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We investigate theoretically the evolution of the two-point density correlation function of a low-dimensional
ultracold Bose gas after release from a tight transverse confinement. In the course of expansion thermal and
quantum fluctuations present in the trapped systems transform into density fluctuations. For the case of free
ballistic expansion relevant to current experiments, we present simple analytical relations between the spec-
trum of “density ripples” and the correlation functions of the original confined systems. We analyze several
physical regimes, including weakly and strongly interacting one-dimensional �1D� Bose gases and two-
dimensional �2D� Bose gases below the Berezinskii-Kosterlitz-Thouless �BKT� transition. For weakly inter-
acting 1D Bose gases, we obtain an explicit analytical expression for the spectrum of density ripples which can
be used for thermometry. For 2D Bose gases below the BKT transition, we show that for sufficiently long
expansion times the spectrum of the density ripples has a self-similar shape controlled only by the exponent of
the first-order correlation function. This exponent can be extracted by analyzing the evolution of the spectrum
of density ripples as a function of the expansion time.
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I. INTRODUCTION

A. Quantum noise studies of ultracold atoms

Quantum correlations can be used to identify and study
interesting quantum phases and regimes in ultracold atomic
systems. Recent experimental advances include detection of
the Mott insulator phase of bosonic �1� and fermionic �2�
atoms in optical lattices, production of correlated atom pairs
in spontaneous four-wave mixing of two colliding Bose-
Einstein condensates �3�, studies of dephasing �4� and inter-
ference distribution functions �5� in coherently split one-
dimensional �1D� atomic quasicondensates �QC�,
observation of the Berezinskii-Kosterlitz-Thouless �BKT�
transition �6,7� in two-dimensional �2D� quasicondensates
�8�, and Hanbury-Brown-Twiss correlation measurements for
nondegenerate �ND� metastable 4He �9� and 3He atoms �10�,
bosonic �11� and fermionic �12� atoms in optical lattices, and
in atom lasers �13�. In one-dimensional atomic gases
�14–20�, in situ measurements of correlations have been at-
tained by means of photoassociation spectroscopy �21� or by
measuring the three-body inelastic decay �22� using the pro-
portionality of the corresponding rates to the zero-distance
two-particle and three-particle correlation functions, respec-
tively �23�.

Recently it was demonstrated that one can detect single
neutral atoms in a tight trap or guide �24–29�. However,
direct �not inferred from any kind of atomic loss rate �21,22��
observation of interatomic correlations at short distances in
trapped ultracold atomic gases is hindered in many cases by

either the finite spatial resolution of the optical detection
technique or the very low detection efficiency of the scan-
ning electron microscope �27�. Therefore one needs to re-
lease ultra cold atoms from the trap, diluting the atomic
cloud in the course of expansion.

In this paper we address the question of how the correla-
tions in the low-dimensional system evolve during the time-
of-flight expansion and discuss how the density variations in
the time-of-flight images relate to the properties of the origi-
nal trapped quantum gas. These “density ripples” in the ex-
panding gas reflect the original thermal or quantum phase
fluctuations existing in the cloud under confinement. Such
phase fluctuations are already present in three-dimensional
�3D� Bose-condensed clouds under an external confinement
with large aspect ratio �30�. Their effect on density ripples of
expanding clouds has been observed �31–33�, but quantita-
tive analysis of such experiments was complicated since one
had to take into account interactions in the course of expan-
sion. However, for sufficiently strong transverse confinement
reached in current experiments with low-dimensional gases
�chemical potential of the order of the transverse confine-
ment frequency�, the gas expands rapidly in the transverse
direction so interactions during the expansion stage can be
safely neglected. Then one can develop a simple analytical
theory, which directly relates the spectrum of the density
ripples after the expansion to the correlation functions of the
original fluctuating condensates. Similar question has been
considered for 3D clouds expanding in the gravitational field
but only for noninteracting atoms �34�. We also note the
density ripples we discuss are different from the density
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modulations which appear due to interactions during expan-
sion and have been studied in Refs. �35,36�.

B. Density ripples in expanding condensates: Preview

We consider one- or two-dimensional atomic gases re-
leased from a tight trap formed by a scalar potential as real-
ized on atom chips or in optical lattice experiments. We con-
sider the situation when free expansion takes place in all
three dimensions. This should be contrasted to the expansion
of such a gas inside a waveguide �16,37–45�, with the trans-
verse confinement being permanently maintained. In the lat-
ter case, the nonlinear atomic coupling constant

g1D = 2���as, �1�

where �� is the transverse trapping frequency and as is the
atomic s-wave scattering length, remains the same. While a
bosonic gas rarifies during such expansion, collisions remain
important. For example, in the 1D case dynamics asymptoti-
cally reaches the limiting Tonks-Girardeau �TG� �46� regime
of impenetrable bosons. In our case, if the fundamental fre-
quency of the potential of the transverse confinement is
much larger than the initial chemical potential of the atoms,
the expansion in the transverse directions is determined
mainly by the kinetic energy stored in the initial localized
state of the transverse motion. Interatomic collisions play
almost no role in the expansion. Moreover tight transverse
confinement decouples the motion of trapped atoms in the
longitudinal and transverse directions. Thus when analyzing
density ripples we can reduce the problem to the same num-
ber of dimensions as the initial trap �see discussion below in
Sec. II�. For a 1D trap we consider a one-dimensional spec-
trum of density ripples, and for atoms which were originally
confined in a pancake trap we analyze two-dimensional den-
sity ripples.

