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ABSTRACT. In this paper we have proved several approximation theorems for the family of minimal surfaces in R3 that
imply, among other things, that complete minimal surfaces are dense in the space of all minimal surfaces endowed with
the topology of Ck convergence on compact sets, for any k ∈ N.

As a consequence of the above density result, we have been able to produce the first example of a complete proper
minimal surface in R3 with uncountably many ends.
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1. INTRODUCTION

The conformal structure of a complete minimal surface in R 3 influences many of its global properties. A com-
plete (orientable) minimal surface has an underlying complex structure that can be either parabolic or hyperbolic
(the elliptic (compact) case is not possible for a minimal surface in Euclidean space.) Classically, a Riemann sur-
face without boundary is called hyperbolic if it carries a nonconstant positive superharmonic function and parabolic
if it is neither compact nor hyperbolic.

Until the 1980’s, it was a general thought that complete minimal surfaces of hyperbolic type played a marginal
role in the global theory of minimal surfaces. However, the techniques and methods developed to study the Calabi-
Yau problem have showed that these surfaces are present in some of the most interesting aspects of the theory.
It is natural that the first examples of complete hyperbolic minimal surfaces appeared as counterexamples to the
Calabi-Yau conjectures, which original statement was given in 1965 by E. Calabi [2] (see also [3] and [25]). This
author conjectured that “a complete minimal hypersurface in Rn must be unbounded”, even more, “a complete
nonflat minimal hypersurface in Rn has an unbounded projection in every (n− 2)-dimensional affine subspace”.

Both conjectures turned out to be false, at least in the immersed case. In 1980, L. P. Jorge and F. Xavier
[7] constructed complete nonflat minimal disks in an open slab of R 3 giving a counterexample to the second
conjecture. An important progress came in 1996, when N. Nadirashvili [21] constructed the first example of a
complete bounded minimally immersed disk in R3. Initially, Nadirashvili’s work seemed to be the end point of a
classical problem. However, the methods and ideas introduced by this author were the beginning of a significant
development in the construction of complete hyperbolic minimal surfaces. So, it has been possible to find examples
with more interesting topological and geometrical properties. At the same time, some non-existence theorems have
imposed some limits to the theory. Three have been the main lines of study.

Embeddedness creates a dichotomy in the Calabi-Yau’s question. T. Colding and W. P. Minicozzi [4] have
proved that a complete embedded minimal surface with finite topology in R 3 must be properly embedded in R3.
In particular it cannot be contained in a ball. Very recently, Colding-Minicozzi result has been generalized in two
different directions. On one hand W. H. Meeks III, J. Pérez and A. Ros [16] have proved that if M is a complete
embedded minimal surface in R3 with finite genus and a countable number of ends, thenM is properly embedded
in R3. On the other hand, Meeks and Rosenberg have obtained that if a complete embedded minimal surface M
has injectivity radius IM > 0, then M is proper in space. This is a corollary of the minimal lamination closure
theorem [17]. As a consequence of the above results, it has been conjectured by Meeks, Pérez and Ros that “if
M ⊂ R3 is a complete embedded minimal surface with finite genus, thenM is proper”. We would like to mention
that the conjecture seems to be false under the assumption of infinite genus, as Meeks is working in the existence
of a complete embedded minimal surface with infinite genus which is contained in a half space [15].
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The second line of work is related with the properness of the examples. Recall that an immersed submanifold of
Rn is proper if the pre-image through the immersion of any compact subset of R n is compact in the submanifold. It
is clear from the definition that a proper minimal surface in R 3 must be unbounded, so Nadirashvili’s surfaces are
not proper in R3. Much less obvious is that Nadirashvili’s technique did not guarantee the immersion f : D → B

