DENSITY THEOREMS FOR COMPLETE MINIMAL SURFACESIN R?
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ABSTRACT. Inthis paper we have proved several approximation theorems for the family of minimal surfacesin ¥ that
imply, among other things, that complete minimal surfaces are dense in the space of all minimal surfaces endowed with
the topology of C* convergence on compact sets, for any k € N.

As a consequence of the above density result, we have been able to produce the first example of a complete proper
minimal surface in R? with uncountably many ends.
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1. INTRODUCTION

The conformal structure of a complete minimal surfacein R 3 influences many of its global properties. A com-
plete (orientable) minimal surface has an underlying complex structure that can be either parabolic or hyperbolic
(the elliptic (compact) case is not possible for a minimal surface in Euclidean space.) Classically, a Riemann sur-
facewithout boundary is called hyperbolicif it carries anonconstant positive superharmonic function and parabolic
if it is neither compact nor hyperbolic.

Until the 1980'’s, it was a general thought that complete minimal surfaces of hyperbolic type played a marginal
rolein the global theory of minimal surfaces. However, the techniques and methods devel oped to study the Calabi-
Yau problem have showed that these surfaces are present in some of the most interesting aspects of the theory.
It is natural that the first examples of complete hyperbolic minimal surfaces appeared as counterexamples to the
Calabi-Yau conjectures, which original statement was given in 1965 by E. Calabi [2] (see also [3] and [25]). This
author conjectured that “ a complete minimal hypersurface in R™ must be unbounded” , even more, “ a complete
nonflat minimal hypersurfacein R™ has an unbounded projection in every (n — 2)-dimensional affine subspace” .

Both conjectures turned out to be false, at least in the immersed case. In 1980, L. P. Jorge and F. Xavier
[7] constructed complete nonflat minimal disks in an open slab of R? giving a counterexample to the second
conjecture. An important progress came in 1996, when N. Nadirashvili [21] constructed the first example of a
complete bounded minimally immersed disk in R 2. Initially, Nadirashvili’s work seemed to be the end point of a
classical problem. However, the methods and ideas introduced by this author were the beginning of a significant
development in the construction of complete hyperbolic minimal surfaces. So, it has been possible to find examples
with moreinteresting topol ogical and geometrical properties. At the sametime, some non-existencetheorems have
imposed some limits to the theory. Three have been the main lines of study.

Embeddedness creates a dichotomy in the Calabi-Yau's question. T. Colding and W. P. Minicozzi [4] have
proved that a complete embedded minimal surface with finite topology in R 2 must be properly embedded in R3.
In particular it cannot be contained in aball. Very recently, Colding-Minicozzi result has been generalized in two
different directions. On one hand W. H. Meeks I11, J. Pérez and A. Ros [16] have proved that if M is a complete
embedded minimal surfacein R3 with finite genus and a countable number of ends, then M is properly embedded
inR3. On the other hand, Meeks and Rosenberg have obtained that if a complete embedded minimal surface M
has injectivity radius I, > 0, then M is proper in space. Thisis a corollary of the minimal lamination closure
theorem [17]. As a consequence of the above results, it has been conjectured by Meeks, Pérez and Ros that “ if
M c R3 isacomplete embedded minimal surface with finite genus, then M is proper” . We would like to mention
that the conjecture seems to be false under the assumption of infinite genus, as Meeks is working in the existence
of a complete embedded minimal surface with infinite genuswhich is contained in a half space [15].
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The second line of work is related with the properness of the examples. Recall that an immersed submanifold of
R™ isproper if the pre-imagethrough the immersion of any compact subset of R ™ is compact in the submanifold. It
is clear from the definition that a proper minimal surfacein R ® must be unbounded, so Nadirashvili’s surfaces are
not proper in R3. Much less obvious s that Nadirashvili’s technique did not guarantee the immersion f: D — B
was proper in the unit (open) ball B (here D stands for the unit disk in C), where by proper we mean in this
case that f~1(C) is compact for any C' C B compact. Moraes and the third author [11, 12, 20] introduced
completely new ingredientsin Nadirashvili’s machinery and they proved that every convex domain (not necessarily
bounded or smooth) admits acompl ete properly immersed minimal disk. These examplesdisproved alongstanding
conjecture, which asserted that a complete minimal surface (without boundary) with finite topology and which is
properly immersed in R? should be parabolic. Recently [13] they improved on their original technicues and were
able to show that every bounded domain with C'%<-boundary admits a complete properly immersed minimal disk
whose limit set is close to a prescribed simple closed curve on the boundary of the domain. Similar methods of
construction have been used by M. Tokuomaru in [24] to produce a complete minimal annulus properly immersed
in the unit ball of R3. In contrast to these existence results for complete properly immersed minimal disks in
bounded domains, Meeks, Nadirashvili and the third author [10] proved the existence of bounded open regions of
R3 which do not admit complete properly immersed minimal surfaces with an annular end. In particular, these
domains do not contain a complete properly immersed minimal surface with finite topology.
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FIGURE 1

The other line of study for complete hyperbolic minimal surfacesin R has been the construction of examples
with nontrivial topology. Nadirashvili's examples are simply connected. Thus, his mathematical machinery, which
is based on Runge's theorem and L opez-Ros transformation, works without problems. Lopez, Moraes and the
third author [8, 9] introduce a third element in the construction: the Implicit Function Theorem, in order to produce
Runge’s functions that close also the periods when they are used as parametersin the L 6pez-Ros deformation.

The aim of this paper isto join the second and third lines of work described in the above paragraphsin order to
prove the following result (Section 7, Theorems 2 and 3).

Theorem A (Density theorem). Properly immersed, hyperbolic minimal surfaces of finite topology are densein
the space of all properly immersed minimal surfacesin R3, endowed with the topology of smooth convergence on
compact sets.

Note that the best understood families of minimal surfacesinR3 (properly embedded, periodic, finite total cur-
vature, finitetype,...) areincluded in the statement of Theorem A. Furthermore, if we do not care about properness,
then we can prove that:

Complete (hyperbolic) minimal surfaces are densein the space of minimal surfacesin R 3 (without
boundary) endowed with the topology of C'* convergence on compact sets, for any k& € N.

In the case of hyperbolic minimal surfaces we have an infinite number of linearly independent Jacobi fields.
This is the key point in the proof of the above theorem. This enormous capability of deformation allows us to
“model” agiven compact piece of ahyperbolic minimal surfacein order to approximate any other minimal surface
with the same topological type (see Figure 1). In particular, we can obtain the following existence result.
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Theorem B. For any convex domain D in R3 (not necessarily bounded or smooth) there exists a complete proper
minimal immersion ¢ : M — D, where M isan open Riemann surface with arbitrary finite topol ogy.

One of the most interesting applications of our Density Theorem is the construction of the first example of a
complete minimal surface properly immersed in R ? with an uncountable number of ends (Section 8).

Theorem C. There exists a domain @ c C and a complete proper minimal immersion ¢» : Q — R3 which has
uncountably many ends.

The domain 2 is boundedin C and its set of ends contains a Cantor’s set. We would like to emphasize that our
technique can be also applied to construct complete proper minimal surfaces of genus k, £ € N, and uncountably
many ends. For the sake of simplicity, we have only exhibited in this paper the construction of a minimal surface
of genus zero and uncountably many ends.

Once again, embeddedness establishes a dichotomy in the global theory of minimal surfaces. So, it is impor-
tant to note that complete proper minimal surfaces in R3 with uncountably many ends cannot be embedded as a
consequence of aresult by Collin, Kusner, Meeks and Rosenberg [5].

Acknowledgments. We are indebted to W. H. Meeks |11 for valuable suggestions in the construction of minimal
surfaces with an uncountable number of ends. We would also like to thank A. Ros for helpful criticisms of the

paper.

2. PRELIMINARIES

This section is devoted to briefly summarize the notation and results about Riemann surfaces, minimal surfaces,
and convex geometry that we will usein the paper.

2.1. Riemann surfaces background. Throughout the paper M’ will denote a connected compact Riemann sur-
face of genuso € NU {0}.
Let M beadomainin M’ and assume that M carries a Riemannian metric ds2. Givenasubset W C M, we
define:
o dist(y,4s)(p, q) = inf{length(c, ds) | a : [0,1] — W, a(0) = p,a(1) = ¢}, forany p,q € W;
° diSt(Wde) (Tl,Tg) = inf{dist(w,ds) (p, q) | pE Tl, qE€ Tg}, for any Tl, TQ C W,
o diamy, (W) = sup{dist(w,qs)(p,q) | p,q € W}.
For E € N, consider Dy, ..., D C M’ open disks so that {; := JD;}%_, are piecewise smooth Jordan curves
andD; ND; = @ foral i # j.

Definition 1. Each curve ~; will be called a cycle on M’ and the family 7 = {~v1,...,7} will be called a
multicycleon M. We denote by Int(;) thediskD;, for i = 1,...,E. Wealso define M (J) = M’ — UZ_, Int(y;).
Notice that M (7) is always connected.

GivenJ = {v,...,v%etandJ = {v],...,7L} twomulticyclesin M’ wewrite 7' < J if Int(~;) C Int(y})
fori=1,...,E Observethat thisimplies M (J’) C M(J).

Let 7 = {v1,...,7} be amulticycle and assume that M (.7) C M, where the Riemannian metric ds? is
defined. If ¢ > 0 is small enough, we can consider the multicycle 7€ = {+5,...,~<}, where by v¢ we mean

the cycle satisfying Int(v;) C Int(yf) and dist(as,45)(q,7:) = e foral ¢ € 7§ andi = 1,...,E. Similarly,
we can define 7—¢ = {77 ¢, ...,7% °}, where v, now means the cycle satisfying Int(y,€) C Int(y;) and
dist(l\/j,ds)(q,’}/i> =eforalqe ’)/,;6 andi=1,...,E

Given a Riemann surface with boundary N C M, we will say that a function, or a 1-form, is harmonic,
holomorphic, meromorphic, ... on N, if it is harmonic, holomorphic, meromorphic, ... on adomain containing V.

2.2. Minimal surfaces background. The theory of complete minimal surfaces is closely related to the theory
of Riemann surfaces. This is due to the fact that any such surface is given by a triple @ = (@, ®o, $3) of
holomorphic 1-forms defined on some Riemann surface such that

(2.2) 7 + 5 + 3 = 0;

(2.2 [@1% + [|P2]* + [|[®s]* # 0;
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and all periodsof the ® ; are purely imaginary, herewe consider @ ; to be aholomorphicfunctiontimes dz inalocal
parameter 2. Then the minimal immersion X : M — R?® can be parameterized by z — Re [* ®. The abovetriple
is called the Weierstrass representation of theimmersion X . Usually, the first requirement (2.1) (which ensuresthe
conformality of X) is guaranteed by introducing the formulas:

_ Ll _1
@1—2(1 9)77, ‘1)2—2

with a meromorphic function g (the stereographic projection of the Gauss map) and a holomorphic 1-form . The
metric of X can be expressed as

(2.3) dsx® = L@l = (& (1+1g?) Inl)”-

Throughout the paper, we will use several orthonormal bases of R 3. Given X : Q — R aminimal immersion and
S an orthonormal basis, we will write the Weierstrass data of X inthebasis S as

(1+¢*)n, @5=gn,

Qx,5) = (P(1,5), Pr2,9): P(3,9))s  9(x,5), N(x,9)-

Similarly, givenv € R3, we will let v(k,s) denote the k-th coordinate of v in S. Thefirst two coordinates of v in
this basis will be represented by v(..s) = (v(1,5), v(2,5))-
Givenacurvea in M, by length(c, X) wemeanlength(a, ds x ). Similarly, givenasubset W C M, wewrite:

e dist(w,x) (P, q) = dist(w,asx) (P, q), forany p,q € W,
. diSt(Wyx) (Tl, Ty) = diSt(WdeX) (Tl, Ty), forany T1, 1o C W;
(] dlamx(W) = diamgs (W)

2.2.1. The Lopez-Ros transformation. The proof of Lemmas 1, 2 and 3 exploits what has come to be called the
Lopez-Rostransformation. If M isaRiemann surface and (g, n) are the Welerstrass data of a minimal immersion
X : M — R3, wedefine on M the data

- g -
(24) 9=3% n=mn-h,

where h : M — C is aholomorphic function without zeros. If the periods of this new Weierstrass representation
arepurely imaginary, then it definesaminimal immersion X : M — R3. Thismethod provides us with a powerful
and natural tool for deforming minimal surfaces. From our point of view, the most important property of the
resulting surface is that the third coordinate function is preserved. Note that the intrinsic metric is given by (2.3)
as

2_ (1 lg* ’
(2.5) ds 5 | IRl + In] nll | -

This means that we can increase the intrinsic distance in a prescribed compact of M, by using suitable functions
h. These functionswill be provided by Lemma 1 that can be consider a Runge’s type theorem.