Before we consider a general formalism, it is useful to
present the analysis for the simplest situation. Let us assume
that the initial state can be described using the mean-field

Bogoliubov approach �47–49�. Let �̂k�
† be the creation opera-

tor of atoms at momentum k� right before the expansion. After
free expansion during time t, in the Heisenberg representa-

tion we have �̂k�
†�t�=�̂k�

†ei�2k2t/2m, where m is the atomic
mass. Then the density operator at time t is given by

��r�,t� =
1

L
�

k�1,k�2

�̂k�1

†
�̂k�2

e−i�k�1−k�2�·r�e�it�2/2m��k1
2−k2

2�, �2�

and for the density correlation function we obtain

���r�1,t���r�2,t�� =
1

L2 �
k�1,k�2,k�3,k�4

��̂k�1

†
�̂k�2

�̂k�3

†
�̂k�4

�

�e−i�k�1−k�2�·r�1e−i�k�3−k�4�·r�2

�e�it�2/2m��k1
2−k2

2�e�it�2/2m��k3
2−k4

2�. �3�

The expectation value ��̂k�1

†
�̂k�2

�̂k�3

†
�̂k�4

� should be taken in

the original condensate before the expansion. Within the
mean-field Bogoliubov theory only a state with k=0 is mac-

roscopically occupied. Thus in Eq. �3� we take two operators
to be �N=�n1DL, where n1D is the atomic density before the
expansion. Thus Eq. �3� can be written as

���r�1,t���r�2,t�� = n1D
2 +

n1D

L
�
q��0

eiq� ·�r�1−r�2�

�	1 + 2��̂q
†�̂q� + ���̂−q�̂q�

+ ��̂−q
† �̂q

†��cos
�2q2t

m

 . �4�

The Bogoliubov theory predicts expectation values of

��̂−q�̂q� , ��̂−q
† �̂q

†� and 1+2��̂q
†�̂q� as

��̂−q�̂q� = ��̂−q
† �̂q

†� = −
�

2Eq
	1 + 2nB� Eq

kBT
�
 , �5�

1 + 2��̂q
†�̂q� =

�q + �

Eq
	1 + 2nB� Eq

kBT
�
 , �6�

where �q=�2q2 / �2m�, �=g1Dn1D is the chemical potential,
Eq=��q�2�+�q� is the Bogoliubov excitation spectrum, and
nB is the Bose occupation number.

From these equations we can easily find the mean-field
spectrum of density ripples �
�MF�q�
2� �see Eq. �21� and the
discussion nearby for the precise mathematical definition of
the spectrum�

�
�MF�q�
2� = n1D	1 + 2nB� Eq

kBT
�


�	 �q

Eq
+

�

Eq
�1 − cos

�2q2t

m
�
 . �7�

The general character of the spectrum is clear from Eq. �7�.
As a function of momentum it is not monotonic. We find
minima near �q2t /m=2	n and maxima close to �q2t /m
=	�2n−1�, where n is a positive integer number. Note that
while the positions of maxima and minima are essentially
universal, the amplitude of individual maxima depends on
both temperature and interaction strength.

The mean-field analysis leading to Eq. �7� is conceptually
simple but has limited applicability. It is applicable for
weakly interacting 3D Bose condensates if the interactions
during expansion are switched off using Feshbach reso-
nances �50�. In lower dimensions, thermal and quantum
phase fluctuations are expected to suppress true long-range
order in 2D Bose condensates at finite temperature �51� and
in 1D Bose condensates even at zero temperature �52�. In
this paper we show how the analysis of the density ripples
can be extended to more complicated but experimentally rel-
evant situations when the mean-field approach breaks down.
We will find a similar structure to Eq. �7�: positions of
maxima and minima of the spectrum are given by the same
approximate universal conditions on the momenta. However
explicit expressions for the strength of individual maxima
will be very different. They will contain rich information
about fluctuations of low-dimensional condensates.
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C. Relation to other work

Conceptually, the question we consider in this paper is
somewhat similar to the interpretation of cosmological ob-
servations. In the latter case, quantum fluctuations present in
the early universe after its expansion result in observable
anisotropies of the cosmic microwave background radiation
�53,54� and in the density ripples of matter which eventually
evolve into galaxies �55�. In our case, density ripples of the
expanding clouds contain important information about corre-
lations present in the trapped state. Analogies between prop-
erties of condensates and cosmology have attracted signifi-
cant attention recently �56–63�.

In addition to the mentioned approaches, several other
techniques have been used to experimentally study correla-
tions of low-dimensional gases. Some of them rely on cre-
ation of two copies of the same cloud �64–68�, while others
require analysis of noise correlations �69� or in situ density-
fluctuation statistics �70�. Interference experiments between
two low-dimensional clouds �4,5,8� can also be used to char-
acterize two-point and multipoint correlation functions
�71–74�. Analysis of density ripples is a much simpler ex-
periment and, as we discuss in this paper, can be used for
thermometry. This is particularly important for weakly inter-
acting 1D Bose quasicondensates �75,76�, for which the stan-
dard approach to measuring temperature by fitting density
profiles cannot be extended to temperatures of the order of
the chemical potential. In this regime, the chemical potential
is very weakly dependent on the temperature �77�, thus finite
temperature leads only to small corrections to the “inverted
parabola” density profile �78�. An improved thermometry
method based on comparison of in situ measured density
profiles with solutions of Yang and Yang equations �79� in
the local-density approximation has been developed in Ref.
�19�.

There has been significant theoretical interest in correla-
tion functions of the 1D Bose gas. At distances much larger
than the healing length, correlation functions are described
by Luttinger liquid theory �80–82�. In the weakly interacting
quasicondensate regime, correlation functions can be de-
scribed by extension of Bogoliubov theory to low-
dimensional gases �76,77,83–85�. In the strongly interacting
regime, one can use “fermionization” �46� of a 1D Bose gas
to evaluate correlation functions at all distances as certain
determinants �86�. The Lieb-Liniger model �87� which de-
scribes the 1D Bose gas is exactly solvable, and one can also
analytically obtain zero-distance two-point �88,89� and three-
point �90� density correlations for any interaction strength
and extract certain dynamical correlation functions �91–95�
from the exact solution. Various numerical techniques have
been used as well �78,96–98� and recent results including the
decoherent quantum regime �89,99� are summarized in Refs.
�100,101�.

Two-dimensional systems have also been a subject of
considerable experimental �8,15,68,102–105� and theoretical
work �75,85,106–114�.

D. Structure of the paper

This paper is organized as follows. In Sec. II we derive
simple analytical relations between the density ripples after

the expansion and the correlation functions of the original
system before the expansion. In Sec. III A we analyze the
case of weakly interacting 1D Bose gases and obtain explicit
expression for the spectrum of density ripples. In Sec. III B
we consider the case of a strongly interacting 1D Bose gas.
In Sec. III C we review general features of the density-
density correlation function in expanding 1D Bose clouds. In
Sec. IV we discuss 2D Bose systems below the BKT transi-
tion �6,7�. We summarize our results and make concluding
remarks in Sec. V.

