DENSITY PROPERTIES OF HAUSDORFF MOMENT SEQUENCES

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

ROLF TRAUTNER

(Received Aug. 6, 1971)

Let $d_n = \int_0^1 t^n d\chi(t)$, $\chi \in V[0,1]$ be a moment sequence. It is shown that $d_{n_k} = O(c^{n_k})$ $(0 < c < 1, n_k \text{ naturals})$ and $\sum 1/n_k = \infty$ implies $d_n = O(c^n)$ for all n, and hence $d_n = \int_0^c t^n d\chi(t)$.

1. Let $\chi \in V[0, 1]$ (V[a, b] denotes the space of functions of bounded variation on [a, b]) and assume that $\chi(t + 0) = \chi(t)$ for $t \in [0, 1)$. In what follows we use the notation

$$d_n = \int_0^1 t^n d\chi(t) \qquad n = 0, 1, 2, \cdots.$$

We will call

(2)
$$\rho = \inf\{v: \chi(t) = \chi(1), v \leq t \leq 1\}$$

the order of $\chi(t)$ and also the order of the d_n . The function

(3)
$$D(z) = \sum_{n=0}^{\infty} d_n z^n = \int_{0}^{1} d\chi(t)/(1-zt)$$

is regular in the complex plane apart from a cut from $1/\rho$ to ∞ , and the integral representation holds in this region. Furthermore, if δ is the distance between z and the line $[1/\rho, \infty)$, we have

$$D(z) = O(\delta^{-1}), \qquad \delta \to 0.$$

Hardy [2] p. 267 states the following theorem: If $d_n = O(c^n)$ for some 0 < c < 1, then d_n is at most of the order c.

A sharper result follows from a theorem of Pòlya [5] p. 777, see also Bieberbach [1] p. 78 (but none of the authors gives a prove):

Let $f(z) = \sum_{0}^{\infty} a_n z^n$ be analytic in the circle |z| < a, a > 1, apart from the line [1, a] and let $f(z) = O(\exp(\delta^{-\alpha}))$, $\delta \to 0$, $\alpha > 0$, where δ is the distance between z and the line [1, a]. Let $a_{n_k} = O(c^{n_k})$ for some c, 0 < c < 1, and a subsequence n_k . Then either f(z) is analytic at z = 1 or n_k has density zero (i.e. $\lim k/n_k = 0$). Applying this result to the function D(z), we immediately find

THEOREM 1. If

$$(5) d_{n_k} = O(c^{n_k}), 0 < c < 1,$$

holds for a subsequence n_k , then either

$$\lim_{k\to\infty} k/n_k = 0$$

or d_n is at most of order c.

In this paper we will show (Theorem 2) that (6) can be replaced by the stronger statement

$$(7)$$
 $\sum_{k=0}^{\infty} 1/n_k < \infty$,

which is best possible. This result can be also applied to Laplace transforms (Theorem 3).

2. LEMMA. Let n_k , $k = 1, 2 \cdots$, be integers with the properties $0 < n_k < n_{k+1}$,

(8)
$$\sum_{k=1}^{\infty} 1/n_k = \infty.$$

Then there exists a subsequence n_{k_j} with density zero, i.e.

$$\lim_{j\to\infty}j/n_{k_j}=0,$$

such that

$$\sum_{j=1}^{\infty} 1/n_{k_j} = \infty.$$

PROOF. We may assume that

$$\lim \sup k/n_k = a > 0.$$

If $\eta(m)$ is defined for $m=1, 2, \dots$, and if $\lim_{m\to\infty} \eta(m)=0$, then Toeplitz' theorem implies

(12)
$$\lim_{M \to \infty} 2^{-M} \sum_{1}^{M} 2^{m} \eta(m) = 0.$$

Let

(13)
$$I_m = (2^m + 1, 2^{m+1}), \quad m = 1, 2, \cdots.$$

It follows from (8) that infinitely many I_{m_l} exist such that the number of terms $n_k \in I_{m_l}$ is at least $\varepsilon \cdot 2^{m_l}$ for some $\varepsilon > 0$. Otherwise, the number of terms would be $\eta(m) \cdot 2^m$ with $\eta(m) \to 0$, and (12) shows that the density of n_k is zero in violation of (11).

We now take from each interval I_{m_l} the first $[\varepsilon \cdot 2^{m_l}/l]$ terms and define the subsequence n_{k_j} as the union of these terms. It follows that

$$\sum_{j=1}^{\infty} 1/n_{k_j} \geq \sum_{l=1}^{\infty} (\varepsilon \cdot 2^{m_l}/l) \cdot (1/2^{m_l+1}) = \infty$$

which is (10). Using (12) we finally get

$$\lim_{l o \infty} j/n_{k_j} \leq \lim_{L o \infty} 2^{-m_L} \sum_{l=1}^L arepsilon \cdot 2^{m_l}/l = 0$$
 ,

i.e. n_{k_i} has density zero.

