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Under general coordinate conditions, the equation for density perturbation in an expanding 
universe has fictitious solutions. In order to exclude the fictitious solutions automatically, we 
adopt coordinate systems moving with the average distribution of matter; and we obtain some 
coordinate conditions which provide for these systems. These contain not only the so-called 
Lagrangian gauge but also new coordinate conditions. Under these conditions, the equation 
for spatially periodic density perturbation becomes a second-order differential equation with 
respect to time and reduces to Bessel's differential equation when the equation of state is of 
the form p/c=const (p=pressure, c=energy density). 

§ 1. Introduction 

The gravitational instability of a homogeneous isotropic expanding umverse 
was first investigated by Lifshitz!) in the general theory of relativity. He con­

sidered small perturbation of metric tensor hij = Ogij and solved the gravitational 

field equations under the coordinate condition hoi = 0 (i = 0, 1, 2, 3).. But these 

equations had a fictitious solution. So he had to eliminate the fictitious solution 

by means of an infinitesimal transformation of coordinates. Recently, Field and 
Shepley2) emphasized this defect of Lifshitz's formalism. In order to remedy 

this defect, Nariai3
) adopted a Lagrangian gauge for spherically symmetric per­

turbation, that is, the. perturbed radial velocity is chosen as zero; and he showed 
that the differential equation for the density contrast os/ s(O) (s(O) = unperturbed 

energy density, as = perturbation of energy density) is of the second order with 

respect to time and has no fictitious solution both when p = 0 and when p = s/3 
(p = pressure; S = energy density). In this paper, we obtain for spatially periodic 

perturbation, coordinate conditions similar to Nariai's Lagrangian gauge. 
Bonnor4

) obtained the same result as Lifshitz's by making use of non­

relativistic fluid mechanical equations when p = o. Irvine5
) derived general­

relativistic fluid mechanical equations imposing the generalized de Donder co­
ordinate condition. In this paper, we derive similar equations without imposing 
any coordinate conditions. 

In § 2, Friedmann's solution for the homogeneous isotropic model of the 

universe is briefly described. In § 3, we derive fluid mechanical equations. In 

§ 4, the properties of perturbational quantities for the transformation of coordinates 
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are examined, and the coordinate conditions appropriate to describe the density 

perturbation in an expanding universe are found. Under these coordinate con­

ditions, we solve in § 5 the fluid mechanical equations for the density pertur­
bation, supposing an equation of state p/s = const. In § 6, solutions for the 

density contrast under various coordinate conditions are shown in the Table. 
The reason for the appearance of fictitious solutions is discussed, and the rela­

tion of our coordinate conditions to Lifshitz's is examined. In § 7, some con­

cluding remarks are given. 

We treat only the flat space model of the universe for the simplicity of 

analysis. 

Notation 

We use the same notation as that in the book by Landau and Lifshitz.6
) 

The square of the world interval ds is written In the form 

(1·1) 

summed over i, k = 0, 1, 2, 3. 

The gravitational field equation IS written m the form 

R/ = IC (T/ - 0 /T /2) , (1· 2) 

where R/ is the Ricci tensor, 0/ is the unit tensor, IC is Einstein's gravitational 

constant, T/ is the energy-momentum tensor, and T=T/. For the ideal fluid, 

T/ is given by 

T k ( ) k ~k 
i = S + P UiU + Ui P , (1·3) 

where s is the energy density, p is the pressure, and u i is the 4-velocity. 
From the contracted Bianchi identities, we obtain "fluid mechanical equa­

tions" 

(1·4) 

where a semicolon before an index denotes the covariant derivative and U = det 

(Uij) . 

§ 2. Homogeneous isotropic universe 

Here we consider as the unperturbed state a universe uniformly filled with 
matter. As is well known, this universe is classified into two models: closed 
model and open model. In the following, we deal with only the critical model 
with a flat space for the simplicity of analysis. 