II. FREE EXPANSION

In this section we focus on the atoms expanding from a
one-dimensional trap. The atom field operator evolution dur-
ing the free expansion is given by �115�

�̂�r,t� =� d3r�G3�r − r�,t��̂�r�,0� , �8�

where the Green’s function of free motion is

G3�r − r�,t� = G1�x − x�,t�G1�y − y�,t�G1�z − z�,t� , �9�

G1�
,t� =� m

2	i�t
exp�i

m
2

2�t
� , �10�

with m being the atomic mass. Tight transverse confinement
decouples the motion of trapped atoms in the �y ,z� plane and
along the waveguide axis x so that the transverse motion

is confined to its ground state f��y ,z� and �̂�r ,0�
= f��y ,z��̂�x ,0�. This, alongside with Eq. �9�, allows for a
separation of motion in the longitudinal and transverse direc-
tions, effectively reducing the problem to 1D.

We introduce the two-particle density matrix for the lon-
gitudinal motion as

��x1,x2;x1�,x2�;t� = ��̂†�x1�,t��̂
†�x2�,t��̂�x2,t��̂�x1,t�� .

�11�

Then we define the two-point density correlation function

g2�x1,x2;t� =
��x1,x2;x1,x2;t�
n�x1,t�n�x2,t�

, �12�

where n�x , t�= ��̂†�x , t��̂�x , t��. The free evolution of the two-
particle density matrix is given by the convolution of the
two-particle density matrix at t=0 with four respective
Green’s functions, one for each spatial argument, two of the
Green’s functions being complex conjugate. We are inter-
ested in the case x1=x1� and x2=x2� in the final state. Then we
obtain

��x1,x2;x1,x2;t� =� dx3� dx3�� dx4� dx4�G1�x1 − x3,t�

�G1�x2 − x4,t�G1
��x1 − x3�,t�G1

��x2 − x4�,t�

���x3,x4;x3�,x4�;0� . �13�

We assume that the product of the typical velocity of the
atoms in the x direction and the expansion time is much
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smaller than the size of the trapped atomic cloud. Then we
are allowed to consider a uniform sample with length L
→�, with the 1D number density n1D=N /L being kept con-
stant in the thermodynamic limit �N being the total number
of atoms�. Note that this limit is opposite to the conventional
limit of infinitely large expansion times, in which density in
real space reflects the initial momentum distribution �in that
regime, it was recently proposed �116� that noise correlations
in density profiles can be used to probe properties of low-
dimensional gases�.

In our limit n�x , t�=n1D is constant in time, and the two-
particle density matrix is translationally invariant �it does not
change if all four of its spatial arguments are shifted by the
same amount� at any time. The density correlation function
then depends on the coordinate difference only so we use the
notation

g2�x1 − x2;t� � g2�x1,x2;t� . �14�

Using the translational invariance of the two-particle density
matrix and the identity


�x� =
1

2	
�

−�

�

dy exp�iyx� , �15�

we arrive at

��x1 − x2;x1 − x2;t� =
m

4	�t
�

−�

�

dx�
−�

�

dx� exp�i
m

4�t

���x1 − x2 − x�2 − �x1 − x2 − x��2��
���x;x�;0� , �16�

where

��x;x�;t� � �� x

2
,−

x

2
;
x�

2
,−

x�

2
;t� . �17�

Obviously, ��x1 ,x2 ;x1 ,x2 ; t�=��x1−x2 ;x1−x2 ; t�=n1D
2 g2�x1

−x2 ; t�. The physical meaning of Eq. �16� is that the motion
of the center of mass of an atomic pair plays no role in the
dynamics of establishing g2�x1−x2 ; t�, which is fully deter-
mined by the relative motion. The relative-motion degree of
freedom is characterized by the reduced mass m /2 �117�.

Let us now consider some properties of the two-particle
density matrix ��x1 ;x2 ; t� for bosons. Changing the sign of
x1 or x2 is equivalent to a permutation of two bosons and,
hence, does not change the two-particle density matrix, i.e.,

��x1;x2;t� = ��
x1
; 
x2
;t� . �18�

For the regimes we consider the density matrix of neutral
bosons can be assumed to be real. This, together with the
Hermicity property, results in

��x1;x2;t� = ��x2;x1;t� . �19�

Using Eqs. �18� and �19� and Fourier transforming the
Green’s functions, we can reduce Eq. �16� to

��x;x;t� =
2

	
�

0

�

dq�
0

�

dX cos qx cos qX

����X −
�qt

m
� ;�X +

�qt

m
� ;0� . �20�

Alternatively, this equation can be written as

�
��q�
2� = �
−�

�

dX cos qX��̂†��qt

m
,0�

��̂†�X,0��̂�X +
�qt

m
,0��̂�0,0�� . �21�

Here �
��q�
2� is the spectrum of density ripples at time t,
which in experiment can be obtained by Fourier transform-
ing absorption images after expansion �118�. It is related to
two-point density correlation function as �119�

�
��q�
2� = n1D
2 �

−�

�

dx exp�iqx��g2�x;t� − 1� . �22�

Equations �20� and �21� provide a simple analytical relation
between the properties of the density ripples after the expan-
sion and the correlation functions before the expansion.

It is straightforward to generalize the above analysis to
the 2D case. In particular, the analog of Eq. �21� for the time
evolution of the two-point density correlation function has
the same form, with X substituted by r and q treated as a 2D
vector. Namely, we obtain

�
��q�
2� = �
R2

d2r cos q · r

���̂†��qt

m
,0��̂†�r,0��̂�r +

�qt

m
,0��̂�0,0�� .

�23�

III. 1D BOSE GASES

A. Weakly interacting 1D Bose gases

In this subsection we will consider the spectrum of den-
sity ripples of weakly interacting 1D quasicondensates. Be-
fore we proceed to full analytical theory, let us return to the
simple mean-field Bogoliubov approach, which we discussed
in the introduction. Readers may be skeptical about the ap-
plicability of the mean-field approach to 1D. Indeed, there is
no long-range order for 1D gases even at zero temperature
�52�, and mean-field approach is generally not applicable.
However, in the regime of weak interactions and under cer-
tain conditions on the expansion time t, the spectrum of den-
sity ripples is captured correctly by the mean-field approach
as we will verify later in a rigorous calculation.