THEOREM 2. Let d_n be Hausdorff moments. If

$$(5) d_{n_k} = O(c^{n_k}) \; , 0 < c < 1$$

holds for a subsequence n_k , then either d_n is at most of order c or

$$\sum_{k=1}^{\infty} 1/n_k < \infty .$$

PROOF. Assume that

$$\sum_{k=1}^{\infty} 1/n_k = \infty.$$

Without loss of generality we may assume that

- a) n_k has density zero (by the preceding lemma)
- b) $n_0 = 0$, $n_1 = 1$ (otherwise add these terms to the sequence n_k)
- c) $d\chi(t) = \phi(t)dt$ with $\phi(t)$ continuous on [0, 1] (otherwise take the moment sequence $d'_n = d_{n+2}/((n+2)(n+1))$)
 - d) the order of $\chi(t)$ is $\rho = 1$ (otherwise take $d_n'' = d_n/\rho^n$).

We define the functions

(15)
$$\phi_b(t) = \begin{cases} 0 & 0 \le t < b \\ \phi(t) & b \le t \le 1 \end{cases}.$$

Next we construct the generalized Bernstein polynomials (Lorentz [4] p. 44, Gelfand [3] p. 71) associated to the sequence n_k

(16)
$$p_{k\nu}(t) = (-1)^{k-\nu} \sum_{\mu=\nu \atop \mu=\nu}^{k} t^{n_{\mu}} (n_{\mu}/n_{\nu}) \prod_{\substack{j=\nu \\ j\neq\mu}}^{k} n_{j}/(n_{\mu}-n_{j}).$$

The condition (14) guarantees that for any function f(t) continuous on $(a, b) \subset [0, 1]$ and bounded on [0, 1] we have

(17)
$$\sum_{\nu=0}^{k} p_{k\nu}(t) f(\tau_{k\nu}) \longrightarrow f(t) \quad \text{for} \quad k \longrightarrow \infty$$

uniformly on every compact subset of (a, b), where

(18)
$$\begin{cases} \tau_{k\nu} = \prod_{j=\nu+1}^{k} (1 - 1/n_j) & 0 \le \nu < k \\ \tau_{k\nu} = 1 . \end{cases}$$

We apply the approximation (17) to the function $\phi_b(t)$. The sequence of functions

(19)
$$\phi_b^k(t) = \sum_{\nu=0}^k p_{k\nu}(t)\phi_b(\tau_{k\nu})$$

converges to $\phi_b(t)$ uniformly for t outside of an arbitrary small neighbourhood of b. Furthermore, since the $\phi_b^k(t)$ are uniformly bounded on [0,1] we have

(20)
$$\sigma_k = \left| \int_0^1 \phi_b^k(t) \phi(t) dt \right| \longrightarrow \int_0^1 \phi_b(t) \phi(t) dt = \int_b^1 \phi^2(t) dt.$$

In what follows we will show that

$$\sigma_k = o(1)$$

holds, if b is sufficiently close to 1, which implies $\phi(t) = 0$ on [b, 1]. This is a contradiction to the defition of the order ρ of $\chi(t)$.

Let $u_{\scriptscriptstyle 0} =
u_{\scriptscriptstyle 0}(k)$ be the minimum of the numbers u with $au_{\scriptscriptstyle k \nu} \geq b$. Then we have

$$egin{aligned} \sigma_k &= \left| \sum_{
u=
u_0}^k \int_0^1 \!\!\!\! \phi_b(au_{k
u}) p_{k
u}(t) \phi(t) dt
ight| \ &\leq C \sum_{
u=
u_0}^k \sum_{\mu=
u}^k \left| d_{n_\mu} \right| (n_\mu/n_
u) \prod_{\substack{j=
u \ j \neq \mu}}^k n_j / |n_j - n_\mu| \ &\leq C \sum_{
u=
u_0}^k \sum_{\mu=
u}^k c^{n\mu} (n_\mu/n_
u) \prod_{\substack{j=
u \ j \neq \mu}}^k n_j / |n_j - n_\mu| \; . \end{aligned}$$

Let $j_1 = j_1(\mu)$ be the maximum of numbers j with $n_j \leq 2n_\mu$ and $j_0 = j_0(\mu)$ be the minimum of numbers $j \geq \nu$ with $n_j \geq n_\mu/2$, then

$$egin{aligned} \prod_{\substack{j=
u \ j
eq \mu}}^k n_j/|\, n_j - \, n_\mu\,| & \leq \prod_{\substack{j=j_0 \ j
eq \mu}}^{j_1} n_j/|\, n_j - \, n_\mu\,| \cdot \prod_{j=j_1}^k n_j/|\, n_j - \, n_\mu\,| = \prod_1 \cdot \prod_2 \,, \ & \prod_1 \leq (2n_\mu)^{j_1-j_0}/(arGamma(j_1-j_0)/2+1)^2 \ & \leq [2n_\mu \cdot 4e/(j_1-j_0)]^{(j_1-j_0)} \,\,. \end{aligned}$$

Since the sequence n_k has density zero, we have for large k

Furthermore we have

$$\prod_2=\prod_{j=j_1}^k|1-n_\mu/n_j|^{-1}$$
 , $|\log\prod_2|=-\sum_{j=j_1}^k\log|1-n_\mu/n_j|\leqq 2n_\mu\sum_{j_1}^kn_j^{-1}$.