As our reference system, we choose a system movmg with matter (i.e. 
comoving reference system), then the interval ds for this model can be written 
in the form 

(2 ·1) 
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The relation between Ij and the proper time r IS 

cdr = a (Ij) dlj . (2·2) 

From the gravitational equations, we obtain the equations for the cosmic 
scale factor a(lj) 

(2·3) 

(2·4) 

where dots represent the derivative. with respect to the time, SCO) is the energy 

density and pCO) is the pressure in the unperturbed state. 

In order to solve Eqs. (3·2) and (2·4), we suppose the equation of state 

3p/s= (l-v)/(l+v). (v = const, O<v< 1) (2·5) 

Here v = 0 corresponds to p = s/3 and v = 1 to P = O. Then we obtain the solu­

tion of Eqs. (2·3) and (2·4), 

il/a= (l+v)/Ij, 

and the relation of 'lj to the proper time r, 

Ij = const r 1
/ C2+

v
). 

Hubble's constant H is w,ritten in the form 

l+v 1 H= (da/dr)/a=------·---. 
2+v r 

§ 3. Fluid mechanical equations and the equation for 
the gravitational potential 

(2·6) 

(2·7) 

(2·8) 

Now we consider a weak gravitational field due to perturbed distribution 
of matter in an expanding universe. We write the metric tensor, the energy 

density, the pressure and the 4-velocity in the form 

g ik = g~~ + hik , 

s=SCO) +os, (3·1) 

where hue, OS, op and ou i are perturbations. The world interval ds IS written 
with the perturbed metric in the form 

ds2 = - g ikdxi dxk 

= a (IjY [(1 + hoO) d'lj2 - hoadljdxa - (Oai3 + ha
(3

) dxad x i3] , 

summed over a, t1 = 1, 2, 3. Here h/ = gkLCO) hUe 

(3·2) 
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In order to examine the behavior of the density perturbation, it is sufficient 

to calculate only the fluid mechanical equations and the Roo component of the 
gravitational field equation instead of all components. Before we derive these 
equations, we define the velocity of fluid va by the equation 

(a=I, 2, 3) 

The va IS related to ua = oua by the expression 

ua= (va/a) [(I-[-hoO) -h/vfJ-- (0/ +h/)vfJ·V f}-1/2. 

To the first order regarding the small quantities h/ and 

following expreSSIOns: 

g= --a8 (I+h), 

uo= (1-hoo/2)/a, 

(It = hoo + hll + h22 + h33
) 

uo= -a(I+hoo/2), 

U a = a (va + ho a) . 

(3·3) 

(3·4) 

we get the 

(3 ·5) 

(3·6) 

Substituting Eqs. (3·5) and (3·6) into the fluid mechanical equation (1· 4) 
and picking out the main terms and the terms of the next order, we obtain the 

equation of continuity and equation of motion, 

(I/a3)a(a3e)/ar;+a[(e+jY)VfJ/aX+ [(e+jJ)/2Ja(h--hoO)/ar;+3p(a/a) =0, 
(3·7) 

(1/ ( 4
) a [a 4 (e + jJ) (Va -I- hoct) J /ar;+ a [(e-+ p) VI (va + hoa)] /axf 

+ ajy/axa + [(e -[- jJ) /2] ahoo/axa = 0 . (3·8) 

From. the Roo component o£ the gravitational field equation, we get the equation 

(1/2) a2 (hoO - h) /ar;2 + a2hor 
/ (or;axf) + (1/2) o2hoo/ (ax1)2 + (a/a) ah/ /axf 

-[- (a/a) a (2hoO -- h/2) /or; + 3hood (a/ a) /elr; = (3/2) (oe/ e(O) (1 + 30p/oe) (a/ ay. 
(3 ·9) 

Making use of r instead of r;, we rewrite Eqs. (3·7) r'J (3·9) in the form 

(1/ as) a (a3e) /ar + Vf [(e + p) vfJ + [(e + jJ) /2J a (h - hoO) /ar -[- jJ (da 3
/ dr) / a3 = 0, 