We consider Eq. �7� in the limit �q��, Eq�kBT. In this
case one can neglect the first term in the second parentheses,
use an approximation Eq�q, and expand the Bose occupa-
tion number, leading to

�
�MF�q�
2�
n1D

2 �
2mkBT�1 − cos �2q2t/m�

�2n1Dq2 . �24�
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Let us now present a full calculation, which does not
make a mean-field approximation. For weak interactions Bo-
goliubov theory has been extended to low-dimensional qua-
sicondensates �77�, and can be used to calculate correlation
functions at all distances. For quasicondensates, the fluctua-
tions of the phase are described by the Gaussian action. For
Gaussian actions, higher order correlation functions are sim-
ply related to two-point correlation functions �see, e.g., Refs.
�120,121��, and the four-point correlation function in Eq.
�21� factorizes into products of two-point correlation func-
tions of bosonic fields as �74�

��̂†�x1�,0��̂†�x2�,0��̂�x1,0��̂�x2,0��

=
�i,j=1

2 ��̂†�xi�,0��̂�xj,0��

��̂†�x1�,0��̂�x2�,0����̂†�x1,0��̂�x2,0��
. �25�

This equation gives correct result for all values of x1, x2, x1�
and x2� in the leading order over 1 /K expansion �see the
definition of K�1 below� and can be used to evaluate the
spectrum of the density ripples in weakly interacting conden-
sates for all times. The two-point correlation function

��̂†�x1� ,0��̂�x1 ,0��=n1Dg1�x1�−x1� is translationally invariant
and is simply related to predictions of the Bogoliubov theory.
For 1D quasicondensates, one has �77�

g1�x� =
��̂†�x,0��̂�0,0��

n1D
= exp	−

1

2K
f� x


h
�
 , �26�

where K=	�n1D / �mc��1 is the Luttinger liquid parameter,
c is the speed of sound, 
h=� /�m� is the healing length, and
� is the chemical potential. When only lowest transverse
mode is occupied �������, speed of sound is given by c
=�2���n1Das /m. The dimensionless function f�s� depends
on the temperature and equals

f�s� = 2�
0

�

dk�1 − cos ks���uk
2 + vk

2�nk + vk
2� , �27�

where

uk =
1

2
	� k2 + 4

k2 �1/4

+ � k2

k2 + 4
�1/4
 , �28�

vk =
1

2
	� k2

k2 + 4
�1/4

− � k2 + 4

k2 �1/4
 , �29�

nk =
1

exp���k2�k2 + 4�/2kBT� − 1
. �30�

For finite temperatures, the function f�s� has the following
asymptotic behavior:

f�s� � 	
s

kBT

�
+ C for 	
s


kBT

�
� 1, �31�

where C�C�kBT /�� is of order O�1� for kBT��.
Quasicondensate theory is valid �77,100,101� for tempera-

tures,

kBT/� � K/	 , �32�

significantly beyond the regime of validity of Luttinger liq-
uid theory, which is restricted to kBT /��1. The longitudinal
density profile of a quasicondensate in external harmonic
confinement follows the inverted parabola shape under con-
dition �32�, see, e.g., Ref. �78�. Due to the low fraction of the
thermally populated excited states, it is problematic to ex-
tract the temperature of the gas from fitting bimodal distri-
butions to the observed density profiles. Below we show that
the spectrum of density ripples can be used as a convenient
tool to characterize the temperature and is sensitive to tem-
peratures of the order of the chemical potential.

To be specific, let us consider the case of 87Rb atoms
�scattering length as=5.2 nm� with density n1D=40 �m−1

and transverse confinement frequency ��=2	�2 kHz, re-
sulting in Luttinger liquid parameter K�47 and healing
length 
h�0.37 �m. We can use Eqs. �25�–�30� to numeri-
cally evaluate in-trap correlation functions. By performing
then a numerical integration of Eq. �21� for various tempera-
tures and expansion times, we can evaluate the spectrum of
density ripples under condition �32�, and the results are
shown in Figs. 1 and 2. In the inset to Fig. 2 we also show
g2�x ; t� evaluated using the inverse of Eq. �22�. In the quasi-
condensate regime the behavior of g2�x ; t� follows the quali-
tative discussion of Sec. III C.

There are several qualitative features that should be noted.
The spectrum of density ripples is not a monotonic function
and can also have several maxima. The positions of the
maxima only weakly depend on the temperature, and are
mostly determined by the expansion time. The amplitude of
the ripples, on the other hand, significantly depends both on
the expansion time and temperature.

0.4

FIG. 1. Normalized spectrum of density ripples
�
��q�
2� / �n1D

2 
h� for weakly interacting 1D quasicondensate of
87Rb atoms with density n1D=40 �m−1, transverse confinement
frequency ��=2	�2 kHz, Luttinger liquid parameter K�47, and
healing length 
h�0.37 �m. Expansion time is fixed at t=27 ms
�with 1 /
h

��t /m�11.8�, and temperatures equal �top to bottom�
T=40 nK�kBT /�=1�, T=27 nK�kBT /�=0.67�, T=12 nK�kBT /�
=0.3�, and T=0. Values on the axes of this and subsequent plots are
dimensionless. Dots are obtained by numerical integration of Eq.
�21� in the weakly interacting limit making use of Eqs. �25�–�30�.
Solid lines correspond to analytical results �Eq. �37��, which are
derived under condition �33�.
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Let us now derive a simple analytical expression for the
spectrum of density ripples, which is valid in the regime
�justified below after Eq. �39��

	


h

��t

m

kBT

�
� 1. �33�

Under this condition one can use Eq. �31� and approximate
the two-point correlation function by

g1�x� � exp�− 
x
/�T� for 
x
 � 
h
�

kBT
, �34�

where �T is defined by

�T =
2K
h�

	kBT
=

2�2n1D

mkBT
, �35�

and does not depend on interaction strength, as long as Eq.
�32� is satisfied.

Using Eqs. �25� and �34�, the second line of Eq. �21� can
be written as

g1��qt/m�2g1�X�2

g1�X − �qt/m�g1�X + �qt/m�
� exp

− X

�T
for X �

�qt

m
and exp

− �qt

m�T
otherwise.

The constant term exp−�qt /m�T is responsible for
g2�x→� , t�=1. Since according to Eq. �21� we need to take
a Fourier transform of the above expression, subtracting the
constant on the whole interval �0,�� does not affect �
��q�
2�
for q�0, and we obtain

�
��q�
2�
n1D

2 � 2�
0

�qt/m

dx cos qx�exp
− x

�T
− exp

− �qt

m�T
� .

