made in the inelastic cotunneling also affects the relax-

ation of the spin-excited state in CAST processes, as evi-

denced by the CAST resonance lines showing up in the error

plot.

The situation is completely different when neglecting

class B diagrams, as shown in the center panel of Fig. 10.

Deep inside the Coulomb diamond, they do not give any

contribution, which is related to their topological structure.79

Instead, class B yields significant contributions to the SET

current level, as exhibited by the uniform positive �red�
background in the SET regime. Moreover, the resonance po-

sitions are affected as well: along each entire resonance line,

pronounced “shadows” occur. The negative �blue� correction

below the resonance and the positive correction �red� above

signal a shift of the onset of the current, i.e., a level

renormalization.23 More precisely, class B diagrams can be

related to level renormalization of the initial state in a SET

process. In SET processes, the dot goes from state a to state

b, e.g., by addition of an electron, as represented by the left

diagram in Fig. 6. Diagrams from group B.�1� have the same

structure, except for an intermediate charge fluctuation

�‘‘bubble’’� of the initial state a, see, e.g., B.�1��t� in Fig. 9

with a=a�= �↑ � and b=b�= �0�. The lowering of the energy

of the initial state shifts the resonance positions of processes

where electron tunnels out �in� to lower �higher� gate volt-

ages, in agreement with the result in the center panel of Fig.

10. See Ref. 79 for a more detailed discussion. The pair

tunneling is not affected since there are no B diagrams with

two lines connecting upper and lower parts of the contour, as

required for two-electron transfer.

In a similar way, class C diagrams account for final-state
level renormalization: the color shadows along the resonance

lines in the right panel of Fig. 10 are practically inverted

with respect to the result for class B in the center panel,

indicating an opposite level shift. Indeed, diagrams from

group C.�1� contribute to tunneling from state a to b with an

intermediate charge fluctuation in the final state b, see, e.g.,

C.�1��s� in Fig. 9 with a=a�= �↑ � and b=b�= �0�. Addition-

ally, class C contributes to inelastic cotunneling and com-

pletely mediates the elastic cotunneling process �↑ �→ �↑ �,
see C.�2��t� in Fig. 9. The error at the onset of pair tunneling,

to which class C contributes, seems less pronounced than for

class A. In fact the contributions are equal31 but this is

masked by the uniform positive correction to SET processes

which is larger for class C.

VI. RELATION TO THE T-MATRIX APPROACH

Since the first studies of higher order transport processes

�see Ref. 51�, master equations have been used with transi-

tion rates calculated from a generalized form of Fermi’s

golden rule37 in many works studying transport beyond lead-

ing order in the tunnel coupling.24,83–87 This scattering or TM

approach seems to be very similar to the GME approaches

discussed so far, and in this section, we clarify the connec-

tion. For this the grouping of the kernel contributions dis-

cussed in the previous sections is of crucial importance. In

particular, it reveals the precise origin of the divergences

occurring in the TM rates and allows us to derive the correct

regularization of these divergences, which differs from the

ad hoc regularization employed throughout the literature.

A. Stationary state equation

The idea of the TM approach is to apply many-body scat-

tering theory in the form of a generalized version of Fermi’s

golden rule to describe stationary quantum transport.37 One

calculates the time evolution of the occupation probabilities

of a state �ã� of the total system from the transition ampli-

tudes

	b̃�ã�t�� = 	b̃�Te−�i/���t0

t
d�HT

I ����ã� , �58�

where T denotes the time-ordering operator. In Eq. �58� it is

assumed that at time t0, when the interaction was switched

on, the total system was in a direct product state �ã�= �a��k� of

lead ��k�� and quantum dot ��a�� states. The leads are as-

sumed to be individually at equilibrium at that time. This

FIG. 10. �Color online� Absolute errors occurring when neglecting contributions of a certain diagram class. Because for classes B and C,

the corrections along the resonance lines �marked by gray dotted lines� exceed the ones in between by orders of magnitude, the color scales

are chosen logarithmic both in the positive and in the negative regimes, i.e., 10log��dI /dVb�− �dI /dVb�approx�. Hereby, white color indicates

that the contribution from the specific diagram class lies below the threshold for the logarithmic red/blue color scale applied for positive/

negative error.
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exactly corresponds to the assumptions of the GME ap-

proach discussed in Sec. II A. As a consequence of the inter-

action, the state �ã� evolves into �ã�t�� for t� t0, which is

no longer of product form and has an overlap with states

�b̃�� �ã�. The corresponding transition rate is calculated from

the amplitudes via

�ã→b̃ =
d

dt
�	b̃�ã�t���2

=Re�� d

dt
	b̃�ã�t���	ã�t��b̃�� . �59�

Usually, in the TM approach only occupation probabilities

are taken into account, corresponding to diagonal elements

of the RDM. In general, this can be insufficient, as coher-

ences between secular states �degenerate on the scale of 	�
play an important role for various models—e.g., in the case

of �pseudo�spin polarization.41,46 Here we compare the effec-

tive rates determining the occupation probabilities in the TM

and GME approach. Averaging the transition rate, Eq. �59�,

with �ã�= �a��k�→ �b̃�= �b��k��, over the initial ��k�� and final

states ��k��� of the electrodes with the initial grand-canonical

probabilities �cf. Eq. �11�� we obtain transition rates

	a→b = �
kk�

��ak�→�bk��	k��R�k� �60�

for the time-evolution equation of the RDM,

�̇bb�t� = �
a�b

�	a→b�t,t0��aa�t0� − 	b→a�t,t0��bb�t0�� ,

�61�

see Ref. 57 for a derivation. The rates describe the probabil-

ity for a transition to the state �b� at time t, given that the

system was prepared in state �a� at time t0.57 Clearly, in the

long-time limit t− t0→� this is not an equation for the sta-

tionary state. Still, the key step in the formulation of the TM

approach is that one replaces �aa�t0� on the right-hand side of

Eq. �61� by the stationary occupancies �aa, and sets �̇bb�t�
=0. Then the resulting equation is solved for the occupan-

cies, with the rates evaluated in the stationary limit t0→−�.