2.3. Background on convex geometry. Convex geometry is a classical subject with a large literature. To make
this article self-contained, we will describe the concepts and results we will need. A convex, compact set of R ™
with nonempty interior is called a convex body. A theorem of H. Minkowski (cf. [19]) states that every convex
body C' in R™ can be approximated (in terms of Hausdorff metric) by a sequence C';, of ‘analytic’ convex bodies.
Recall that the Hausdorff distance between two nonempty compact subsetsof R, C' and D, is given by:

§7(C, D) = max { sup inf ||z — sup inf ||z — .
(€.D) = max {sup inf o =yl sup inf o — ] }

Theorem (Minkowski). Let C' be a convex body in R™. Then there exists a sequence {C}, } of convex bodies with
the following properties

1. C; \, C interms of the Hausdorff metric;
2. 0Cy isan analytic (n — 1)-dimensional manifold;
3. The curvatures of 9C), never vanish.
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A modern proof of this result can befoundin [18, §3].
Given E a bounded regular convex domain of R3 and p € 9FE, we will let ko(p) > k1(p) > 0 denote the
principal curvatures of OF at p (associated to the inward pointing unit normal.) Moreover, we write:

/{1(8E) = min{lil(p) |p S 5‘E}
If we consider VV : OFE — S? the outward pointing unit normal or Gauss map of OF, then there exists a constant

a > 0 (dependingon E) suchthat 0F; = {p+t¢- N(p) | p € OFE} isaregular (convex) surface Vt € [—a, +o0l.
We label E; asthe convex domain bounded by 0F';. The normal projectionto OF is represented as

Pg: R3_-E., — OE
p+t-Np — ».

Finally, we define the ‘ extended’ Gaussmap Nz : R? — E_, — S? asNg(z) = N(Pr(z)).

3. A RUNGE’STYPE LEMMA

As we mentioned in the introduction, this section contains a Runge type theorem on Riemann surfaces. It will
be crucia in the prove of the main theorems.

Lemmal. Let J beamulticycleof M’ and F : M(J) — R3 aconformal minimal immersion with Weierstrass
data (g, ®3). Consider K; and K two digoint compact setsin M (7) and A C M’ satisfying:

e There exists a basis of the homology of M (7) contained in K 5;

[ ] ZC M’ — (K1 UKQ),

e A hasa point in each connected component of M’ — (K37 U K»).

Then, for any m € Nandfor anyt > 0 thereexists H : M(J) — A — C a holomorphic function without zeros,
such that

(L1a) |H -t <1/minKj;

(L1b) |[H -1 <1/minKg;

(L1.c) Theminimal immersion F : M(7) — A — R3 with Weierstrass data (g/H, ®3) is well-defined.

In order to prove Lemma 1, we have to introduce some terminology and prove severa claims. We define
0 = 20 + E — 1 (recall that o isthe genus of the compact surface M '.) Thus, let B = {X4,...,R,} beabasis of
the homology of M () contained in K 5, and denote by H the complex vector space of the holomorphic 1-forms
onM(J).

Claim 3.1. Consider (a1,...,a,) € C?2 —{(0,...,0)} and ¢ = 3°7_, a;X;. Then there exists 7 € H with

fCT: 1.

Proof. The first holomorphic De Rham cohomology group, H ., (M (7)) is acomplex vector space of dimension

o (see [6, Chapter 111.5]). Thus, the map I : H (M (7)) — C2 given by I([¢}]) = (le A u)) .isa
linear isomorphism. Observe I is well-defined from the fact that the type of an exact 1-formin H 2, (M (7)) is
zero. Therefore, there exists [)] € Hpy (M (7)) suchthat I([¢)]) ¢ {(z1,..,2,) | 2_5_; ajz; = 0}. Therefore,
we can choose 7 € [¢] with [ 7= 1. O

Claim 3.2. Consider 7 € H and P € M(J). Then, there exists a holomorphic function A : M (J) — C such

that ((7‘ + dA)|W) . > (7 |W)o - P, where (-)o denotesthe divisor of zeros.

Proof. Suppose (7)o = Q1+ QrP™, with P # Q; Vi = 1,...,k, and assume that there exists a holomorphic
functionv : M (J) — C satisfying

1) U(P) #U(QZ%VZZ 1;"'7k;
2) P isnot aramification point of v.

Consider thefunction.J : M (J) — C givenby J = (v—uv(P))" ! [TI_, (v—v(Q:))2. Therefore, (dJ|W)

02
(T|W)O and the order of P as zero of dJ and 7 is the same, o, thereexists A € C suchthat A = \J solves
the claim.
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Now, we are checking that there exists a such function v satisfying items 1) and 2). A Runge’s type theorem
(see [23, Theorem 10]) guarantees the existence of a holomorphic function v : M (J) — C fulfilling item 1).
On the other hand, given (U, z) aconformal coordinate chart around P and m € N, the same theorem provides us
of a holomorphic function b, : M(J) — C with |h,,(2) — z| < 1/m for z € U. Hence, {hm}men — 2z and
therefore {dh,, } men — dz. Taking into account that P is not a ramification point of z, we conclude that there
existsm € N large enough so that P is not aramification point of v := h,,. Finaly we choose v as a appropriate
linear combination of v; and vs. O

Claim 3.3. Let O(M (7)) bethereal vector space of the holomorphic functions on M (7). Then the linear map

1
,Im[/ B (——g)]
1,...,0 Ry g j=1,...,0

F:OM(J)) — R?e given by
1
Flp) = (ReMjsO% (§+g) ~

Proof. SupposeF isnot onto. Therefore, thereexists (pu1, . . . , pa,) € R#2—{(0,...,0)} suchthat F ((’)(M(j)))
C {1, m25) | 232, pjz; = 0} In other words:

- | e ] = AT
(3.1) Re [; <u]/Nj g<I>3+u]/v<pg<I>5>] 0, VeeOM(T)),

J

j=

isonto.

wherew; = p; — i1, 5 =1,...,0.
Now, Claims 3.1 and 3.2 guarantee the existence of adifferential 7 € H satisfying

2
P = ((5%) Mm)o' (49 lrrz5)
[ ] Re [2521 U/_ijj Ti| =1.
Therefore, if we definew := 57, thenp := £ € O(M(J)). Hence, integrating (3.1) by parts, we obtain

which isabsurd. This provesthe claim. O

Using the above claim we obtain the existence of {¢1, ..., ¢2,} C O(M(J)) suchthat {F (1), ..., F(p2e)}
are linearly independent. Fixed m( € N, without loss of generality, we can assume

20
Z zipi(p)
i=1

Va = (z1,...,22,) € R2with |z|| _ < 1,Vp e M(J).

(3.2 < —,
mo

3.1. Proof of Lemmal. Givenn € N, we apply a Runge-typetheorem on M ’, see [23, Theorem 10], and obtain
aholomorphicfunctiond,, : M(J) — A — C such that

|9, —nlog(t)| <1/n inKy,
[9n] < 1/n in K .

Now, for © = (Ao, ..., A2,) € R?*! we consider themap h® " : M(J) — A — C given by

h®™(p) = exp [)\0 Un(p) + Z Ajpj (p)] :
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Label g©m = g/h®™ and ®$"™ = ®5. Clearly, we have that 9,, converges uniformly on K, to 9, = 0. So, for
© = (Ao, ..., Aa,) € R22t! we also define on K, the Welerstrass data g©>° = ¢/h®>° and &> = &3, where
h®> : Ky — Cisgiven by

(3.3) h@’Oo(p) =exp [Z r (p)] )

Note that the third coordinate of all these Weierstrass representations has no real periods, but the period prob-
lems of the two first ones coordinates are not solved. In order to solve these problemswe define, Vn € NU {oc},
themap P,, : R?e*+!1 — R2e given by

(3.4) P.(0) = (Re / q»?m] , Re / 5™ ) .
Nj . N .
Jj=1,...,0 Jj=1,...,0

J

Since F is awell-defined immersion, then we have P, (0, ...,0) = 0,Vn € NU {co}. Moreover, it isnot hard
to check that

[JaCh, ... 20 (Pn)(0, ..., 0) = det(F (1), ..., Flp2o)) #0, VneNU{oo}.
Labeling B(0,7) = {A € R?e | ||A| < r}, we canfind¢ > 0 and 0 < r < 1 such that the Jacobian operator
[JacAl,...,A?Q(Poo)]\_[_5 ¢)xB(0.r) # 0 and P \B(O ) isinjective. N
As {9, }nen uniformly convergesto 1900 = 0 on KoandX; C Ky, Vi=1,...,p, thenitisnot hard to see

that {Jacy, ..., x,, (Pn) fnen uniformly convergesto Jacy, ... x,, (Po) ON [0, €] X B(0,7). Therefore, there exists
no € Nsatisfyingthat Vn > ng, 3¢, > 0suchthat [Jacy, ... x,, (Pn)] (Mo, A) # 0,V (Ao, A) € =&, & x B(0, 7).
Now, we are able to apply the Implicit Function Theorem to the map P, a (0, ...,0) € [~&,, €] x B(0,r) and
obtain asmooth function L, : I,, — R??, satisfying P,,(A\o, L»(A\o)) = 0,V X\¢ € I,,, where I,, is an open interval
containing 0 and maximal, in the sense that L ,, can not be regularly extended beyond I ,,.

Claim 3.4. There exist ¢g > 0 and ng € N such that the function L,, : [0, e9] — B(0,r) is well-defined for all
n Z no.

The proof of Claim 3.4 is a standard argument of classical analysisthat can befoundin [8].

Taken > ng largeenough sothat 1/n < eq and label (A7, .. .,Agg) =L,(1/n). 1fmgin(3.2) andn > ng are
sufficiently large, the function

o

satisfies (L1.a) and (L1.b). As the period function P, vamsh&s aoe, = (1/n,A",...,A3,), then the minimal

immersion F' with Weierstrass data given by (g/H, ®3) is well-defined. Hence, the function H also satisfies
(L1.c). This completesthe proof of Lemma 1.

4. PROPERNESS LEMMA

Thislemma asserts that a compact minimal surface whose boundary is close to the boundary of aconvex E can
be ‘elongated’ in such away that the boundary of the new surface achieves the boundary of a bigger convex £ ’.
However, the above procedure does not change the topol ogical type of the minimal surface. If E is strictly convex
we are able to obtain some extrainformation about the resulting surface that will be necessary in proving Theorem
3 (see Remark 5.)

Lemma 2. Let £ and £’ be two bounded regular convex domainsin R, with0 € £ ¢ E C E’. Consider
J' < Jo multicyclesin M’ and X : M(Jy) — R3 a conformal minimal immersion satisfying X (po) = 0 for a
given point po € M(J'), and

(4.1) X(M(Jo) - M(T"))c E - E.

Finally, consider b, > 0 suchthat £’ , and £y, exist. Then, for any b; > 0 there exist a multicycle 7 and a
conformal minimal immersionY : M (J) — R3 satisfying Y (po) = 0 and:
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(L2a) J' < T < Jo;
(L2b) [Y(p) — X(p)|| < b1,Vp e M(T');
(L2c) Y(J) C E' — E', ;

(L2.d) Y(M(T) — M(J")) CR3 — E_,.

4.1. Proof of Lemma 2. Let w be a meromorphic differential on M’ so that w has neither zeroes nor poles on
M(Jo). Then, itiswell knownthat ds? := |jw||? isaflat Riemannian metric on M (7).

Remark 1 (developing map). Fixed a point ¢ € M (7o) the multivalued map given by:
P
(4.2 f(p) := / w,
q

is called the developing map of ||w||2. It isknown that ||w||? = f*dsZ, where ds? represents the Euclidean metric
of C. In particular, f can be seen as a local isometry.

Givenn € N wedefinean order relationintheset I = {1,...,n} x {1,...,E}. Wesay (4,1) > (4, k) if oneof
the two following situations occurs; [ = k and j > i or [ > k. Moreover givenp € M(Jy) and r > 0, we denote
D(p,r) = {q € M(J) | dist(ar(z),a (p,q) < r}. We aso define two important constants that are chosen as
follows:

o 1 = max{distgs(z,0F) | v € E'};

e ¢y > 0 which will only depend on the dataof Lemma?2 (i.e., X, 7o, J’, E, E’, b, and by.) This positive
constant will be determined later and it must be small enough to satisfy several inequalities appearing in
this section.