�36�

This integral can be evaluated in a closed form and leads to
an analytical answer

�
��q�
2�
n1D

2 
h

�
�Tq − e−2�qt/m�T��Tq cos �q2t/m + 2 sin �q2t/m�

q
h�1 + �T
2q2�

.

�37�

Note that the last equation reduces to Eq. �24� when �Tq
�1 and �qt /m�T�1. Figures 1 and 2 show an excellent
agreement between the analytical result and numerical inte-
gration described earlier after Eq. �32�. The analytical result
shows the same nonmonotonic behavior as the numerical
calculations. The parameter �T defines a time scale

tc � 6.5
m�T

2

�
, �38�

after which only a single maximum persists. When several
maxima and minima are present, their positions can be esti-
mated by

�q2t

m
� 	�2n − 1/2 � 1/2� , �39�

where the upper �lower� sign corresponds to the nth maxi-
mum �minimum�. These conditions can be understood as a
“standing wave” conditions in Eq. �36� and become more
precise at lower temperatures.

The appearance of minima and maxima in the spectrum of
density ripples can be understood in terms of matter-wave

near-field diffraction. The analogous effect for light waves
�in the spatial domain� is known as the Talbot effect �122�.
Its matter-wave counterpart has been also observed in dif-
fraction of atoms on a grating �123�. In our case, we observe
near-field diffraction in the time domain. For each expansion
time, a certain momentum contribution will be “imaged”
onto itself, leading to a minimum in the spectrum of density
ripples for a given momentum q. As compared to diffraction
on a regular grating with a fixed period, the typical fluctua-
tion length in the trapped cloud is not constant but distrib-
uted around the thermal length �T. Therefore, minima in the
spectrum appear for any sufficiently small expansion time,
according to condition �39�.

Condition �33� can now be justified in the regime where
�
��q�
2� is near its largest values. In such case most of the

FIG. 2. �Color online� Normalized spectrum of density ripples
�
��q�
2� / �n1D

2 
h� with the same parameters as in Fig. 1 but for a
fixed temperature T=27 nK�kBT /�=0.67�, and various times of
flight: t=49 ms �red, solid�, t=27 ms �green, dashed�, and t
=9.5 ms �blue, dotted�. Dots are obtained by numerical integration
of Eq. �21� in the weakly interacting limit making use of Eqs.
�25�–�30�. Lines correspond to analytical results �Eq. �37��, which
are derived under condition �33�. Inset shows g2�x ; t�, obtained
from �
��q�
2� using the inverse of Eq. �22�.
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contributions to Eq. �21� come from distances of the order
��t /m, and Eq. �33� follows from Eq. �32�.

So far we have been assuming that the quasicondensate is
deep in the 1D regime, � ,kBT����. While Eqs. �25�–�30�
are valid only under such assumption, Eqs. �34� and �35� also
work in the weakly interacting quasi-1D regime,

�,kBT � ���. �40�

Indeed, they rely only on the 1D nature of long-range corre-
lations, weakness of interactions, and the property cK
=	n1D /m, which is a consequence of the Galilean invariance
�81�. In Eqs. �32� and �33�, the Luttinger liquid parameter K
can be obtained as K=�	n1D / �mc�, where the square of the
sound velocity c can be determined from compressibility as
c2=n1D��� /�n1D� /m. For chemical potential �, one can use
an approximate relation �124� �=�����1+4asn1D−1�.

Let us now briefly review the conditions under which one
can neglect interactions in expanding 1D clouds and the ef-
fects of finite condensate length L. Transverse expansion
takes place at the times of the order of inverse transverse
confinement ��

−1. Up to the times of this order, one cannot
neglect interactions during the expansion. Correlation func-
tions which enter Eq. �21� will be smeared up to the dis-
tances of the order 
x�c /��=
h� /��, and smearing will
only weakly affect the final result for �
��q�
2� if q
x�1.
Thus to observe an oscillating spectrum of density ripples,
one needs to satisfy the condition


h�m

�t

�

���

� 1, �41�

which easily holds for the parameters shown in Figs. 1 and 2.
In addition, one can use Feshbach resonances �50� to com-
pletely switch off interactions during the expansion.

Locally, corrections due to finite L can be neglected if
finite limits of integration in Eq. �16� lead to smearing of
delta functions up to the distances at which the correlation
functions change considerably. This change can occur either
because of the variations of the density in external confine-
ment at distances �L or because of the decay of correlations
for finite temperatures at distances of the order �K
h /a.
Thus for finite temperatures these conditions read as

mL

�t
min�L,K
h/a� � 1 �42�

and are easily satisfied for parameters considered earlier and,
e.g., longitudinal frequency �x=2	�5 Hz. Under condition
�42� one can take the inhomogeneity of the density profile
into account within the local-density approximation by aver-
aging the prediction of Eq. �37�.

B. Strongly interacting 1D Bose gases

Let us now describe the evolution of the two-point density
correlation function g2�x ; t� of a strongly interacting 1D Bose
gas. A dimensionless parameter which controls the strength
of interactions at zero temperature can be written as

� =
mg1D

�2n1D
=

2m��as

�n1D
� 1. �43�

Under such conditions, the bosonic wave function takes on
fermion properties, and the density correlation function in
the trap g2�x ;0� is the same as for noninteracting fermions of
the same density and temperature. In particular, it vanishes at
x=0, and one has g2�0;0�=0. However, the correlation func-
tions that contain creation and annihilation operators at dif-
ferent points, such as ��x1 ;x2 ;0� in Eq. �20�, are not the
same as for noninteracting fermions. This happens because
bosonic operators when written in terms of fermionic opera-
tors, contain a “string” which ensures proper commutation
relations.

In the Appendix we derive a representation of ��x1 ;x2 ;0�
as a Fredholm-type determinant, which can be easily evalu-
ated numerically. Combining this representation with Eq.
�20�, we evaluate g2�x ; t� after various expansion times nu-
merically. The results for zero temperature are shown in Fig.
3, while the results for finite temperature kBT=�
�1.2�	�n1D�2 /2m are shown in Fig. 4. In spite of a consid-
erable change in the temperature, there is no qualitative
change in the behavior of g2�x ; t�. The qualitative behavior of

FIG. 3. Two-point density correlation function g2�x ; t� of a zero-
temperature strongly interacting 1D Bose gas �Tonks-Girardeau
limit� for different times t after the release of the gas from the trap.
Different curves correspond to t=0 �solid�, t=0.25m / ��n1D

2 �
�dashed�, and t=m / ��n1D

2 � �dotted�.

