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DENSITY RESULTS FOR AUTOMORPHIC FORMS

ON HILBERT MODULAR GROUPS II

ROELOF W. BRUGGEMAN AND ROBERTO J. MIATELLO

Abstract. We obtain an asymptotic formula for a weighted sum over cuspidal
eigenvalues in a specific region, for SL2 over a totally real number field F ,
with a discrete subgroup of Hecke type Γ0(I) for a non-zero ideal I in the
ring of integers of F . The weights are products of Fourier coefficients. This
implies in particular the existence of infinitely many cuspidal automorphic
representations with multi-eigenvalues in various regions growing to infinity.
For instance, in the quadratic case, the regions include floating boxes, floating
balls, sectors, slanted strips (see §1.2.4–1.2.13) and products of prescribed
small intervals for all but one of the infinite places of F . The main tool in the
derivation is a sum formula of Kuznetsov type (Sum formula for SL2 over a
totally real number field, Theorem 2.1).
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Introduction

Let F be a totally real number field of dimension d, and let OF be its ring
of integers. If I is a non-zero ideal in OF , let Γ = Γ0(I) denote the congruence
subgroup of Hecke type of the Hilbert modular group. We allow a character of

Γ0(I) of the form
(

a
c
b
d

)
�→ χ(d), with χ a character modulo I.

The goal of the present paper is to obtain distribution results for cuspidal auto-
morphic representations of G ∼= SL(2,R)d with eigenvalue parameters in a subset
Ωt of the multi-eigenvalue space, as t → ∞, under some general conditions on the
family Ωt.
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Let V� be a cuspidal automorphic representation, with elements transforming
under the above character of Γ0(I) and with a compatible central character. The
Fourier coefficients of automorphic forms in V� can be normalized so that they
are independent of the chosen automorphic form in V�. This results in coefficients
cr(�) describing the Fourier expansion at the cusp ∞. The Fourier term order r
runs through the inverse different O′ of F .

We denote by λ� = (λ�,j)j ∈ Rd the vector of eigenvalues of the Casimir
operators at the infinite (real) places of F . For compact sets Ω ⊂ Rd, we consider
the counting functions

(1) Nr(Ω) := Nr
ξ,χ (Ω) :=

∑
�,λ�∈Ω

|cr(�)|2.

The representations � run through an orthogonal system of irreducible subspaces
of L2,cusp

ξ (Γ0(I)\G,χ), for a fixed choice of the character χ of Γ0(I) and of the

central character (determined by ξ ∈ {0, 1}d).
The main result in this paper asserts that if the family t �→ Ωt satisfies certain

mild conditions, then

(2) Nr(Ωt) =
2
√
|DF |

(2π)d
Pl(Ωt) + o (V1(Ωt)) (t → ∞)

for all non-zero r ∈ O′. By DF we denote the discriminant of F over Q, and by
Pl the Plancherel measure of G. The error term contains a reference measure V1

which, under some general assumptions, is comparable to Pl.
Roughly speaking, we show that the asymptotic formula (2) holds for the family

t �→ Ωt under the conditions that Ωt grows in at least one coordinate direction, and
that the boundary ∂Ωt is small in comparison with Ωt itself. On the other hand, it
is often convenient to use, instead of λ ∈ Rd, the corresponding spectral parameter

ν� ∈ ([0,∞) ∪ i (0,∞))d. We use a tilde to indicate that the relevant measures like

Ñr, P̃l and Ṽ1 are taken in the variable ν, and we write

Ñr(Ω̃t) =
∑

�,ν�∈Ω̃t

|cr(�)|2 ,

with ν�,j ∈ [0,∞) ∪ i (0,∞) such that λ�,j =
1
4 − ν2�,j .

In Theorems 4.6 and 5.3 we prove asymptotic statements in terms of the quan-
tities Nr(Ωt) and Ñr(Ω̃t), respectively, and this enables us to show occurrence and
density of representations for a wide class of families of sets t �→ Ωt. For illustration,
we now list some of the distribution results that are obtained in the quadratic case.

(i) Small rectangles. Let d = 2. Let [α, β] ⊂ [1/4,∞) and consider for t large
Ωt = [α, β]× [t, t+

√
t]. Formula (2) implies

(3) Nr(Ωt) ∼
√
DF

2π2

∫ β

α

tanhπ
√
λ− 1

4 dλ t1/2 (t → ∞) .

In particular, there are infinitely many � with λ�,1 ∈ [α, β]. These � have
a second component of unitary principal series type. A similar result holds
with �2 of discrete series type.

On the other hand if [α, β] ⊂
[
λ0,

1
4

)
and Ωt = [α, β]× [t,

√
t], then

Nr(Ωt) = o
(
t1/2
)

(t → ∞) .(4)
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This gives an upper bound for the weighted density of �1 of complementary
series type.

As another example, if one takes Ωt = [t, t +
√
t] × [ct, ct +

√
t] , with t

large and c ≥ 1, then

(5) Nr(Ωt) ∼ Cc t (t → ∞).

(ii) Slanting strips. Let d = 2, and put, in terms of the spectral parameter,

Ω̃t =
{
(ν1, ν2) ∈ (i[1,∞))2 : t ≤ |ν1| ≤ 2t, a|ν1|+ b ≤ |ν2| ≤ a|ν1|+ c

}
,

with a > 0, c > b fixed and t large. Then

Ñr(Ω̃t) ∼ Ca,b,c t
3 (t → ∞) .

This shows that we see infinitely many points ν� in a slanted direction. We
note that this slanting strip becomes a sector in λ-space.

(iii) Sectors. Let d = 2, and fix 0 < p < q, α > 1
2 . For t large put

Ωt =

{
(λ1, λ2) ∈ [0,∞)2 : t ≤ λ1 ≤ t+ tα , pλ1 ≤ λ2 ≤ qλ1

}
.

Then we have

Nr(Ωt) ∼ Cp,q t
1+α (t → ∞) .

(iv) Spaces of holomorphic cusp forms. Take Ω̃b equal to the singleton b =
(b1, . . . , bj) ∈ Zd with bj ≥ 1 and agreeing with the central character, i.e.,
bj ≡ ξj mod 2 for 1 ≤ j ≤ d. These are the weights for which there may be
holomorphic cusp forms on the product of d copies of the upper half-plane
for the character χ of Γ0(I). Corollary 4.2 shows that for some positive
constant C we have

(6) Ñr(Ω̃b) ∼ C

d∏
j=1

bj − 1

2
as

d∏
j=1

bj − 1

2
→ ∞ .

If we take r totally positive, then the quantity Ñr(Ω̃b) has an expression
in terms of Fourier coefficients of holomorphic cusp forms. In particular,
this implies that there are only finitely many weights b with bj ≥ 2 for all
j for which the corresponding space of cusp forms is non-zero. (We do not
obtain information concerning weights b for which bj = 1 for some j.)

We will give a much more complete list of applications of the main asymptotic
formula in §1.2.4–1.2.13.

By using the Selberg trace formula ([21], [8]), some unweighted distribution
results related to those in this paper have been obtained in [9] and [10], while
results connected with Weyl’s laws in different contexts have been proved by several
authors, e.g., [6], [5], [7], [19], [18], [14], [20], [17] and [16].

The main tool for the results in the present paper is the Kuznetsov type sum
formula in Theorem 3.21 of [3], which we recall in §2.1. It leads to sums weighted
by a product of Fourier coefficients. The results obtained here may be viewed as
a generalization of the results in [2]. To explain the difference, we note that the
sum formula gives a linear relation between four terms. The two main terms in
the present context are a weighted sum of a test function ϕ over the ν� and an
integral of ϕ against the Plancherel measure. The test function has a product form
ϕ(ν) =

∏
j ϕj(νj), where j runs over the infinite places of the totally real number
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field F . For the terms that are principal in this paper this product form is non-
essential. However to show that the other terms are small we need, for one of those
terms (the sum of Kloosterman sums), estimates of a Bessel transformation of each
of the factors ϕj . This forces the product structure upon us, in contrast with the
case of the Selberg trace formula. There the integral transformation is the Fourier
transform, which respects rotations.

In [2] we chose each factor ϕj as a Gaussian kernel. For the places in a non-empty
set Q of real places, this kernel was an approximation of the constant function one,
and for the other places it was chosen as an approximation of a delta distribution.
This led us to asymptotic results for regions ΩX of the form∏

j �∈Q

[aj , bj ]×
∏
j∈Q

{
(λj)j∈Q :

∑
j∈Q

|λj | ≤ X
}
.

The purpose of this paper is to work with sets having a much more general form
in the coordinates in Q. To do this, the test functions have to be chosen in a much
more complicated way. Our choice is indicated in Lemma 2.2. The idea is to take,
for each place in Q, a Gaussian kernel of moderate sharpness. We approximate
the characteristic function of sets in

∏
j∈Q (R ∪ iR) by a convolution with this

Gaussian kernel. At the real places outside Q we take a general test function to be
specified at a later stage. An application of the sum formula gives the relation in
Proposition 2.4. The use of a Tauberian argument as in [2] is no longer possible.
To be able to handle the error terms, we first give in §3 an upper bound for the
weighted sums under consideration. After that we adapt the sharpness of the test
functions to the family of sets we consider.

This leads to Theorem 4.6, where we lose control over the size of the error term
and have to be content with an asymptotic result. This is so because the size of
the error term depends on the family of sets in a complicated way, as equations
(94)–(96) show, and the error term is almost as large as the main term. The second
stage of the method, in §5, involves choosing the factors of the test function at the
real places outside Q as approximations of characteristic functions of intervals in
the coordinate λj . The central result is Theorem 5.3. It is specialized in §6 to
various families of sets that include those mentioned above.

The sum formula involves products cr(�) cr
′
(�) for two non-zero Fourier terms

orders r and r′. Its application in the present paper works well if r′

r is totally
positive. We intend to apply the asymptotic results, under this assumption, in
subsequent work where we will take eigenvalues of Hecke operators into account.

1. Preliminaries and discussion of main results

This section serves to recall results and fix notation, and after that to state the
main results of this paper.

1.1. Automorphic representations for Hilbert modular groups. Let F be
a totally real number field with degree d over Q. The Lie group G = SL2(R)

d is
the product

∏
j SL2(kj) over all infinite places j of F . We fix a non-zero ideal I in

the ring of integers O of F . The group G contains the discrete subgroup

(7) Γ0(I) =

{(
a

c

b

d

)
∈ SL2(O) : c ∈ I

}
with finite covolume.
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Let χ be a character of (O/I)∗. It determines a character of Γ0(I) by χ
(

a
c
b
d

)
=

χ(d). Let L2(Γ0(I)\G,χ) be the Hilbert space of classes of functions transforming
according to f(γg) = χ(γ)f(g) for γ ∈ Γ0(I). The group G acts unitarily in
this Hilbert space by right translation. This space is split up according to central
characters, indicated by ξ ∈ {0, 1}d. By L2

ξ(Γ0(I)\G,χ) we mean the subspace on
which the center acts by((

ζ1
0

0

ζ1

)
, . . . ,

(
ζd
0

0

ζd

))
�→
∏
j

ζ
ξj
j ,

where ζj ∈ {1,−1}. This subspace can be non-zero only if the following compati-
bility condition holds:

(8) χ(−1) =
∏
j

(−1)ξj .

We assume this throughout the paper.
There is an orthogonal decomposition

(9) L2
ξ(Γ0(I)\G,χ) = L2,cont

ξ (Γ0(I)\G,χ)⊕ L2,discr
ξ (Γ0(I)\G,χ).

TheG-invariant subspace L2,cont
ξ (Γ0(I)\G,χ) can be described by integrals of Eisen-

stein series, and the orthogonal complement L2,discr
ξ (Γ0(I)\G,χ) is a direct sum of

closed irreducible G-invariant subspaces. If χ = 1, the constant functions form an
invariant subspace. All other irreducible invariant subspaces have infinite dimen-
sion. They are cuspidal and span the space L2,cusp

ξ (Γ0(I)\G,χ), the orthogonal

complement of the constant functions in L2,discr
ξ (Γ0(I)\G,χ).

We fix a maximal orthogonal system {V�}� of irreducible subspaces in the

Hilbert space L2,cusp
ξ (Γ0(I)\G,χ). This system is unique if all � are inequivalent.

In general, there might be multiplicities, due to oldforms.
Each irreducible automorphic representation � of G =

∏
j SL2(R) is the tensor

product
⊗

j �j of irreducible representations of SL2(R). Here and in the sequel, j
is supposed to run over the d archimedean places of F .

The factor�j can (almost) be characterized by the eigenvalue λ�,j of the Casimir
operator of SL2(R) and by the central character, which is indicated by ξj .

If ξj = 0, then the eigenvalue λ�,j can either be of the form b
2 − b2

4 with b ≥ 2

even or else the λ�,j have a lower bound λ0 ∈
(
0, 14
]
. By the Selberg conjecture, it

is expected that one can take λ0 = 1
4 . The best result at present is

77
324 = 1

4−
(
1
9

)2 ≤
λ0 ≤ 1

4 ; see [13]. If ξj = 1, then the λ�,j can either lie in
[
1
4 ,∞
)
or be of the form

b
2 − b2

4 with b ≥ 3, b odd. We call λ� = (λ�,j) ∈ Rd the eigenvalue vector of the
representation �.

Spectral theory shows that the set {λ�} is discrete in Rd. To see this we use the
fact that the Casimir operator of G has a discrete spectrum with finite multiplicities
in L2,cusp

ξ (Γ\G)q, where L
2,cusp
ξ (Γ\G)q is the subspace of L

2,cusp
ξ (Γ\G) with K-type

(or weight) q ∈ Zd, q ≡ ξ mod 2. Hence the number of representations � (with

multiplicities) such that V� ∩ L2,cusp
ξ (Γ\G)q �= {0} and for which the eigenvalue

λ�,1 + λ�,2 + · · ·+ λ�,d of the Casimir operator is under a given bound, is finite.
For a given component �j in the discrete series, the weights qj occurring in V�,j

satisfy |qj | ≥ bj ≥ 1, with λ�,j =
bj
2

(
1− bj

2

)
. So for a given bounded set Ω ⊂ Rd we



3846 ROELOF W. BRUGGEMAN AND ROBERTO J. MIATELLO

can choose the K-type q such that all � with λ� ∈ Ω are present in L2,cusp
ξ (Γ\G)q.