In contrast, in the kinetic equation, Eq. �13�, the density-

matrix elements on the right-hand side of the equation are

not taken at the initial time t0 but at times �� t0 where the

system has already approached the steady state. We now first

show that, as a direct result of the above ad hoc replacement,

the TM rates calculated to beyond second order in the tun-

neling HT are divergent in the zero-frequency limit, i.e.,

z→0.

B. Divergence of the stationary TM kernel

and its proper regularization

There are two ways to calculate the rates, starting from

the expansion of the time-ordered exponential in Eq. �58�,

	b̃�ã�t�� = 	b̃�1 −
i

�



t0

t

d�HT
I ���

+ � i

�
�2


t0

t

d�HT
I ���


t0

�

d�1HT
I ��1� − ¯ �ã� .

�62�

To make contact with the literature, we first follow the stan-

dard route by first performing the time integrations, and ob-

tain from Eq. �62� in the stationary limit t0→−�,

�	b̃�ã�t��� = lim
�→0
� e�t

Eb̃ − Eã + i�
	b̃�T�ã�� ,

such that �ã→b̃ becomes independent of t as expected for the

stationary state. This gives the well-known generalization of

the golden-rule rate37

�ã→b̃ = 2���Eb̃ − Eã��	b̃�T�ã��2, �63�

where the transition amplitude involves the T-matrix T, in-

stead of the interaction HT. The T-matrix is defined by a

Dyson-type equation

T = HT + HT

1

Eã − H0 + i�
T ,

which can be truncated at the desired order. For comparison

with the GME approaches, it is more convenient to alterna-

tively calculate �ã→b̃ to fourth order, postponing the time

integrations. Setting t3= t in Eq. �58�

�ã→b̃ = 	b̃�
1

i�
HT

I �t��1 + �
j=1

3 � 1

i�
�4−j

�
k=j

3



t0

tk

dtk−1HT
I �tk−1���ã�

� 	b̃�1 + �
j=1

3 � 1

i�
�4−j

�
k=j

3



t0

tk

dtk−1HT
I �tk−1��ã�†.

Since lead and quantum dot states at the initial time are not

correlated we can now first trace out the leads. One can

express the TM transition rates between states of the dot a ,b
as the elements

	a→b�t,t0� = 	b�KTM
I �t − t0��a�	a��b� �64�

of the superoperator

KTM
I �t − �� = − TrR LT

I �t�LT
I ����R

+ TrR

t��2��1��

d�2d�1LT
I �t�

�LT
I ��2�LT

I ��1�LT
I ����R. �65�

Explicitly, this follows by applying Eq. �C8� backward. Al-

ternatively, this equation results straightforwardly when for-

mulating scattering theory88 in a Liouville or “tetradic”

formalism.89

We can now make the connection to the kernel appearing

in the GME, which we discussed in Sec. II B., and compare

DENSITY-OPERATOR APPROACHES TO TRANSPORT… PHYSICAL REVIEW B 82, 235307 �2010�

235307-17



the effective rate matrices for the occupancies. Comparing

with the BR superoperator in Eq. �31�, one finds that its

second-order part matches the one of Eq. �65� exactly. Going

to the Schrödinger picture and taking the Laplace transform

�Eq. �16��, and considering supermatrix elements between

diagonal states we find

�KTM
�2� �z��bb

aa = �Kss
�2��z��bb

aa. �66�

Thus, to the lowest order of perturbation theory, the TM

approach produces exactly the stationary GME equation with

a kernel that is well behaved in the stationary limit z→ i0.

However, the fourth-order part in Eq. �65� is lacking the

second term in Eq. �31� which subtracts all the reducible

parts among the fourth-order contributions. The physical ori-

gin of the appearance of the reducible correction term was

traced clearly in the BR derivation of the GME kernel in Sec.

II B �and the NZ approach in Appendix A�. There the sub-

traction of reducible contributions, which is missing in Eq.

�64�, emerged by consistently eliminating ��t0� in the

second-order term in favor of ����. �We note that in the RT

approach this identification is harder to make since one al-

ways deals with correctly regularized expressions from the

start.� This term thus accounts for the fact that at times

t� t0 the total system density matrix does not factorize any-

more, an effect which is however only important when going

beyond the lowest order. Indeed, one directly arrives at the

TM approach by ignoring this fact in the derivation of the

BR approach. Thus, in the TM approach one effectively �but

tacitly� makes the assumption that the dot and reservoir

states are statistically independent after the interaction is

switched on. We now show that as a result of this assumption

the rates in the TM approach diverge in the stationary limit.

Writing out the relation between the fourth-order parts of TM

and BR kernel, it reads in contrast to Eq. �66�

�KTM
�4� �z��bb

aa = �Kss
�4��z� + KN

�4��z� + KS
�4��z��bb

aa. �67�

Here KN
�4��z�+KS

�4��z� arises from the second reducible fourth-

order term in Eq. �31�, which we decompose into two parts.

The first part contains only nondegenerate �nonsecular� inter-

mediate states,

KN
�4��z� = Ksn

�2��z�
i

�− Lnn�
Kns

�2��z� . �68�

This is precisely the correction term to Kss
�4� in the effective

master equation for the secular part of the density matrix

�which here reduces to the diagonal part� arising from the

nondiagonal coherences, cf. Eq. �49�. As explained in Sec.