FIG. 4. Two-point density correlation function g2�x ; t� for the
same parameters as in Fig. 3 but for a finite temperature, kBT=�
�1.2�	�n1D�2 /2m.
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g2�x ; t� in Figs. 3 and 4 is in agreement with Eq. �44� below
and �C�n1D

−1 for the Tonks-Girardeau gas.

C. General remarks about 1D case

Before concluding this section we would like to provide a
qualitative analysis of the evolution of the density correlation
function g2�x ; t� as a function of the expansion time t.

The general structure of the two-particle density matrix
��x1 ;x2 ;0� of a 1D Bose gas is shown schematically in Fig.
5. Because of the Bose symmetry, ��x1 ;x2 ;0� is represented
in the �x1 ,x2� plane by two infinite perpendicular “bands” of
a typical transverse size �C �correlation length�. Asymptoti-
cally, as x1→ �� and x2= �x1, �→n1D

2 . There are several
possible cases of atomic correlations near the point x1=x2
=0 in a trapped 1D gas. In general, at t=0, we have
��0;0 ;0�=n1D

2 g2�0;0�. In the case of the Tonks-Girardeau
gas of impenetrable bosons �46,86� g2�0;0��g2

TG�0�=0 (at
zero temperature g2

TG�x�=1− �sin�	n1Dx� / �	n1Dx��2 �46�).
Another possibility is a weakly interacting degenerate
gas �quasicondensate�, where g2�0;0��g2

QC�0��1
�77,88,96,100,101�. Finally, the 1D Bose gas can be nonde-
generate �thermal�, in which case g2�0;0��g2

ND=2. As the
interparticle distance grows, the density correlation function
quite rapidly approaches its asymptotic value g2�x→� ;0�
=1 at the distances of the order of �C.

One can show that time-dependent density correlation
function can be written as

g2�x;t� = 1 + ���C,x,t� + �g2�0;0� − 1�h��C,x,t� . �44�

The first term �unity� stems from the band of nonzero values
of � aligned along the line x1=x2 �see Fig. 5�. It represents
the density correlation function of an ideal gas of distin-
guishable particles at equilibrium. The second term,

���C ,x , t�, reflects the Bose-Einstein statistics of the atoms
and appears due to the second “band” along x2=−x1. Its
maximum value, ���C ,0 , t�, increases from 0 to 1 on a typi-
cal time scale �m�C

2 /�. As 
x
 grows, this term asymptoti-
cally approaches 0 on a length scale given by �C. The third
term describes washing out of initial short-range �micro-
scopic� correlations. The maximum value of h��C ,x , t� is
reached at x=0, it decreases from 1 to 0 on a time scale
�m�C

2 /�, and h��C ,x , t��0 if 
x
��C. In the course of free
evolution, the density correlation properties of an expanding
Bose gas become similar to that of an ideal Bose gas at
temperature kBT��2 / �m�C

2 �.

IV. 2D BOSE GASES BELOW THE BEREZINSKII-
KOSTERLITZ-THOULESS TEMPERATURE

Let us now discuss the properties of density ripplesj in
expanding 2D clouds. Recently 2D condensates have
been realized experimentally in several groups
�8,15,68,102,103,105�. Reduced dimensionality has dramatic
effect on thermal fluctuations. In the case of 2D Bose gases
there is no true long-range order for any finite temperature
�51�. For uniform 2D Bose clouds at sufficiently low tem-
peratures, the two-point correlation function behaves at large
distances as �75,85,106,107�

��̂†�r,0��̂�0,0�� � n2D��2D

r
��

for r � �2D. �45�

For weakly interacting 2D Bose gas at small temperatures,
one can evaluate parameters of Eq. �45� from microscopic
theory. The dimensionless parameter characterizing weak-
ness of interactions is written as �85,107�

g̃ = as�8	m��

�
� 1. �46�

The exponent � in Eq. �45� equals �85,107�

� =
T

Td
� 1 for kBT � kBTd =

2	�2n2D

m
, �47�

and �2D equals the de Broglie wavelength of thermal
phonons �c / �kBT� at kBT��, and the two-dimensional heal-
ing length 
2D=� /�m� at high temperatures kBT��.

Equation �45� remains valid for � smaller than

�c = 1/4, �48�

at which point the BKT �6,7,120� transition takes place due
to proliferation of vortices, and correlation functions start to
decay exponentially with distance.

Such a transition for ultra cold 2D Bose gases has been
observed recently �8,68,105�, and its microscopic origin has
been elucidated. Experiments of Ref. �8� studied interference
of two independent 2D Bose clouds, which requires imaging
along the “in-plane” direction and inevitably leads to aver-
aging over inhomogeneous densities. Study of the spectrum
of density ripples in expanding clouds with imaging in trans-
verse direction �as done in Ref. �68�� avoids this problem
altogether and can provide access to properties of correla-

ΛC

TG QC

ND

�4 �2 0 2 4

�4

�2

0

2

4

x1 �arb.units�

x 2
�a

rb
.u

ni
ts
�

0

1

2

FIG. 5. Density plot of the two-particle density matrix
��x1 ;x2 ;0� of a 1D Bose gas, see Eqs. �11� and �17� �the density bar
represents the � scale in units of n1D

2 �. Initially �at t=0� the bosonic
system can be a Tonks-Girardeau gas �TG� or a weakly interacting
quasicondensate �QC� or a nondegenerate �ND� thermal gas. The
central �x1�x2�0� part of the two-particle density matrix in these
cases is shown in three respective insets. The bar shows the typical
correlation scale �C.
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tions at fixed density. The interplay between the BKT transi-
tion and the effects of the external confinement is a rather
complicated question even for weakly interacting Bose gas
�103,104,109,108�, and we will only discuss the uniform
case here.