4.1.1. Thefirst deformation.
Claim 4.1. Thereexist a multicycle J; suchthat 7' < Ji < Jo, and a set of points {p¥ | (i, k) € I} included in

M(J1) — M(J"), satisfying the following properties:
1) For any k, there exists a cycle ;. passing trough {p%, ..., p*} (orderly) and containedin M (J1) — M(J');
2) J2={m,...,7e}isamulticyclewith M (J’) C M(J2);

3) There exist open disks B“* C M(J;) — M(J') satisfying p¥,pF,, € B“*, and such that (we adopt the
conventionp% . ; = pk)

(4.3) IX(p) = X(P)| <e, VYpp €B* V(i,k)el;

4) For any (i, k) € I, there exists an orthonormal basis of R3, SF = {ei*, eb*, eb*}, with e = Ny (X (pF)),
and satisfying

b i+1, €0 ; n+1, ,
(44) ejk _ ej+1 kH < @ 7 vj c {172,3} (ej-i-l k — 6; k) 7
and
N(x,s¥
(4.5 f(X,sf)(pf) ?é 0, where f(X,Sf) p— % :

5) For each (i, k) € I, there exist a complex constant #* which satisfies |0¥| = 1, Im 6% # 0, and

w foxsm ()
’ |f(X,S§)(pf)|

€0
3u

(4.6)

Proof. Since 7' is aset of piecewise regular curves, then we know that V(X (7’)) omits an open set U of S2.
Hence, we can get a multicycle J; with 7/ < J1 < Jo and Ng(X(M(J) — M(J'))) € S* - U. Let V;
and V be a smooth orthonormal basis of tangent vector fields on S? — U. Then, we define &1 (p) = Ng(X (p)),

&(p) = Vi (Np(X(p)) and &s(p) = Va (Np(X(p))), Vp € M(J1) — M(J").
If n islarge enough, because of the uniform continuity of X andthefields¢ ;, for j = 1, 2, 3, we can find points

{pk| (i,k) € I} € M(J1) — M(J’) satisfying Statements 1), 2), 3), and the following property:
(4.7) 1€ (®F) = & PF)|| < eof6p, ¥i€{1,2,3}, V(ik)el.
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Labeling G as the spherical Gauss map of X, we can write G(p¥) = S5, oi" - &(pb), 0" € [-1,1].
Takea € [0,1] — {o5" | (i, k) € I}, and define ey™ = & (pF), 5" = —vI—a%&(pF) + a&s(pF) and e5* =
a&(pF) + V1 — a2&s(pk). Then, (4.4) isadirect consequence of (4.7). Moreover, notethat e 5 # G(pF), V(i, k),
and so (4.5) trivialy holds. Finally, the existence of ¥ is straightforward. O

FIGURE 2. Thesurface M’ the multicycles 7y, J1, J2, J3,and J.

Remark 2. Notice that Properties (4.3) and (4.4) are cyclic, i.e., they are true for i = n labeling prH = p¥,
Sk, = S¥and Btk = BLF,

Now, for any (i, k) € I, consider a holomorphic function ¢; 5 : M (J) — {pF} — C having asimple pole at
p¥. The existence of such functions is a consequence of the Noether ‘gap’ Theorem (see [6]). Up to multiplying
Ci,, by acomplex constant, we can assume that the residue of ¢; i, - w apFis—1,foral (i,k) € I.

Claim 4.2. Thereexists0 < § < 1 such that, for any (i, k) € I, there exist a point ¢¥ € 0D(p¥, ) and aregular
smplecurve 3, . : [0,1] — D(pF, §) satisfying

(1) Bik(0) =g, Bix(1) = pi and B x(10,1[) C D(p}, d);

() CGir(Bik()) - wp,,.1)(B; (1) € RY, VL €[0,1];

(3) Im(Ci,k(ﬂi,k(t)) Im(@f) < Oa Vit e [Oa 1[

At this point we can define the following constant:
8" := max{length, (3 x) | (i,k) € I} .

Noticethat 5’ > § and lims_.o 6’ = 0.
Claim 4.3. Thereexists 6 > 0 small enough to satisfy Claim 4.2 and the following list of properties:
(A1) Thereexists J3 amulticyclewith M (J3) = M(J2) — U(i7k)61D(pf, 0) (seeFig. 2) ;
(A2) D(pk,8)UD(pk,,,6) C B**, V(i,k) € I,
(A3) D(p},8) N D(p},8) =0, VY(i,k)# (4,1) € I;
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(A4) 0" - maxmﬂf(xysfﬂ} < 2 €g, V(Z, k) €l
(A9) 6" - a5 {1 Fox,sm) 0% |} < [T0(88) o, WG ) € T

(A6) 3p- maxpemﬂf(x,sf)(p) - f(X,Sf)(pi'c)” < |f(X,sf)(pf)| €0, V(i k)€
(A7) 5’-maxm{||¢|\} <€, V(i,k)e€ I,where® = ¢-w istheWeierstrass representation of theimmersion
X. h

Now, we label ¢ := diamgs(M(J3)) + 26 + 276 + 1. Foreach k = 1,...,E, we construct a sequence

FIGURE 3. The conformal disk D(p¥, 9).

U ={U;)|i=1,...,n}, wheretheelement ¥, , = {xF,al, C¥ G¥, ®"*} is composed of:
e k¥ isapositive real number;
e aF isthefirst point in the (oriented) curve 3, ;. , such that

1
(4.8) 5 ‘f(x,s,k)(pf) / KEGrw =3,
2 ‘ Blak.ab)

where 1 was defined at the beginning of the proof of Lemma 2 and (g, p) denotes the oriented arc of
Bi.x ([0, 1]) starting at ¢ and finishing at p.

e CF isapiece of a simple closed regular curve C' contained in D(p¥, §) such that o* € CF and each
connected component of 3; ([0, 1]) — {a’} lies on a connected component of D(p¥, §) — C (see Fig. 3.)

e G* isaclosed annular sector bounded by C'¥, 0D (p¥, §) and the boundary of asmall neighborhood of the
curve 3(qf , af);

o d'F = ¢k . is aWeierstrass representation defined on M (J1) — Ugj1y< i,k U (p}), where Uph) =

D(pt, ) — G_é isasmall open neighborhood of p’.

Remark 3. In each family ¥, we will adopt the conventionthat ¥,, 1 5 = ¥ 5. Incasek = 1, let %1 = ¢%1w
be the Welerstrass representation of the immersion X. We denote ¥ ; = {®%!}. Incase k > 1, we write
Pk = k=1 gnd label \I/()yk = {@O’k}.

Claim 4.4. We can construct the sequence in such way that satisfy

(Blf) 6" maXD(p3_76){|f(‘I>i”",SJl.)|} < 2eo, V(j,l) > (Z7k)7

(BZf) o maXD(p§_75){|f(&1>i”“,SJl.)g(2q>i,k7sjl_)|} < |Im(9§)| €0, V(], Z) > (ia k)7

(B3f) 3p - maXpemﬂf(qwk,sp(p) - f(X,S;)(pé')H < |f(X,SJl.)(pé')| €0, Y (5,0) > (i,k);

(B4¥) |Re f% ®Hk|| < €y, Vpe CF,whereq, isapieceof C* connecting a” with p;

(B5F) ‘I’Eéksk) = @E;}g’f), where <I>2’J,’_“S_k) represents the j-th coordinate of the triple ®%* in the frame S¥;

(B) [[6"(p) — 0" (p)| < 2, Vpe Kf = M(7) - (D(p?ﬁ) U ( U U(pﬁ»))) ;
_ _ (D)< (k)
(B7E) |[Re fyiqp o) @ = Re [yn i @1 < 15eq, (fori=2,...,n+1);

i—
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(B8) For all p € G¥ onehas

7, 7 1 r 7,
| <Re/ (I)(lkSk ) <Re/ (szk)> es” — 5 ‘f(X,S?’)(pf) <Re/ ki Czkw) er”

(B9Y) 3u+eo > %‘f(xﬂf,)(pf)‘(Re f;} Iii—cg,k w) > —eg, forall p € G_f

< dey

The above properties are true for (i, k) € I, except for (B1¥), (B2F), and (B3%) which hold only for (i, k) #
(n, E). Similarly, Property (B7%) isvalidonly fori =2,...,n+1,andany k € {1, ..., E} (see Remark 3.)

We define each family ¥, in arecursive way. Before entering in the details of the recursive construction, we
would like to make some remarks:

Remark 4. To construct ¥, ; starting from ¥;_; ; we will use Properties (B1!_,), (B2!_,) and (B3!_,). Inthe
casei — 1 = 0, these properties are a consequence of (A4), (A5), and (A6), respectively.

If k> 1and ¥,_, ; isalready defined, then in order to obtain ¥ ; ;, from ¥, _, , wewill make use of Properties
(B1%_ ), (B2¥_,) and (B3F ;). Inthecasei — 1 = 0, these propertmsareacon%quenceof (B1E-1), (B2k-1) and
(B3E—1), respectively.

Assume W;_; ;. is defined satisfying Properties (B1F_,),.. ., (B9F_,).
From item (3) in Claim 4.2 we easily obtain that:

(4.9) |1+ cOF Gr(Bin(t)| = [Im(6F)] >0, Vtel[0,1], Ve>0.

Consider abasis of the homology of M (7o), B = {X1,...,R,}, sothat thecurvesX;, j = 1,..., o, arecontained
in M(72) — Ugner D@5, 0).

Reasoning as in Claim 3.3 we obtain the existence of {¢1,...,¢2,} € O(M(J)) such that {F(¢1), ...,
F(p2,)} arelinearly independent. Up to a suitable shrinking, we can assume

2 Tm (6"
(4.10) exp {;wj(p)] ) m(2 3l ’

Vo = (21,...,29,) € R?with|jz| < 1,Vp € M(Jp). Now, for © = (Ao, A1, ..., \a,) € R2¢F1 we consider
themap h® : M (Jy) — C given by

20
he(p) = Ao 07 Gik(p) + exp [Z Ajp; (p)] :
j=1
Observe that h® — 1 uniformly on M () — D(p¥, ), as© — 0. Then, thereexists 1 > r > 0, so that h© has
no zeroesin M (Jo) — D(pf,d), foral © € B(0,r) = {z € R**! | [[zf| < r}.
Label g© = g(gi-1.k gry/h® and ®F = &7 * . For the associate Weierstrass representation, ®©, we define

(3.55)"
/ il ) .
R =10

the period function P : R2e+! — R2¢ given by
I
R J
Notice that PP isamapping of class C'* and P(0, .. .,0) = 0. Then, applying the Implicit Function Theorem, asin
the proof of Lemma 1, we get the existence of a positive constant x > 0 and acurve L :] — «, k[— R 22, such that
(Ao, L(Xo)) € B(0,7) and P(Xo, L(Xo)) = 0, forall \g in] — &, &[. Since @0 L(20)) —, di=Lk yniformly on
KF as\g — 0, thenwe canfind k¥ €]0, x[ so that the Weierstrass data:

, Re

P(©O) = (Re

Jj=1,...,0

K KF 1, I{?,L nf
(4.11) Grair sty = gBEEED) ‘P(fsk) = p(HL)
satisfy Properties (B1F), (B2¥), (B3¥) and (B6%). Furthermore, Property (B5F) trivially follows from the definition
of ®%k,
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For the sake of simplicity wewill write h; ;. instead of R(=5L(ED)  Wewould like to point out that the immersion
XF: M(J2) — (D(pf,8) U (Ugn<mU@s)) — R® with Weierstrass representation &%, in the orthogonal
frame S¥, is well-defined. To obtain the remainder properties we have to work alittle further.

To check Property (B8%) wewrite a + ib = ae’" + beh*. Givenp € 3(¢*, a¥), from the definition of 3, ; we

get
P
Re/ KEGipw :/ KEGrw €RT.
af B(aF,p)

Hence, using first (4.6) and then (4.8), one obtains:

1 60 k
<3 3 ‘f(x,s;f)(m)

1
3 (‘f(x,s;c)(pf)

— 07 f(X,Sf)(pf))/ﬁ KEGigw

/ Hf(i,k w<e€.
(qF.p) B(qF.p)

Therefore, we have

<

: , 1
Re/ ooF +iRe/ A ‘fxsk (p¥) / kPG w
B(qF.p) (1.55) B(qk.p) (2,51~ g |15 B(qF.p)

(4 12) + € 0

. . 1
Re/ i & +1Re/ gl oy — —effxsk (pf)/ nf{iykw
Bt p) 5 Bty BSD 27T0SD B(d" p)

Taking into account the definition of &, 5, and (4.10), we can write h; ,, = v; 1 + Hfmfgm + 1, wherev; ;, isa
k
holomorphic function with |v; 5| < mj” Moreover, Re @1 + iRe @5 = (7] — ¢°n). Then, expression (4.12)

can be bounded by

1

2

/ﬂ( . )f(@fl,k,sf)Hfme,kw +/3( . )f((pi—l,k7slk)(vi,k +w-—
(]7,'71) qi P

+e <

W -
f(qwr—l,k,s&)g%pifl,k SkYTT —Hff(x,sk)(pi?)/ Kf@,kw
/mqf,p) O S R ' A" p)

1
+z +

1
2 2

/ (floimrm,s8) = Fix,sm (PE))OF KEGpw / f@i-10 g0y (Vi + 1) w
B(ak.p) ' B(af.p) '

1

5 + €9 + €9 < 5¢g

+ €9 < €9+ €o (1+

2 w
i—1,k Gk i—1, A
/ﬁ!(ql‘"’,p) J@imsm sty 9 sty Rk

where in the second inequality we have used (4.8), (B3%_,), (B1F_,), (B2F ), (4.9) and (4.10). Thus, we have
proved that Property (B8%) holds for al p € 8(¢F, a¥). Hence, if CF and G¥ are chosen close enough to ¥ and
B(qk, a¥), respectively, we obtain Properties (B4F), (B8%) and (B9Y).