Thus Ω contains only finitely many λ�, counted with multiplicities.
The correspondence between values of λ = λ�,j and equivalence classes of uni-

tary representations of SL2(R) of infinite dimension is one-to-one if λ > 0 for

ξ = ξj = 0, and if λ > 1
4 if ξ = 1. In the other cases, λ = b

2 − b2

4 with b ∈ Z≥1,
b ≡ ξ mod 2. In these cases, there are two equivalence classes, one with lowest
weight b (holomorphic type) and one with highest weight −b (antiholomorphic
type). If b ≥ 2, representations of these classes occur discretely in L2

(
SL2(R)

)
and

are called discrete series representations. The representations in the case b = 1 are
sometimes called mock discrete series. They do not occur discretely in L2

(
SL2(R)

)
.

All these classes of representations, discrete series or not, may occur as an irre-
ducible component of L2,cusp

ξ (Γ0(I)\G,χ).

As discussed in §2.3.4 in [3], the Fourier expansion of one automorphic form in
V� determines the Fourier expansion of any automorphic form in V�. We refer to
[3] for the normalization. This results in coefficients cr(�) describing the Fourier
expansion at the cusp ∞. The Fourier term order r runs through the inverse
different O′.

In the choice of the cr(�) there is a freedom of a complex factor with absolute
value one for a given �. Since we shall work with weights |cr(�)|2, this freedom
has no influence on the results to which we aim.

When dealing with the sum formula, it is technically easier to parametrize the
eigenvalues λ�,j ∈ R by λ�,j =

1
4 −ν2�,j , with, for instance, ν�,j ∈ (0,∞)∪i [0,∞).

We put ν� =
(
ν�,j

)
, and we call ν� and ξ� =

(
ξ�,j

)
∈ {0, 1}d the spectral

parameters of �.
We have ν� ∈ Yξ =

∏
j Yξj , with

Y0 :=
{

b−1
2 : b ≥ 2 even

}
∪ i [0,∞) ∪ (0, ν0] ,(10)

Y1 :=
{

b−1
2 : b ≥ 3 odd

}
∪ i [0,∞),

where ν0 =
√

1
4 − λ0.

1.2. Discussion of main results.

1.2.1. Counting function. For compact sets Ω ⊂ Rd, we use the counting functions

(11) Nr(Ω) := Nr
ξ,χ (Ω) :=

∑
�,λ�∈Ω

|cr(�)|2,

with r ∈ O′ � {0}. The representations � run through the orthogonal system of

irreducible subspaces of L2,cusp
ξ (Γ0(I)\G,χ) chosen in §1.1. If there are multiplic-

ities larger than one, the choice of the orthogonal system does not influence the
counting. It may happen that cr(�) = 0 for some � and some r. However, varying
r, we can detect all �.

More generally, if f is a function on Rd, we can consider the sum

(12) Nr(f) := Nr
ξ,χ(f) :=

∑
�

f(λ�)|cr(�)|2,

which converges for suitable f , for instance, compactly supported f . So Nr(Ω) =
Nr(χΩ), where χΩ is the characteristic function of Ω.



DENSITY RESULTS ON HILBERT MODULAR GROUPS II 3847

In the ν-coordinate the counting function is

(13) Ñr(Ω̃) =
∑

�, ν�∈Ω̃

|cr(�)|2,

for sets Ω̃ ⊂ Yξ.

1.2.2. Plancherel measure. We will compare Nr(Ω) with Pl(Ω) = Plξ(Ω). The
measure Pl on Rd is the product Pl =

⊗
j Plξj , where Plξj is the measure on R

given by

Pl0(f) =

∫ ∞

1/4

f(λ) tanhπ
√
λ− 1

4 dλ(14)

+
∑

b≥2, b≡0 mod 2

(b− 1)f
(
b
2

(
1− b

2

))
,

Pl1(f) =

∫ ∞

1/4

f(λ) cothπ
√
λ− 1

4 dλ

+
∑

b≥3, b≡1 mod 2

(b− 1)f
(
b
2

(
1− b

2

))
.

Note that Plξj gives zero measure to the set of exceptional eigenvalues in
[
λ0,

1
4

)
.

The notation Pl refers to the Plancherel measure of SL2(R); see, e.g., [15],
Chap. VIII, §4, p. 174.

In the ν-coordinate the Plancherel measure on Yξ is given by P̃lξ =
⊗

j P̃lξj ,
where

(15) P̃lξj (f) = 2

∫ ∞

0

f(it) p̃lj(t) dt+ 2
∑

β∈ ξj+1

2 +N0

f(β) p̃lj(β) ,

with

(16)

p̃lj(t)

ξj = 0 t ∈ iR |t| tanhπ|t|
ξj = 1 t ∈ iR |t| cothπ|t|

t ≡ ξj−1
2 mod 1 t ∈ R� {0} |t|

t �≡ ξj−1
2 mod 1 t ∈ R� {0} 0

.

If f is even, then

P̃l0(f) = i

∫
Re ν=0

f(ν)ν tanπν dν +
∑

β∈ 1
2+Z

|β|f(β),(17)

P̃l1(f) = −i

∫
Re ν=0

f(ν)ν cotπν dν +
∑

β∈Z�{0}
|β|f(β).

The reference measure V1 is more easily given in the ν-coordinate. We leave
the reformulation in terms of the λ-coordinate to the reader. The measure has a
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product form Ṽ1 =
⊗

j Ṽ1,ξj on the space ((0,∞) ∪ i [0,∞))d with∫
h dṼ1,0 =

∫ ∞

1

t h(it) dt+

∫ 1

0

h(it) dt+

∫ ν0

0

h(x) dx+
∑

β>0, β≡ 1
2 (1)

β h(β) ,(18)

∫
h dṼ1,1 =

∫ ∞

1

t h(it) dt+

∫ 1

0

h(it) dt+
∑

β>0, β≡0 (1)

β h(β) .

So Ṽ1 is positive everywhere on Yξ, and P̃l(Ω̃) � Ṽ1(Ω̃) for all Ω. We also have

Ṽ1(Ω̃) �ε P̃l(Ω̃) if the coordinates of Ω̃t stay away from (0, ν0] ∪ i [0, ε) for some
ε > 0.

1.2.3. Asymptotic formula. We will prove that for families t �→ Ωt of sets in Rd,
satisfying the conditions discussed below,

(19) Nr(Ωt) =
2
√
|DF |

(2π)d
Pl(Ωt) + o

(
V1(Ωt)

)
(t → ∞)

for any r ∈ O′ � {0}.
Here DF is the discriminant over Q of the totally real number field F of degree d.

The character χ of (O/I)∗ and ξ ∈ {0, 1}d are as explained in §1.1.
The sets Ωt should get large; in particular, V1(Ωt) should tend to infinity as

t → ∞. Moreover, the boundary ∂Ωt should be relatively small in comparison with
Ωt itself. The precise conditions are discussed in §4.2, Theorem 4.6, Proposition 4.7,
and Theorem 5.3.

Since Pl(Ωt) � V1(Ωt) the term o
(
V1(Ωt)

)
is small in comparison with Pl(Ωt).

If V1(Ωt) � Pl(Ωt) holds as well, then the asymptotic formula simplifies to

(20) Nr(Ωt) ∼
2
√
|DF |

(2π)d
Pl(Ωt) (t → ∞) .

In this section we shall be content to discuss a number of families for which the
asymptotic formula (19) holds, showing the existence of automorphic forms with
eigenvalue (or spectral) parameters lying in such regions Ωt, as t gets large.

1.2.4. Small rectangle in the real quadratic case. Before stating more general re-
sults, we consider the case that d = 2, and we first apply some of the more general
statements for this situation.

Let [α, β] ⊂ [1/4,∞) and consider for t ≥ 5
4 :

(21) Ωt = [α, β]× [t, t+
√
t] .

Theorem 1.3 implies

(22) Nr(Ωt) ∼
√
DF

2π2

∫ β

α

tanhπ
√
λ− 1

4 dλ t1/2 (t → ∞) .

In particular, there are infinitely many � with λ�,1 ∈ [α, β]. These � have a
second component of unitary principal series type. A similar result holds with �2

of discrete series type:

Ωb = [α, β]×
{

b−1
2

}
with b > 1 , b ∼= ξ2 mod 2 ,(23)

Nr(Ωb) ∼
√
DF

2π2

∫ β

α

tanhπ
√
λ− 1

4 dλ · b (b → ∞) .
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On the other hand if [α, β] ⊂
[
λ0,

1
4

)
, then

for Ωt = [α, β]× [t,
√
t] with t ≥ 5

4 ,(24)

Nr(Ωt) = o
(
t1/2
)

(t → ∞) ;

and for Ωb = [α, β]×
{

b−1
2

}
with b > 1 , b ∼= ξ2 mod 2 ,(25)

Nr(Ωb) = o
(
b
)

(b → ∞) .

This does not exclude the presence of �1 of complementary series type, but gives
an upper bound for their weighted density.

These results also hold with the role of �1 and �2 interchanged.
One may also consider families of rectangles for which both factors vary:

(26) Ωt = [t, t+
√
t]× [ct, ct+

√
t] ,

with t ≥ 5
4 and c ≥ 1. Then

(27) Nr(Ωt) ∼
√
DF

2π2
c1/2t (t → ∞) .

1.2.5. Floating boxes. We consider for general F a small hypercube of fixed size

floating to infinity in the region (i[1,∞))
d
of the ν-plane.

Proposition 1.1. Let Ω̃t =
∏

j i[aj(t), aj(t) + σ] with σ > 0, aj(t) ≥ 1 for all j

and t, and where limt→∞ aj(t) = ∞ for at least one j. Then

Ñr(Ω̃t) ∼
2
√
|DF |

(2π)d
P̃l(Ω̃t) (t → ∞) .

Note that P̃l(Ω̃t) → ∞. We have P̃l(Ω̃t) ∼ σd
∏

j aj(t) if aj(t) → ∞ for all j.
Proposition 6.1 implies that the size σ may even slowly decrease with t, provided

σ(t) ≥ γ

(∑
j

log aj(t)

)−α

for any α ∈ (0,
1

2
), γ > 0 .

We conclude that there are spectral parameters ν� in such a hypercube if they
are sufficiently far away from the origin. If we reformulate in terms of λ we get
boxes Ωt in λ-space with increasing size.

1.2.6. Remark. On the other hand, for hypercubes in λ-space with fixed size, our
method does not give an asymptotic formula. In fact, the λ� may leave space for a
small hypercube moving around in λ-space, avoiding all of the λ�. This can occur

if the
∣∣cr(�)

∣∣2 are not often very small.

1.2.7. Discrete series. For� for which all factors are discrete series representations,
we do not need boxes, but we can work with single points.

Proposition 1.2. Let p ∈
∏

j

(
ξj+1
2 + N0

)
and let Ω = Ωp = {p}. Then, if at

least one coordinate of p tends to infinity, we have

Ñr ({p}) ∼ 2
√
|DF |
πd

∏
j

pj .
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1.2.8. Combinations. A combination is possible. At some places we take a fixed
interval [Aj , Bj ] on the λ-line. We have to require that the endpoints are not equal
to a discrete series eigenvalue:

(28) Aj , Bj �∈
{

b
2

(
1− b

2

)
: b > 1, b ≡ ξj mod 2

}
.

Theorem 1.3. Let E �Q+�Q− be a partition of the infinite places of F . Suppose
that BE =

∏
j∈E [Aj , Bj ] satisfies condition (28). Let

Ct =
∏

j∈Q+

i [aj(t), aj(t) + σ]

with aj(t)≥1 for any j∈Q+ and all t, with δ > 0 fixed. Let p ∈
∏

j∈Q−

(
ξj+1
2 + N0

)
.

Then, provided that aj(t) → ∞ for at least one j ∈ Q+ or pj → ∞ for at least one
j ∈ Q−, we have

Ñr
(
B̃E × Ct × {p}

)
=

2
√
|DF |

(2π)d
P̃l
(
B̃E × Ct × {p}

)
(29)

+ o
(
Ṽ1(B̃E × Ct × {p})

)
.(30)

In Theorem 1.3 some factors of BE may be in the region
[
λ0,

1
4

)
, giving

P̃l(B̃E × Ct × {p}) = 0.

So here we need Ṽ1 in the asymptotic formula.
Again, the constant size σ in Theorem 1.3 can be replaced by

(31) σ(t) = γ

( ∑
j∈Q+

log aj(t) +
∑
j∈Q−

log(2pj)

)−α

(0 < α <
1

2
, γ > 0) .

1.2.9. Floating spheres. The following is analogous to an unweighted distribution
result, based on the Selberg trace formula, given by Huntley and Tepper [10]:

Proposition 1.4. Let B(m, r) be a sphere in Rd with center m and radius r. Let
mj ≥ r+1 for all j, and suppose that mj tends to infinity for all j (not necessarily
with the same speed). Then

Ñr (iB(m, r)) ∼ 4
√

|DF |vd
(
r
π

)d∏
j

mj ,

where vd denotes the volume of the unit sphere in Rd.

This asymptotic formula holds even if r = r(m) is allowed to go down to zero

no faster than
(
log
∏

j∈Q+
mj

)−α

, with α < 1
2 .

1.2.10. Slanted strips in the quadratic case.

Proposition 1.5. Let d = 2, and put

Ω̃t =
{
(ν1, ν2) ∈ (i[1,∞))2 : t ≤ |ν1| ≤ 2t, a|ν1|+ b ≤ |ν2| ≤ a|ν1|+ c

}
,

with a > 0, c > b fixed and t large. Then

Ñr(Ω̃t) ∼
14

3π2

√
|DF | a(c− b)t3 (t → ∞) .
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Proposition 1.5 shows that we see infinitely many points ν� in a slanted direction.
This slanted strip becomes a sector in λ-space. It opens up with a speed of the
order |λ1|1/2.