(1/ ( 4
) a [a 4 (e + p) (va + hoa)] /ar + Vf [(e -[-i) 'v f (va + hoa) J 

+ VajJ -[- [( e -[- p) /2 J V J7 0 
0 = 0 , 

(1/2) a2 (hoO- h) /ar2 + Vf(oh//ar) + V2hoo/2 + (a' / a) Vfhof 

(3 ·10) 

(3 ·11) 

+ (a'/a)a(5hoo/2--h)/or+3hoO(a"/a) = (te/2) (8+3jy-e(O)~3jJ(O), (3·12) 

where Va=(I/a) (o/axa) , a'=da/dr, and we put the velocity of light c=1. 
. Equations (3 ·10) and (3 ·11) are interpreted in terms of the classical fluid 

mechanical concepts. In these equations e + p plays the role of the density of 
inertial mass in the non-relativistic mechanics. In Eq. (3 ·10), the first term 
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represents the rate of increase of energy density, the second term the energy 
flow, the third term the rate of the decrease of the energy density caused by the 

increase of volume due to the gravitational field, and the last term the work 

done by the pressure. Namely, Eq. (3·10) expresses the energy conservation 

law. In Eq. (3~11), (8+p) X (va+hoa), hoo/2 and (P+8) xPahoo/2 correspond 

to the classical momentum, the gravitational potential and the gravitational 

force, respectively. Equation (3 ·11), however, represents the conservation law 

of the angular momentum a (8 + p) X (va +- hoa) rather than of the momentum. 
Moreover, if we choose the coordinate condition hoa = 0 and h - hoe = 0, in 

the limits P<'8, Lr<.l and Lro<.l where Land ro are a characteristic length 
and a characteristic time of inhomogeneity, respectively, Eqs. (3 ·10), (3 ·11) and 
(3 ·12) reduce to the equations?) 

(1/ a3
) a (a3p) /or +- V· (pv) = 0, 

(1/a4)o(a4pv)/or+-V· (pvv) +Vp+-pVhoo/2=0, 

P2hoo/2 = (te/2) (p _ p(o» , 

~ 4. Preferential coordinate systems 

(3 ·13) 

(3 ·14) 

(3 ·15) 

In order to solve general relativistic equations, we must impose a coordinate 
condition. The coordinate condition, in general, does not uniquely determine 
the coordinate system. There are the transformations of coordinates which 

conserve the imposed coordinate· condition. 

In the following, we show that fictitious density and velocity inhomogeneity 
is produced on account of this arbitrariness of the coordinate system, and that 

if we impose suitable coordinate conditions, we can limit the arbitrariness and 

eliminate the fictitious inhomogeneity automatically . 

. We perform the transformation of coordinates, 

(4·1) 

The quantities after the transformation are represented by pnmes" Since 8 (x), 
ui (x) and gilr-(X) are scalar, vector and tensor, respectively, they are transformed 
as follows: 

8'(X') =8(X), 

uil(x') = (oxi'luXL)Ut(X), 

gik(X) = (ox~' /uxi) (oxm
, /OXk)g'Lm(X'). 

(4·2) 

(4·3) 

(4·4) 

In order to examine the properties of the small pertur ba tions for the trans­
formation of coordinates, we consider the infinitesimal transformation 

(4,5) 
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where (r;, x a
) is the coordinate systems movIng with the average distribution 

of matter and is defined by means of Eq. (2 ·1). From the transformation laws 

(4·2) 0J (4·4), we obtain the expressions 

Dc' (x) =Dc(X) -f,co)'r/, 

ua,(x) =ua(x) + (a~ala/j)uO(x), 

hoO'(x) =hoO(x) -2 (a/jola/j) -2(aja)/jo, 

ho
a, (x) = ho

a (x) + a/jolaxa - a~ala/j , 

h/" (x) = h a/3 (x) - a~a lax f3 - a~f3 jaxa - 2 (ala) /joDa/3. 