%

Finaly, we are checking (B7%). In order to do this, we write

Re/ ok fRe/ ok
B(af .af) Blak_y,af )
2
ik ik i—1,k i—1,k
2 <Re /mqu q)‘j’sf)> E <Re /quel,am) q)“”sfl)) “
ik ik i—1,k i—1,k
‘ <Re /ﬁ(q’? a’?) ®(37S§)> “ <Re /[3((1’" ak ) Q)(S,Sfl)) €3

<

+

J=1

Y
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and we separately bound each addend. Using (B8%), (B8 ,), (4.8) and (4.4), we obtain

2
’Lk i 7 lk 7— 17]{;
j; <Re /ﬁ(q")a")@( Sk)) E <Re /ﬁ(q"'l,a’,c )QD(] Si_ 1)> “ 1 -

i—1

z k
/ ﬁCLkw 6 ‘f(xs* 1)pz 1‘/ Ki— 1@1 1,k W !
B(QZCaak) B(qL 11aL 1)

H?)ue —3pei P

+ 10¢g =

Qf(x,sf)(pf)

H + ].06() < €9 + 106() = 116() .

To bound the second addend we use (B5%) and (B5¥_,) to obtain

i,k i,k i—1,k i—1,k
(Re /< by Sk)) " <Re /mqk iy G5 ”) "

(I)z 2,k
Re ‘//G(qklvakl) (5 S7 1)

where in the second to last inequality we have used (B6'), (j,1) < (i, k), and (A7). Therefore, Property (B7})
holds, and so we have constructed the required sequence {¥ ; ;. | (i, k) € I}.

(4.13) +

i1,k
< |Re /( . k)q)(S,Sf)

Jle
< o' (mass s Ll I + maxg e {116 2k||})<2<70+60> < ey,

4.1.2. Preparing the second deformation. Note that the Weierstrass representations ® “* have simple poles and
zerosin M (J1). Our next job is to describe adomain U/ in M (71) where the above Weierstrass representations
determine minimal immersions.

We can consider §” > & such that D(pf, ") U D(pf, ,,6"”) C B"*, (i, k) € I,and D(p¥,5") N D(p}, 6") =
0,v(i, k) # (4,1) € 1.

Let o, C D(pF,d"”) — D(p¥, §) beasimple curve connecting dD(pk, §") N Int M (J2) with ¢F and finally let
N} beasmall open neighborhood of a; 1, U B(qF, a¥) in GF U (D(pF,8”) — D(pF,5)). Thedomain/ is defined

U=|M=%R) - J pehs|ul U
(i,k)el (i,k)el

If 6", c; ) and N are suitably chosen, then we can guarantee:

Claim 4.5. The domain i/ satisfies the following properties:

(C1) Thereexists 7y amulticyclewithi/ = M (7). Fromnow on, we write M (7,) instead of U

(C2) Blaf,af) Cc M Ju) and 7' < Ju;

(C3) diamys (M (Ju)) <

(C4) M(Ju)ND(pk,d) C Gk Y (i, k) € I

(C5) The homology group of M(ju) isthe same as M (Jy) and it is generated by the basis 3 described in page
11

F=Z =

At this point, it is clear that we are able to find a multicycle, 7,4, with 7, < J, and satisfying (C3) and (C5),
wheretheimmersions X ¥ : M (J;) — R3 givenby X*(p) = Re fp”o ik are till well-defined, for (i, k) € I.
Claim 4.6. For (i, k) € I, we have

(DY) X} (p) = XL, (p)| < £, Vp € M(J2) — D(pk, 0);

(D2}) (XF)(3,5%) = (X{1)(3,5%5

(D37) X% (af) — X5 (afy)ll < 20e;

(D47) X5(af) € R® — B

Proof. In order to get (D1¥) we use (B6%) and (C3) as follows:

P i P i €0
1550 = X0l = [Re [0t — ot < [Tt - il < 2 [l < 22
Po Po

nE
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7/

FIGURE 4. ThecurvesQF.

Nry

Now, (B5}") immediately implies (D2}). To check (D3}) weapply (D1), (j,1) € I, (B7},,) and (4.3) to obtain
15 (af) = Xg(ai )|l < 1X5(af) — XF(af)|| + [1X5 (af1) — X (af0)[+
1XE 1 (afy ) = XF@O + (X (@f) = XE(aF) = (XFa(afn) = X (i)l <

Re / q)i-‘rl,k _ / (I)i,k
B(aF,,.ak,,) B(ak,qF)

Finally, we will prove (D4}). Using (D1%), (5,1) > (i, k), one gets
X5 (af) = X(0F) = 3uNe(X))| < X5 (af) = XE ()| + [ XF (af) — X () = 3uNe(X(@))|+
IXF(aF) = XD < eo+ 1(XF(af) = XF () w50y — Buer™ || + (X[ (aF) = XF(gF)) 3,501+

IXF(qf) — X (@) + 1 X (gF) — X (P})Il < €0+ 5eo +2 €0+ €0+ €0 = 10 g,
where in the last inequality we have used (D1F), (B8F), (4.3), (4.8) and (4.13). As X (p¥) + 3 uNe(X (pF)) €
R? — Es,,, then (D4F) holds for asmall enough €. O

deo + || X (qfy 1) — X (g))I| + < dey + €o + 15¢0 = 20¢p .

4.1.3. The second deformation. For any (i, k) € I, let T} = {w"", wi* w%"} be anew orthonormal basis such
that

(4.14) wi® = Ng(XE(ak)) .

Consider also Q; the connected component of the set 7y — (Cff U CF, ) that does not cut C}, V(j,1) € T —
{(i, k), (i + 1,k)}. Notethat {Q¥ | (i, k) € I} satisfy:

(4.15) QFNQL =0, fordll (i,k) # (j,1) and QF c BY*  forall (i,k) € I;
(4.16) QEND@E,0) =0, (1) ¢ {(i, k), (i +1,k)}

and, up to asmall perturbation,

(4.17) fixeom(@) #0, Vpe@.

Now, let C* be an open set containing C* and sufficiently small to fulfill

(4.18) I1X5(p) — XE(af)| < 3o, VpeCFNM(Tu) .

Notice that the above choice is possible due to Properties(Dll ), (3,1) > (i, k), and (B4¥). We also define, for any
£>0,Q(6) ={pe MJo) | dist(ar(s),as (P, QF) <&}
Claim 4.7. Thereexists ¢ > 0 small enough so that:
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(E1) QF(&) € M(T);

(E2) QF(&) NQ}(&) =0, for (i, k) # (5,1);

(E3) QF(&) N D(p,6) = 0, for (j,1) & {(i, k), (i + 1, k)};

(E4) Q46 c BV

(E5) |f[z0’zl]w| = ¢/2,Vao € QF, Va1 € dD(x0,&/2),V (i,k) € I where [zq,z;] represents the length
minimizing arc joining ¢ and z; (recall that ds? = |jw||?.)

(E6) Givenp e Qf,Wehave|f(X57Tik)(p)—f(X57Tk ()| < e1,Yq € D(p,&/2),wheree; = —mang{|f(XE Tk)|}

(E7) diamy, (M (T) — QF(©)) < ¢

Observe that Properties (E2), (E3), (E4) and (E7) are consequence of (4.15), (4.16), and (C3). Furthermore,
(E5) holds as the devel oping map, f, is alocal isometry (see Remark 1.) The other ones are straightforward.

We are now ready to construct a sequence {A; . | (i,k) € I} where the element A; , = {Y/,7F, vF} is
composed of:

e Y} : M(J,) — R?isaconforma minimal immersion. Weasolabel V! = XEand Y = VF—1 k> 2;
o {(rh.0F) €RF xR¥ | (i.k) € I}.

Claim 4.8. We can construct the sequence {A; . | (4, k) € I} satisfying the following list of properties:
(F1}) (Y5) 1) = YD G

(F2F) IV (p) = YiE (D) < 5. ¥p € M(Ju) — QF(S);

(F3) five () = fovp  on(P)l < 5L, P € M(Ju) — QF(€), for (j,1) > (i, k);

l/k .
(F4;) (Tik ﬁ) maxX ok o) {1 fvr |, i’“)g(yilgl,Tik)H + meax@f(&)ﬂf(iﬂ,’ipﬂ")u < %
(F5F) 1 (TTE mings{| fa 0} — 1) > diamgs (E') + 1;

Assume we have constructed Y, Y31, ..., V¥ |. Then we use Lemma 1 to get a holomorphic function without
zerosl; i, : M (Ju) — C such that
o [lik(p) —7F| <vf,Vpe Qi (&/2);
o |lin(p) — 1| <vF,Vpe M(Ju) — QF(&);
e Theminimal immersion Y;* with Weierstrass data given by
gk Tk

(4.19) Gor iy = —

and (I)L k _ CI)L 1,k
lz,k

(3,7F) = (3, Tk)

is well-defined.
Then, we define the immersion Y as Y (p) = Re [? &"*, where the Weierstrass data ", in the orthogonal

v, k_0

frame T}, are determined by the Lopez-Ros transformation (4.19). Notice that ¢ vrry T dyr, ) uni-

formly on M (Jy) — QF°. At this point, if v* is small enough and 7 is sufficiently large, then to check that
Y} satisfies Properties (F1F),...,(F5F) is a straightforward computation, and so we have constructed the sequence
{A; x| (i,k) € IT}. Notethat (4.17) is used in the proof of (F5F).

4.1.4. TheimmersionY solvingLemma 2. Consider theminimal immersionY : M (Jy) — R3 givenby Y = Y E.
We are going to check that Y satisfies al the statements of Lemma 2.

Item (L2.b): Items2and 3in Claim 4.1 and Properties (E4) and (A2) imply that M (7 ') ¢ M (Jy) — (Utmer
D(p¥,8)) U (Ug kyer QF(€)) . So, we can successively apply (D1¥) and (F2¥), (i, k) € I, toobtainVp € M (J')
(4.20) 1Y (p) = X @)l < IY,5(p) = Yo 0)|| + [ X5 (p) — X (0)]| < 2¢0 < b1,
where the last inequality occursif ¢ is small enough.

Items(L2.a) and (L2.c): Asapreviousstep we will prove the following claim:
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Claim 4.9. Every connected curve v in M (7;,) connecting M (J') with 7, contains a point p’ € ~ such that
Y(p') eR® - E.

Proof. Lety C M(Jy,) beaconnected curvewithv(0) € M(J') and (1) = g € Ju.

Casei) Assume z € C¥ N Q¥ (¢). Using Properties (E2), (F2%) for (j,1) # (i, k), (F1F) and Inequality (4.18), we
infer

(421) |(Yy(x0) = Xy (af)) a0 | < 1V5k (o) = Y (zo)[| + (Y (20) — YiE 1 (20)) (3,00 |+
[1Y}E 1 (o) = Y§ (o) || + 1 X5 (w0) — X5 (af)|| < €0 + €0 + 3eo = 5eg -

If wewrite T' asthetangent planeto OF at thepoint P (X E (a¥)), thenweknow that distgs (p, OE) > distgs (p, T)
for any p in the halfspace determined by 7" that does not contain OE. If ¢, is smal enough, (D4%), (4.14), and
(4.21) guaranteethat Y5 () belongs to the above halfspace, and moreover we have

(4.22)  distgs (Yy; (20), OE) > distgs (Y, (20), T) = (Y, (z0) — Pu(X5(af)))a,10) >
(X5 (af) — ,PE(XE(a?)))(S,Tf) — 5€p > 211 — Beg > .
From the definition of ;. we conclude Y ,E(zg) € R® — E'.
Caseii) Assume zp € CF N QF_, (€). Reasoning asin the above case and using Property (D3 ), we obtain
(Vi (z0) = X (af_1) g )l < (Vi (o) = Xg(af)) e | + X5 (af) — X5 (ai_1)]| < 25¢0 -
Now, following the arguments of (4.22), we conclude Y (z o) € R3 — E'.
Caseiii) Assume z € CF — Ugner@5(€). Teking into account (F2%), for (j,1) € I, and (4.18), one has
1V;5 (20) — Xg (@) < 1Y (z0) — Yo' (o) | + || X5 (z0) — X5 (af)|| < deo
and then we can finish asin the preceding cases.