Even for weak interactions, one cannot use quasiconden-
sate theory to analytically describe correlations as functions
of microscopic parameters in the vicinity of the BKT transi-
tion or to predict the transition temperature and has to resort
to fully numerical methods �110�. Nevertheless, the factor-
ization property �Eq. �25�� remains valid for large-distance
behavior of correlation functions for all � below the critical
value 1/4 since large-distance fluctuations of the phase are
still described by the Gaussian theory. Using that together
with Eq. �45�, we will now obtain the prediction for the
spectrum of density ripples which is valid as long as only
points with relative distances much larger than �2D contrib-
ute significantly to the integral in Eq. �23�. We will show
below that this regime is realized if

��t

m
� �2D. �49�

We introduce a dimensionless variable

y =
�q2t

m
, �50�

and use expression Eq. �45� for all r. Using symmetries of
the resulting integral, the expression for �
��q�
2� is written as

�
��q�
2� � n2D
2 �2D

2 � �t

m�2D
2 �1−�

F��,y� , �51�

where F�� ,y� is a dimensionless function defined by �125�

F��,y� =
4

y1+��
0

�

drx cos rx�
0

�

dry

��	��rx + y�2 + ry
2��rx − y�2 + ry

2

rx
2 + ry

2 
�

− 1� .

�52�

We find that the spectrum of density ripples remains self-
similar in the course of expansion and the shape of the spec-
trum is a function of � only. Plots of F�� ,y� for three dif-
ferent values of � are shown in Fig. 6 and have a similar
structure. Positions of maxima and minima are very well
described by Eq. �39�, where the upper �lower� sign corre-
sponds to the nth maximum �minimum�. In Eq. �23� typical
distances which contribute to �
��q�
2� near its maximum at
y�	 can be estimated as ���t /m, which leads to condition
�49�. Note however, that self-similarity starts breaking down
for sufficiently large y even when condition �49� is satisfied.

Scaling of the magnitude of �
��q�
2� with time in the
self-similar regime can be used to extract �. For example,
the integral of �
��q�
2� from zero to its first minimum scales
with time as

�
0

�2	m/�t

dq�
��q�
2� � t1/2−�, �53�

and the exponent changes considerably as � changes from 0
to the critical value 1/4

For small �, one can derive an expansion of F�� ,y� as

F��,y� =
4

y1+� ��f1�y� + �2f2�y� + �3f3�y� + ¯� , �54�

where f1�y� can be evaluated analytically as

f1�y� = 2	 sin2 y

2
. �55�

The term f2�y� leads to a finite value of F�� ,y� at the first
minimum. By including effects of f2�y� and f3�y�, one can
derive

F��,2	�
F��,	�

�
1

2� �1.19� + 0.38�2� for � � 1, �56�

which coincides with the direct numerical evaluation up to
2.5% for �=0.25.

For weakly interacting uniform 2D Bose gases at low
temperatures, one can also obtain predictions which are not
limited by Eq. �49�. Under condition

n2D
2D
2 � 1 �57�

an extension of Bogoliubov theory to 2D quasicondensates
describes correlations at all distances �77�. Such a theory is
valid up to temperatures of the order

kBT

�
log

kBT

�
� n2D
2D

2 � 1 �58�

and predicts the exponent �47�. The correlation function is
written as

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

F
(�
,y
)

y

FIG. 6. Dependence of universal functions F�� ,y� on y
=�q2t /m plotted for three different values of correlation exponents
�. Under condition �49� functions F�� ,y� determine the self-similar
shape of the spectrum of density ripples according to Eq. �51�.
Curves from top to bottom correspond to �=0.25 �solid, the
Berezinskii-Kosterlitz-Thouless point�, �=0.15 �dashed�, and �
=0.10 �dotted�.
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g1�r� =
��̂†�r,0��̂�0,0��

n2D
= exp	−

2	�

kBTd
f2D� r


2D
�
 ,

where the dimensionless function f2D�s� is defined by

f2D�s� = �
0

� kdk

2	
�1 − J0�ks����uk

2 + vk
2�nk + vk

2� .

Here, J0�x� is the Bessel function, and uk ,vk and nk are de-
fined by Eqs. �28�–�30�.

We now consider a case of 87Rb atoms with transverse
confinement frequency ��=2	�3 kHz and density n2D
�84 �m−2. This yields the dimensionless interaction pa-
rameter g̃�0.13, healing length 
h�0.3 �m, and n2D
2D

2

�7.5. We perform a numerical integration of Eq. �23� for
temperature T=60 nK �which corresponds to correlation ex-
ponent 0.02� and various expansion times, and the results are
shown in Fig. 7.

Qualitatively, they look similar to the self-similar regime
for all times, and one again obtains an oscillating spectrum
of density ripples with maxima and minima very well de-
scribed by Eq. �39�. In the weakly interacting regime the
ratio of the first maximum to the first minimum for �
��q�
2�
is much larger than one, similar to the weakly interacting 1D
Bose gas.

V. CONCLUSIONS

To conclude, we calculated the evolution of the two-point
density correlation function of an ultracold atomic Bose gas
released from a tight transverse confinement. For 1D gases in
the weakly interacting regime, in a wide range of parameters
given by Eq. �33�, we analytically calculated the spectrum of
density ripples �
��q�
2�. Our results are summarized in Eq.
�37� and Figs. 1 and 2. Our analytical theory is also appli-
cable in the quasi-1D regime when kBT and � are of the
order of transverse confinement frequency ���. For expan-

sion times smaller than 6.5m�T
2 /�, we find that the spectrum

of density ripples can have several maxima and minima, and
their positions can be estimated using Eq. �39�. While posi-
tions of maxima and minima are essentially independent of
the temperature, their amplitude exhibits strong temperature
dependence. For 1D quasicondensates, the density profile in
external harmonic confinement depends weakly on the tem-
perature when the latter is of the order of the chemical po-
tential �77�. The density profile follows the inverted parabola
shape �78�, thus the bimodal density fitting cannot be used to
measure temperatures reliably. We propose that our analyti-
cal result Eq. �37� can be used for thermometry of one-
dimensional systems. Experimental investigation of this
question is currently under way and will be presented in a
separate presentation �126�.

For one-dimensional systems, we also discussed evolution
of the density correlation function in real space, g2�x ; t�. For
long expansion times we find that the correlation function
g2�x ; t� reaches the value of 2 short distances and approaches
the value 1 for distances larger than the correlation length,
see, e.g., Fig. 3 for Tonks-Girardeau regime.

For 2D Bose gases with temperatures below the
Berezinskii-Kosterlitz-Thouless transition and sufficiently
long expansion time, we showed that the spectrum of the
density ripples evolves in a self-similar way. Our result for
this case is given in Eq. �51� and Fig. 6, with positions of
maxima and minima determined by Eq. �39�. The scaling of
the overall magnitude can be used to extract the correlation
exponent �, e.g., using Eq. �53�.