(4·6) , 

(4·7) 

(4·8) 

(4·9) 

(4 ·10) 

Now we consider the infinitesimal transformation of coordinates in the 

unperturbed isotropic universe, where the density and velocity inhomogeneity IS 

zero in the comoving reference system (/j, xa). If the transformation (4·5) is 

performed, then the inhomogeneity 

is produced. This inhomogeneity is, of course, a fictitious one. In § 6, we il­
lustrate this fact in the case of Lifshitz's coordinate condition. 

If we impose the coordinate conditions which permit only the infinitesimal 
transformation of coordinates with vanishing /jo and a~a ja/j, we can eliminate 

this fictitious inhomogeneity automatically. So, these conditions are preferential 
in comparison with those which allow nonvanishing /jo or a~a ja/j. They provide 

for families of the coordinate systems moving with the average distribution of 

matter. 

It is very easy to see that the cOOl·dinate conditions 

a) , h o
a =0 and aur jaxr = 0 , (4-11) 

b) ua=o and ahor jaxr = 0 (4 -12) 

and c) ua=O and h-hoo=O (4 ·13) 

satisfy the above request to the preferential coordinate conditions. Here spatially 
periodic perturbations are supposed. The conditio11 a), for example, permits 

only the infinitesimal transformations of coordinates which satisfy the equations 

Therefore, /jo and a~a la/j have to vanish. 

The condition b) is a Lagrangian gauge, but a) and c) are not Lagrangian. 

In the next section, we show that the conditions a), b) and c) give the 
same linearized equation for the density contrast, which is a second-order dif­
ferential equation with respect to time. Therefore, so far as we treat the density 

perturbation, a), b) and c) are preferential to the same extent. 
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§ 5. . The density perturbation under our preferential conditions 

We consider spatially periodic perturbation such as ocexp (ikrxr) , supposing 

the equation of state (2·5) and imposing the coordinate condition a), b) or c). 

Moreover, we linearize Eqs. (3·7) 0J (3·9) regarding the small perturbations. 
Then we obtain the equation for the density contrast os/ s(O) = K exp (ikrxr): for 

O<v<l (v is defined by Eq. (2·5)), 

d 21{/d(2+ (2v/O (dK/d() + [1-2(1+2v)/CJK=0, (5 ·1) 

and for v= 1, 

d 2K/dl/+ (2/1) (dK/dYj) -6K/I/=O, (5·2) 

where (={J)Yj, {J)2= [(l-v)/(l+v)J (a2P/3) mid k2=krk
r. 

At first, we solve the differential equation (5 ·1). Put K = (1/2-vZ and Eq. 

(5 ·1) becomes 

This equation is Bessel's differential equation and has the solution Z =: C1J-(v+,3/2) (() 
+ C2J(v+3/2) (0. Therefore, we have 

K = C/2- v [C1J-(v-I-3/2) (() + C2J(v+3/2) (() J. (5 ·4) 

When {J)Yj~l, this becomes 

(O<v<l) (5·5) 

Next, we solve Eq. (5·2). We obtain the solution for all the values of Yj 

(v= 1) (5·6) 

When jJ = 0 (v = 1), this solution agrees with Lifshitz's but when p;= s/3 (v = 0), 

the first term, Yj-l of the solution (5·5) does not agree with Lifshitz's result. 

The relation of our result to Lifshitz's is shown in the next section. 

§ 6. Density perturbation under various coordinate conditions 

We can solve the linearized form of Eqs. (3·7) 0J (3·9) for the density 

perturbation, imposing various coordinate conditions. The results of the calcula­

tion are shown in the table in the cases p = 0 and p = s/3. In this table, the 

figures with bracket imply the exponents jJ. of the power series which are of 
the form ~,~oCnYjI'-+n, the figures without bracket represent solutions composed 
only of one term, and the symbol stars denote fictitious solutions. 