Case iv) Finaly, suppose that xo € QF — U(j,l)g@;. For the sake of simplicity, we will write f*~1* and
g' =t instead of fiyx rxy @ gy |y, respectively, and a + ib instead of aw (" + bwy*. Hence, for z; €
v N AD(x0,&/2), taking into account (F2), for (j,1) > (i, k), and the definition of Y;* one has

1Yo (o) = Y (@)l > [V (wo) = Y (1) = 260 2 1Y} (20) = V¥ (1)) (o ) | = 260 =

1 - i—1,k(,i—1,k\2
/ FimURL pw —/ Mw
[581,580] [ll,lg] li,k}

2

— 2 > =

1 _—
Tz'k / f’t—l,k w
2 [z1,20]

11 / i—1,k ¢ i—1,k\2 1 i k
== FI G2 ) — o F R Ui — ) w| -
2 Tik [z1,20] 2 [z1,20]

1 i—1,k ¢ i—1,k\2 1 1

- K3 N 7 N - _ 2 >

B /[xl,xg] f (g ) lin T,L-k w €0 =

using the definition of /; ;, and (E5), we obtain

/ Fi-Lk
[#1,z0]

k
Vi i—1,k/ i—1,k\2 1 k
et {r ) <202 <

k
Ti

(1 e i _
=2 =5 | maxgre {IF ™ (g} + vimaxgr o {1

/ Fridw| — 1) — 2,
[x1,20]
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where we have used (F4?) in the last inequality. On the other hand, we make use of (ES), (E6), and (F3;),
(4,1) < (i, k), to deduce

/ ft 1 k
["]317"130]

/[ ](f(Yol,Ti"') — M w

Therefore, by using (F5%) for ¢y small enough we have

f(Y1 Tk (fUO)/

w
['Llaxo]

- ‘/ f(Y1 TF) (z0) — f(y1 Tk) Jw
5817J«0

> % (|f(Y01,Ti"')(x0)| —2e1) > %mianﬂf(Yol,Ti’“)H .

1 )
||}/7$(l‘0) — Y;ILE(.%l)H > 5 ( kg mank{|f(Y1 TA)|} — 1) — 2¢p > dlade (E/) +1—2¢ > dlam]R3(E/) .

From the aboveinequality we concludethat v satisfiesthe claimin thislast case. It isclear that 2 hastoliein one
of the above cases, hence, we have proved the claim. |

Moreover, if ¢ is small enough, (4.20) and the convex hull property for minimal surfaces guarantee that
Y(M(J")) C E'. Claim 4.9 implies that we can find amulticycle 7 satisfying (L2.a) and (L2.c).

__Item (L2.d): Givenp € M(J) — M(J') there are five possible situations for the point p (recall that QFON
D(p,0) =0, (,1) ¢ {(i, k), (i + 1,k)}).

Casel) Suppose p & (U(iierD(®F,6)) U (Ui ker@F(€)). In this case we can use Properties (D17), (F2¥),
(i, k) € I to conclude that:

1Y (p) = X < Y5 () = Yo )l + [1X5(p) = X ()| < €0 + €0 = 260 < 202 .

As usual, we have assumed that ¢, is small enough.
The above fact jointly with Hypothesis (4.1) of Lemma2 giveusthat Y (p) € E _op,.

Casell) Supposep € D(pf,d) — U er@(€), foran (i, k) € I. Inthis case, one has
(YE(w) - X (o), ei*) = <Y;< ) - Y >,e§”“>+<X5< )= XE) i) +
(XE) - XE@0), ™) + (XEa) = X(ab), e ) + (X(af) - X (b, e}*) >
using (D11), V (7, 1) # (i, k), (F2), ¥ (j,1) € I, and (4.3),

k
i 1 @
> <Xf(p) — Xf(qf),el’k> —4eg > §|f(X,S,f‘)(pi'€)| (Re/ ﬁfg,kw> —9¢p > —10eg > —b2
P

where we have used (B8F) and (B9¥). Recall that ei* = Ng(X(pl)). Therefore, again as a consequence of
Hypothesis (4.1), weinfer Y,5(p) & E_,. Inparticular Y,5(p) & E_op, .

Caselll) Assumep € D(pf,d) N Q7 (€), for some (i, k) € I. This caseis slightly more complicated.
As aprevious step we need to get an upper bound for ng”“ - ell’k ||. Remember that when we checked (D4F),
we obtained || XE(ak) — (3uel” + X (pF))| < 11eo. Therefore,
(4.23) [wy" — et = INB(X](af) — Np(X ()] =
INE(XE(aF)) — Np(Buet® + X (o)) < MIIXE(al) — Buet® + X ()| < 11Meo ,
where M representsthe maximum of || dAg|| inR* — E. Note that M does not depend on €. On the other hand,
using (F1¥) and (4.23), wefind

@28 () - YE ), eit)| = (V) - YE )bt - wi)| < eIV o) + IYEL )1
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Now, making use of (F2%), (j,1) # (i, k), (4.24) and (D1)), (j,1) > (i, k), one obtains

@25 (Vi) = XD, ei") = (V@) = X0h), e ) — 0 = (Y1 () = X (o), i) -
HMe(IVF @)+ 1VE @) — €0 = (XEG) = X (@), e ) = Mo @)]| + IV, 0)]) — 30
At this point, we can argue as in the previous case to conclude
(4.26) (YE(w) = X0F), %) > ~by = 1M eo(|VF () + 1V, 0) ) — 3eo -

Observethat Item (L 2.c), the convex hull property and (F2 é.), (4,1) > (i, k), guaranteethat Y;*(p) € E. . Further-
more, notice that

@27) IVE1(p) = X (@) < 1YE () = XF®) + 1(XF(P) — X (@) s,50) 1+
[(XF(p) = X(aF)) 3,8)| < 2€0 + €0+ 5eo + 3+ €9 + 2¢0 = 3 + 1leo

where we have used (F2}), (j,1) < (i, k), and (D1%), (j,1) > (i, k), to get a bound of the first addend; (B8F),
(B9) and (D1%), (4,1) < (i, k), to get abound of the second addend; and (D2}), (D1%), (j,1) < (i, k), and (4.3)

to get abound of thethird one. Then ||V (p)| and || Y;* , (p)| are bounded in terms of (. So, we infer from (4.26)
that Y (p) & E_ap,, if € issmall enough.

Case V) Supposep € D(pr, §) N Qk(€). Reasoning as in the preceding case, now we can deduce from (4.4)

lei™* — wg®|| < [t — e[| + [ley” — ws® || < £% + 11Me and obtain

() = YE @), )| = (V) = YL (), e = wf )| < (1Mo + ) IV 0]+ IYEL ) -
Using these inequalities as in the former case, we deduce Y (p) & E _op,.
Case V) Finaly, assumep € Q¥ (¢) — U(j,l)GID(pé., d). Reasoning asin inequality (4.25), we have
(YE(w) = X0F),e*) > (X(p) = X(0h), e ) = 1M eo(1V () + 15, () ) = Beo .
and using now (4.3), we obtain for a sufficiently small ¢,
(YE®) = X(h), ™) > —1Meo(| V)| + [V, 0)]) — deo = —2bs -
This concludesthe proof of Item (L2.d) and completes the proof of Lemma 2.

Remark 5. If F isstrictly convex, then the above proof also gives that

H 4 T
2(5 (fl’(gE);LQbQ)MH(E’EI)Q’ Vpe M(J) - M(T'),

[Y(p) = X(p)|| < M(b2, E, E') := \/
where §# means the Hausdorff distance.

5. COMPLETENESS LEMMAS

Thisis the moment of employing the Runge type result proved in Section 3 as well as Lopez-Ros deformation
in order to perturb a given minimal surface with finite topology about its boundary. In this way, we are able of
increasing the intrinsic diameter of the surface, but preserving the extrinsic one. The proofs of the lemmas bellow
areinspired in a new technique introduced by Nadirashvili and the last author in [14].

In order to state the next lemma, we shall denote M = M’ — U, D;, whereD;, i = 1,.. ., E, are conformal
disksin the compact surface M’. Asin the previous section, w will represent a holomorphic 1-form without zeros
in M and ds? = ||w|®. Forany i € {1,...,E}, let 3; bean analytic cyclearoundD; and 3; : ¥; — I'; C R3 an
analytic Jordan curve. Given 7 (X;) atubular neighborhood of ¥ in (M, ds?), we denoteby P; : 7(X;) — X, the
natural projection. In this setting we have:

Lemma 3. Consider 7 = {v1,...,7} amulticycleon M, X : M(J) — R3 a conformal minimal immersion,
po apointin M(J),and r > 0, such that:
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(1) X(po) =0

2 v CcT(X;),fori=1,...,E

(3) IX(p) — Bi(Pi(p))|| < r,foralpe~; andforalli=1,...,E.

Then, for any s > 0, and any e > 0 so that po € M(J°), there exist J = {71,...,7%} a multicycle and a
conformal minimal immersion X : M (.7) — R3, with X (po) = 0, and satisfying:

(L3.a) v; C 7@1‘)7 fori=1,...,E

(L3b) Je< T < J; _

(L3.c) s < dlst(mj()(p, J),Vp e T

(L30) |X(p) = Bi(P.(p))ll < B = VA +17 + €, ¥p €3, Vi = 1,... E.

Lemmad. Let 7 = {v1,...,7} beamulticycle, X : M(J) — R? a conformal minimal immersion, and p, a
pointin M () suchthat X (po) = 0.
Then, for any A > 0 and for any ¢ > 0 sothat pg € M (J*), thereexistsa multicycle 7 = {71,...,7:} anda

conformal minimal immersion X : M (7) — R3, with X (po) = 0, and satisfying:

L4 Jr<J<J; _

. .
(L4.b) dist 7= ¢, (p,J) >\ VpeJH

(L4o) [[X = X|| < p,in M(T),

5.1. Proof of Lemma 3. As analytic Jordan curves are dense in the set of piecewise regular Jordan curves, we
can assume (without lost of generality) that the multicycle 7 is analytic. Let ¢, €]0, €[ be small enough so that
fyf" Cc7T(%;),fori=1,...,E. Consider N € N suchthat 2/N < (o, and:

(5.1) | X (p) — B:(Pi(p))|| < r, foral p inthe connected component of
' M(J)— M(J*N) aound Dy, Vi = 1,...,E.

Remark 6. Throughout the proof of the lemma a set of real positive constants dependingon X, 7, r, €, and s will
appear. The symbol ‘const’ will denote these different constants. It is important to note that the choice of these
constants does not depend on N.

For the sake of simplicity, we will consider again an order relationintheset I = {1,...,2N} x {1,...,E}.
We say (j,1) > (i, k) if one of the two following situationsoccurs: [ = kand j > i orl > k.

Foreschk = 1,...,E, let {vig,...,van k) beaset of pointsin the curve «y;, that divide 4 into 2N equal
parts (i.e., curves with the same length). Following the normal projection, we can transfer the above partition to
the curve~;/™N: {v] ..., v}y . }. We define the following sets:

o Lik = [vik, v} ],V (i,k) € I. Recall that [v; . , v} ] representstheminimizing geodesicin (M (7 ), ds*)
joining v; , and v;,k;
Gjk = VZ/NS,W —0,...,2N? (recall that 7/~ meansthe parallel curveto vy, in M(.7), such that the
distance between themis j /N 3);
o Ay = U;-V:zo_l Int Gojt1,k — Int Goj 1 and Ay, = U;V:zl Int Goj i — Int Goj_1 13
o R = U2, G

N >3 N-1

Bk = Uj:l L2j,k and Bk = Uj:() L2j+1,k;
L = By, ﬂAk,Zk :kaﬂﬂk,ande ZRkLJﬁkUZk;
Qne = {p € Int (Gonz,) — Int (Go,) | distiar,as)(p, He) > 12}
On = Uiy Qv
wk istheunion of the curve L; ;, and those connected componentsof €2 v j, that have nonempty intersection
with L; , for (i, k) € I;
e wl = {pe M| dist(ras)(p,wF) < §(N)}, where 5(N) > 0 is chosenin such away that the sets 7,

(i,k) € I, are pairwise digoint.

Claim 5.1. If N is large enough, for any (i, k) & I, onehas
(1) dlam(l\/l,dé)(wf) < CO}I\I[St :
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FIGURE 5. The labyrinth around the boundary of M (7).

(2) 1f A2 - ds? isa conformal metric on M (7) that satisfies

Vs e an(j)
e nN? inQy,

for ¢ > 0, and if @ isa curve in M(J) connecting 7,50 and ~;, for some k& € {1,...,e}, then we have
length p y.4s) () > const ¢ N.