From the definition of ν_0 follows that b is roughly

$$\prod_{j=\nu_0}^k (1-1/n_j) \leq \exp\left(-\sum_{j=\nu_0}^k 1/n_j\right)$$

and a lower bound for b is obtained from

$$\sum_{j=
u_0}^k 1/n_j \leq 2 \cdot |\log b|$$
 for large k ,

and therefore

$$1/n_{\mu} \log \prod_{2} \leq 4 \cdot |\log b|$$
.

If b is chosen sufficiently close to 1 we have

$$(23) \qquad \qquad \prod_{2}^{1/n_{\mu}} \leq 1 + \varepsilon.$$

Combining (22) and (23) we find

$$egin{aligned} \sigma_k & \leq C \sum_{
u =
u_0}^k \sum_{\mu =
u}^k c^{n_\mu} n_\mu / n_
u \prod_1 \prod_2 \ & \leq C \sum_{
u =
u_0}^k \sum_{\mu =
u}^k [c (n_\mu / n_
u)^{1/n_\mu} (1 \, + \, arepsilon)^2]^{n_\mu} \; . \end{aligned}$$

The expression in the brackets is for large k less than 1, which yields

$$egin{align} \sigma_k & \leq C \sum\limits_{
u =
u_0}^k \sum\limits_{\mu =
u}^k A^{n_\mu} & (0 < A < 1) \ & \leq \sum\limits_{
u =
u_0}^k O(A^{n_
u}) = O(A^{n_
u_0}) = o(1) \; . \end{split}$$

The result of theorem 2 is best possible. For let n_k be a sequence of positive integers satisfying $\sum_{1}^{\infty} 1/n_k < \infty$, $n_0 = 0$, and let C' be the space of polynomials f' spanned by the t^{n_k} . Define a bounded linear functional d' on C' by d'(f') = f'(0), which can be continuated to a functional d on the space C of continuous functions f on [0,1] by d(f) = f(0). By Müntz' approximation theorem C' is not dense in C and hence there exists another continuation $d_1 \neq d$ onto C,

$$d_{\scriptscriptstyle 1}(f) = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1} f(t) d\chi(t)$$
 ,

where $\chi(t) \in V[0, 1]$ has positive order ρ , and $d_1(t^{n_k}) = 0$, $k \ge 1$.

In terms of Laplace transforms the preceding theorem reads as follows:

THEOREM 3. Let $d(z) = \int_0^\infty \exp(-tz) d\phi(t)$, $\phi(t) \in V[0, \infty)$ ϕ real and left continuous on $(0, \infty)$.

If for a sequence n_k of integers, $0 < n_k < n_{k+1}$, and a c, 0 < c < 1, $d(n_k) = O(c^{n_k})$ holds, then either $\sum_{i=1}^{\infty} 1/n_k < \infty$, or $\phi(t)$ is constant on $[0, |\log c|)$ and so $d(z) = O(c^z)$, z = x + iy, $x \to \infty$.

We finitely remark that our result contains a well known theorem of Titchmarsh [6] p. 166 stating that $h(x) = \int_0^x f(x-t)g(t)dt$, $x \ge 0$, f, g continuous, vanishes identically if and only if f(x) or g(x) vanishes identically. For let $d_n^{(1)}$, $d_n^{(2)}$ be Hausdorff moments with orders ρ_1 and ρ_2 then by theorem 2 the order of the product sequence $d_n = d_n^{(1)}d_n^{(2)}$ is $\rho = \rho_1\rho_2$, which gives a generalized form of Titchmarsh's theorem. Clearly this can also be derived from Pòlya's theorem.

I am much indepted to Professor Peyerimhoff who encouraged me to write this paper and who gave helpfull suggestions.

REFERENCES

- [1] Bieberbach, Analytische Fortsetzung, Springer 1953.
- [2] Hardy, Divergent Series, Oxford 1956.
- [3] Gelfand, Differenzenrechnung, Berlin 1958.
- [4] Lorentz, Bernstein Polynomials, Toronto 1953.
- [5] Pòlya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, II. Mitteilung, Ann. Math. II, 34, 731-777, (1953).
- [6] Yosida, Functional Analysis, Springer 1968.

ABTEILUNG FÜR MATHEMATIK DER UNIVERSITÄT 79 ULM

BLAUBEURER STRAßE 30