1.2.11. Density. Theorem 1.3 directly implies the density results in Propositions
3.7 and 3.8 in [2], without the restriction χ = 1 and ξ = 0. The idea is that we
take |E| = d−1 in Theorem 1.3 and use BE to restrict (λ�,j)j∈E to a tiny set with
positive Plancherel measure. The remaining coordinate of λ� is allowed to range
through a set in R with increasing Plancherel measure. This shows that there are
infinitely many � with (λ�,j)j∈E ∈ BE .

If one of the factors [Aj , Bj ] of BE is contained in the interval [λ0,
1
4 ) of ex-

ceptional eigenvalues, the Plancherel measure of BE × Ct is zero. The asymptotic
formula cannot give the absence of � with λ�,j ∈ [Aj , Bj ], but only that the den-

sity is small in comparison with Ṽ1(BE × Ct). We note that we project here along
a coordinate axis in the natural product structure of Rd as the product of the
archimedean completions of F .

1.2.12. Weighted Weyl laws. In this subsection we list some consequences of the
asymptotic formula in the λ-parameter. We have that the asymptotic formula
holds for Ωt = [−t, t]d. This implies

Proposition 1.6. ∑
�, |λ�,j |≤t for all j

|cr(�)|2 ∼ 2
√
|DF |
πd

td (t → ∞) .

This result confirms that there are infinitely many cuspidal � for each choice of
χ and ξ satisfying (8). With the normalization of the cr(�) that we have chosen,
the density does not depend on the order of the Fourier coefficients that we use.

Proposition 1.7. Let Q+ �Q− be a partition of the real places of F . Then∑
�,
∑

j |λ�,j | ≤ t

λ�,j ≤ 0, j ∈ Q−
λ�,j > 0 , j ∈ Q+

|cr(�)|2 ∼ 2
√
|DF |

d! (2π)d
td.

This variant is Corollary 3.4 in [2]. There we considered only the trivial character
of Γ0(I) and the trivial central character. Proposition 6.3 implies that all results
in [2] extend to the more general context in this paper.

1.2.13. Sectors in the quadratic case.

Proposition 1.8. Let d = 2, and fix 0 < p < q, α > 1
2 . For t ≥ 5

4 (1 + p−1) put

Ωt =

{
(λ1, λ2) ∈ [0,∞)2 : t ≤ λ1 ≤ t+ tα , pλ1 ≤ λ2 ≤ qλ1

}
.

Then

Nr(Ω̃t) ∼
q − p

4
t1+α (t → ∞) .
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2. Sum formula

The basis of the result in this paper is the Kuznetsov type sum formula in
Theorem 3.21 of [3], which we recall in §2.1. In §2.2 we apply it with test functions
adapted to the present purpose.

2.1. Statement of the sum formula. The sum formula as stated in [3] depends
on two non-zero Fourier term orders r, r′ ∈ O′ � {0}. For the end results of this
paper it suffices to take r′ = r. In a later paper we intend to work with different
Fourier term orders and take Hecke operators into account. Then we’ll need to
consider r �= r′ as well.

The sum formula states an equality with four terms, all depending on a given
test function. We first state the sum formula and will next recall the description of
the ingredients.

Theorem 2.1 (Spectral sum formula.). For any test function ϕ ∈ Tξ(τ, a) the

sums and integrals Ñr(ϕ), Eisr(ϕ), P̃l(ϕ) and Kr
χ

(
Bs

ξϕ
)
converge absolutely, and

(32) Ñr(ϕ) + Eisr(ϕ) =
2
√
|DF |

(2π)d
P̃l(ϕ) + Kr

χ

(
Bs

ξϕ
)
.

We work with a fixed character χ of Γ and a compatible central character given
by ξ ∈ {0, 1}d; so condition (8) is satisfied. Fixed is r ∈ O′ � {0}. Also fixed are
the parameters τ ∈

(
1
4 ,

1
2

)
and a > 2, which determine the space of test functions.

2.1.1. Test functions. The space Tξ(τ, a) of test functions consists of functions with
the following product structure:

(33) ϕ(ν1, . . . , νd) =
∏
j

ϕj(νj),

where each ϕj is a function on a set

(34) {z ∈ C : |Re z| ≤ τ} ∪
{

b−1
2 : b ≡ ξj mod 2, b ≥ 2

}
satisfying the following conditions:

(T1) ϕj is holomorphic on |Re z| ≤ τ ,

(T2) ϕj(z) � (1 + |z|)−a
on the domain of ϕj ,

(T3) ϕj(−z) = ϕj(z) on the strip |Re z| ≤ τ .

2.1.2. Spectral side. On the left hand side of (32) are two terms connected to the

spectral decomposition of L2
ξ(Γ0(I)\G,χ). The first term Ñr(ϕ) is the sum defined

in (13). Its convergence already implies the existence of infinitely many cuspidal

automorphic representations in L2,cusp
ξ (Γ0(I)\G,χ).

The orthogonal complement in L2
ξ(Γ0(I)\G,χ) of the cuspidal subspace gives

rise to the term Eisr(ϕ). Since r is non-zero, the constant functions, in the case
χ = 1, ξ = 0, do not contribute to the sum formula. We have

(35) Eisr(ϕ) =
∑
κ∈Pχ

cκ
∑

μ∈Λκ,χ

∫ ∞

−∞

∣∣Dr
ξ(κ, χ; it, iμ)

∣∣ϕ(it+ iμ) dt.

Here Pχ is a set of representatives of cuspidal orbits suitable for the character χ.
For each κ, there is a lattice Λκ,χin the hyperspace

∑
j xj = 0 in Rd. In it + iμ,

the real number t is identified to (t, t, . . . , t) ∈ Rd. The positive constants cκ come
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from the spectral formula for the continuous spectrum. The Dr
ξ(κ, χ; it, iμ) are

normalized Fourier coefficients of Eisenstein series. See (2.31) of [3]. There is a
positive real number q such that

(36) Dr
ξ(κ, χ; it, iμ) �F,I,r

{
(log(2 + |t|))q + (logmaxj(|μj |+ 1))

q
if μ �= 0,

(log(2 + |t|))q if μ = 0.

This is discussed in Proposition 5.2 in [2] and §4.2 in [3], with q = 7.
Actually, it is conceivable that for some fields F , some ideals I and some cusps

κ, there might be μ ∈ Λκ,χ with μ �= 0 and maxj |μj | < 1. This is not intended in
[2]. The logarithms arise in (71) and (72) of [2]. Checking the reasoning there, we
see that if the bounds for Z(s, λ, τ ) are negative, they can be replaced by 0. Thus,

we can replace
(
logmaxj

(
|μj |+ 1

))7
in (36) by

(
log
(
maxj(|μj |+ 2)

))7
.

There is another reformulation. Put xi = t + μi. Then t = 1
d

∑
j xj and μi =

xi − 1
d

∑
j xj . This implies that we have |t| �

∑
j |xj | and ‖μ‖ �

∑
j |xj |. Thus

we arrive at

(37) Dr
ξ(κ, χ; it, iμ) �F,I,r

(
log
(
2 +
∑
j

|t+ μj |
))7

.

2.1.3. Delta term. The right hand side of (32) arises from geometrical considera-
tions. For the purpose of this paper the first term is the principal one.

2.1.4. Bessel transformation. The last term in (32) contains a Bessel transform of
the test function. It depends on r ∈ O′ � {0} by s = (sign rj)j ∈ {1,−1}d. Here
we view elements of F as elements of Rd =

∏
j Fj . The Bessel transformation has

a product form:

Bs
ξϕ(t) =

∏
j

B
sj
ξj
ϕj(tj),(38)

Bη
0ϕ(t) := − i

2

∫
Re ν=0

ϕ(ν)
J2ν(|t|)− J−2ν(|t|)

cosπν
ν dν

+
∑

b≥2, b≡0 mod 2

(−1)b/2(b− 1)ϕ
(
b−1
2

)
Jb−1(|t|),

Bη
1ϕ(t) := −η

2 sign(t)

∫
Re ν=0

ϕ(ν)
J2ν(|t|) + J−2ν(|t|)

sin πν
ν dν

− iη sign(t)
∑

b≥3, b≡1 mod 2

(−1)(b−1)/2(b− 1)ϕ
(
b−1
2

)
Jb−1(|t|).

These Bessel transforms converge absolutely for any test function and provide

us with functions f = Bs
ξϕ on (R∗)d that satisfy

(39) f(t) �
∏
j

min
(
|tj |2τ , 1

)
.

2.1.5. Sum of Kloosterman sums. The Kloosterman sums for the present situation
are

(40) Sχ(r
′, r; c) =

∑∗

a mod (c)

χ(a)e2πiTrF/Q((ra+r′ã)/c),



3854 ROELOF W. BRUGGEMAN AND ROBERTO J. MIATELLO

with r, r′ ∈ O′ and c ∈ I � {0}. This is well defined if χ is a character of (O/(c))∗,
in particular for the character χ of (O/I)∗ if c ∈ I. For each a ∈ O that is invertible
modulo (c), an element ã is picked such that aã ≡ 1 mod (c).

For functions f satisfying (39) the sum

(41) Kr
χ(f) :=

∑
c∈I�{0}

|N(c)|−1Sχ(r, r; c)f
(

4π|r|
c

)

converges absolutely. This holds in particular for f = Bs
ξϕ. By 4π|r|

c we mean the

element of (R∗)d given by the d embeddings F → R of r and c.
A trivial estimate of the Kloosterman sums is |Sχ(r′, r; c)| ≤ |N(c)|. As discussed

in §2.4 of [3], there is a Weil type estimate. If the ideal (c) has a representation
(c) =

∏
p
pvp(c) in prime ideals, then

(42) |Sχ(r′, r; c)| �δ |N(rr′)|1/2
∏
p|/I

(Np)vp(c)/2+δ
∏
p|I

(Np)vp(c)+δ

for each δ > 0. This is not the best possible estimate, however it is reasonably
simple and will do for our purpose.

2.2. Application of the sum formula. In view of the term Ñr(ϕ) in the sum
formula, we want to choose the test function ϕ such that it approximates the
characteristic function of a compact set Ω̃ in the space Yξ in which the spectral
parameters ν� take their values. In this paper we first choose a test function
approximating the delta distribution at q ∈

∏
j∈Q Yξj for a non-empty subset Q of

real places. At the other archimedean places we leave ϕj free for the moment in

the space of local test functions. The local factor ϕj for j ∈ Q such that qj =
b−1
2 ,

b ∼= ξj mod 2, b ≥ 2, can be chosen such that practically ϕj is the delta distribution
at ϕj . For qj ∈ [0, ν0)∪i[0,∞) the choice is more delicate. It does not suffice that ϕj

approximates the delta distribution at qj . The terms Eisr(ϕ) and Kr(Bs
ξϕ) should

have good estimates. Under the additional assumption that qj �∈ (0, ν0]∪ i [0, 1], the
choice that worked best is a sharp Gaussian function, similar to, but slightly simpler
than, the test function used in, for instance, [11] and [12]. For qj ∈ (0, ν0] ∪ i [0, 1)
we have not found a test function that works well.

Lemma 2.2. Let {1, . . . , d} = E � Q+ � Q− with Q := Q+ ∪ Q− �= ∅. For

q ∈
(
R�
(
− 1

2 ,
1
2

))Q− × (iR� i(−1, 1))Q+ put ϕ(q, ν) =
∏

j ϕ(qj , νj), where ϕj(q, ·)
is an arbitrary local test function satisfying the conditions in §2.1.1 if j ∈ E, and
where for j ∈ Q,

(43)

ϕj(q, ν)

j ∈ Q+

⎧⎨⎩
√

U
π

(
eU(q−ν)2 + eU(q+ν)2

)
if |Re ν| ≤ τ

0 elsewhere

j ∈ Q−

{
1 if ν = q or − q

0 elsewhere

.
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Then there are constants t0 > 0, ρ ∈ (1− τ, 1) such that for U ≥ 1 and A > 2,

Ñr
(
ϕ(q, ·)

)
=

2
√
|DF |

(2π)d
P̃l (ϕ(q, ·))(44)

+OF,I,r,t0,t1,A

(
NE(ϕE)e

t0U|Q+|
∏

j∈Q+

|qj |ρ
∏

j∈Q−

|qj |−A

)
,

where ϕE =
⊗

j∈E ϕj and

NE(ϕE) =
∏
j∈E

Nj(ϕj),(45)

Nj(ϕj) = sup
ν, 0≤Re ν≤τ

|ϕ(ν)|(1 + |ν|)a +
∑

b≡ξj(2), b≥2

ba
∣∣ϕj

(
b−2
2

)∣∣ .
Note that ϕj chosen in (43) is a local test function for any choice of the param-

eters a > 2 and τ ∈
(
1
4 ,

1
2

)
.

By Theorem 2.1 it suffices to estimate Eisr(ϕ(q, ·)) and Kr
χ(B

s
ξϕ(q, ·)) by the

error term in (44). This we carry out in the remainder of this subsection.

2.2.1. Bessel transforms. For the factors j ∈ E we cannot do better than to apply
Lemma 3.12 in [3]. This gives

(46) B
sj ,s

′
j

ξj
ϕj(t) �E min

(
|t|2τ , 1

)
.

The subscript E in �E , OE and oE indicates not only dependence on the choice
of the set E, but also on the choice of the test function ϕE :=

⊗
j∈E ϕj . Here and

in the sequel, this dependence goes via the factor NE(ϕE) in (45).

For j ∈ Q− we first consider y ≤ 2
√
n, with n ∈ N. Then |Jn(y)| ≤ (y/2)ne

1
4
y2

n! �

y2τ n
1
2
n−τen

(n+1)n+1
2 e−n

� y2τ
(

ne4

(n+1)2

) 1
2n

n− 1
2−τ �b

y2τ

nb for each b > 0. For y ≥
√
n,

|Jn(y)| ≤ 1. Hence, for j ∈ Q− and ±qj ∈ ξj−1
2 + N,

(47) B
sj
ξj
ϕj(q; t) �A min

(
|q|−A1 |t|2τ , |q|

)
for each A1 > 0.