Proof. The proof of item (1) in the above claim is straightforward. In order to prove item (2), we denote « ; as
the piece of o connecting VJ/N and 7(”1)/]\7 forj =0,...,N? — 1. Theneither the length of «; (in (M, ds?))
is greater than CO““ or the length of «; N Q1 is greater than 3 N3 To see the former assertion, the reader only
have to consider that this fact istrue for curvesin C and take into account that the developing map of w is alocal
isometry (see Remark 1.) These facts and our assumption about \ give usitem (2). O

At this point, for a sufficiently large IV, we construct a sequence of conforma minima immersions (with
boundary) defined on M (7), {FF | (i, k) € I}, by using Lopez-Ros transformations with parameters given by
Lemmal. We consider Fj = X anddenote F} = Fiyt,Vk=2,...,E

Claim 5.2. Theseimmersionswill be constructed to satisfy
(b1F) F¥(p) = Re ( Jr ot 'f) where ik = ¢irk ;
(02F) [[¢"*(p) — "1 (p)|| < 1/N2,f0f alpe M(J) - wf;
(b3%) |l p%* (p)|| > N7/2 forall p e wk
(b4) (|6 (p)| > <22t for all p € oo
(b5%) distg2 (GE(p ),Gf,l( ) < for al p e M(J) — w?, where distg: istheintrinsic distance in S? and
G?¥ represents the Gauss map of the immersion FF;
(b6}") There exists an orthonormal basisof R®, S} = {e1, €2, e3} such that
(b6.1F) For any p € @} with | X(p) — Br(Pu(p))ll > 1/V'N, we have [|(X(p) — Bu(Px(p))(s,st) | <

const .
?1
(06.28) (FE(D)) s.50) = (1 (9)) 3,50, for all p € M(J);
O7%) [|1FF(p) — Fl ()|l < <55+ Vp € M(T) — o}

Proof. Thesequence {FF | (i,k) € I} iscongtructed in arecursiveway. The order we will follow in thisrecursive
construction is similar to the procedure explained in page 11 for the family ¥ ; .. Wheni — 1 = 0 we adopt the
conventionthat F¥ := Fyy !, if k > 1, and Fyj := X. The same occurs for the Weiertrass representations.



DENSITY THEOREMS FOR COMPLETE MINIMAL SURFACES IN R? 21

Suppose that we have {F} | (j,1) < (i,k)} satisfying Items (b1}), ..., (b7}). First we need to check the
following assertions.

Claim 5.3. For alarge enough IV, the following statements hold:

(D) [l¢* 1] < const in M(T) — Ugiy<(iy @5 s

(€2) ||¢*~1*|| > const in M(J) — U(j,l)<(i’k)wf;

(c3) Thediameter inR? of F} | (w?) islessthan \/—%;

(c4) The diameter in S* of G}, () is less than —. In particular G}, (w}') C Cone (g, \/—%) for some
g € G¥_,(=F), where Cone(z, 0) := {y € R? | Z(=,y) < 0};

(c5) There exists an orthogonal frame S¥ = {e1, e2, e3} inR3, satisfying
(€5.1) Z(es, X (p) — Bi(Pr(p))) < <%=, for all p € wf with || X (p) — Bu(Pu(p))|| = 1/VN;

(c5.2) Z(*es,Gr | (p)) > %, for all p € wk.

To deduce (c1), wewrite [|¢" V¥ < 375 ) i g 197! — 75|+ [[0%1 | < 26/N + [|[¢%!|| < const , where
we have used (b2§), (4,1) < (i, k). Using the same property and taking N large enough, we have ||¢ ‘= 1F|| >
6O = X <oy 1071 = 67 11| > [|%1]| — 26/N > const , S0 we have obtained Property (c2). To check
(c3), consider p,p’ € wk, then

I1FE ) - Fa o) = | " < / " ol < const - diamag () < S < L
p p ’ N VN

wherewe have used (c1), Claim 5.1.1 and we have taken IV large enough. Now, observethat using Claim 5.1.1 we
obtain diams: (G§(w})) < sup{[|(dG),ll | p € w}} diamas aq) (w)) < <3, therefore, (b5)), (5,1) < (i,k),
guarantee (c4). Finaly, in order to prove (c5), consider C' = Cone (g, \/Lﬁ) , where g is given by Property (c4),
and

X(p) — B(Pr(p)) ‘ k
N:{ p € w; and X(p) — Br(Pr(p Zl\/ﬁ .
TX(0) = u(Peo))] @)= Puerenll = 1/
To obtain (c5.2) it sufficesto take e3 in S? — H, where H = (—C') U C. On the other hand, in order to satisfy
(c5.1), the vector ez must be chosen as follows:
o If (S — H)NN # 0, thenwetake e in that set;
o If (S2— H)NN =0, thenwetakees € S — H satisfying Z(es3,q') < % forsomeq’ € V.
It is straightforward to check that this choice of e 3 guarantees (c5). O

At this point we are ableto construct the element F¥. Let (g°~ "%, &5 1*) bethe Weierstrass dataof F | inthe

frame S¥. Applying Lemma 1, we can construct a family of holomorphic functionsh , : M (J) — C* satisfying
e |hy —a| <1/a,inwk;
o |hy —1| < 1/a,inM(J) — =¥

7

e Theminimal immersion F/(p) = Re [ ®"* iswell-definedin M (),
where o > 0. Using h,, as aLopez-Ros parameter, we define the Weierstrass data of F* in the coordinate system
Sk as gik = gi=1k /h,, and ®LF = ®LF, Taking into account the fact that h,, — 1 (resp. ho — oo) uniformly
on M (J) — wF (resp. onwk), asa — oo, itisclear that properties (b1F), (b2F), (b3%), (b5F), and (b7%) hold for a
large enough value of the parameter o. Moreover, (b6.2 %) trivially holds and (b6.1%) is aimmediate consequence
of (c5.1). In order to prove (b4F), observe that from (c5.2) we obtain

sin const ) sin (const )
( \/ﬁ < |gi,1,k| < \/N

: - nw; ,
cons cons
1+COS(W) 1—cos(\/ﬁ)
and so, taking (c2) into account one has (if IV islarge enough)
; ik i—1,k - lgt "] . .
6741 2 1651 = 165741 2 Va6 Ml s 2 const sin () 2 < inw
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Proposition 1. If N islarge enough, then F'S,, satisfies

(d1) 2s < dist (57075 e (T, T<);

(d2) [|Fin(p) — X(p)]| < < Vp € M(T) = Ugiper?s

(d3) Thereexistsamglticyclej = {71,...,7} satisfying
(d3.1) J%° < J < J; N
(d3.2) s < dist(W,FQEN)(p,M(JCU)) <2s,VpeJ,
(d3.3) Thecurvey; C 7(%;),fori=1,...,E;
(d3.4) |[FEy(p) — Br(Pr(p))|| < R,Vp € Yk, Yk =1,...,E.

Proof. Properties(c2), (b2F), (b3¥) and (b4F), (i, k) € I, guarantee

const H
oe = x MM
— const N4 in QN .
VN

Moreover, we know ds7, = 1]]¢2NE||? ds®. Therefore, if N islarge enough, from Claim 5.1.2 we have

const
VN

which provesitem (d1). Property (d2) is deduced from (b7 5, (i,k) e 1.
In order to construct the multicycle 7 of the statement (d3), we consider the set

D = {p € M(T) ~ M(T®) | s < distzrezy g (0. MTD) < 25}

diSt(W,F§N)(‘7’ jc") > const N = const VN > 2s ,

From (d1), D # () and 7 and 7 € are contained in different connected components of M — D. Therefore, we can
choose amulticycle JonD satisfying (d3.1), (d3.2) and (d3.3).

The proof of (d3.4) is more complicated. Consider £ € {1,...,E}, ¢ € 7 and assume that Ffy(q) #
Bk (Pr(q)), otherwise we have nothing to prove. At this point, we have to distinguish two cases:

Case 1. Suppose g & U(; iyerw?. Then, item (d2) gives || F5y (¢) — X (q)|| < const /N. Hence, taking (5.1) into
account and choosing IV large enough we obtain || F5y (q) — Br(Pr(q))|| <7 < R.

Case 2. Suppose there exists (i, k) € I with ¢ € w?. In this situation, item (d3.2) guarantees the existence of
acurve¢ : [0,1] — M(J) satisfying ¢(0) € J¢, ¢(1) = ¢ and length(¢, F§y) < 2s. Label t = sup{t €

[0,1] | ¢(t) € 0w} andg = ((%). Notice that the previous supremum exists because w® ¢ M (J) — M (7€) (for
alarge enough V). Then, taking Properties(b?ﬁ), (4,1) > (4, k), into account, we obtain

52 |F@ — Fr @l < IFF@ — Fan@ + 1Fan @ — Fan (@)l + [1Fan (9) = Ff(g)ll <

const const const
+ length(¢, F3y) + <

<
- N N

+ 2s.

On the other hand, using again (b?é.), for (4,1) > (i, k), onehas

const
N

(5.3) 1F5n () = Be(Pr())I| < 1FF(q) — Br(Pr(a))I| +

Once more, we have to discuss two different cases:

Case2.1. Assume || X (q) — Bx(Pr(q))|| < 1/v/N. Hence, using (5.2), (b7%), for (j,1) < (i, k), and (c3), we get
1FF () = Br®Pr(@)l < 1Ff(q) = FF @ + 1FF @) — FL @ + 1 FE (@) — FEa()ll+

const const 1 const 1
IFE 1 (a) = X (@)l + X (q) — Be(Pr(@))]| < +25+ ——+—=+—+—=<R,

N /N N VN
where N hasto be large enough. The above inequality and (5.3) gives (d3.3).
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Case 2.2. Assume now that || X (q) — Bx(Px(q))|| > 1/v/N. Thenwe can use (b6.2%), (b7"), for (j,1) < (i, k),
and (5.1) to obtain

(54)  [(F(q) = Be(Pr(9)) 3,5%)| = [(F21(a) = Br(Pr(9)) 3,55 | <

[(FE1(9) = X(9)) 3,50 + (X(@) = Br(Pe() 3,55 <

On the other hand, using (5.2), (b7}), for (j,1) < (i, k), (c3) and (b6.1}) one has

(55) (FF(@) = Br(Pi(@)) (w50 | < NEFF (@) = FF @) sy | + 1(EF@) = FL1 (@) o581+

I @) = F 1 (@) s |+ 11 (@) = X (@) e 5|+ 10X (@) = Br(Pr(@))) r,2) | <

const Losy const " 1 " const n const < 9+ const
S+ —m—4+—=+ —+ —— s .
N2 N N VN VN

const

+7r

Therefore, making use of (5.4) and (5.5), we infer

1FH @) - (@) < \/(2 + 22 ) #(r %)

Then, using this upper bound and (5.3), we conclude

2 2
E B const const const
I FSn(a) 6k<Pk<q>>|<\/(25+ N) +<r+ & ) 4 comst

So, for alarge enough NV, it is obviousthat || F'5y (¢) — Bx(Px(q))]] < Rinthislast case.
This completes the proof of (d3.4) and concludes the proposition. |

From the above proposition it is straightforward to check that X = Fiy: M (j ) — R3 provesLemma 3.

5.2. Proof of Lemma 4. Consider cq, r; and p; three positive constants to be specified later, and define

200 2 Co ~ Co
T'n = n1+(n) +ﬁ and p'rL:pl‘f';T, VTLZQ
The constants 1 and ¢g have to be chosen so that
(5.6) lim r, < B
n—oo 2
In order to apply Lemma 3, we consider a family of analytic cyclesin M/, ¥;,i = 1,...,E, such that v; C

T(%;),fori=1,... E,where7 (X;) isatubular neighborhood of the curve X ; described at the beginning of this
section.
Hereafter, we will construct a sequence x,, = {Jn, Xn, €, } consisting of:
o Jn=A"m1, -, me}isamulticyclewith~, ; C 7(%;)fori=1,...,E;
o X, : M(J,) — R3isaconforma minimal immersion;
e {¢,} isadecreasing sequence of positive real numberswith e,, < co/n?.

Claim 5.4. The sequence {x, } can be constructed to satisfy:

(An) j# < \76" < c]n < \7n—1;
(Cn) 1 Xn(p) = X(Pr(p))l < 7n, VP € Ynp VE=1,... E

Notice that (A,,) only holdsfor n > 2. Once again, the sequence will be obtained following a inductive method.
For thefirst term, we choose X, = X and 71 = J. Findly, wetake p; and e, satisfying

p1 < dist y, 5777, (P, 1), fordlpe 7" and  ex <min{co, 71} .
Moreover, we take e; small enoughsothat vt CT(%;),i=1,...,Eand

(5.7) 1X() - XCup)) <m < 5.
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for any p in the connected component of M (7) — M (7 <) aroundy, Vk =1,... ,E
Assume now that we have constructed x1,...,xn_1. In order to define x,, we take a rea number ¢, <
min{e, 1, =3 }. Then we consider the multicycle 7,, and the immersion X, : M (J,) — R?2 given by Lemma 3,

for the data
C
X=X, IJ=Ip-1, T="n_1, SZEO and €=¢€n .