IV it must be included to obtain a systematic expansion of

the effective transition rates between probabilities in powers

of 	. Both kernels, Kss
�4��z� and KN

�4��z�, are well behaved for

z→ i0 �see Sec. V�. The remaining term contains only inter-

mediate states which are strictly degenerate in energy

�strictly secular�

KS
�4��z� = Kss

�2��z�
i

z
Kss

�2��z� �69�

and as a result diverges as z−1 since Kss
�2��z� is well behaved

for z→ i0, cf. Eq. �66�. Therefore the TM rate KTM
�4� �z� di-

verges as z−1 as well. Rewriting Eq. �67� we can express the

effective GME kernel �Eq. �49�� determining the stationary

occupation probabilities,

Keff
�4��i0� = Kss

�4��i0� + KN
�4��i0� �70a�

= lim
z→i0

�KTM
�4� �z� − KS

�4��z�� . �70b�

This equation summarizes the central relation of GME ap-

proaches to an automatically regularized TM expression. The

effective fourth-order kernel for the probabilities is thus ob-

tained either from Eq. �70a� adding the nonsecular reducible

correction to the GME kernel �both finite� or from Eq. �70b�
subtracting from the TM kernel �Eq. �65�� the secular reduc-

ible correction and canceling the z−1 divergences. We have

thereby precisely identified the correct regularizing term �Eq.

�69�� which should be used if one would like to keep on

using a fourth-order TM, expressed in terms of known

second-order TM rate expressions �cf. Eq. �66�� and the fre-

quency z. We emphasize furthermore that the form �Eq.

�70a�� makes explicit that the probabilities contain correc-

tions from the nonsecular coherences whereas Eq. �70b� and,

in fact, the TM approach itself, make no reference to nondi-

agonal density-matrix elements.

Equation �70b� shows explicitly that the relevant kernel

for transport and scattering problem are related. General re-

lations between irreducible kernels and Liouville TM expres-

sions were given first by Fano.89 However, to our knowledge,

the relation between the TM rates and the nonsecular correc-

tions to the effective fourth-order kernel has not been ad-

dressed before.

C. Regularization error for Anderson model

A key point of the TM approach as formulated in the

literature is that instead of Eq. �70b� one uses an ad hoc
regularization to cure the divergence which was inadvert-

ently introduced by the ad hoc formulation of the stationary

state equation. The resulting TM rates for occupations ob-

tained in the literature show a striking similarity to the GME

expressions for the effective rates for the occupancies, in-
cluding the nonsecular contributions from the coherences.

The reason for the similarity is also made explicit in Eq.

�70b�. However, we now explicitly show that the ad hoc
regularization significantly differs from the correct regulariz-

ing term �Eq. �69�� subtracted in Eq. �70b�. To illustrate its

importance analytically, we consider the simple Anderson

model already studied in Sec. V C. In applications of the TM

approach, typically not all fourth-order contributions are in-

cluded. Very commonly, corrections to SET, i.e., diagram

groups A.�1�, C.�1� and the complete class B, are dropped a
priori. As this breaks the gain-loss chain �see Sec. V C�, the

sum rule is then enforced by hand, which makes the groups

A.�0� and C.�0� redundant as well.

As we do not wish to study here the errors arising from

such additional approximations �see Ref. 32 for such a
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comparison�, we focus on a cotunneling contribution which

would be included in any type of TM based calculation,

namely, the one from diagram group C.�2� . �t� �contributions

from A.�2� . �t� drop out for infinite charging energy� to the

elastic process ���→ �0�→ ���. We compare the energy-

dependent parts of its analytical contribution to the kernel

element K��
�� for the GME, respectively �KTM���

�� for the TM.

In Sec. V, we determined the energy-dependent part of the

contribution of subgroup C.�2��t� to be �Eqs. �53a� and

�53c��,

C.�2��t� � ���1�2��3 − �2 + i0��−1 �2 � �1 + �3 − i0,

��1�2�3�−1 �2 = �1 + �3 − i0.
�

This function clearly distinguishes between the cases of

secular and nonsecular intermediate states, avoiding the in-

clusion of the divergent reducible term. For our example, we

determine �1 ,�2 ,�3 diagrammatically using Fig. 4. For the

kernel element K��
�� in the Anderson model, the states are

a=a�=b=b�=�, c=d=0, where �� 
↑ ,↓�,

�0 = 0,

�1 = i0 + E0 − E� + 
�,

�2 = i0 − 
 + 
�,

�3 = i0 + E� − E0 − 
 .

The corresponding TM expression misses the exclusion of

the reducible diagrams and is always given by

CTM�2��t� � ��1�2��3 − �2 + i0��−1

=
1


 − 
� − i0

1

�
� + E0 − E� + i0�2
,

even when the secular condition �2+ i0=�1+�3 is fulfilled

here. In the final expression for the rate, CTM�x��t� is multi-

plied by two Fermi functions and we integrate over their

arguments, 
 and 
�, respectively. Performing the 
� inte-

gral first, one is left with a divergent 
 integral due to the

modulus-square factor in CTM�2��t�. The standard way to

regularize the TM rates mentioned above now proceeds as

follows.84,85 For any function F�
� which is well behaved at


=0 one expands in the infinitesimal i0


 d

F�
�


2 − �i0�2
=
 d


F�0�


2 − �i0�2
+
 d


F�
� − F�0�


2 − �i0�2

=
�

i0
F�0� + 
�

d

F�
� − F�0�


2 − �i0�2
, �71�

where �� denotes a principal part integration. Exploiting

1=
1

1+e
 +
1

1+e−
 it can be shown that ��
d



2−�i0�2 →0. Divergent

contributions �1 / �i0� are claimed to be due to sequential

tunnel processes which are already included in other rates

and are ignored. As shown above in general, however, the

divergent term is due to neglecting the mixing of the lead

and dot states, which is not an effect of sequential tunneling

�see Eq. �66��. Moreover, the regularization procedure does

in fact not reproduce the regularization which is automati-

cally included in the GME approach.

To illustrate this quantitatively and gain insight into which

voltage regimes this matters, we have plotted in Fig. 11 �top

panel� the differential conductance computed with the TM

approach, using the same model and parameters as in Fig. 8.

To demonstrate that existing discrepancies are not simply

healed by including the typically neglected corrections to

SET, we have employed here the “best-possible” TM kernel,

taking into account all contributions arising from Eq. �65�,
just regularizing the occurring divergences according to Eq.