If |qj | �∈ ξj−1
2 + N, then B

sj ,sj
ξj

ϕj(t) = 0.

The case j ∈ Q+ takes more work. The function ϕj(q, ν) is non-zero only for
|Re ν| ≤ τ . We need an estimate like (47), in which the dependence on q is explicit.

We may use (3.64) in [3]:

(48) B
sj
ξj
ϕj(q; t) = −i (isj sign t)

ξj

∫
Re ν=τ

ϕj(q, ν)
νJ2ν(|t|)

cosπ
(
ν − ξj

2

) dν.
We proceed as in §4.2 of [2], and apply the integral representation in (41) of loc.

cit., with α = Re ν = τ and γ ∈
(
τ, 12
)
. As in [2], p. 700, this leads to the estimate

that for all |t| > 0:

(49) J2ν(|t|) � |t|2τeπ| Im ν| (1 + | Im ν|)
1
2−γ−τ .
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We obtain for q ∈ iR:

B
sj
ξj
ϕj(q; t) � U1/2

∫ ∞

−∞

∑
±

eU Re(ix+τ±q)2 |t|2τ |τ + ix|(50)

· (1 + |x|)
1
2−τ−γ

dx

� |t|2τU1/2

∫ ∞

−∞
eUτ2−U(x−|q|)2 (1 + |x|)

3
2−γ−τ dx

� |t|2τeUτ2

∫ ∞

0

e−x2
(
1 + |q|+ x√

U

) 3
2−γ−τ

dx

� |t|2τeUτ2

∫ ∞

0

e−x2

(
(1 + |q|)

3
2−γ−τ +

(
xU−1/2

) 3
2−γ−τ

)
dx

� |t|2τeUτ2

(
(1 + |q|) 3

2−γ−τ + U− 3
4+

γ
2 +

τ
2

)
� |t|2τeUτ2

(1 + |q|)ρ1 ,

where ρ1 = 3
2 − γ − τ ; so ρ1 ∈

(
1− τ, 32 − 2τ

)
⊂
(
1
2 , 1
)
.

The factor eUτ2

needs attention since it becomes large for large values of U . We
carry along this factor and will compensate for it later.

These estimates are good for small values of |t|. For large |t|, we use

(51) J2ν(|t|) � eπ| Im ν| for Re ν = 0;

see (5.44) in [3], with σ = 0.

B
sj
ξj
ϕj(q, t) � U1/2

∫
Re ν=0

∣∣∣eU(ν+q)2 + eU(ν−q)2
∣∣∣ |ν| |dν|

�
∫ ∞

−∞
e−x2
∣∣∣xU−1/2 + |q|

∣∣∣ dx � 1 + |q| � |q|.

Thus we have

(52) Bs
ξϕ(q; t) �A1

∏
j

(
aj |tj |2τ , bj

)
,

with

(53)

aj bj

Nj(ϕj) Nj(ϕj) j ∈ E

|q|−A1 |q| j ∈ Q−

e
1
2 τ

2U |q|ρ1 |q| j ∈ Q+

.

2.2.2. Kloosterman term. We estimate the sum of Kloosterman sums by the sum
of the absolute values of the terms:

(54) Kr,r
χ

(
Bs,s

ξ ϕ(q; ·)
)
�
∑

c∈I�{0}

|Sχ(r, r; c)|
|N(c)|

∏
j

min

(
aj

(
4π|rjr′j |1/2

|cj |

)2τ

, bj

)
,

with aj and bj as in (53).
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For the Kloosterman sums, we use the Weil bound, as stated in (42). This bound
depends only on the ideal (c), so we decompose the sum as

�r,δ

∑′

(c)⊂I

∏
p|/I

Np
vp(c)(δ−1/2)

∏
p|I

Np
vp(c)δ

·
∑
ζ∈O∗

∏
j

min
(
pj |ζj |−2τ , qj

)
,

with pj = aj(4π|rj |)2τ , qj = bj , (c) =
∏

p prime

p
vp(c).

The prime denotes that the zero ideal is excluded. We can take δ > 0 as small as
we want.

We apply Lemma 2.2 in [3] with α = 2τ , β = 0 and yj = c−1
j . Thus, we estimate

the sum over ζ ∈ O∗ by

�
(
1 +
∣∣log |N(c)|+ 1

2τ
log

Q

P

∣∣)d−1

min
(
P|N(c)|−2τ ,Q

)
,

P =
∏
j

pj = (4π)2τd|N(r)|2τe 1
2 τ

2U|Q+|NE(ϕE)
∏

j∈Q+

|qj |ρ1

∏
j∈Q−

|qj |−A1 ,

Q =
∏
j

qj = NE(ϕE)
∏
j∈Q

|qj |,

P

Q
= (4π)2τde

1
2 τ

2U|Q+||N(r)|2τ
∏

j∈Q+

|qj |ρ1−1
∏

j∈Q−

|qj |−A1−1.

We already have a small quantity δ. We employ it also for the logarithms. We
use the fact that for c ∈ O � {0} the |N(c)| stay away from zero:∣∣∣∣log |N(c)| + 1

2τ log Q
P

∣∣∣ ≤ |log |N(c)||+ 1
2τ

∣∣log Q
P

∣∣
�δ |N(c)|δ/(d−1) +max

((
Q
P

)δ/(d−1)
,
(
P
Q

)δ/(d−1)
)
,∣∣∣log |N(c)| + 1

2τ log Q
P

∣∣∣d−1

� |N(c)|δ +max

((
Q
P

)δ
,
(

P
Q

)δ)
,(

1 +
∣∣log |N(c)|+ 1

2τ log Q
P

∣∣)min
(
P|N(c)|−2τ ,Q

)
�r e

1
2 τ

2U|Q+|(1+δ)NE(ϕE)|N(c)|−2τ(1−δ)

·
∏

j∈Q+

|qj |ρ+(1−ρ1)δ
∏

j∈Q−

|qj |−A1+(A1−1)δ .

We have assumed that the first factor in the minimum is the essential one for our
purpose.

Let us define: t0 = 1
2τ

2(1 + δ), τ1 = τ (1 + δ), ρ = ρ1 + (1 − ρ1)δ, and A =

A1+(1−A1)δ. We take A1 = −3 and δ > 0 sufficiently small such that 1
4 < τ1 < 1

2 ,
1 − τ < ρ < 1, A > 2. We find the following estimate for the sum of Kloosterman
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sums in (54):

�r,δ et0U|Q+|NE(ϕE)
∑′

(c)⊂I

∏
j∈Q+

|qj |ρ

·
∏

j∈Q−

|qj |−A
∏
p|/I

Np
vp(c)(δ−1/2−2τ1)

∏
p|I

Np
vp(c)(δ−2τ1)

� et0U|Q+|NE(ϕE)
∏

j∈Q+

|qj |ρ
∏

j∈Q−

|qj |−A

·
∏
p|/I

1

1−Npδ−1/2−2τ1

∏
p|I

1

1−Npδ−2τ1
.

Under the additional assumption on δ that 2τ1 +
1
2 − δ > 1, the product converges,

and we have obtained

Kr,r
χ

(
Bs,s

ξ ϕ(q; ·)
)
�F,I,r,δ et0U|Q+|NE(ϕE)

∏
j∈Q+

|qj |ρ
∏

j∈Q−

|qj |−A,

with the size of the error term in (44).
This is the main place where the dependence on the ideal I ⊂ O determining

Γ = Γ0(I) ⊂ SL2(O) enters the estimates. We leave this dependence implicit.

2.2.3. Eisenstein term. We still have to estimate Eisr(ϕ(q, ·)). The definition in
(35) shows that Eisr(ϕ(q, ·)) = 0 if Q− = 0.

For j ∈ E, we have ϕj(ν) �E

(
1 + |ν|2

)−a
. In view of (37) it suffices to estimate∑

κ∈Pχ

∑
μ∈Λκ,χ

∫ ∞

−∞
|N(r)|2δNE(ϕE)l(q, t+ μ) dt, with

l(q, x) =
∏
j∈E

(
1 + x2

j

)δ−a/2

·
∏

j∈Q+

U1/2
(
1 + x2

j

)δ (
e−U(xj−|qj |)2 + e−U(xj+|qj |)2

)
.

In §5.3 of [2], we have replaced the sum over μ ∈ Λκ,1 by an integral over the

hyperplane
∑d

j=1 xj = 0. Since in [2] the quantity corresponding to U went down
to zero, there was no problem there. Here U may be large, and we have to take a
closer look at the relation between the sum and the integral.

The integral gives a contribution, under the assumption a
2 − δ > 1:∫

Rd

l(q, x) dx �
∏
j∈E

∫ ∞

−∞
(1 + x2)δ−a/2 dx(55)

·
∏

j∈Q+

U1/2

∫ ∞

−∞
(1 + x2)δe−U(x−|q|)2 dx

�
∏
j∈E

1
∏

j∈Q+

∫ ∞

−∞

(
1 + |qj |2 + U−1x2

)δ
e−x2

dx

�
∏

j∈Q+

(1 + |qj |)2δ
(
1 + 1

U

)
�
∏

j∈Q+

|qj |2δ.
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The difference between the value at μ ∈ Λκ,χ and the integral over μ+V , where
V is a compact neighborhood of 0, produces an error estimated by the gradient of
l(q, ·):

∂

∂xj
l(q, x) �a,δ l(q, x) ·

⎧⎨⎩
|xj |
1+x2

j
if j ∈ E,(

|xj |
1+x2

j
+ U |xj − |qj ||

)
if j ∈ Q+.

The difference between the sum and the integral is estimated by∫
Rd

(∑
m∈E

O(1) +
∑

m∈Q+

(1 + U |xm − |q|m|)
)
l(q, x) dx.

The terms with m ∈ E can be estimated as in (55). For a term with m ∈ Q+,

�
∫ ∞

−∞
(1 + U |xm − |q|m|)U1/2(1 + x2

m)e−U(x−|qm|)2 dx

·
∏
j∈E

O(1)
∏

j∈Q+�{m}
|qj |2δ

�
∏

j∈Q+�{m}
|qj |2δ

·
∫ ∞

−∞

(
1 + U1/2|x|

) (
1 + |qm|2 + U−1x2

)δ
e−x2

dx

� U1/2
∏

j∈Q+

|qj |2δ .

Thus, we obtain

(56) Eisr (ϕ(q, ·)) �F,I,r,δ NE(ϕE)U
1/2
∏

j∈Q+

|qj |2δ .

Since δ > 0 can be as small as we desire, this bound is easily absorbed into the
error term in (44).

2.2.4. Delta term.

Lemma 2.3. Let p̃lj as in (16). For E, Q+, Q− and ϕ(q, ·) as in Lemma 2.2,

P̃lξ(ϕ(q, ·)) =
∏
j∈E

P̃lξj (ϕj)
∏
j∈Q

2p̃lj(qj)(57)

+

{
U−1/2NE(ϕE)|Q+|

∏
j∈Q |qj |

minj∈Q+
|qj | if Q+ �= ∅,

0 if Q+ = ∅.

Proof. Since

P̃lξj (ϕj(q, ·)) =
{
2|q| if 2q ≡ ξj − 1 mod 2,

0 otherwise,

we have to consider the discrepancy between P̃lξj (ϕj(q, ·)) and 2p̃lj(qj) for j ∈ Q+.

The function t �→ p̃lj(it) is even and smooth on R. If ξj = 0, then p̃lj(0) = 0, and

if ξj = 1, then p̃lj(0) =
1
π . We have plj(it) ∼ |t| as |t| → ∞, and d

dtplj(it) = O(1)
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for t ∈ R. Then

P̃lξj (ϕj(qj , ·))− 2p̃lj(qj)(58)

= 2

√
U

π

∫ ∞

0

(
e−(x−|qj |)2 + e−(x+|q|)2

)
p̃lj(ix) dx− 2p̃lj(qj)

= 2

√
U

π

∫ ∞

−∞
e−U(x−|qj |)2 p̃lj(x) dx− 2p̃lj(qj)

=
2√
π

∫ ∞

−∞
e−x2
(
p̃lj

(
qj +

ix√
U

)
− p̃lj (qj)

)
dx.

We write p̃lj

(
qj +

ix√
U

)
− p̃lj (qj) = U−1/2x d

dϑ p̃lj(iϑ) for |x| ≤ b, with b ≥ 1, and

ϑ between |qj | and |qj |+ x√
U
. Then

P̃lξj (ϕj(qj , ·))− 2p̃lj(qj)

�
∫ b

−b

e−x2

O(1)U−1/2|x| dx+

∫
|x|≥b

e−x2

O
(
|qj |+ |x|U−1/2

)
dx

� U−1/2 + |qj |
e−b2

b
+ U−1/2e−b2 .

Here we have used the fact that for b ∈ R and l ≥ 0,

(59)

∫ ∞

b

|x|le−x2

dx �l

{
1 if b ≤ 1,

bl−1e−b2 if b ≥ 1,

which can be checked by partial integration and induction.

We assume that U ≥ e2, and choose b = b(q, U) =
√
log |qj |+ 1

2 logU , which

satisfies b ≥ 1. This gives

P̃lξj (ϕj(qj , ·))− 2p̃lj(−iqj) � U−1/2.

Furthermore, we have

p̃lj(qj) � |qj | (j ∈ Q+),(60)

P̃lξj (ϕj(qj , ·)) � U−1/2 + |qj | � |qj | (j ∈ Q+),

p̃lξj (ϕj(qj , ·)) � |qj | (j ∈ Q−),

P̃lξj (ϕj) � Nj(ϕj) (j ∈ E).

These local estimates imply that∏
j∈Q+

P̃lξj (ϕj(qj , ·))−
∏

j∈Q+

2p̃lj(qj) �
∑

m∈Q+

U−1/2
∏

j∈Q+, j �=m

|qj |

� U−1/2|Q+|
∏

j∈Q+
|qj |

minj∈Q+
|qj |

.