was proper in the unit (open) ball B (here D stands for the unit disk in C), where by proper we mean in this
case that f−1(C) is compact for any C ⊂ B compact. Morales and the third author [11, 12, 20] introduced
completely new ingredients in Nadirashvili’s machinery and they proved that every convex domain (not necessarily
bounded or smooth) admits a complete properly immersed minimal disk. These examples disproved a longstanding
conjecture, which asserted that a complete minimal surface (without boundary) with finite topology and which is
properly immersed in R3 should be parabolic. Recently [13] they improved on their original techniques and were
able to show that every bounded domain with C 2,α-boundary admits a complete properly immersed minimal disk
whose limit set is close to a prescribed simple closed curve on the boundary of the domain. Similar methods of
construction have been used by M. Tokuomaru in [24] to produce a complete minimal annulus properly immersed
in the unit ball of R3. In contrast to these existence results for complete properly immersed minimal disks in
bounded domains, Meeks, Nadirashvili and the third author [10] proved the existence of bounded open regions of
R

3 which do not admit complete properly immersed minimal surfaces with an annular end. In particular, these
domains do not contain a complete properly immersed minimal surface with finite topology.

FIGURE 1

The other line of study for complete hyperbolic minimal surfaces in R 3 has been the construction of examples
with nontrivial topology. Nadirashvili’s examples are simply connected. Thus, his mathematical machinery, which
is based on Runge’s theorem and López-Ros transformation, works without problems. López, Morales and the
third author [8, 9] introduce a third element in the construction: the Implicit Function Theorem, in order to produce
Runge’s functions that close also the periods when they are used as parameters in the López-Ros deformation.

The aim of this paper is to join the second and third lines of work described in the above paragraphs in order to
prove the following result (Section 7, Theorems 2 and 3).

Theorem A (Density theorem). Properly immersed, hyperbolic minimal surfaces of finite topology are dense in
the space of all properly immersed minimal surfaces in R

3, endowed with the topology of smooth convergence on
compact sets.

Note that the best understood families of minimal surfaces in R3 (properly embedded, periodic, finite total cur-
vature, finite type,...) are included in the statement of Theorem A. Furthermore, if we do not care about properness,
then we can prove that:

Complete (hyperbolic) minimal surfaces are dense in the space of minimal surfaces in R
3 (without

boundary) endowed with the topology of C k convergence on compact sets, for any k ∈ N.

In the case of hyperbolic minimal surfaces we have an infinite number of linearly independent Jacobi fields.
This is the key point in the proof of the above theorem. This enormous capability of deformation allows us to
“model” a given compact piece of a hyperbolic minimal surface in order to approximate any other minimal surface
with the same topological type (see Figure 1). In particular, we can obtain the following existence result.
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Theorem B. For any convex domainD in R3 (not necessarily bounded or smooth) there exists a complete proper
minimal immersion ψ : M → D, where M is an open Riemann surface with arbitrary finite topology.

One of the most interesting applications of our Density Theorem is the construction of the first example of a
complete minimal surface properly immersed in R

3 with an uncountable number of ends (Section 8).

Theorem C. There exists a domain Ω ⊂ C and a complete proper minimal immersion ψ : Ω → R3 which has
uncountably many ends.

The domain Ω is bounded in C and its set of ends contains a Cantor’s set. We would like to emphasize that our
technique can be also applied to construct complete proper minimal surfaces of genus k, k ∈ N, and uncountably
many ends. For the sake of simplicity, we have only exhibited in this paper the construction of a minimal surface
of genus zero and uncountably many ends.

Once again, embeddedness establishes a dichotomy in the global theory of minimal surfaces. So, it is impor-
tant to note that complete proper minimal surfaces in R3 with uncountably many ends cannot be embedded as a
consequence of a result by Collin, Kusner, Meeks and Rosenberg [5].

Acknowledgments. We are indebted to W. H. Meeks III for valuable suggestions in the construction of minimal
surfaces with an uncountable number of ends. We would also like to thank A. Ros for helpful criticisms of the
paper.

2. PRELIMINARIES

This section is devoted to briefly summarize the notation and results about Riemann surfaces, minimal surfaces,
and convex geometry that we will use in the paper.