�71�. For diagram class B, such regularization leads indeed to

a complete omission when �2= i0 �secular intermediate free

propagating states�, which is the case for the Anderson

model in our example. Class A, containing only irreducible

diagrams, requires no regularization and is taken into ac-

count fully. Both the GME kernel as well as this best-

possible TM kernel satisfy the probability-conservation sum

rule. The associated current kernels are constructed as dis-

cussed in Sec. II A.

In the lower panel we show the relative deviation between

the TM and GME results, blue �red� color indicating that the

GME differential conductance falls below �exceeds� the one

obtained from the TM approach. Clearly, the agreement is

good deep inside the Coulomb blockade region. However, all

resonance lines are dressed by a pronounced red �blue�
shadow from above �below�, indicating that the corrections

to sequential tunneling �level renormalization, broadening�
are not correctly taken into account in the TM. For this

simple setup, the maximum of deviation encountered

amounts to 30% overestimation and 5% underestimation of

the correct result. Given the parameters of the model, we

have actually given with Fig. 11 the best result that can be

possibly obtained within the TM approach with Eq. �71�.
This includes the effects of elastic and inelastic cotunneling,

pair-tunneling and single-electron level renormalization, and

broadening effects. As mentioned before, often other simpli-

fications are made, in addition to the above procedure em-

ployed, leading to further deviations. For instance, quite

commonly, only the fourth-order cotunneling rates from the

diagram groups A.�2� and C.�2� are taken into account. The

figure shows that the TM approach basically only works in

the “deep Coulomb blockade regime” where SET and CO-

SET processes are suppressed.

VII. SUMMARY

In summary, we have studied the systematic calculation of

the fourth-order kernel within the generalized master-

equation approach for transport through quantum dots. At

present this is the only approach which can efficiently deal

with strongly interacting systems with complex excitation
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spectra in the nonlinear transport regime while accessing the

regime of moderate tunnel coupling by a perturbative treat-

ment of higher order tunnel processes. The precise under-

standing of the calculation of the kernel determining the

transport rates is therefore of great practical importance. On

the one hand, simplifications which speed up numerical cal-

culations are crucial to allow more complex physics to be

addressed. On the other hand, the comparison of calculations

with kernels evaluated using different methods is an urgent

issue. We summarize our main achievements:

We have first shown the equivalence between the RT and

the BR �and the Nakajima-Zwanzig technique�. This

was done both formally and explicitly, by mapping irreduc-

ible RT diagrams onto operator expressions in the BR. In

particular, we showed that in the BR, the well-behaved ker-

nel from the diagrammatic approach is obtained as a sum of

two parts: one part contains all �irreducible and reducible�
terms of a certain order. The other part exactly cancels all the

reducible terms, which diverge in the stationary �zero-

frequency� limit.

Next we addressed the calculation of the density matrix

using this kernel. The commonly used secular approximation

for the reduced density matrix was previously shown to

break down when going to next-to-leading order in the

tunneling.30 Despite this, an effective kernel determining

the secular part of the reduced density matrix can be

derived: here we showed that the nonsecular corrections

can effectively be accounted for with a secular kernel by

including certain reducible diagrams with nonsecular inter-

mediate states. By adding these to the standard irreducible

diagrams a new structure is revealed. All diagrams can

be sorted into groups of diagrams with the same distribution

of vertices over the Keldysh contour and the same contrac-

tions. We showed that subgroups consisting of three dia-

grams can be summed analytically, thereby avoiding unnec-

essary integral evaluations. We derived new diagram rules

for evaluating an entire subgroup at once, arriving at an ex-

pression as simple as that for a single diagram. The physics

behind diagrams and groups was illuminated by a study of

specific contributions for a single level with finite Coulomb

interaction and Zeeman splitting �single impurity Anderson

model�.
Furthermore, the summation of subgroups allows for a

general comparison between the GME and TM approaches

�generalized golden rule�: we first showed formally that the

TM “rate kernel” equals the correct fourth-order kernel plus

a divergent term. Thereby we identified precisely the correct

term needed to regularize the TM rates. We emphasize that

the GME �BR or RT� kernels are well behaved and finite by

construction, the regularization is incorporated automatically

and not put in “by hand.” We showed both numerically and

analytically that the regularizations existing in the literature

are incorrect and lead to analytical deviations in the indi-

vidual rates and, as a result, to pronounced errors in the

calculated transport current if one is not deep inside the Cou-

lomb blockade regime. We illustrated this numerically for the

example of the Anderson model in magnetic field.

Finally, we note that the key ideas we presented can be

applied to perturbation calculations beyond the first two

leading orders for simple models and other classes of prob-

lems which are formulated in the same way. The latter in-

clude the calculation of noise,80 adiabatic time-dependent

transport,81 and the renormalization-group extension of the

GME approach.70

FIG. 11. �Color online� Top: the stability diagram for a single-

level quantum dot as in Fig. 8 calculated using the TM approach.

Middle: absolute deviation between the nonlinear conductance cal-

culated with the GME and TM approaches, in logarithmic scale,

i.e., 10log��dIGME /dVb�− �dITM /dVb��, with color coding just

as in Fig. 10. Bottom: relative deviation between the nonlinear

conductance calculated with the GME and TM approaches,

��dIGME /dVb�− �dITM /dVb�� / �dIGME /dVb�. Although the upper

panel seems similar to the GME result in Fig. 8, indeed large rela-

tive errors exist in the vicinity of resonances and throughout the

regime where transport is not suppressed by Coulomb blockade, in

particular, when electron pair tunneling in the single-electron tun-

neling regime �Ref. 31� is energetically allowed.
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APPENDIX A: NAKAJIMA-ZWANZIG