Hence we have shown the estimate in (57). �
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We now fix A > 2. From here on we view the quantities t0 > 0 and ρ ∈ (1− τ, 1)
also as absolute quantities, like τ and a in the sum formula. We apply Lemmas 2.2
and 2.3 to obtain:

Proposition 2.4. For E, Q+, Q−, ϕ(q, ·) as in Lemma 2.2, with U ≥ e2,

Ñr (ϕ(q, ·)) = 2|Q|+1
√
|DF |

(2π)d
P̃lE(ϕE)

∏
j∈Q

p̃lj(qj)(61)

+OF,I,r

(
NE(ϕE)e

t0U|Q+|
∏

j∈Q+

|qj |ρ
∏

j∈Q−

|qj |−A

)

+O

(
NE(ϕE)U

−1/2|Q+|
∏

j∈Q |qj |
minj∈Q+

|qj |

)
.

This is the basis for the results in the next sections.

The main term in (61) can be estimated by OF

(
NE(ϕE)

∏
j∈Q |qj |

)
. This im-

plies

(62) Ñr(ϕ(q, ·)) �F,I,r,U NE(ϕE)
∏
j∈Q

|qj |.

3. Upper bound

The next step is to derive by integration of (62) an upper bound for Ñr(f) for
functions of the form f = ϕE⊗A := ϕE⊗χA, where χA is the characteristic function

of a set A. To integrate, we fix a non-negative measure dQ on ((0,∞) ∪ i[0,∞))
Q

of the form dQq =
⊗

j∈Q djqj :

(63)

∫
h(q) djq =

∫ ∞

0

h(it) dt+

∫ ν0

0

h(x) dx+
∑

β>0, β≡ ξj−1

2 (1)

h(β).

We shall use dRq =
⊗

j∈R djqj for any set R of real places.

We define for b ∈ R and for bounded measurable sets B ⊂ (R ∪ iR)
R
with R ⊂ Q:

Ṽb(B) =

∫
B

∏
j∈R

p(qj)
b dRq,(64)

p(qj) =

{
1 if qj ∈ (0, ν0] ∪ i[0, 1),

|qj | otherwise.
(65)

The set R of real places is not visible in the notation Ṽb and should be clear from
the set B. Note that with b = 1 this definition agrees with (18).

For our purpose it suffices to estimate Ñr(ϕ⊗A) for bounded sets A of the form

A = A+ ×A0 ×A−, A+ ⊂ (i[1,∞))
R+ ,(66)

A0 = ((0, ν0) ∪ i[0, 1))R0 , A− ⊂
∏

j∈R−

(
ξj+1
2 + N0

)
,

for any partition Q = R+ � R0 � R−. This choice reflects that q in (62) has no
factors in (0, ν0)∪ i[0, 1). We have failed to find a test function that allows the sum
formula to see sharply in this region.
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The aim is to estimate Ñr(ϕE ⊗A) by NE(ϕE)Ṽ1(A). Given perfect knowledge
of the spectral set {ν�}, one can choose A+ as the union of tiny boxes around

many ν�,A+
= (ν�,j)j∈A+

in such a way that Nr(ϕE ⊗ A) is large while Ṽ1(A)
stays arbitrarily small. This shows that we need a further assumption on the factor
A+.

Let dist be the distance along i[0,∞) ∪ (0, ν0) given by

(67) dist (ν, q) =

{
|q − ν| if q, ν ∈ i[0,∞) or q, ν ∈ (0, ν0),

|q|+ |ν| otherwise.

For ε > 0 and ν ∈ (i[0,∞) ∪ (0, ν0))
B
, where B is a set of real places,

(68) A(ν, ε) =
{
q ∈ (i[0,∞) ∪ (0, ν0))

B : dist (qj , νj) ≤ ε
2 for any j ∈ B

}
.

Again, the set B should be clear from the context.

Definition 3.1. Let w, ε > 0, and let B be a set of real places. A (w, ε)-blunt

subset H ⊂ (i[0,∞) ∪ (0, ν0])
B

is a dBq-measurable set such that

(69)

∫
A(νR,β)∩H

dBq ≥ w volBA(ν, β) for all ν ∈ H and all β ∈ (0, ε] .

By volB we mean the volume for dB .

Note that (w, ε)-bluntness implies (w, ε1)-bluntness for any ε1 ∈ (0, ε). Boxes
with size at least ε in all coordinate directions are (1, ε)-blunt.

Proposition 3.2. Let A = A+ × A0 × A− be as in (66). Suppose that A+ is
(w, ε)-blunt for some w > 0 and ε ∈ (0, e−1]. Then for any ϕE,

(70) Nr(ϕE ⊗A) �F,I,r w−1NE(ϕE)Ṽ1(A).

Proof. We apply Proposition 2.4 with E replaced by Ê = E ∪R0, Q± replaced by
R±, and the test function ϕ̂(q, ·) chosen as follows:

j ∈ E R+ ∪R− R0

ϕ̂j = ϕp ϕj(q, ·) with U ≥ e2

{
eν

2

if |Re ν| ≤ τ,

0 otherwise;

ϕp(ν) =

{
(p2 − ν2)−a/2 if |Re ν| ≤ τ,

(p2 + ν2)−a/2 otherwise,
(71)

with some fixed p > τ and q ∈ (i[1,∞))
R+ ×

∏
j∈R−

(
ξj+1
2 + N0

)
. We put

(72) ϕp,E(ν) =
⊗
j∈E

ϕp(νj).

From (62) we obtain

Ñr(ϕ̂(q, ·)) �F,I,r NE(ϕp,E)
∏

j∈R+∪R−

|qj |,
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where we have used the fact that (45) impliesNj(ϕj) = O(1) for j ∈ R0. Integration
over q gives

(73)

∫
A+×A−

Ñr(ϕ̂(q, ·))dR+∪R−q �F,I,r Ṽ1(A+ ×A−).

We have omitted NE(ϕp,E) since it is O(1) for the fixed choice of p.
Now we note that for a given ν ∈ Yξ we have ϕ̂(q, ν) ≥ 0. With the obvious

meaning (νj)j∈B of νB for sets B of real places, we have∫
A+×A−

ϕ̂(q, ν) dR+∪R− =

∫
A+×{νR−}

ϕ̂(q, ν�) dR+∪R−q

≥
∫
A(νR+

,ε)∩A+

ϕp,E(νE)
∏
j∈R0

eνj

∏
j∈R−

1
∏

j∈R+

ϕj(qj , νj) dR+
q

≥ ϕp,E(νE)e
−|R0|

(√
U
π e

−Uε2
)|R+| ∫

A(νR+
,ε)∩A+

dR+
q

≥ wϕp,E(νE)e
−|R0|
(
εU1/2e−Uε2

π1/2

)|R+|
.

With the choice U = ε−2,

(74)

∫
A+×A−

ϕ̂(q, ν) dR+∪R− ≥ we−|R0|π−|R+|/2ϕp,E(νE) .

Since ϕ̂(q, ·) ≥ 0 on Yξ, we can reverse the order of summation and integration
in ∫

A+×A−

Ñr(ϕ̂(q, ·)) dR+∪R−q =
∑
�

|cr(�)|2
∫
A+×A−

ϕ̂(q, ν�) dR+∪R−q.

Hence

Ñr(ϕE ⊗A) =
∑

�, ν�,Q∈A

|cr(�)|2 ϕp,E(ν�,E)

≤ e|R0|

w
π|R+|/2

∑
�, ν�∈A

|cr(�)|2
∫
A+×A−

ϕ̂(q, ν) dR+∪R−q

�d
1

w

∫
A+×A−

Ñr(ϕ̂(q, ·)) dR+∪R−q.

With (73),

(75) Ñr(ϕE ⊗A) �F,I,r
1

w
Ṽ1(A),

where we have used the fact that Ṽ1(A0) = O(1). �

4. Asymptotic formula, first stage

Now we start a more precise approximation of Nr(ϕE × C), where ϕE is still
an arbitrary test function and where C is a product C+ × C−, with bounded

closed sets C+ ⊂ (i[1,∞))Q+ and C− ⊂ [ 12 ,∞)Q− . Only the intersection C− ∩
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j∈Q−

(
ξj+1
2 + N0

)
matters for the present purpose, not C− itself. For C+ we

define, with c > 0,

C+(0) = C+ ,(76)

C+(c) =
{
ν ∈ (i[0,∞) ∪ (0, ν0])

Q− : A(ν, c) ∩ C+ �= ∅
}

,

C+(−c) =
{
ν ∈ C+ : A(ν, c) ⊂ C+

}
,

C+[c] = C+(c)� C+(−c) .

Proposition 4.1. Let r ∈ O′ � {0}. Let a > 2 and τ ∈ [ 14 ,
1
2 ] as in Theorem 2.1,

and decompose the set of real places of F as E �Q+ �Q− with Q = Q+ ∪Q− �= ∅.
There are t0 > 1, D > 0, ρ ∈ (1 − τ, 1) and A > 2 such that for any U > De2

and any ε ∈ [(DU )1/2, e−1], for all products ϕE =
⊗

j∈E ϕj of local test functions

and for all bounded dQ-measurable sets C = C+ × C−, C+ ⊂ (i[1,∞))
Q+ and

C− ⊂ [ 12 ,∞)Q− ,

(77) Ñr(ϕE × C) =
2
√
|DF |

(2π)d
P̃l(ϕE ⊗ C) +NE(ϕE)OF,I,r(E(C,U, ε)),

where if Q+ = ∅,
(78) E(C,U, ε) = Ṽ−A(C

−),

and if Q+ �= ∅,

E(C,U, ε) = et0U|Q+|Ṽρ(C
+)Ṽ−A(C

−) + e−Uε2 Ṽ1(C)(79)

+ Ṽ (C+[2ε]× C−) + U−1/2Ṽ1(C).

At this point we can derive the statement in example (iv) in the Introduction.
We denote by Sb(Γ, χ) the space of holomorphic cusp forms on the product Hd of d
copies of the upper half plane for the group Γ with character χ and weight b ∈ Nd

satisfying bj ≥ 1 and bj ≡ ξj mod 2 for all j.

Corollary 4.2. The space Sb(Γ0(I), χ) is non-zero for all but finitely many weights
in the set

{
b ∈ Nd : bj ≥ 2 , bj ≡ ξj mod 2 for all j

}
.

Proof. We apply Proposition 4.1 with E = Q+ = ∅, and C = C− equal to the sin-

gleton Cb =
{( bj−1

2

)
j

}
. Then P̃l(Cb) =

∏d
j=1

bj−1
2 and Ṽ−A(Cb) =

∏d
j=1

( bj−1
2

)−A
.

We obtain (6) with the constant C equal to 2
√
|DF |(2π)−d.

If we take r totally positive, the � entering Ñr(Cb) form an orthogonal system of
cuspidal representations for which each factor �j is a discrete series representation
with lowest weight bj . (See (2.29) in [3].) Thus these � correspond to an orthogonal

basis of Sb(Γ0(I), χ). So Ñr(Cb) can be non-zero only if Sb(Γ0(I), χ) �= {0}. �

4.1. Proof of Proposition 4.1. The proof of the proposition is rather long and
will require some intermediate steps that we shall give in a series of lemmas.

4.1.1. Integration. We integrate (61) over C. Taking into account (15), we obtain∫
c

Ñr(ϕ(q, ·)) dQq −
2
√
|DF |

(2π)d
P̃lE(ϕE)P̃lQ(C)(80)

�F,I,r NE(ϕE)e
t0U|Q+|Ṽρ(C

+)Ṽ−A(C
−) +NE(ϕE)U

−1/2V1(C).
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In this term we have left out the denominator minj∈Q+
|qj |, since we have already

a small factor U−1/2.
To prove Proposition 4.1 we will estimate the difference

(81)

∫
c

Ñr(ϕ(q, ·)) dQq − Ñr(ϕe ⊗ C).

4.1.2. Local comparison. Let Xj = X+
j =

ξj+1
2 + N0 if j ∈ Q−, and Xj = (0, ν0] ∪

i[0,∞), X+
j = i[1,∞) if j ∈ Q+. We consider for ν ∈ Xj :

Ijα(ν) =

∫
q∈Xj , dist (q,ν)≤α

ϕj(q, ν) djq,(82)

Jj
α(ν) =

∫
q∈Xj , dist (q,ν)≥α

ϕj(q, ν) djq.

Lemma 4.3. If α ≥ U−1/2, then for j ∈ Q+, ν ∈ Xj,

if ν ∈ i[1 + α,∞) : Ijα(ν) = 1 +O
(
e−Uα2

)
, Jj

α(ν) = O
(
e−Uα2

)
,

if ν ∈ i[0, 1 + α) : Ijα(ν) = O(1), Jj
α(ν) = O

(
e−Uα2

)
.

For j ∈ Q+, ν ∈ Xj, U
−1/2 ≤ ε ≤ e−1, and ν ∈ i[0, 1− ε) ∪ (0, ν0],

Ijε (ν) = 0, Jj
ε (ν) = O

(
e−Uε2

)
.

For j ∈ Q−, ν ∈ Xj,

Ijα(ν) = 1, Jj
α(ν) = 0.

Proof. The results for j ∈ Q− are immediate. We consider the case j ∈ Q+. The
best situation is ν ∈ i [1 + α,∞). Then, with (59),

Ijα(ν) =

√
U

π

∑
±

∫ |ν|+α

|ν|−α

e−U(x∓|ν|)2 dx(83)

=
1√
π

(∫ α
√
U

−α
√
U

e−x2

+

∫ (2|ν|+α)
√
U

(2|ν|−α)
√
U

e−x2

dx

)
= 1 +O

(
e−Uα2

α
√
U

)
+ O

(
e−U(2|ν|−α)2

(2|ν| − α)
√
U

)
= 1 +O

(
e−Uα2

α
√
U

)
,

Jj
α(ν) =

(∫ |ν|−α

1

+

∫ ∞

|ν|+α

)√
U
π

∑
±

e−U(x∓|ν|)2 dx

� e−Uα2

α
√
U

+
e−U(2|ν|−α)2

(2|ν| − α)
√
U

� e−Uα2

α
√
U

.