2.1. Riemann surfaces background. Throughout the paper M ′ will denote a connected compact Riemann sur-
face of genus σ ∈ N ∪ {0}.

Let M be a domain in M ′ and assume that M carries a Riemannian metric ds2. Given a subset W ⊂ M , we
define:

• dist(W,ds)(p, q) = inf{length(α, ds) | α : [0, 1] →W, α(0) = p, α(1) = q}, for any p, q ∈W ;
• dist(W,ds)(T1, T2) = inf{dist(W,ds)(p, q) | p ∈ T1, q ∈ T2}, for any T1, T2 ⊂W ;
• diamds(W ) = sup{dist(W,ds)(p, q) | p, q ∈W}.

For E ∈ N, consider D1, . . . ,DE ⊂M ′ open disks so that {γi := ∂Di}E
i=1 are piecewise smooth Jordan curves

and Di ∩ Dj = ∅ for all i �= j.

Definition 1. Each curve γi will be called a cycle on M ′ and the family J = {γ1, . . . , γE} will be called a
multicycle onM ′. We denote by Int(γi) the disk Di, for i = 1, . . . , E. We also defineM(J ) = M ′ −∪E

i=1Int(γi).
Notice that M(J ) is always connected.

Given J = {γ1, . . . , γE} and J ′ = {γ′1, . . . , γ′E} two multicycles in M ′ we write J ′ < J if Int(γi) ⊂ Int(γ′i)
for i = 1, . . . , E. Observe that this implies M(J ′) ⊂M(J ).

Let J = {γ1, . . . , γE} be a multicycle and assume that M(J ) ⊂ M , where the Riemannian metric ds2 is
defined. If ε > 0 is small enough, we can consider the multicycle J ε = {γε1, . . . , γεE}, where by γεi we mean
the cycle satisfying Int(γi) ⊂ Int(γεi ) and dist(M,ds)(q, γi) = ε for all q ∈ γεi and i = 1, . . . , E. Similarly,

we can define J −ε = {γ−ε1 , . . . , γ−εE }, where γ−εi now means the cycle satisfying Int(γ−ε
i ) ⊂ Int(γi) and

dist(M,ds)(q, γi) = ε for all q ∈ γ−εi and i = 1, . . . , E.
Given a Riemann surface with boundary N ⊂ M ′, we will say that a function, or a 1-form, is harmonic,

holomorphic, meromorphic, ... on N , if it is harmonic, holomorphic, meromorphic, ... on a domain containingN .

2.2. Minimal surfaces background. The theory of complete minimal surfaces is closely related to the theory
of Riemann surfaces. This is due to the fact that any such surface is given by a triple Φ = (Φ 1,Φ2,Φ3) of
holomorphic 1-forms defined on some Riemann surface such that

(2.1) Φ2
1 + Φ2

2 + Φ2
3 = 0;

(2.2) ‖Φ1‖2 + ‖Φ2‖2 + ‖Φ3‖2 �= 0;
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and all periods of the Φj are purely imaginary, here we consider Φ i to be a holomorphic function times dz in a local
parameter z. Then the minimal immersionX : M → R

3 can be parameterized by z 	→ Re
∫ z Φ. The above triple

is called the Weierstrass representation of the immersionX . Usually, the first requirement (2.1) (which ensures the
conformality of X) is guaranteed by introducing the formulas:

Φ1 =
1
2
(
1 − g2

)
η, Φ2 =

i
2
(
1 + g2

)
η, Φ3 = g η,

with a meromorphic function g (the stereographic projection of the Gauss map) and a holomorphic 1-form η. The
metric of X can be expressed as

(2.3) dsX
2 = 1

2‖Φ‖2 =
(

1
2

(
1 + |g|2

)
‖η‖
)2
.

Throughout the paper, we will use several orthonormal bases of R 3. GivenX : Ω → R3 a minimal immersion and
S an orthonormal basis, we will write the Weierstrass data of X in the basis S as

Φ(X,S) = (Φ(1,S),Φ(2,S),Φ(3,S)), g(X,S), η(X,S).