Equations for the density contrast are in general fourth-order*) differential 

equations with respect to the time, which have two physical solutions and two 
fictitious ones. A fictitious solution is the solution that can be eliminated by 

*) Arons and Silk8) have shown that under the harmonic condition, the equation is of the sixth-
order. 
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means of an appropriate transformation of coordinates. Conversely, we can obtain 
the fictitious solution by means of the inverse transformation from the unperturbed 

state. For example, we consider Lifshitz's coordinate condition ho
a = 0 and hOD = ° 

in the case jJ = 8/3. We suppose (Ij, xI, x 2
, x 3

) as the comoving coordinate system 
in the unperturbed state. Then we transform it into a new coordinate system 

(1j',xll
,X

V
,X

3
'), where 1j'=Ij+ljo, xa'=xa+~a. Under the condition hoi=O, Ijo 

and ~a satisfy the equations 

aljOj fJlj + Ijo I Ij = ° , (6 ·1) 

These equations have the solution Ijo = C IIj, where C is a constant. Therefore, 
the fictitious solution K= -1j°"cY)/f,(O)=4ClIj2 is obtained from -Eq. (4·6). 

Table. The solutions for the density contrast under various coordinate conditions. 

_ _ __ coordinate ~~~dition= ________ 1 

h-hoo=Ahoo 
(A;rfO, ;';rf -3) 

p=O I 

(-3+6/A)* (-1) (0)* (2)1 

p=E/3 

(-2+3/;')* (1) (0) * (2) 

1---------1-------------------- -------------------------------- --------------

;'=0 (-1) (0)* (4) (1) (0)* (4) 

;'=-3 ( -5)* ( -1) (0) * (2) ( -3)* (3) (0) * (2) 
1--------- ----------- -----

-3* -;-3 2 -2* (1) (2) 

-:3 2 [----- ( -1)-------(2) 

-3 2-1(-2)* (1) (2)-

----(0) ;-----[----, -----------------ZW---
-3* 

;'=0 
----------------~-I'-------------~, ----1----------------

___ ----c __ a_h_oa_/_ax_a_=_0 ___ ,'---_________ - __ 3 _________ ~ __ 1 __ _. ( -1) (2) 

;'=0 I -3 

~-aho~/a--.:c~-= 0---1------------ -3 

2 

2 

( -1) 

( -1) 

(2) 

(2) 

Next, we examine the relation of our coordinate condition (4,11) to Lifshitz's 

when p = 813. Under the condition (4 ·11), we have the solution 

K = C1 [sin (+ (cos () I(] + C2 [(sin () I( -- cos (], 

hoo= -KI2. 

(6 ·2) 

(6 ·3) 

We perform the infinitesimal transformation which satisfies the equations 

(6 ·4) 

As a result of this transformation, we obtain the Lifshitz formalism. Equation 
(6·4) has the solution 

c 

Ijo = Cal (we) - (11 4w() ~ (' Kd('. (6·5) 
o 
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From Eq; (4·6), we get the transformed density contrast 

K = C 1 [ - 2 (sin () 1(2 +- 2 (cos () I ( +- sin (J 
+- C 2 [-- 2 (1- cos () Ie +- 2 (sin () I( - cos (J 
+- C3 (4/(2). 

When «1, this becomes 

(6 ·6) 

(6 ·7) 

The solutions C(fj and C 2'l/2 agree with Lifshitz's. The solution C s/'l/2 is a fictitious 

solution caused by the transformation (6·5). 

§ 7. Concluding remarks 

As vve have shown, it is natural and suitable to adopt the coordinate' systems 

moving with the average distribution of matter in order to deal with the density 

perturbation in an expanding universe. We have obtained some of the coordinate 

conditions which provide for these systems; they contain not only the so-called 

Lagrangian gauge but also new conditions. Under these coordinate conditions, 

the equation for the density perturbation becomes a second-order differential 

equation, and therefore, fictitious solutions are eliminated automatically. Moreover, 

we have shown that our coordinate conditions are transformed into Lifshitz's by 

means of an appropriate infinitesimal transformation of -coordinates. 

Though --vve have solved the equation for the density perturbation, supposing 

the equation of state plc=const, it is desirable to solve it by making use of a 
more realistic equation of state. We can use fluid mechanical equ~ltions to treat 

rotational perturbation and to discuss non-linear growth rate of density in­
homogenei ty. 7) 
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