We ignore the denominator α
√
U ≥ 1.

If ν ∈ i[0, 1 + α], part of the integral for Ijα(ν) is omitted. This leads to the
estimate O(1). The quantity Jj

α(ν) is at most as large as in the previous case.
We consider finally a small value α = ε ∈ [U−1/2, e−1]. For ν ∈ i[0, 1−ε]∪(0, ν0],

the integral Ijε (ν) vanishes. If ν ∈ i[0, 1 − ε) we have already obtained Jj
ε (ν) =
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O
(
e−Uε2

)
. For ν ∈ (0, ν0] ⊂ (0, 12 ],

Jj
ε (ν) =

√
U

π

∫ ∞

1

eU(ν2−t2) cos 2tν dt

� eUν2

∫ ∞

√
U

e−x2

dx � e−U(1−ν2)

√
U

≤ e−U(1−ν0
2)

1
≤ e−Uε2 .

�

4.1.3. Global comparison.

Lemma 4.4. Let ν ∈ Yξ, νj ∈ Xj for j ∈ Q. Let α ≥ U−1/2 and ε ∈ [U−1/2, e−1].
Then ∫

q∈A(νQ+
,α)×{νQ−}

ϕ(q, ν) dQq � ϕE(νE) ;(84) ∫
q∈(C+�A(νQ+

,α))×{νQ−}
ϕ(q, ν) dQq � ϕE(νE)e

−Uα2

.(85)

If νj ∈ i[0, 1− ε) ∪ (0, ν0] for some j ∈ Q+, then

(86)

∫
q∈A(νQ+

,ε)×{νQ−}
ϕ(q, ν) dQq = 0 .

If A(νQ+
, α) ⊂ C+, then

(87)

∫
q∈A(νQ+

,α)×{νQ−}
ϕ(q, ν) dQq = ϕE(νE)

(
1 +O(e−Uα2

)
)
.

Proof. We have∫
q∈A(νQ+

,α)×{νQ−}
ϕ(q, ν) dQq = ϕE(νE)

∏
j∈Q+

Ijα(νj) .

This directly implies (84). If AνQ+
, α) ⊂ C+, then νj ∈ i[1+α,∞) for any j ∈ Q+.

Hence (87) follows. Equality (86) also follows from Lemma 4.3.
For (85) we use∫

q∈(C+�A(νQ+
,α))×{νQ−}

ϕ(q, ν) dQq

� ϕE(νE)
∑

m∈Q+

Jm
α (νm)

∏
j∈Q+�{m}

(
Ijα(νj) + Jj

α(νj)
)

� ϕE(νE)
∑

m∈Q−

O(e−Uα2

)O(1)|Q+|−1 .

�
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4.1.4. Error term. We will use these comparison results to estimate the following
difference:

Ñr(ϕE ⊗ C)−
∫
C

Ñr

(
ϕ(q, ·)

)
dQq(88)

=
∑

�, ν�Q
∈C

|cr(�)|2
(
ϕE (ν�,E)−

∫
C

ϕ(q, ν�) dQq

)

−
∑

�, ν�,Q �∈C

|cr(�)|2
∫
C

ϕ(q, ν�) dQq,

with Xj as in §4.1.2.
We write the difference in (88) as Ti+Tb+To, given by the respective conditions

ν�,Q+
∈ C+(−ε), ν�,Q+

∈ C+[ε], and ν�,Q+
�∈ C+(ε).

4.1.5. Inner error term. C+(−ε) is contained in the subset

Xi =
⋃

ν∈C+(−ε)

A(ν, ε)

of C+, which is (1, ε)-blunt. With (87) and Proposition 3.2,

Ti �
∑

�, ν�,Q+
∈C+(−ε)

∣∣|cr(�)|2
∣∣ e−Uε2 |ϕE(ν�,E)|(89)

�F,I,r NE(ϕE)Ṽ (Xi × C−)e−Uε2 ≤ NE(ϕE)e
−Uε2 Ṽ (C) .

4.1.6. Boundary error term. With (84),

Tb �
∑

�, ν�,Q+
∈C+[ε]

|cr(�)|2|ϕE(ν�,E)| .

We put C+[ε] in the (1, ε)-blunt set
⋃

ν∈C+[ε] A(ν, ε) contained in C+[2ε]. This

leads to

(90) Tb �F,I,r NE(ϕE)Ṽ1(C
+[2ε]× C−) .

4.1.7. Outer error term. Now we use (85) and use the fact that the (1, ε)-blunt set⋃
ν∈C+(ε(n+1))�C+(εn)

A(ν, ε)

is contained in C+(ε(n+ 2))� C+(ε(n− 1)). Then

To �F,I,r NE(ϕE)(91)

·
∞∑

n=1

e−Uε2n2
(
Ṽ1(C

+(ε(n+ 2)))− Ṽ1(C
+(ε(n− 1)))

)
.

4.1.8. Growth on shells. Estimate (91) has the disadvantage that the bound is given
by an infinite sum. Let us consider Dn = C+(ε(n+ 1))− C+(εn). The size of the
sum

∞∑
n=1

e−Uε2n2

Ṽ1 (Dn−1 ∪Dn ∪Dn+1)

depends mainly on the size of Ṽ (Dn) for small values of n.
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Lemma 4.5. There is a constant R = R(|Q+|) > 1, not depending on ε ∈ (0, e−1],

such that Ṽ1(Dn) ≤ RnC+[ε] for any n ≥ 0.

Proof. The sets Dn are subsets of (i[0,∞) ∪ (0, ν0])
Q+ , which we identify with

[−ν0,∞)A+ : qj ∈ i[0,∞) is replaced by qj ∈ [0,∞), and qj ∈ (0, ν0] by −qj .
Now in each factor the distance dist in (67) is for each coordinate given by the
absolute value of the difference. The measure dQ+

corresponds to the Lebesgue

measure on RQ+ .
If q ∈ Dn, then there is ν ∈ C+ such that dist (qj , νj) ≤ ε(n + 1) for all j and

dist (ql, νl) > εn for some l. For the latter l we define q̃l ∈ [−ν0,∞) such that
dist (q̃l, νl) ≤ εn and dist (q̃l, ql) = ε. For the other coordinates we put q̃j = qj .

This implies that each point of Dn+1 can be moved into Dn by a translation Tv

in RQ+ over a vector v with coordinates in {0, ε,−ε}. Hence

(92) Dn+1 ⊂
⋃
v

TvDn .

There are 3|Q+| translates. For each of these translates

Ṽ1(TvDn) =

∫
Dn

p(x+ v) dQx .

Now we have

p(x+ v) ≤
|Q+|∑
m=0

(
|Q+|
m

)
εmp(x) .

Hence we have Ṽ1(TvDn) ≤ R1Ṽ1(Dn), with R1 =
∑|Q+|

m=0

(|Q+|
m

)
e−m, for any ε ∈

(0, e−1]. This implies Ṽ1(Dn+1) ≤ RṼ1(Dn) with

(93) R := R(|Q+|) =
(
3(1 + e−1)

)|Q+|
.

Hence Ṽ1(Dn) ≤ RnṼ1(D0) ≤ RnṼ1(C
+[ε]). �

The factor 3|Q+| is much too large in most cases, since the translates TvDn

overlap a lot, and cover more than Dn+1.
To use this lemma in an estimate of the sum in (91) we assume that Uε2 ≥ D

with D := logR. Then n �→ e−Uε2n2

Rn is a decreasing function, and
∞∑

n=1

e−Uε2n2

(Rn+1 +Rn + Rn−1)

≤ (R2 +R+ 1)e−Uε2 + (R+ 1 +R−1)

∫ ∞

x=1

e−Uε2x2

Rx dx

�|Q+| e
−Uε2 +

e−Uε2+logC√
1− logC

2Uε2

� e−Uε2 .

Therefore, under the assumption Uε2 ≥ D, where D = log(R), the outer error term
(91) can be estimated by

O|Q+|

(
e−Uε2 Ṽ1(C

+[ε]× C−)
)

and hence be absorbed into the term O
(
Ṽ1(C

+[2ε]× C−)
)
. This concludes esti-

mation of the error term; hence the proof of Proposition 4.1 is now complete.
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4.2. Choice of the parameters U and ε. We now arrive at the delicate point
where the parameters U, ε will be linked to the volume quantities, depending on
the set C. Let us rewrite the error term E in (79):

E = E(C,U, ε) =
(
et0U|Q+|mρ(C) + e−Uε2 + U−1/2 + βε(C)

)
Ṽ1(C) ,

mρ(C) =
Ṽρ(C

+)Ṽ−A(C
−)

Ṽ1(C)
, βε(C

+) =
Ṽ1(C

+[2ε])

Ṽ1(C+)
.(94)

We will require that mρ(C) and βε(C) get small so as to be able to control the error
term in Proposition 4.1. Furthermore we will need to choose U, ε suitably. It turns
out that a convenient election will be to let U (resp. ε) tend slowly to ∞ (resp.
0) in such a way that Uε2 still tends to ∞. Keeping et0U|Q+|mρ(C) and U−1/2 in
mind, we choose

(95) U = U(C) =
1

t0|Q+|

(
| logmρ(C)| − 1

2
log | logmρ(C)|

)
.

The condition U ≥ e2D with D = logR(|Q+|), as in Proposition 4.1, is satisfied if
mρ(C) is sufficiently small. With this choice,

et0U|Q+|mρ(C) + U−1/2 � | logmρ(C)|−1/2 .

The contribution e−Uε2 should also be small. We take ε only slightly larger than
U−1/2:

ε = ε(C) =

√
log | logmρ(C)|

2U
(96)

=

√√√√ t0|Q+| log | logmρ(C)|
2| logmρ(C)|

(
1− 1

2
log | logmρ(C)|
| logmρ(C)|

) .
The quantity ε tends to zero as mρ(C) tends to zero, and ε2U =

log | logmρ(C)|
2 tends

to ∞ as mρ(C) tends to 0. Thus, ε satisfies the conditions in Proposition 4.1 for
sufficiently small values of mρ(C).

Let us consider the term U−1/2Ṽ1(C) in the error term. With the choice of U
and ε just indicated, this term is slightly larger than

Ṽ1(C)(
logmρ(C)

)2 =
Ṽ1(C)(

log Ṽ1(C)− log(Ṽρ(C+) Ṽ−A(C−))
)2 .

So the size of the error term will in general differ from the size of the main term by a
logarithmic factor. Therefore we now switch from giving O-estimates to asymptotic
estimates with an o-term.

In this way we obtain as the endpoint of the first stage of the derivation of the
asymptotic formula:

Theorem 4.6. Let r ∈ O′�{0}. Divide up the set of real places of F as E�Q+�Q−
with Q = Q+ ∪ Q− �= ∅. Let C be the collection of bounded dQ-measurable sets

C = C+ × C− such that C+ ⊂ (i[1,∞))
Q+ , C− ⊂

[
1
2 ,∞
)Q− . Let ρ ∈ (0, 1) be as

in Proposition 4.1, and let ε(C) be as chosen in (96).
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For each product ϕE =
⊗

j∈E ϕj of local test functions, and for each family
t �→ Ct in C such that as t → ∞

(97)
Ṽρ(C

+
t )Ṽ−A(C

−
t ) = o

(
Ṽ1(Ct)

)
,

if Q+ �= ∅, then Ṽ1(C
+
t [2ε(C+

t )])Ṽ1(C
−
t ) = o

(
Ṽ1(Ct)

)
,

the following asymptotic result holds as t → ∞:

(98) Ñr(ϕE ⊗ Ct) =
2
√
|DF |

(2π)d
Pl(ϕE ⊗ Ct) (1 + oF,I,r(1)) .

For families t �→ Ct as in the theorem, the quantities Ṽ1(Ct) and P̃l(Ct) have the

same size. So we have to replace o
(
Ṽ1(Ct)

)
by P̃l(Ct) in (19).

When formulating the asymptotic formula in λ-space, the quantity Ṽb(Ct) cor-
responds to Vb(Ct), given by the measure Vb =

⊕
j Vb,j :

Vb,j(f) =
1

2

∫ ∞

5/4

f(λ)(λ− 1/4)(b−1)/2 dλ+
1

2

∫ 5/4

λ0

f(λ)
dλ√∣∣λ− 1

4

∣∣(99)

+
∑

β∈ ξj+1

2 +N0

|β|bf
(
β

2
(1− β

2
)

)
.

4.3. Unions. It is also useful to state an asymptotic formula for families of disjoint
unions t �→ ct =

⊔
n C(n)t, where C(n)t = C(n)+t × C(n)−t , with n in a countable

index set. Then we have to replace (94) by

mρ(Ct) =
1

Ṽ1(Ct)

∑
n

Ṽρ(C(n)+t )Ṽ−A(C(n)−t ) ,(100)

βε(Ct) =
1

Ṽ1(Ct)

∑
n

Ṽ1(C(n)+t [2ε])Ṽ1(C(n)−t ) .

Proceeding with these choices, we obtain:

Proposition 4.7. Let r ∈ O′ � {0}. Let E � Q be a partition of the set of real
places of F , with Q �= ∅. Let t �→ Ct be a family of bounded dQ-measurable sets
such that for each t,

(101) Ct =
⊔
n

C(n)t ,

with each C(n)t in the collection C in Theorem 4.6. The decomposition Q = Q+
n �

Q−
n may depend on n. Under the conditions

(102)

∑
n

Ṽρ(C(n)+t )Ṽ−A(C(n)−t ) = o (Pl(Ct)) ,

if Q+ �= ∅, then
∑
n

Ṽ1(C(n)+t [2ε(Ct)])Ṽ1(C(n)−t ) = o (Pl(Ct)) ,
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the asymptotic formula (98) holds for each choice of ϕE as a product of local test
functions.