PROJECTION TECHNIQUE

The standard Nakajima-Zwanzig projection operator

technique58,59 allows for a compact and concise derivation of

an exact expression for the kernel, see, e.g., Refs. 60 and 61

and the references therein. We briefly review the notation

and the steps involved in the derivation of the time-evolution

kernel in the time domain which is performed concisely

in the interaction picture. In a similar fashion, one can

derive the current kernel. Using projectors P=�R TrR and

Q=1−P we decompose the total density matrix, �tot
I =P�tot

I

+Q�tot
I , and project the interaction-picture Liouville equation

�Eq. �24�� for the full system,

P�̇tot
I = − iPLT

I �t�Q�tot
I , �A1�

Q�̇tot
I = − iQLT

I �t�Q�tot
I − iQLT

I �t�P�tot
I . �A2�

Here, the crucial property PLT
I �t�P=0 was used, which is

due to the fact that the tunnel Hamiltonian �3�, and thus also

LT
I �Eq. �7��, contains exactly one lead operator: the trace

must yield zero. Next, the second equation is formally inte-

grated using Q�tot
I �t0�=0 and treating the term with P�tot

I

as a given inhomogeneous term,

Q�tot�t� = − i

t0

t

d�1Te−i��1

t
d�QLT

I ���QQLT
I ��1�P�tot��1� .

�A3�

Here T is the time-ordering superoperator. Substitution into

Eq. �A1� gives the kinetic equation �Eq. �30�� with the for-

mally exact kernel,

KI�t,�� = − TrR�TLT
I �t�e−iQ��

t
d�1LT

I ��1�QLT
I ����R� , �A4�

which transforms into the well-known result for the time-

evolution kernel in the Schrödinger picture, Eq. �14�. The

time-evolution kernel �Eq. �A4�� contains the nontrivial evo-

lution operator which can be expanded in the perturbation

QLT
I ��1�Q,

e−iQ��
t
d�1LT

I ��1�Q = 1 − i

�

t

d�1QLT
I ��1�Q

− 

t��2��1��

d�2d�1QLT
I ��2�QLT

I ��1�Q

+ ¯ . �A5�

Applying this we obtain the kernel to fourth order, which can

be compared to Eq. �31� to confirm the equivalence to the

BR approach. Inserting Q=1−P everywhere and using that

P gives nonzero only when acting on an even number of LT
I

by Wick’s theorem we obtain

KI�t,�� = − TrR LT
I �t�LT

I ����R

+ TrR

t��2��1��

d�2d�1LT
I �t�LT

I ��2�

��1 − P�LT
I ��1�LT

I ����R. �A6�

The first fourth-order term, involving the unit operator 1 in

the middle, gives rise to all possible contractions from which

the reducible ones are subtracted by the second term with P

in the middle. Alternatively, one may also first integrate Eq.

�A1� for P�tot
I with initial condition P�tot

I �t0�=�tot
I �t0�,

P�tot
I �t� = �tot�t0� − i


t0

t

d�2PLT
I ��2�Q�tot

I ��2� . �A7�

Substitution of Eq. �A3� into the right-hand side of Eq. �A7�
and taking the trace gives a Dyson-type integrodifferential

equation for the reduced density operator �I=TrR P�tot
I .

The equivalent equation for the propagator defined by

�I�t�=�I�t , t0��I�t0� reads

�I�t,t0� = 1 + 

t��2��1�t0

d�2d�1K
I��2,�1��I��1,t0�

�A8�

with the kernel given by Eq. �A4�, revealing total equiva-

lence to Eq. �37� as obtained in the RT approach.

APPENDIX B: TIME AND FREQUENCY SPACE

CALCULATION OF THE KERNELS

In this appendix we present the details of the calculation

of the kernel �Eq. �14�� starting from the interaction-picture

expansion used in the BR approach in Fig. 3. We explicitly

obtain a result which was mentioned in Sec. III and used as

a starting point in Sec. V of the main text: contributions to

the kernel represented by diagrams differing only by relative

time ordering of vertices on different parts of the contour,

deviate only in the time-dependent function or its Laplace

transform, Eq. �46�. In Appendix B 1 we first discuss an

example calculation of second- and fourth-order kernel con-

tributions for the Anderson model, starting from the expres-

sions given in Fig. 3, for readers not familiar with either the

RT or BR technique. In Appendix B 2 we summarize the

general diagram rules, i.e., how to set up the time-evolution

kernel in terms of diagrams and how to directly read off the

final expression for the contribution from each diagram.

1. Examples

We consider the Anderson impurity model with finite

Coulomb interaction introduced in Sec. V C, characterized

by the four many-body states �0� , �↑ � , �↓ � , �2�, correspond-

ing, respectively, to zero, one spin-up, one spin-down, or
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two spin-paired electrons on the dot. We demonstrate

the technique by evaluating only the kernel element �K�22
22

= 	2��K�2�	2���2�, which contains in second order the two loss

rates for processes �2�→ ���. In fourth order it includes be-

sides loss rates also the elastic cotunneling �2�→ �2�.
For the calculations we will need the following, generally

valid transformation for kernel elements from time space to

Laplace space:

�K�z��bb�

aa� = 

0

�

d��eiz��	b�e−�i/��HtK�����e�i/��H�t−����a�

�	a��e−�i/��H�t−����e�i/��Ht�b�� , �B1�

where ��= t−�. As compared to Eq. �16�, additional exponen-

tials arise because of the fact that matrix elements with re-

spect to the states of the RDM—which transforms according

to Eq. �32�—have been taken.

a. Second order

From Fig. 3 we can infer which diagrams contribute by

using the charge-selection rule: at each vertex the charge

changes by one. For the Anderson model, starting from �2�
only the intermediate state ��� is possible, with either spin

�= ↑ ,↓. The zero-frequency contribution reads

�K�2��
22

22
= �

�

.

This is a sum of two complex conjugate expressions, so we

only need to evaluate, e.g., the last complex expression.