For more complicated situations, e.g., multicomponent
gases, relation �21� and its cross-correlation generalizations
can be used as a convenient experimental tool to characterize
complex many-body states and their correlations. In addition,
it can be used as an experimental tool to investigate nonequi-
librium phenomena in low-dimensional gases.
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APPENDIX: TWO-PARTICLE DENSITY MATRIX
OF A STRONGLY INTERACTING 1D BOSE GAS

In this appendix we will describe a Fredholm-type deter-
minant representation for ��x1 ;x2 ;0� for 0�x1�x2, which
can be easily evaluated numerically. Due to Eqs. �18� and

FIG. 7. �Color online� Normalized spectrum of density ripples
�
��q�
2� / �n2D

2 
2D� for weakly interacting 2D quasicondensate of
87Rb atoms with density n2D�84 �m−2, transverse confinement
frequency ��=2	�3 kHz, healing length 
h�0.3 �m, and di-
mensionless interaction parameter g̃�0.13. Temperature is taken to
be T=60 nK�kBT���, which corresponds to correlation exponent
�=0.020. Various curves correspond to expansion times t=12 ms
�blue, solid�, t=8 ms �green, dashed�, and t=4 ms �red, dotted�.
The lines are guides to the eyes.
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�19� this defines ��x1 ;x2 ;0� for any values of x1 and x2.
Representations similar to the one developed here can be
obtained for any multipoint correlation function of bosonic
fields in the strongly interacting limit.

Mathematically, fermionization can be written as

�̂†�x� = exp	i	�
−�

x−0

dy�̂ f
†�y��̂ f�y�
�̂ f

†�x� , �A1�

�̂�x� = exp	− i	�
−�

x−0

dy�̂ f
†�y��̂ f�y�
�̂ f�x� , �A2�

where we introduced fermionic creation and annihilation op-

erators �̂ f
†�x� and �̂ f�x�, which have standard anticommuta-

tion relations

��̂ f
†�x�,�̂ f�y�� = 
�x − y� , �A3�

��̂ f
†�x�,�̂ f

†�y�� = ��̂ f�x�,�̂ f�y�� = 0. �A4�

For zero temperature, ground state for fermions corresponds
to a filled Fermi sea, whereas at finite temperature one
should use a thermal density matrix for noninteracting fermi-
ons.

For convenience, we will introduce a fictitious underlying
lattice of spacing a�x1 ,x2, such that

x1

2

1

a
= m1 � 1, �A5�

x2

2

1

a
= m2 � m1 � 1, �A6�

where m1 and m2 are large positive integer numbers. At the
end of the calculation, we will take the limit a→0 such that
m1a→x1 /2,m2a→x2 /2. On a lattice, fermionization rules
�Eqs. �A1� and �A2��� and commutation relations �A3� and
�A4� are written as

�̂†�i� = �
k�i

�1 − 2�̂ f
†�k��̂ f�k���̂ f

†�i� , �A7�

�̂�i� = �
k�i

�1 − 2�̂ f
†�k��̂ f�k���̂ f�i� , �A8�

��̂ f
†�i�,�̂ f�k�� = 
ik, �A9�

��̂ f
†�i�,�̂ f

†�k�� = ��̂ f�i�,�̂ f�k�� = 0. �A10�

Using these relations, ��x1 ;x2 ;0� can be written as

��x1;x2;0� = ��̂ f
†�m1��̂ f

†�− m1��
k�S

��1 − 2�̂ f
†�k��̂ f�k���̂ f�m2��̂ f�− m2�� ,

�A11�

where subset S equals

S = �− m2 + 1,− m1 − 1� � �m1 + 1,m2 − 1� . �A12�

Expanding the parentheses, we obtain

��x1;x2;0� =��
n=0

�

�− 2�n�̂ f
†�m1��̂ f

†�− m1�

� �
j1�¯�jn,jk�S

�̂ f
†�j1� ¯ �̂ f

†�jn��̂ f�jn� ¯ �̂ f�j1�

� �̂ f�m2��̂ f�− m2�� . �A13�

For each n and set of j1 , . . . , jn, expectation value of n+2
creation and n+2 annihilation operators can be written using
Wick’s theorem �127� as a determinant of �n+2��n+2� ma-
trix �128,129�

Mi,j
�n+2� = aG�si,tj� , �A14�

where

s1 = − m1a, s2 = m1a, si�2 = ji−2a , �A15�

t1 = m2a, t2 = − m2a, ti�2 = ji−2a , �A16�

and G�x ,y�=G�x−y� is a Green’s function of a free Fermi
gas, which, e.g., for zero temperature equals

G�x� = �
−kf

kf

exp�ikx�
dk

2	
=

sin 	n1Dx

	x
. �A17�

Since the structure of the matrix Mi,j
�n+2� does not depend on

n, summation over different n and sets j1 , . . . , jn can be now
represented as a single Fredholm-type determinant �129,130�

��x1;x2;0� =
Det�Aij − 2aBij�

4a2 , �A18�

where matrices Aij and Bij of size 2�m2−m1��2�m2−m1� are
defined by

Aij = diag�0,0,1, . . . ,1� , �A19�

Bij = G�s̃i, t̃ j� , �A20�

and

s̃1 = − m1a, s̃2 = m1a , �A21�

s̃i = �− m2 + i − 2�a for 3 � i � 2 + m2 − m1, �A22�

s̃i = �2m1 − m2 + i − 1�a for 2 + m2 − m1 � i � 2�m2 − m1� ,

�A23�

t̃1 = m2a, t̃2 = − m2a, t̃i�2 = s̃i. �A24�

Expansion of the determinant of Aij −2aBij using the rule for
the determinant of the sum of two matrices �see, e.g., p. 221
of Ref. �131�� generates the expansion of Eq. �A13�, similar
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to a usual Fredholm determinant �130�. Indeed, only diago-
nal minors not including lines 1 and 2 can be chosen fromthe
matrix Aij. Complimentary minor of size �n+2�� �n+2�
from the matrix Bij is proportional to matrix M�n+2� in Eq.
�A14�, and the summation over possible different sets of

j1 , . . . , jn is equivalent to a summation over different parti-
tions of matrix Aij into diagonal minors.

Since determinants are easy to evaluate numerically, one
can now take the limit a→0 numerically and evaluate
��x1 ;x2 ;0� with any precision.
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