Similarly, given v ∈ R3, we will let v(k,S) denote the k-th coordinate of v in S. The first two coordinates of v in
this basis will be represented by v(∗,S) =

(
v(1,S), v(2,S)

)
.

Given a curveα inM , by length(α,X) we mean length(α, dsX). Similarly, given a subsetW ⊂M , we write:

• dist(W,X)(p, q) = dist(W,dsX )(p, q), for any p, q ∈ W ;
• dist(W,X)(T1, T2) = dist(W,dsX)(T1, T2), for any T1, T2 ⊂W ;
• diamX(W ) = diamdsX (W ).

2.2.1. The López-Ros transformation. The proof of Lemmas 1, 2 and 3 exploits what has come to be called the
López-Ros transformation. If M is a Riemann surface and (g, η) are the Weierstrass data of a minimal immersion
X : M → R

3, we define onM the data

(2.4) g̃ =
g

h
, η̃ = η · h,

where h : M → C is a holomorphic function without zeros. If the periods of this new Weierstrass representation
are purely imaginary, then it defines a minimal immersion X̃ : M → R

3. This method provides us with a powerful
and natural tool for deforming minimal surfaces. From our point of view, the most important property of the
resulting surface is that the third coordinate function is preserved. Note that the intrinsic metric is given by (2.3)
as

(2.5) dsX̃
2 =
(

1
2

(
|h| + |g|2

|h|

)
‖η‖
)2

.

This means that we can increase the intrinsic distance in a prescribed compact of M , by using suitable functions
h. These functions will be provided by Lemma 1 that can be consider a Runge’s type theorem.

2.3. Background on convex geometry. Convex geometry is a classical subject with a large literature. To make
this article self-contained, we will describe the concepts and results we will need. A convex, compact set of R n

with nonempty interior is called a convex body. A theorem of H. Minkowski (cf. [19]) states that every convex
body C in Rn can be approximated (in terms of Hausdorff metric) by a sequence C k of ‘analytic’ convex bodies.
Recall that the Hausdorff distance between two nonempty compact subsets of Rn, C and D, is given by:

δH(C,D) = max
{

sup
x∈C

inf
y∈D

‖x− y‖, sup
y∈D

inf
x∈C

‖x− y‖
}
.

Theorem (Minkowski). Let C be a convex body in Rn. Then there exists a sequence {Ck} of convex bodies with
the following properties

1. Ck ↘ C in terms of the Hausdorff metric;
2. ∂Ck is an analytic (n− 1)-dimensional manifold;
3. The curvatures of ∂Ck never vanish.
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A modern proof of this result can be found in [18, §3].
Given E a bounded regular convex domain of R 3 and p ∈ ∂E, we will let κ2(p) ≥ κ1(p) ≥ 0 denote the

principal curvatures of ∂E at p (associated to the inward pointing unit normal.) Moreover, we write:

κ1(∂E) := min{κ1(p) | p ∈ ∂E}.
If we consider N : ∂E → S2 the outward pointing unit normal or Gauss map of ∂E, then there exists a constant
a > 0 (depending on E) such that ∂Et = {p+ t · N (p) | p ∈ ∂E} is a regular (convex) surface ∀t ∈ [−a,+∞[.
We label Et as the convex domain bounded by ∂E t. The normal projection to ∂E is represented as

PE : R3 − E−a −→ ∂E
p+ t · N (p) 	−→ p .

Finally, we define the ‘extended’ Gauss map NE : R3 − E−a −→ S2 as NE(x) = N (PE(x)).

3. A RUNGE’S TYPE LEMMA

As we mentioned in the introduction, this section contains a Runge type theorem on Riemann surfaces. It will
be crucial in the prove of the main theorems.