From Fig. 3 we obtain the time-dependent interaction picture

expression, which we transform to the Schrödinger picture

and Laplace transform with respect to the time-interval ��

spanned by the diagram and send z→ i0

Here the expressions left and right of the · correspond to

the upper and lower contours, respectively. The exponentials

containing H arise from transforming the operator expres-
sion from the interaction to the Schrödinger picture. Next
we transform the occurring operators D and C to the
Schrödinger picture, according to Eqs. �44a� and �44b�. With
the use of Eqs. �42a� and �42b� as well as Eqs. �5a� and �5b�
we find

= − �−2�
l

�
0

�

d��� d��̃l�̄���

� e�i/���E�−E2+�+i0���f l
−���Tl�̄

+ �2,��Tl�̄
− ��,2�

=−
i

�
�

l

� d�
f l

−����̃l�̄���

� + E� − E2 + i0
�Tl�̄

+ �2,���2,

where �̄=−�. Here f l
+�
�� f��
−�l� / �kBT��= �e�
−�l�/�kBT�

+1�−1 is the Fermi function of lead l with temperature T,
f l

−�
��1− f l
+�
�, and �̃l��
�=�q���l�q−
�, as it occurs in

Eq. �6�, is the �possibly spin-dependent� density of states in
lead l. Notice that for our simple Anderson model we have
no q dependence of the single-particle tunneling amplitudes,
and thus there is no q dependence of the TMEs here. Fur-
thermore, the time t cancels out in the exponentials after
performing the �� integral. This example illustrates the form
of the time-evolution factor of any second-order contribu-
tion,

1

�0

=
1

�1

,

where �0 is the sum of energies occurring in the argument of
the exponential which contains the time ��.

b. Fourth order

For the Anderson model with nonmagnetic electrodes,
selection rules cause the fourth-order nonsecular corrections
to vanish, i.e., Kns=0 in Eq. �50�. Therefore only irreducible
contributions remain. These selection rules can be used fur-
thermore, in addition to the charge selection rule, to deter-
mine the allowed intermediate states on the diagrams below.
For the example kernel element the charge number does not
change, and therefore all contributing diagrams have an even
number of vertices on each contour �i.e., groups G.�0� and
G.�2� in Fig. 5�. Notice further that there are no diagrams
from group A.�2� because these would involve an intermedi-
ate charge state with three electrons on the dot,

We calculate the last shown diagram, starting from the expression given in Fig. 3 and introduce the time distance of vertex i

to the final time �i�ª t−�i, and perform the same steps as in the second-order example,
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= − lim
z→i0+

�
0

�

d��eiz���
t−��

t

d�1�
�1

t

d�2�C0
−C2

+��C1
+C3

−� �2�e−�i/��HtD3
+������D2

−e�i/��H�t−����2� · �2�e−�i/��H�t−���D0
+���

����D1
−e�i/��Ht�2�

=�−4�
ll�

�
0

�

d���
0

��

d�1��
0

�
1�

d�2�� d�� d���̃l�̄����̃l��̄����e�i/���−�+E2−E���
1�e�i/���−��+E2−E���

2�e�i/�����−E2+E�+i0���

� f l
+���f

l�

− ����Tl�̄
+ �2,��T

l��̄

− ��,2�T
l��̄

+ �2,��Tl�̄
− ��,2�

=−
i

�
�
ll�

� d�� d���Tl�̄
+ �2,���2�T

l��̄

+ �2,���2
1

− � + �� + i0

f l
+����̃l�̄���

− � + E2 − E� + i0

f
l�

− �����̃l��̄����

�� − E2 + E� + i0
.

In this example all contracted electrode operators have in-

verted time order �corresponding to the earliest vertex being

on the lower contour�: as a result the 
 contraction gets the

f l
+ function in contrast to the contraction in the second-order

example. We note that the structure of the Laplace trans-

formed time-evolution factor appearing in the fourth-order

contributions has the general form,

1

�0

1

�0 + �1

1

�0 + �1 + �2

=
1

�1�2�3

,

where �0/1/2 denote the arguments of the exponentials con-

taining the times �� /�1� /�2�, respectively.

2. Diagram rules for zero-frequency kernel

We now give the rules by which one can directly write

down the diagrammatic representation of the effective time-

evolution kernel and afterwards simply read off from each of

these single �ungrouped� diagrams the resulting analytical

contribution to Keff
�n��z�, Eq. �49�, in the zero-frequency limit

z→ i0. We illustrate how this applies to the examples of the

previous section. Notice that modifications of these “tradi-

tional” diagram rules in order to account for a whole sub-

group of diagrams were presented in Sec. V A.

a. Kernel in diagrammatic representation

The rules for drawing all diagrams representing the effec-

tive kernel of even order n=2,4 , . . . are as follows: �1� draw

all distributions of n vertices over the two contours, vertex k
being at time �k, k=0, . . . ,n−1. Vertices n�1 and 0 are at the

boundaries of the diagram at times �n−1= t and �0=�, respec-

tively. �2� For each distribution, contract all n vertices in n /2

pairs, denoting each contraction by a directed line. Each re-

sulting diagram represents a distinct contribution to the ef-

fective time-evolution kernel. Note that all irreducible and

reducible contractions need to be included, where irreducible

diagrams are those which can nowhere be vertically cut with-

out cutting a contraction line. �3� To each contraction j
�1� j�n /2�, assign an energy 
 j, as well as lead and spin

indices l j ,� j, respectively. �4� On each contour, assign to

each segment between two vertices a many-body state of the

quantum dot.

For the previous examples in second and fourth orders we

thus obtain

⇒ ,

⇒

2nd

4th

b. Translating a diagram

The rules for translating a diagram into an analytical ex-

pression can be divided into rules for determining three fac-

tors.

�1� For each contraction j write a Fermi distribution func-

tion and spin-dependent density of states

f lj

��
 j��̃lj�j
�
 j� , �B2�

where + �−� is chosen if the contraction line agrees �dis-

agrees� with the contour direction. For the vertex at which

the contraction starts/ends write a many-body tunnel matrix

element

Tlj�j

� �b,a� ,

where a and b are the states before and after the vertex,

respectively, following the direction of the contour �not of

time�:
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�2� Determine the time-evolution factor

�
k=0

n−1
1

�k

�B3�

by drawing through each segment of the diagram between

consecutive times �k and �k+1 �0�k�n−2� a vertical cut

�see Figs. 6 and 7 in the main part of the text�. Obtain the

denominator �k by adding/subtracting the energies of the dot

states on the contour and the energies of the contractions

depending on whether they hit the vertical cut from the left

or from the right. Also add to �k the frequency z= i0,

⇒ �1 + i0 = E� + � − E2 + i0,

⇒ �3 + i0 = E2 − � + E� + i0,

�2 + i0 = E2 − � + �� − E2 + i0,

�1 + i0 = E� + �� − E2 + i0.