So, we get x,, satisfying properties(A.,), (B,,) and (C,,).
From (A..), (B,,) and thefact that the sequence { p,, } nen diverges, wefindng € N with d1st T, Xn)(p, Tn) >

A Vp e JH Vn > ng. Choose X = Xy, and T = In, - Properties (L4.a) and (L4.b) tr|V|aIIy hold. Now, taking
(5.7), (C,,) and (5.6) into account, we obtain
1X(p) = X0)| < 1X(p) = X Pr()]| + [ X (P(p)) = X ()| < g + Ty <H, VpEAR, Vk=1,....E

Hence, || X (p) — X(p)|| < pforany p € 7. Finaly, the Maximum Principle guarantees that this inequality occurs
forany p € M(J), so we have checked (L4.c).

Remark 7. From the arguments of the above proof, it is almost trivial to deduce that:
5" (X (I, X(M(T)) <2

This estimation will be important to prove Theorem 2.

6. JOINING TOGETHER PROPERNESS AND COMPLETENESS

As the title indicates, in this section we put together the information obtained in the previous two sections in
order to state the precise lemmathat we will use in the proof of the main theorems.

Lemmab. Let J beamulticyclein M, py € M(J),and X : M(J) — R3 a conformal minimal immersion with
X (po) = 0. Consider E and E’ bounded convex regular domains, with0 € E ¢ E C E’, and let ¢ and e be
positive constants satisfying that po € M (7€) and

(6.) X(M(T)-M(J)) CE-E,

Then, for any b > 0 there exist a multicycle .7 and a conformal minimal immersion Y : M(j) — R3 such that
Y (po) = 0 and

(L5a) J < J < J; ~

(L) dist 775 (2 T) > Le Vp € T

(L5.0) Y(J) C E' — E;

(L5.d) Y(M(J) — M(T)) C R® — E_g_q;
(L5e) | X Y| <einM(Je).

Furthermoreif E is strictly convex, theimmersion Y also satisfies:

(LS | X = Y| < mla,b,e, B, B') i= e 4 | 2ELILD 4 (571( 1Y) 4 a)2,in M().

Proof. First, we apply Lemma 4 to the immersion X, for A > 1/e and a small enough ¢ > 0 which will be
determined |ater. Then, we get anew multicycle 7 and aimmersion X : M(7) — R3, such that:

@ J<J"<J<J;

(b) dist ——= (M) % (j JTH) >

© X - X]| <u,mM(»7)-

If wis sufficiently small, then X (7) c E — E_,. Thus, wecanfind v > 0 so that 7* < 7 and:

(6.2 dist T, JH) > A

(M(T¥ )X)(

6.3) R (M(F)-MF)) cE-F
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At this point, we apply Lemma 2 to the following data:
X=X, E=E, E, Zh=J J=J7J" b=b
and arbitrary b; > 0. Hence, we obtain a new multicycle 7, J* < J < J, and a minima immersion Y :
M(J) — R3, satisfying:
(A) Y = X|| < br,in M(T");
(B) Y(J)C E' - E';
©) Y(M(JT) - M(T") CR® — E_y .
Furthermore, if E' is strictly convex, then we have the extrainformation provided by Remark 5:

D) |Y = X|| < M(b,E_o, E') < \/W + (6H(E,E') + a)?, inM(J) — M(J").

Item (A) says to usthat Y convergesto X uniformly on M(.7"), asb; — 0. Therefore, if by is small enough we
also have dist(M(ju)y)(f”, JH) > X (see (6.2)), which implies (L5.b). Item (L5.c) directly follows from (B).
Moreover, (c) and (A) give (L5.e), providedthat i + b1 < e.

Taking (6.1), (c) and (A) into account, we can deduce that Y (M ( T v) — M(J)) c R® — E_,, provided that
wand by are sufficiently small. So, the above inclusion and (C) demonstrate (L5.d).

Finaly, if E isstrictly convex, then (c), (A) and (D) imply (L5.f), provided that 1, and b ; are small enough. O

7. DENSITY THEOREMS FOR COMPLETE MINIMAL SURFACES IN R?

Now, we are able to prove the theorems stated in the introduction. Although all the theorems of this section
are stated in terms of Riemann surfaces with boundary that are open regions of compact Riemann surfaces, this
does not represent any restrictions over our work. In order to prove Theorem A in the introduction we notice that
any Riemann surface with finite topology and analytic boundary can be seen as the closure of an open region of a
compact Riemann surface (see[1].)

Remark 8. Inthissection, we will use several times the sequence of positive reals given by:

o = % e1/27 Qp 1= 6_1/2”7 forn > 1.

Noticethat 0 < a; < 1 and {I]", v },en convergesto 1/2.

Theorem 1. Let D and D’ be two bounded, convex regular domainssatisfying0 € D C D’. Let p : M(T) — R3
be a conformal minimal immersion, where I" isa multicyclein M. Assumethat ¢(pg) = 0and p(I') € D —D_4
where po isapoint in M (T") and d is a positive constant.

Then for any 1 > 0, there exists a domain M, in M, with M (I") C M,, and there exists a complete proper
minimal immersion ¢, : M,, — D’ such that:
@ [lop — el <pinM(T);
(b) ou(My —M(T)) C D' = D_sap.

Proof. First of all, we defineasequence { E™} of bounded convex regular domainsin the following way. Consider
v > 0 small enough to satisfy that D’  exists, D C D’ ;,, wherer = "7~ , v/k*. Then, we define
E':=D ad E":=D g~ ;2 n>2.
We dl so take a decreasing sequence of positivereas {b,,} with b; = d, and:
distgs (OE™, 0E™ ) d

by, i ,— ¢, for 1.
L<m1n{ 5 2} n >

Next, we use Lemma 5 to construct a sequence

Xn = (San : M(Fn) - Rgvrnvgnagn>a
where ¢,, are conformal minimal immersionswith ¢, (po) = 0, IT';, aremulticycles, and {¢,, }, {£,, } are sequences
of positive numbers decreasing to zero, and satisfying > ;- , ex < .
Furthermore, the sequence ¢, : M (T',,) — R3 must satisfy the following properties:

(An) T < TS, < T < Ty <Dy
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(Bn) llen(®) — n-1(D)|| < &n, ¥p € M(T';" 1),
(Cp) dsy,(p) > an -ds,,_,(p),Vp € M(TS"'), where {a; }ien is given by Remark 8 (recall that ds,,, means
the Riemannian metric induced by ¢.,);

(On) 1/en < dist ey, ) (U0 TR

(E,) ¢on(p) € E" — (E™)_y, ,fordl peTy;
(Fn) @n(p) € R? — (B" )y, a0, foral p € M(T) — M(T;y).

The sequence {x,, } is constructed in arecursive way. To define x 1, we take 1 := ¢ and &, > 0 small enough
so that I'~¢* iswell-defined, ¢ is defined in M (' —¢t) and

(7.1) 0 (M(F*ﬁl) - M(r)) cD-D,

By definitionI'; := I'~¢'. In particular Property (E;) holds. The other properties do not make sensefor n = 1.
Suppose that we have x1, . .., x». In order to construct x,,+1, we consider the following data:

E=E", E'=E""Y a=b, X=¢, J=T,.
Furthermore, Property (E,,) tellsusthat X (7) C E — E_,. Then it is straightforward that we can find a small
enough positive constant >, such that Lemma5 can be applied to the aforementioned data, and for any e €]0, /.
Teke a sequence {€,,}men \\ 0, With &,, < min{s,b,41}, Vm. For esch m, we consider 7!, and Y., :
M(J!,) — R3 given by Lemma5, for the above dataand ¢ = b = £,,. If m is large enough, Assertions (L5.a)

and (L5.e) in Lemma5 tell usthat T'é» < 7/, and the sequence {Y,,,} convergesto ¢,, uniformly in M(T5). In
particular, {dsy,, }men convergesuniformly to ds,,, in M (F%‘*). Thereforethereisamg € N such that:

(7.2) D5 < TW™ < T,
(7.3) dsy, > Qnt1 - dSg, in M(Ff{").

mo
We define v 1 1= Ying, Tny1 = Ty, @0 eqq1 := &, From (7.2) and Statement (L5.b), we infer that
1/ent1 < dist(m WI)(rgw,r,,LH). Finally, take &,,+1 small enough such that (A1) and (D,,+1) hold.
The remaining properties directly follow from (7.2), (7.3) and Lemma 5. This concludes the construction of the

muence {Xn}nGN-

Now, we extract some information from the properties of {x ., }. First, from (B,,), we deduce that {¢,,} isa
Cauchy sequence, uniformly on compact sets of M,, = (J, M(I'y;*") = U, M(I'), and so {¢,,} converges
on M,. If one employs the properties (A,,), then the set M, isan expansive union of domains with the same
topological typeas M (I'). Therefore, elementary topological arguments giveusthat M ,, has the same topological
typeas M (). Let ¢,, : M,, — R? bethelimit of {¢,,}. Then ¢,, has the following properties:

e ¢, isaconformal minimal immersion, (Properties (C,,));
e ¢, : M, — D' isproper. Indeed, consider acompact subset X' C D’. Let ng be anatural so that

1
K C(E" ) bn—1—2bn =3 )5, k> Vn 2 no.

From Properties (F,,), we have ¢, (p) € R® — (E"~1) 4, _,_ap,, Vp € M(T,,) — M(T5" ). Moreover,
taking into account (B), for £ > n, we obtain

(7.4) Pu(M(Tn) = M(T5)) CR® = (B )y, o, -5, o

Then, we have ¢, ' (K) N (M(Fn) —M(Fi[l)) = () for n > ng. This implies that ;' (K) C
M(T;" ), and soit is compactin M,,.

no—1
e Completeness of ¢,, follows from Properties (D,,), (C,.), and thefact that {1/¢,, },.cn diverges.
e Statement (a) in the theorem is a direct consequence of Properties (B ,,) and thefact >~ 7, &, < pu.
e In order to prove Statement (b), we consider p € M, — M(T"). If there existsn € N suchthat p €
M(T,) — M(Im ), then (7.4) implies o, (p) € R® — D_54_,,. If p € M(I'?) — M(I'1), then we use
properties(By), kK > 1, and (7.1) to obtain

ouP) ER* =Dy 5 o CR = Doy
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O

If we follow the proof of the above theorem, but making use of Lemma 4 and Remark 7 instead of Lemma5,
then we obtain the following theorem:

Theorem 2. Let o : M(T') — R3 bea conformal minimal immersion, whereI" isamulticyclein M. Then for any
p > 0, thereexistsa domain M, in M, with M (I") C M,, and there exists a complete proper minimal immersion
¢u + M, — R3 suchthat:

@ [len — el < pin M(L);

() 6% (M), ipu (M) ) < 21

Under the assumption of strictly convexity we can sharpen the previous argumentsin order to prove the follow-
ing theorem.

Theorem 3. Let C be a strictly convex bounded regular domain of R3. Consider a multicycle I in the Riemann
surface M’ and ¢ : M (") — C a conformal minimal immersion satisfying o(I') € 9C.

Then, for any e > 0, there exist a subdomain, M, with the same topological type as M (T"), M (I'¢) C M. C
M, c M(T), and a complete proper conformal minimal immersion ¢ : M, — C so that

o — el <e, inM.
Proof. Consider t, > 0 sothat, for any ¢ €] — to, 0, we have:
o (; iswell-defined;
o Iy := ¢ 1(0C, Np(M(T))) isamulticycle satisfying ¢ < T.

Fix ¢; > 0 small enoughsothat Y, ., ¢?/k* < min{to, €}. At this point, for any n > 1, consider a positive
constant t,, = Y, -, c1/k* and astrictly convex bounded regular domain E™ = C_,, . We also take a decreasing
sequence of positive reals {b,, }nen, With b, < ¢2/n*, ¥n € N.

Now, we use Lemma 5 to construct, for any » € N, afamily x,, = {Jn, Xn, €n,&n} , Where

e 7, isamulticycle;

e X, : M(J,) — Cisaconformal minima immersion;

e {en}nen and {&, }nen are sequences of positive real numbers converging to zero and satisfying e,, <
c1/n?.

Notice that the function givenin (L5.f) satisfiesm(b.,, bp 11, €nt1, B, E™ 1) < = (1 + 2,/2—42 + ﬁ) )
Vn € N, therefore, we can choose ¢, sufficiently small so that
(7.5) > m(bn-1,bn, €0, "1 E") <€
n=2

We will construct the sequence { x», } nen SO that the following properties hold:

(An) T < Ty < T < T < Tt
(Bn) ||X7L(p) - X’VL—l(p)” < €p, VP S M(jih)’
(Cn) dsx, (p) > an - dsx, ,(p), Vp € M(T"7"), where {a; }icn is given by Remark 8;

(D) 1en < dist ey o (Tata' TE;
(En) Xn(p) € E™ — (E™)_y,,fordl p e J,;
(Fn) Xn(p) € R — (E" 1)y, o, fordl p € M(J,) — M(T5"1);
(Gn) |1 X0 — Xn—1|| < m(bn_1,bn, €n, E""1 E™)in M (Ty).