5. Asymptotic formula, second stage

We still have the freedom to choose the test function ϕE . In the second stage
we use this freedom to fill in the region i[0, 1) ∪ (0, ν0] for the coordinates of ν� in
E. More generally, by specializing ϕE we can make the asymptotic formula look
sharply at the coordinate of ν� in E.

We shall choose the test functions ϕj with j ∈ E as approximations of the
characteristic functions of “intervals” in i[0,∞)∪(0,∞). Proceeding to a description
in terms of the eigenvalue vectors λ�, we obtain Theorem 5.3, which gives

Nr(B × Ĉ+
t × Ĉ−

t ) =
2
√
|DF |

(2π)d
Pl(B × Ĉ+

t × Ĉ−
t ) (1 + o(1)) ,

where Ĉ+
t and Ĉ−

t are the sets corresponding to C+
t and C−

t under the transfor-
mation ν �→ λ. The set B is a fixed box in RE . This result is strong, but not
adequate for some obvious families. Proposition 4.7 gives a generalization allowing
us to apply the asymptotic formula to families that are countable disjoint unions
of families of the form t �→ B × Ĉ+

t × Ĉ−
t .

5.1. Compactly supported functions at the places in E. For a family t �→ Ct

satisfying the conditions in Theorem 4.6 or in Proposition 4.7, we rewrite (98) as
follows:

(103) lim
t→∞

2
√

|DF |
(2π)d

Ñr(ϕE ⊗ Ct)

Pl(Ct)
= P̃lE(ϕE) .

Proposition 5.1. Let r ∈ O′�{0} and the decomposition E�Q+�Q− be as before.

For fE =
⊗

j∈E fj with fj : R → R, define f̃E =
⊗

j∈E f̃j by f̃j(ν) = fj(
1
4 − ν2).

If fj ∈ C1
c (R) for any j ∈ E, then

(104) lim
t→∞

2
√
|DF |

(2π)d
Ñr(f̃E ⊗ Ct)

Pl(Ct)
= PlE(fE).

The proof is given in the remainder of this subsection. We can follow the ap-
proach in [2] closely.

5.1.1. Functionals. First we formulate two lemmas to be used in the proof.
For f : RE → C put

(105) Ar
t (f) =

2
√
|DF |

(2π)d
Ñr(f̃ ⊗ Ct)

P̃l(Ct)
,

where f̃ is defined by f̃(ν) = f

((
1
4 − ν2j

)
j∈Q

)
. This defines a measure on RE . We

want to compare it to the measure f �→ P̃l(f̃) = Pl(f).

Lemma 5.2. Let r ∈ O′ � {0}, let T �→ fT be a family of real-valued functions on
RE, and let f and h also be real-valued on RE , such that

i) f , h and every fT is integrable for all Ar
t and for Pl.

ii) limt→∞ Ar
t (fT ) = Pl(fT ) for all T .

iii) limt→∞ Ar
t (h) = Pl(h).
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iv) There is a function T �→ a(T ) such that a(T ) = o(1) as T → ∞, and

|fT (x)− f(x)| ≤ a(T )h(x) for all x ∈ RE .

Then limt→∞ Ar
t (f) = Pl(f).

Proof. The measures Ar
t are non-negative; hence

(106) Ar
t (fT )− a(T )Ar

t (h) ≤ Ar
t (f) ≤ Ar

t (fT ) + a(T )Ar
t (h) .

Taking the limit as t → ∞ of both terms on the side shows that for all T ,

0 ≤ lim sup
t→∞

Ar
t (f)− lim inf

t→∞
Ar

t (f) ≤ 2a(T )Ar
t (h) .

Since a(T ) = o(1), the limit limt→∞ Ar
t (f) exists.

With the non-negativity of Pl we derive from iv) that for all T ,

Pl(fT )− a(T )Pl(h) ≤ Pl(f) ≤ Pl(fT ) + a(T )Pl(h) .

Hence for all T , ∣∣∣Pl(f)− lim
t→∞

Ar
t (f)
∣∣∣ ≤ 2a(T )Pl(h) .

This gives the statement of the lemma. �

5.1.2. Approximation. Now we start the proof of Proposition 5.1. For given fj ∈
C1

c (R) we take

(107) ϕj(ν) =

√
T

π

∫ ∞

−∞
e−T(λ− 1

4+ν2)2fj(λ) dλ,

with T a large positive parameter. Again we use a Gaussian kernel function, but
now in the λ-space. This defines ϕj(ν) as an even holomorphic function of ν ∈ C,
with exponential decay on the strip |Re ν| ≤ τ , and for ν ∈ R. So ϕj is a test
function in the sense of §2.1.1. For ν ∈ R ∪ iR, it is given by

(108) ϕj(ν) =

√
T

π

∫ ∞

−∞
e−Tλ2

fj
(
λ+ 1

4 − ν2
)
dλ.

We view ϕj as an approximation of f̃j . Similarly, ϕE is an approximation of f̃E .

5.1.3. Local estimates. Since fj is real-valued, we have |ϕj(ν)| ≤ ‖fj‖∞ for any
ν ∈ R ∪ iR. Take N large, such that Supp fj ⊂ [−N,N ] for any j ∈ E. If

ν ∈ R ∩ iR with |ν| ≥
√
2N + 1, and −N ≤ λ ≤ N , then

λ− 1

4
+ ν2

{
≤ N − 1

4 − |ν|2 ≤ − 1
2 |ν|2 −

3
4 if ν ∈ iR,

≥ −N − 1
4 + |ν|2 ≥ 1

2 |ν|2 +
1
4 if ν ∈ R.

Hence e−T(λ− 1
4+ν2)2 ≤ e−

1
4Tν4

for such values of ν and λ. Together, these facts
give for ν ∈ R ∪ iR:

(109) |ϕj(ν)| ≤
{
‖fj‖∞ if |ν| <

√
2N + 1,

2N
√

T
π e

− 1
4Tν4‖fj‖∞ if |ν| ≥

√
2N + 1.

We recall the positive test function ϕp,E =
⊗

j∈E ϕp in (72), which gives for
p > τ :

ϕp(νj) =

{
(p2 − ν2j )

−a/2 if |Re ν| ≤ τ,

(p2 + ν2j )
−a/2 otherwise.



DENSITY RESULTS ON HILBERT MODULAR GROUPS II 3873

We take T ≥ T0 = 4. For ν ∈ R ∪ iR, |ν| ≥
√
2N + 1, we have Te−

1
4T |ν|4 ≤

T0e
−|ν|4 � |ν|−a, and hence

(110) |ϕj(ν)| � T−1/2N‖fj‖∞|ν|−a �N T−1/2ϕp(ν).

For ν ∈ R ∪ iR, |ν| ≤
√
2N + 1:

ϕj(ν)− f̃j(ν) =
1√
π

∫ ∞

−∞
e−y2
(
fj

(
y√
T
+ 1

4 − ν2
)
− fj
(
1
4 − ν2

))
dy(111)

� ‖f ′
j‖∞
∫ T 1/4

0

e−y2 y√
T

dy + ‖fj‖∞
∫ ∞

T 1/4

e−y2

dy

� T−1/2‖f ′
j‖∞ +

‖fj‖∞e−T

T 1/4
� T−1/2

(
‖fj‖∞ + ‖f ′

j‖∞
)
.

Under the assumption |ν| ≤
√
2N + 1, ν ∈ R ∪ iR, we have ϕp(ν) � N−a/2.

Hence

(112) ϕj(ν)− f̃j(ν) �fj T−1/2Na/2ϕp(ν).

5.1.4. Global approximation. We apply the Lemma 5.2 with

fT (λ) = ϕE(ν) , h(λ) = ϕp,E(ν) ,

f(λ) = fE(λ) =
⊗
j∈E

f̃j(νj) ,

with λj =
1
4 − ν2j , νj = ±

√
1
4 − λf . Condition i) is satisfied by continuity. We have

ii) and iii) from the assumption that t �→ Ct is a family for which Theorem 4.6 holds.

To check condition iv) we note that if ν ∈ (R ∪ iR)
E
, such that |νj | ≤

√
2N + 1 for

all j, then

(113)
∣∣∣ϕE(ν)− f̃E(ν)

∣∣∣�f T−1/2ϕp,E(ν).

If there is at least one j ∈ E with |νj | ≥
√
2N + 1, then by (112),

(114)
∣∣∣ϕE(ν)− f̃E(ν)

∣∣∣ = |ϕE(ν)| �f T−1/2ϕp,E(ν).

The application of the lemmas in §5.1.1 completes the proof of Proposition 5.1.

5.1.5. Remark. We refrain from extending the asymptotic formula to compactly
supported functions on RE that have no product structure.

5.2. Boxes. Proposition 5.1 works with compactly supported continuous functions
with product structure. The last step in stage two is the extension to boxes in RE .
We now formulate the asymptotic formula in terms of the coordinate λ, and use
the notation

(115) Ĉ =
{
( 14 − ν2j )j∈Q : ν ∈ C

}
,

for C ⊂ (iR ∪ R)
Q
.

Theorem 5.3. Let r ∈ O′ � {0}. Let E � Q+ � Q− be a decomposition of the
real places of F with Q = Q+ ∪ Q− �= ∅. Let t �→ Ct be a family of bounded
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dQ-measurable sets in the collection C in Theorem 4.6 or as considered in Proposi-
tion 4.7. In particular we suppose that the conditions in (97) or in (102) hold. Let
BE =

∏
j∈E [Aj , Bj ] be such that

(116) Aj , Bj �∈
{

b
2 (1−

b
2 ) : b > 1, b ≡ ξj mod 2

}
.

Then, as t → ∞,

(117) Nr(BE × Ĉt) =
2
√
|DF |

(2π)d
Pl(BE × Ĉt) + o

(
PlQ(Ĉt)

)
.

Proof. Let χE be the characteristic function of BE . It has the form χE =
⊗

j∈E χj .
The local characteristic functions χj are integrable for Plξj and for all Ar

t as defined
in (105).

The conditions in the theorem on the endpoints Aj and Bj make it possible to
find for a given T ≥ 1 elements uT,j , UT,j ∈ C1

c (R) such that 0 ≤ uT,j ≤ χj ≤ UT,j

on R, and such that

(118) Plξj (UT,j − uT,j) ≤
1

T
.

Put uT =
⊗

j∈E uT,j , UT =
⊗

j∈E UT,j , and h =
⊗

J∈E hj . The asymptotic

formula holds for h and for all uT (Proposition 5.1). We have

0 ≤ UT (λ)− uT (λ) ≤
∑
m∈E

(UT,m(λm)− uT (λm))
∏

j∈E�{m}
hj(λj) ,

0 ≤ PlE(UT − uT ) ≤
∑
m∈E

T−1
∏

j∈E�{m}
Plξj (hj) = O(T−1) .(119)

Since the Ar
t are non-negative measures, we have

Ar
t (uT ) ≤ Ar

t (BE) ≤ Ar
t (UT ) ,

PlE(uT ) ≤ lim inf
t→∞

Ar
t (BE) ≤ lim sup

t→∞
Ar

t (BE) ≤ PlE(UT ) ,

lim sup
t→∞

Ar
t (BE)− lim inf

t→∞
Ar

t (BE) = O(T−1) .

So limt→∞ Ar
t (BE) exists and satisfies

PlE(uT ) ≤ lim
t→∞

Ar
t (BE) ≤ PlE(UT ) .

Again applying (119) we conclude that this limit is equal to PlE(BE). Hence

Nr(BE × Ĉt) =
2
√

|DF |
(2π)d

Pl(BE × Ĉt) + o
(
PlQ(Ĉt)

)
, which is (117). �

6. Special families

Theorem 5.3 describes a large class of families of sets for which the asymp-
totic formula (117) holds. It has the limitation that the factor Ct is a subset of

(i[1,∞) ∪ [1/2,∞))Q, while the region i[0, 1) ∪ (0, ν0] is treated only in the coordi-
nates in E. To avoid technical complications we have chosen not to try to derive an
asymptotic formula for a larger class of families of sets, but to apply Theorem 5.3
in a number of special cases. This will suffice to give many applications.
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6.1. Boxes. Directly from Theorem 5.3 we get families of boxes of the type B̃E×Ct

with

(120) C+
t =

∏
j∈Q+

i[aj(t), bj)t)] , C−
t =

∏
j∈Q−

[aj(t), bj(t)] ,

where for all t

(121) 1 ≤ aj(t) ≤ bj(t) if j ∈ Q+ ,
1

2
≤ aj(t) ≤ bj(t) if j ∈ Q− .

A computation of the quantities in (94) shows that

mρ(Ct) �
∏

j∈Q+

bj(t)
ρ−1
∏

j∈Q−

1

Ṽ1(C
−
t )

,(122)

βε(C
+
t ) � ε

∑
m∈Q+

bm(t)

(am(t) + bm(t))(bm(t)− am(t) + ε)
.

In the uninteresting case when C−
t does not intersect

∏
j∈Q−

(
ξ1+1
2 + N0

)
, we have

Ñr(BE ×Ct) = P̃l(BE ×Ct) = 0. So we assume that Q− = ∅ or Ṽ1(C
−
t ) > 0. Then

Ṽ1(C
−
t ) ≥ 1 if Q− �= ∅.

The conclusion is that mρ(Ct) ↓ 0 as soon as for at least one j ∈ Q we have
bj(t) → ∞.

With ε = ε(Ct) as in (96) it suffices to require in (122) that for any m ∈ Q+,

(bm(t)− am(t) + ε) = o(1) .

This can be achieved by requiring that bj(t)−aj(t) ≥ γ| logmρ(Ct)| for any j ∈ Q+

and all t large, for any α ∈ (0, 12 ) and any γ > 0. Thus we have:

Proposition 6.1. The asymptotic formula holds for a family of boxes t �→ Ω̃ =
B̃E × Ct with BE any box in RE satisfying (116) and Ct as in (120) and (121)
under the conditions

a) bj(t) → ∞ for some j ∈ Q.
b) bj(t)− aj(t) ≥ σ(t) for any j ∈ Q+ and all t, with

σ(t) = γ

(
(1− ρ)

∑
j∈Q+

log bj(t) + log Ṽ1(C
−
t )

)−α

(γ > 0 , 0 < α <
1

2
) .

c) [aj(t), bj(t)] ∩
(

ξj+1
2 + N0

)
�= ∅ for all t and for any j ∈ Q−.