2nd

4th

�Note that i0 is not a convergence factor put in by hand but

naturally arises from the Laplace transform, reflecting the

correct analytic behavior of the kernel.�
�3� For the diagram as a whole determine the phase

−
i

�
�− 1�nc+nl �B4�

by counting the number of crossing contraction lines nc and

the number of vertices on the lower contour nl,

⇒ −
i

�
�− 1�0+2

= −
i

�
.2nd 4th

Finally one multiplies the three factors, integrates over all

frequencies 
 j and sums over all spin values � j and elec-

trodes l j. Notice that also all possibilities for intermediate

quantum dot many-body states on the contour have to be

summed over. The diagram rules, as formulated above, pro-

vide the key insight needed in the main text: since diagrams

within a group, as defined in Sec. V, are related by moving

their vertices around on each part of the contour, only the

factor arising from the time evolution is different. The order-

ing of the vertices, the direction of the contractions relative

to the contour, as well as the number of crossing lines and

vertices are all preserved under this operation.

The derivation of the rules in the form presented above

can be found in Ref. 64. Because of the importance of the

time-evolution factors we comment on the relation between

�k as defined by

�k = �
l=0

k+1

�l �B5�

and the value obtained by diagram rule 2. This is easily

seen once one notices the diagrammatic meaning of �l �see,

Ref. 64 p. 95�: it equals the sum of energies of all lines

going into the vertex l minus those of the lines going out,

i.e., the dot energies of the in- and out-going lines of the

contour and the energy of the contraction which starts/ends

at vertex l. Summing contributions from all vertices from

earlier times �l��k, the energies of all contractions which

have started and ended thus cancel out, leaving the difference

of energies of contractions running backward and forward

with respect to time. In the sum, the dot energies of subse-

quent vertices on the same part of the contour cancel out,

leaving only the difference between the upper and lower con-

tour dot energies between vertex k and k−1. Summing all �k

from both contours, one gets �k=0
n−1�k=0 This condition en-

sures that finally no exponential containing t is left, reflecting

that the kernel, see Eq. �13�, depends merely on the time

difference ��= t−�. A more explicit version of this proof can

be found in Ref. 79.

APPENDIX C: DIAGRAM GROUPING

In this appendix we prove the statement made in Sec. V:

freely integrating over the intermediate time �2 in the repre-

sentative diagrams is equivalent to summing the three dia-

grams within the corresponding subgroup, provided that the

initial states �earliest times� are degenerate. Additionally, we

show how to easily calculate the partial summation of one or

two irreducible diagrams in a subgroup in the case where

secular diagrams have to be excluded. This exclusion is au-

tomatically obtained in our transport theory and is an impor-

tant result of the paper: it prevents the divergences which

plague the TM approach from appearing. We present the

derivation both in time and frequency representation which

each have their distinct advantages.

As explained in the main text, we want to express the sum

of diagrams in a subgroup in terms of the contribution of a

representative diagram �topmost diagram in each subgroup in

Fig. 5�. The standard diagram rules express this contribution

as the product of propagators over time intervals of length

−�̃k=�k−�k−1, see Eq. �52�,

G.�x��t� � 

0

�

d�̃1d�̃2d�̃3e−�i/����3�̃3+�2�̃2+�1�̃1�

�

0

�

d�̃1d�̃2d�̃3g��3,�2,�1,�0� . �C1�

Here �k is the sum of energies of the backward minus the

forward moving contour parts and contraction lines in the

segment of the diagram between times �k and �k−1, see Fig. 4,

including also the Laplace variable z→ i0. The simplifica-

tions only work for the zero-frequency Laplace transform of

the kernel which is all that is needed for the stationary state.

We now allow the next-to-last vertex �at time �2� in the

representative diagrams to move to earlier times �to the right

in the diagram�, see Fig. 12. Thereby we generate the other

diagrams in the subgroup. In the first step, the vertex at �2 is

permuted with the one at time �1 and thereby the energy

difference �2 of the segment bounded by these vertices is

changed to a different value: �2→�2�. Permuting the vertex

�now at time �1� in the second step with the vertex at �0, the

energy difference �1 changes as well: �1→�1�. From the dia-

gram rules it follows that for each such permutation the fol-

lowing relation holds:
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�n + �n� = �n+1� + �n−1, �C2�

i.e., the average of the old and new value �left� equals the

average of energy differences of the two adjacent segments

�right�. Note that on the left the energy has already been

modified to �n+1� by the preceding permutations �with the

exception of the latest one �3�. This is the key relation allow-

ing the summation of diagrams within each subgroup. We

now apply this to the three diagrams in Fig. 12 and obtain

�2 + �2� = �3 + �1, �C3�

�1 + �1� = �2� + �0. �C4�

Combining these we obtain the relation

�2 + �1� = �3 + �0. �C5�

Here �0=Ea−Ea�
denotes the energy difference of the initial

states, i.e., outside the diagram, and does not include the

Laplace variable z= i0 as the �k ,k=1,2 ,3 do. Using this, the

contributions from the generated diagrams can now be ex-

pressed in the representative function, with the time argu-

ments of the corresponding vertices permuted,

e−�i/����3�̃3+�2��̃2+�1�̃1� = g��3,�1
↑

,�2
↑

,�0� , �C6�

e−�i/����3�̃3+�2��̃2+�1��̃1� = g��3,�0
↑

,�2,�1
↑

� . �C7�

The arrows indicate how, by permuting time arguments, Eq.