The construction of the sequence { x . } nen, IS asin the proof of Theorem 1, except for properties (G,,) that are
consequence of the successive use of (L5.f) inLemmab. To define y 1, wetake X, = ¢, J1 = I'y, and appropriate
€1 and b;. We choose ¢; so that I'® < J;*. Observethat in this case properties (G,,), n» € N, and (7.5) guarantee

that ||pe — ¢|| <€, in M. O

Corollary 1. Let D’ be a convex domain (not necessarily bounded or smooth) in R 3. Consider ;7 a multicyclein

M’ and ¢ : M(J) — R3 aconformal minimal immersion satisfying:
(7.6) (P(j) cD—-D_y
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where D is a bounded convex regular domain satisfying D ¢ D’ and d > 0 is a constant.
Then, for any e > 0, there exist a subdomain, M., with M (J) C M. C M. C M(J~¢), and a complete
proper conformal minimal immersion . : M. — D’ so that
(A) H<P*<P5H<5a mM(j),
(B) ‘Pe(Me - M(j)) CR®—D_s9q_.

Proof. Without loss of generality we can assume 0 € D and ¢(pg) = 0, for a certain py in M(J). Define
Vr:=[1-1/n)- D'|NB(0,n), whereby (1 —1/n) - D’ wemeantheset {(1 —1/n)-x | x € D'}. Making
use of Minkowski’s theorem (see page 4) we can guarantee, for each n € N, the existence of aregular bounded
domain V" inR3 suchthat V™ V" ¢ V» ¢ V1. Notice that {17”}neN is an expansive sequence of bounded

convex regular domains whose limit is D’. Then there exists k € N sothat D ¢ V™ for any m > k. Taking all
these argumentsinto account, we define the following sequence of open convex domains:

E':=D, E":=V"tF2 p>9

Following the scheme of the previousproofs, wewill construct asequence=,, := (7, ¥n : M (Jn) — R3,d,, e5),
where:

e 7, isamulticyclein M’;
e v, : M(J,) — R?isaconformal minimal immersion;
e {d,}neny and {e, }nen are two sequences of positive real numbers decreasing to 0. Moreover we want

that Y77, e, < ¢, to do thiswewill choosee,, < -85, n € N.

Thelimit of {Z,, }.en Will provide the minimal immersion we are looking for. To do thiswe need that =, satisfies
the following properties:

(In) L7n—1 < \7ny

(”n) ||90n(p) - Spn—l(p)ll < Eny fOf a” P in M(Jn—l);
(M) dsyp, > ap - dsy, , inM(J,-1), where {«a; };cn isthe sequence of Remark 8;
(IVn) diSt(mW”)(po, $L) >n—1;

(Vn) Qpn(\7n) CE" - (En)—dn§
(V1) on (M(T0) = M(Ta-1)) € B - B3

—2dp_1—€n"
Once again the sequence {Z,, }..en satisfying the above properties is defined following an inductive process.
Theelementsof Z; arepy == ¢, dy =d, J1 = J ande; < 5.
Assume now we have defined =,,. To construct theelement =, ; weapply Theorem 1 to theminimal immersion
on : M(J,) — E™ C E"*L where E", E"tL, ¢, 11, and d,, play therole of D, D’, u1, and d in the statement
of Theorem 1, respectively. Then we get a domain M in M’, with M(T',) C M., ., and a complete proper

En+41

minimal immersion ¢, 1 : M, — E™*! satisfying:
(77) ||80n+1 - San” < En+1, in M(jn)v
(7'8) san+1(M€7L+l - M(j'VL)) - Rd - Eﬁanf&,Lﬁ,l :

From (7.7) we have that (111, 1) holds provided that ¢, is taken small enough. As ¢, is complete and
proper, then it is possibleto find 7,41 satisfying (1,,41), (IV,+1) and (V,,41). Properties (11 ,1) and (V1,,41) are
consequence of (7.7) and (7.8), respectively.

At this point we define M, := U, M (7,,) and ¢. : M. — D’ astheuniform limit of the sequence { ¢, }nen-
Following similar arguments to those used in the proof of Theorem 1, it is easy to check that ¢ . is the minimal
immersion that provesthe corollary. O

8. THE CONSTRUCTION OF A COMPLETE PROPER MINIMAL SURFACE WITH UNCOUNTABLY MANY ENDS

The most interesting application of the results in the preceding section is the construction of the first examples
of complete properly immersed minimal surfaces in Euclidean space with an uncountable number of ends. It is
important to note that this kind of surfaces cannot be embedded as a consequence of a result by Collin, Kusner,
Meeks and Rosenberg [5]. Givenp € C andr > 0, wewill writeD(p,r) = {z € C | |z — p| < r}. Asusual, the
unit disk will be denoted by D, instead of ID(0, 1).
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FIGURE 6. The construction of aminimal surface with uncountably many ends consists of mod-
ifying a given minimal surfacein R? by adding more and more ends. In each step of this proce-
dure we add two new ends in a neighborhood of each end of the previous surface.

o

O ©)?

n0 [y 00
7,0

Y, (M) /
y] (1 //T?\YZ(I,O) /

\8@7&(1,1)

FIGURE 7. ThemulticyclesI'y, I';, and I's.

Theorem 4. There exists a domain 2 C C and a complete proper minimal immersion v :  — R3 which has
uncountably many ends.

Proof. The required immersion will be obtain as a limit of a sequence of complete proper minimal immersions
defined on subdomains of the complex plane. Along this section, given « a Jordan curvein C, we denote by I(«)
as the bounded connected component of C — «. In the following, we construct a sequence

Xn = {F'm My, X5, dy, €n, Tn} ) where

@ {dn}n, {€n}n and {r, }, are sequences of positive real numbersdecreasing to zerosuchthat Y7~ € < ry,.
) Tp = {BntU{v(kr,....k;) | ki€ {0,1} ,1<i<j,1<j<n}C Cisafamilyof curveswith
(b.1) 8, c C—D,n € N, are Jordan curveswich satisfy I(3,_1) C I(3,).
(b. 2) vn(k1,...,k;) arecyclesin I(3,,) satisfying the following properties
(b.2.1) Foreach1 < j < nthecycle~,(k1,...,k;) isin the homology class of ~v,,_1(k1,. .., k;)
and I(’yn(kl, RN kj)) C I(’ynfl(kl, ceey kj))
(b.2.2) v, (k1,...,k,)isacirclecentered at c(k1, . .., k,) andradiusr,, > 0, wherec(kq,...,k;) =
clki,..., kj—1) + (=)*e(j)p(ki,. .., k;), withe(j) = iif jisodd, e(j) = 1if j iseven
and p(k1, ..., k;) are positive real number sufficiently small so that

(81) D(C(kl, ey kn), ’I“n) C D(C(k’l, ey kn—l); rn—l) — I('Yn(k'h RN kn—l)) .
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Observe that T',, is a multicyclein C = C U {co} with ©2_2* cycles. The disk Int(/3,) coincides with

C — 1(B,) and Int (v, (K1, - - -, k5)) = I(yn(k1, ..., k;)). Notedsothat M(T,,—1) € M(T},).

(¢) M, isadomainin C topologically equivalentto M (T",,) and such that M (T",,) C M,, C M(T';, ).
(d) X, : M,, — R? isaconformal complete proper minimal immersion.

FIGURE 8. Thedomains M (T';) and M (T'2).

Let see that the sequence { x ., } nen Can be constructed to satisfy the following conditions
(Z2.1,) |1Xn — Xno1|l <en iINM(T) ,n > 2;
(Z2n) Xo(M, — M(T,)) CR3— B(0,n — 2d, — €,), where B(0,7) = {x € R? | ||z|| < r} forr > 0;
(2.3,) X, (Ty) C B(0,n+€,)— B(0,n—d, —€) .
(Z4,) Ax, > an Ax,_, InM(T,)whereSx,, = Ax,,- < -,- >, and {ay, }nen iSthe sequence of Remark 8.
First we present the first term of the sequence. Let X : D — B(0, 1) be the immersion given by the inclusion,
{dn}n and {e, }nen two sequences of positive real numbers decreasing to zero such that Zfil € < 3—12 Now we
consider 3; the circle of radius 1 — 5> and center 0, and v1(0), y1(1) the circles of radiusr; = - and centers
¢(0) = Liand ¢(1) = —Zi, respectively. Then, we can apply Corollary 1 to theimmersion X, the convex domain
D = B(0,1), themulticycleT'y = {81} U {71(0),71(1)},d = di = 1 and e = ¢; to obtain adomain M; with
M(Ty) € My € My € M(T;") and aconformal complete proper minimal immersion X ; : M; — R3 such
that | X — X1|| < e in M(T'y) and Xy (M; — M(T'1)) C R® — B(0, 1 — ¢;). From hereit is easy to check that
(2.3y) issatisfied.

Assume we have constructed {x1, ..., xn} satisfying the corresponding definitions and properties. We will
define now x,,11. From Property (d) and (Z.3,,) we can assert that there exist cycles 8,41 and v,4+1 (K1, - .., kj)
fulfilling the conditions (b.1) and (b.2.1), respectively, and such that

Xn (ﬂnJrl @] (U;‘l=17n+1(k1; .. ,kj))) C B(O,Tl + ].) - B(O,’ﬂ,+ 1-— dn+1) .

Furthermore, we can find p(k1, ..., k,+1) and r,,.1 > 0 appropriate so that (8.1) is satisfied for n + 1 and the
curvesy,,+1(k1, ..., kny1) described in (b.2.2) also fulfill the above eguation, it is to say

(8.2 Xn(Fn+1) C B(O,n + 1) - B(O,n +1- dn-i-l) .

o0

Recall that we have asequence {¢; }; such that Z;’ij e <rjforj <n.If3y2~ . & <7y wedonotmodify the
sequence {¢; };. If it is not the case we consider anew sequence {¢; }; definedase, = ¢; fori < n ande;, = €;7,4+1
fori >n+ 1. Itisclear that )°7° . | €/ < r,11. Moreover, for j < n wehave Zfij € < Z;’ij e; < rj. Forthe
sake of simplicity, we continue denoting the new sequence as {¢; };.

Taking into account (8.2) we can apply Corollary 1 to the immersion X ,,, the multicycle I",, 1, the convex
D =B(0,n+1),d = d,s1 and e = €,41 to obtain adomain M, 1 with M (T, 41) C M,y C M(F;j’;“)
and a conformal complete proper minimal immersion X ,, 1 : M,,;; — R? satisfying (Z.1,,41) and (Z.2,,11).
Moreover, from (Z.1,,,1) we obtainthat if €,,, 1 is sufficiently small the property (Z.4,,11) isalso satisfied. Finally,
(Z.3,,+1) followsfrom (8.2) and (Z.1,,+1). Consequently, we have the sequence {x . }.
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Hereafter, we define the required immersion ). We denote by @ = |J,—, M(I',). Clearly Q is a do-
main, since it is the union of domains with non empty intersection. Furthermore, from (Z.1,,) we deduce that
the sequence {X,,}en converges uniformly on compact sets of 2 and so we can define v : @ — R3 as
¥(z) = lim;_00,i>n Xi(z) for z € M(T',,). By making use of Harnack’s theorem we know that 1) is a har-
monic map. Let us seethat ¢ isimmersion. Take z € €. Thus, there existsn € N such that z € M(T",,). Then,
according to properties (Z.4,,,) for m > n, we have

m
1
A Z @ Ax,y 22 [Jaidx, o 2 5 A%, > 0.
. 2
=N

By taking limits in the above inequality as m — oo we obtain A, (z) > 0. On the other hand, it is easy to obtain
the properness (and therefore the completeness) of « from properties (2.2 ,,).

Finally, let us demonstrate that 7 : 9 — R? possesses uncountably many ends. Let () denote a sequence
Q = {ki}ien, Wherek; € {0, 1}. Next, we consider any proper arc o ¢ : [0, co[ — § satisfying

(8.3) og([j,=[) € D(c(k1,...,kj),7j),VjeN.

We note first that if Q@ = {k;}.eny and Q' = {k]}icn are two sequences as above such that @@ # Q' then there
exists jo = min{j € N | k; # kj} Thus, (8.3) impliesthat D(c(k1, . .., kj, ), rj,) and D(c(kq, . . .,k;o),rjo) are
two disks containing o g ([0, oo[) ad o ([jo, oo[), respectively. Since

D(C(k’l,. "’kjo)’rjo) QD(C( /1,. "5k;0)’rjo) = (Z) s

we can consider (D (c(k1, ..., kj,),75,)) 8 acompact set separating o ([jo, oo[) and o ([jo, oo[). Therefore,
og and o are two distinct topological ends. As there exists an uncountable number of sequences (), we deduce
that there are uncountably many ends. a

Finally, we would like to mention the following:

Remark 9. Wth the sameideas presented in the proof of the above theoremit is also possible to construct properly
immersed minimal surfaces with uncountably many ends in such a way that all the ends are limit ends.
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