This proposition implies Theorem 1.3, and its consequences Propositions 1.1
and 1.2.

For boxes in the λ-parameter we have the following result:

Proposition 6.2. The asymptotic formula holds for families of boxes t �→ Ωt,
where

Ωt =
∏
j

[Aj(t), Bj(t)]

satisfies the following conditions:

a) If for a fixed j Aj and Bj are constant, then Aj = Aj(t) and Bj = Bj(t)
satisfy condition (116).

b) If Aj(t) is not constant, then Aj(t) ≤ 0 for all t, or Aj(t) ≥ 5
4 for all t.

Similarly for Bj(t).
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c) There is a constant σ > 0 such that if Bj(t) ≥ 5
4 , then

Bj(t)−max(Aj(t),
5
4 ) ≥ σ

(√
|Bj(t) +

√
max(Aj(t),

5
4 )

)
.

d) If Aj(t) ≤ 0, then the interval [Aj(t), Bj(t)] intersects for all t the set of
b
2 (1−

b
2 ), b > 1, b ≡ ξj mod 2 non-trivially for all t. (This intersection may

depend on t.)
e) limt→∞ Aj(t) = −∞ or limt→∞ Bj(t) = ∞ for at least one j.

This is not the most general statement for boxes. We have decided not to
complicate the proposition by considering non-constant endpoints that have values
in (0, 54 ).

Proof. Let E0 be the set of places for which Aj and Bj are constant. We consider
partitions Q+ � Q0 � Q− of the remaining infinite places of F . For each of these
partitions P we form

ΩP
t = Ωt ∩

(
RE0 ∪ (i[1,∞))Q+ ∪ (i[0, 1) ∪ (0, ν0])

Q0 ∪ [ 12 ,∞)Q−
)
.

Suppose Q+ �= ∅. For j ∈ Q+ we write A·
j(t) = max(Aj(t),

5
4 ). In the ν-

description, the factor ΩP
t,j is of the form i[aj(t), bj(t)] with aj(t) =

√
A·

j(t)− 1
4

and bj(t) =
√
Bj(t)− 1

4 . Condition c) implies that condition b) in Proposition 6.1

is satisfied.
If Q− �= ∅ for P , then condition d) implies condition c) in Proposition 6.1.
For the partition P we take E = E0 ∪ Q0, and try to apply Proposition 6.1 to

t �→ ΩP
t . This gives the asymptotic formula for ΩP

t , provided either there is j ∈ Q+

for which Bj(t) → ∞ or there is j ∈ Q− for which Aj(t) → −∞. Otherwise, the
set ΩP

t is bounded.
Condition e) implies that the asymptotic formula holds for at least some parti-

tion P . Thus Ṽ1(Ω
P
t ) → ∞ for such P . Adding the corresponding finitely many

terms we get the asymptotic formula for the union of the ΩP
t . For the remaining

partitions P , the set ΩP
t stays bounded. Adding the corresponding terms to the as-

ymptotic formula does no harm. This gives the asymptotic formula for t �→ Ωt. �

Now an approximation of Pl
(
[−X,X]d

)
gives Proposition 1.6.

6.2. Simplices. The results in [2] are for sets of the form

(123) Ĉt =
{
λ ∈ [0,∞)Q+ × (−∞, 0)Q− :

∑
j∈Q

|λj | ≤ t
}
.

By showing that the asymptotic formula holds for sets of this form, we extend
the results in [2] to general character χ and general compatible central character
given by ξ.

Proposition 6.3. Let E �Q+ �Q− be a partition of the infinite places of F with
Q = Q+ ∪ Q− �= ∅. Let BE be any box in RE satisfying (116). The asymptotic

formula holds for t �→ BE × Ĉt, and

(124) Pl(Ĉt) ∼
1

|Q|! t
|Q| (t → ∞) .
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Proof. Let us first consider

Wn(Y ) =
{
λ ∈
[
5
4 ,∞
)n

:
∑
j

λj ≤ Y
}
.

We have V1(W1(Y )) = 1
2 (Y − 5

4 ) for Y ≥ 5
4 . From

V1(Wn(Y )) =
1

2

∫ Y

5/4

V1

(
Wn−1(Y − λ)

)
dλ ,

we obtain by induction that

(125) V1(Wn(Y )) =
1

2n n!

(
Y − 5

4n
)n
+
.

We use (x)+ = 0 if x < 0, and (x)+ = x if x ≥ 0.
For ρ ∈ (0, 1) we find by the inclusion Wn(Y ) ⊂ [5/4, Y ]n that

(126) Vρ

(
Wn(Y )

)
= On

(
Y n(ρ+1)/2

)
.

Furthermore, for ε small in comparison with Y , the part of Wn(Y )[2ε] on which
λj >

5
4 for all j ∈ Q+ is contained in Wn(Y+)−Wn(Y−) with Y+ = Y +4εnY 1/2 +

4ε2n and Y− = Y − 4εnY 1/2. The other parts of Wn(Y )[2ε] are contained in boxes

of the form
[
5
4 − 2ε, Y + 2ε

]n−1 ×
[
5
4 − 2ε, 5

4 + ε
]
. Hence

Ṽ1

(
W̃n(Y )[2ε]

)
≤ V1(Wn(Y+))− V1(Wn(Y−)) + nO(Y n−1ε)(127)

≤ 1

2n n!

(
(Y + 4εnY 1/2 + 4ε2n− 5

4n)
n − (Y − 4εnY 1/2 − 5

4n)
n
)

+On(εY
n−1)

�n εY n− 1
2 .

If Y − 5
4n is small, we get at least O(ε), which is O(εY n−1/2) as well.

Now we apply Proposition 4.7 to the following subset of Ĉt:

(128) Wt =
⊔
p

W|Q+|

(
t−
∑
j∈Q−

(
p2
j − 1

4

))
× {p} ,

where p runs over
∏

j∈Q−

(
3−ξj
2 + N0

)
for which

∑
j∈Q−

(
p2
j − 1

4

)
≤ t. For each

given t, this is a finite union. But as a family depending on t it is an infinite union.
We obtain

V1(Wt) =
∑
p

1

2|Q+| |Q+|!

(
t− 5

4 |Q+|+ 1
4 |Q−| −

∑
j∈Q−

p2
j

)|Q+|

+

∏
j∈Q−

pj ,

mρ(Wt)V1(Wt) �Q+

∑
p

(
t+ 1

4 |Q−| −
∑
j∈Q−

p2
j

)|Q+|(ρ+1)/2 ∏
j∈Q−

p−A
j ,

βε(Wt)V1(Wt) �Q+
ε
∑
p

(
t+ 1

4 |Q−| −
∑
j∈Q−

p2
j

)|Q+|− 1
2

.
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We compare the sum for V1(Wt) with the integral∫
x∈[1,∞)Q− ,

∑
j∈Q−

x2
j≤t+ 1

4 |Q−|

⎛⎝t+ 1
4 |Q−| − 5

4 |Q+| −
∑
j∈Q−

x2
j

⎞⎠|Q+|

·
∏

j∈Q−

xj dx

=

∫
y∈[5/4,∞)Q− ,

∑
j∈Q−

yj≤t

⎛⎝t− 5
4 |Q+| −

∑
j∈Q−

yj

⎞⎠|Q+|

· 2−|Q−| dy

=
1

2|Q| |Q|!
(
t− 5

4 |Q|
)|Q| ∼ t|Q|

2|Q| |Q|! .

The transition from sum to integral gives a contribution O(t|Q|−1).
The other sums can be treated similarly. This leads to the estimates mρ(Wt) �

t|Q+|(ρ−1)/2 and βε(Wt) � t−1/2. This implies that the asymptotic formula holds
for t �→ BE ×Wt.

The definition of P̃l shows that Pl(Wt) ∼ 2|Q|

2|Q| |Q|!V1(Wt).

The remaining parts in Ĉt � Wt are contained in unions of sets of the form
Y = [0, 5

4 ] × [−t, t]|Q|−1 for which V1(Y ) � t|Q|−1 and Pl(Y ) � t|Q|−1. So adding
these parts does not influence the asymptotic formula or the asymptotic behavior
of Pl(Ĉt). �

Proposition 1.7 is a corollary of this result.

6.3. Sectors. Under the assumption |Q+| = 2 we consider

(127) Sp,q,α,t =
{
(λ1, λ2) ∈

(
5
4 ,∞
)2

: t ≤ λ1 ≤ t+ tα , pλ1 ≤ λ2 ≤ qλ2

}
,

with 0 < p < q, α ≤ 1, and t → ∞.

Lemma 6.4. For c ≤ 1,

(128) Vc(Sp,q,α,t) ∼
1

2(c+ 1)

(
q

c+1
2 − p

1+c
2

)
tc+α .

Furthermore, for ε > 0 small in comparison to t as t → ∞,

Vρ(Sp,q,α,t) �p,q tρ−1V1(Sp,q,α,t) ,(129)

V1(S̃p,q,α,t[2ε]) �p,q εtmax( 3
2 ,α+

1
2 )V1(Sp,q,α,t) .(130)

Proof. (128) is obtained by direct computation based on (99). It immediately
implies (129).

The description of Sp,q,α,t in ν-space is as follows:

S̃p,q,α,t =

{
i(t1, t2) : a ≤ t1 ≤ b ,

√
pt21 +

p−1
4 ≤ t2 ≤

√
qt21 +

q−1
4

}
,

with a =
√
t− 1

4 , b =
√
t+ tα − 1

4 . The left hand side of S̃p,q,α,t[2ε] is contained in

[a− 2ε, a+ 2ε]×
[√

pt− 1/4 + 2ε,
√
qt− 1/4− 2ε

]
.
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Its contribution to Ṽ1(S̃p,q,α,t[2ε]) is Oq−p (εa · t) = O(t3/2). The contribution of

the right hand side of S̃p,q,α,t[2ε] has the same order.

On the lower side remains a piece for which Ṽ1 can be estimated by∫ b

t1=a

t1

∫ √
pt21+

p−1
4 +2ε(1+p)

t2=
√

pt21+
p−1
4 −2ε(1+p)

t2 dt2 dt2 .

The inner integral can be estimated by Op

(
ε
√

pt21 +
p−1
4

)
. This gives for the total

integral

�p ε
((

pb2 + p−1
4

)3/2 − (pa2 + p−1
4

)3/2)
�p ε(pb2 − pa2)

(
pb2 + p−1

4

)1/2 �p εtα+
1
2 .

Similarly, the upper part contributes Oq(εt
α+1/2). �

This lemma shows that if α ≥ 1
2 , the asymptotic formula holds for the family

t �→ BE×Sp,q,α,t for any choice of the box BE as before, where E contains all infinite
places except the two places we put in Q+. In particular, we obtain Proposition 1.8.

6.4. Spheres. We consider the sphere SQ+
(m, r) ⊂ (i[1,∞))Q− with radius r and

center m: The set of ν with
∑

j∈Q+
(|νj | − |mj |)2 ≤ r2. We suppose that |mj |−r ≥

1 for any j ∈ Q+ and that |mj | → ∞ for at least one j ∈ Q+. A computation by
induction on |Q+| leads to

(131) Ṽ1

(
SQ+

(m, r)
)
= 2v|Q+|r

|Q+|
∏

j∈Q+

|mj | ,

where vn is the volume of the unit sphere in Rn.
Furthermore

Ṽρ

(
SQ+

(m, r)
)
� r|Q+|

∏
j∈Q+

|mj |ρ ,(132)

Ṽ1

(
SQ+

(m, r)[2ε]
)
� εrn−1

∏
j∈Q+

|mj | .

These estimates follow from the inclusion

SQ+
(m, r) ⊂

∏
j∈Q+

i[|mj | − r, |mj |+ r] ,

SQ+
(m, r)[2ε] ⊂ SQ+

(m, r + 2ε
√
n)� SQ+

(m, r − 2ε
√
n) .

For the latter inclusion we use the fact that if ν is on the boundary of SQ+
(m, r),

then
∑

j∈Q+
(|νj |+ 2ε)

2 ≤ r2 + 4ε
∑

j∈Q+
|νj | + 4ε2n ≤ r2 + 4εr

√
n + 4ε2n, and

similarly
∑

j∈Q+
(|νj | − 2ε)2 ≥ (r − 2ε

√
n)

2
.

These estimates show that the asymptotic formula holds for families m �→ BE ×
SQ+

(m, r), where BE is a box as earlier and Q− = ∅. It works for constant radius r,
or even for r going down as a multiple of

(
log
∏

j∈Q+
|mj |
)−α

with α < 1
2 . As a

special case we obtain Proposition 1.4. There we have required that all mj go to

infinity, in order to have P̃l
(
SQ+

(m, r)
)
∼ 2dṼ1

(
SQ+

(m, r)
)
.
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6.5. Slanted strips. Finally we consider, in the case d = 2, a strip of the form

(133) Ω̃t = {i(x, y) : t ≤ x ≤ 2t , ax+ b ≤ y ≤ ax+ c} ,

where a, b, c ∈ R, a > 0, c > b, fixed. The parameter t tends to infinity. We take it
such that Ω̃t is contained in (i[1,∞))2. Computations similar to those carried out
before give

Ṽ1(Ω̃t) ∼
7

3
a(c− b)t3 ,

Ṽρ(Ω̃t) �
∫ 2t

t

xρ(c− b)(ax+ c)ρ dx � aρ(c− b)t2ρ+1 ,

Ṽ1(Ω̃t[2ε]) � εt(2at+ b+ c)(b− c+ 4ε) +

∫ 2t

t

xε(ax+ c) dx

�a,b,c εt
2 + εt3 � εt3 .

We conclude that the asymptotic formula holds for Ω̃t, and we thus obtain Propo-
sition 1.5.
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