�C6� is obtained from Eq. �C1�, and Eq. �C7� from Eq. �C6�.
Although this result may seem obvious, one should note that

the last equation only holds under the condition �0=0. Thus,

the diagram obtained by permuting the latest vertex with one

of the earlier ones can only be expressed in the representative

diagram if the initial states are degenerate. Time-ordered in-

tegration of the sum of all the diagrams in the subgroup is

now seen to be equivalent to decoupled time integrations on

opposite parts of the Keldysh contour of the single represen-

tative diagram, neglecting the remaining diagrams from the

group,

G.�x��t� � 

�3��2��1��0�−�

d�2d�1d�0�g��3,�2,�1,�0�

+ g��3,�1,�2,�0� + g��3,�0,�2,�1��

= 

�3��1��0�−�

d�1d�0

�3��2�−�

d�2g��3,�2,�1,�0�

�C8�

Inserting the form of g from Eq. �C1�, and changing vari-

ables to time intervals on the separate contours, �2=�3−�1,

�1=�1−�0 �forward� and �1�=�3−�2 �backward� the integrals

decouple as usual. We obtain the result in the main part of

the paper,

G.�x��t� �
1

�i0 + �3 − �2��2�1

nonsecular. �C9�

Note that the i0 has to be supplied by hand explicitly since it

formally cancels in the difference �3−�2. Below we show

that this does not alter the value of the integral and that the

sign automatically follows from the correctly regularized

terms which are being summed.

For diagram class A this completes the derivation. How-

ever, diagram classes B and C contain reducible diagrams,

which diverge if one would allow for secular intermediate

states. In this case, one thus has to perform a partial sum of

the irreducible diagrams in the subgroup only. Note that in

our formalism the exclusion of these cases is automatically

enforced, i.e., we do not exclude them by hand based on the

mere inconvenience of divergent terms. Although the explicit

result for classes B and C can be obtained in the same way as

above, we now show that here the frequency space represen-

tation has definite advantages.

We first derive Eq. �C9� again in frequency space by di-

rectly summing the Laplace transforms of the propagators

�left-hand side of Eq. �C1� and Eqs. �C6� and �C7��

G.�x��t� �
1

�3�2�1

+
1

�3�2��1

+
1

�3�2��1�

=
1

�3�2�1

+
1

�3�1��1

=
1

�1��2�1

nonsecular.

�C10�

We first performed the partial sum over the last two terms

using relation �Eq. �C4�� and assuming �0=0. Adding the last

term and using relation �Eq. �C3�� we obtain the full sum.

Expressing �1� in the energy differences of the representative

diagram �3 ,�2 ,�1 using Eq. �C5� we again obtain Eq. �C9�.
However, in addition we have treated the cases of secular

intermediate states as well. For the B.�1� and B.�2� sub-

groups, the representative diagram is itself reducible and the

secular case arises for �2= i0. If it is excluded, we keep only

the partial sum in the second line of Eq. �C10�,

B.�x��t� �
1

�3
2�1

secular. �C11�

Note that here the i0 does not need to be written out explic-

itly. In contrast, for the C.�1� and C.�2� subgroups, the rep-

resentative diagram is the only irreducible one which has to

be kept: inspecting the reducible diagrams we see that the

secular case arises for �2�=�3−�2+�1= i0 and we can elimi-

nate one parameter. Keeping �3 we obtain

FIG. 12. �Color online� From the representative diagram, all

members of the triple group can be constructed, exemplified here by

subgroup C.�2��t�.
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C.�x��t� �
1

�3��3 + �1��1

secular. �C12�

We note that also here i0 needs not be written out explicitly
since the 2i0 in �3+�1 are sufficient to guarantee the correct
analytic behavior as function of the frequencies. We now
shortly comment on this point as well on the i0 explicitly
added in Eq. �C9�.

Above we have calculated the time integrals of the time-
evolution factors in the diagrams only. The resulting expres-

sions, multiplied by the statistical factors �Fermi functions�,
still need to be integrated over the frequencies of the con-

tractions which are included in the energy differences �k.

These integrals are exactly those of the standard perturbation

theory and can be found in, e.g., Refs. 30 and 79. However,

in the above �partial� summations over subgroup diagrams,

we have at several instances used that we can replace i0 by

2i0. This does not alter these integrals. The integrand pos-

sesses a countable number of poles and decays sufficiently

fast for the residue theorem to apply. Closing the integration

contour in the upper half of the complex plane, we enclose

the very same poles whether we take i0 or 2i0. The results of

the frequency integrations are thus unaltered by the �partial�
summation of subgroup diagrams as performed above.

Finally, we note that we have demonstrated all key ideas

required for application to other problems. For example, cal-

culations of other stationary transport quantities �e.g., noise,

adiabatic time-dependent transport� involve the same type of

Keldysh diagrams80,81 and may be simplified exploiting the

above technique. Higher order perturbation calculations may

also come within reach. Importantly, the relative computa-

tional gain allowed by the simplifications reported here in-

creases with the order of perturbation theory. Consider, for

example, sixth order in HT �neglecting the technicalities of

excluding secular cases for simplicity�. With six vertices to

be distributed over the two parts of the contour, taking into

account all possible contractions and directions of fermion

lines, there are 7680 diagrams. The equivalent to Fig. 5 thus

contains 320 irreducible and 160 reducible diagrams. How-

ever, one can identify 15 diagram classes comprising groups

with x� 
0,1 ,2 ,3� vertices on the upper contour, containing

1, 1+5, 5+10, and 10 diagrams, respectively. The x=1

groups split into one stand-alone diagram �the gain-loss part-

ner of the x=0 diagram� plus a subgroup of five diagrams.

The x=2 groups comprise in turn the subgroup of �gain-loss

partners of those� five diagrams plus a subgroup of ten dia-

grams �gain-loss partners of the x=3 diagrams�. Summing

the diagrams in each subgroup and using that only one sub-

group from each pair of gain-loss partners needs to be evalu-

ated �cf. Sec. V B�, our grouping method reduces the number

of expressions to be calculated by a factor of 8.
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