Lemma 1. Let J be a multicycle of M ′ and F : M(J ) → R3 a conformal minimal immersion with Weierstrass
data (g,Φ3). Consider K1 and K2 two disjoint compact sets in M(J ) and ∆ ⊂M ′ satisfying:

• There exists a basis of the homology of M(J ) contained in K2;
• ∆ ⊂M ′ − (K1 ∪K2);
• ∆ has a point in each connected component of M ′ − (K1 ∪K2).

Then, for any m ∈ N and for any t > 0 there exists H : M(J ) − ∆ → C a holomorphic function without zeros,
such that

(L1.a) |H − t| < 1/m in K1;
(L1.b) |H − 1| < 1/m in K2;
(L1.c) The minimal immersion F̃ : M(J ) − ∆ → R3 with Weierstrass data (g/H,Φ3) is well-defined.

In order to prove Lemma 1, we have to introduce some terminology and prove several claims. We define

 = 2σ + E − 1 (recall that σ is the genus of the compact surface M ′.) Thus, let B = {ℵ1, . . . ,ℵ�} be a basis of
the homology of M(J ) contained in K2, and denote by H the complex vector space of the holomorphic 1-forms
onM(J ).

Claim 3.1. Consider (a1, . . . , a�) ∈ C� − {(0, . . . , 0)} and c =
∑�

j=1 ajℵj . Then there exists τ ∈ H with∫
c
τ = 1.

Proof. The first holomorphic De Rham cohomology group,H 1
hol(M(J )) is a complex vector space of dimension


 (see [6, Chapter III.5]). Thus, the map I : H 1
hol(M(J )) → C� given by I([ψ]) =

(∫
ℵ1
ψ, . . . ,

∫
ℵ�
ψ
)
, is a

linear isomorphism. Observe I is well-defined from the fact that the type of an exact 1-form in H 1
hol(M(J )) is

zero. Therefore, there exists [ψ] ∈ H 1
hol(M(J )) such that I([ψ]) /∈ {(z1, . . . , z�) |

∑�
j=1 ajzj = 0}. Therefore,

we can choose τ ∈ [ψ] with
∫
c
τ = 1. �

Claim 3.2. Consider τ ∈ H and P ∈ M(J ). Then, there exists a holomorphic function A : M(J ) → C such

that
(

(τ + dA)|M(J )

)
0
≥
(
τ |M(J )

)
0
· P , where (·)0 denotes the divisor of zeros.

Proof. Suppose (τ)0 = Q1 · · ·QkPn, with P �= Qi ∀ i = 1, . . . , k, and assume that there exists a holomorphic
function υ : M(J ) → C satisfying

1) υ(P ) �= υ(Qi), ∀ i = 1, . . . , k;
2) P is not a ramification point of υ.

Consider the function J : M(J ) → C given by J = (υ−υ(P ))n+1
∏k
i=1(υ−υ(Qi))2. Therefore,

(
dJ |M(J )

)
0
≥(

τ |M(J )

)
0

and the order of P as zero of dJ and τ is the same, so, there exists λ ∈ C such that A = λJ solves

the claim.
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Now, we are checking that there exists a such function υ satisfying items 1) and 2). A Runge’s type theorem
(see [23, Theorem 10]) guarantees the existence of a holomorphic function υ 1 : M(J ) → C fulfilling item 1).
On the other hand, given (U, z) a conformal coordinate chart around P and m ∈ N, the same theorem provides us
of a holomorphic function hm : M(J ) → C with |hm(z) − z| < 1/m for z ∈ U . Hence, {hm}m∈N → z and
therefore {dhm}m∈N → dz. Taking into account that P is not a ramification point of z, we conclude that there
exists m ∈ N large enough so that P is not a ramification point of υ2 := hm. Finally we choose υ as a appropriate
linear combination of υ1 and υ2. �

Claim 3.3. Let O(M(J )) be the real vector space of the holomorphic functions on M(J ). Then the linear map
F : O(M(J )) → R2� given by

F(ϕ) =

⎛⎝Re

[∫
ℵj

ϕΦ3

(
1
g

+ g

)]
j=1,...,�

, Im

[∫
ℵj

ϕΦ3

(
1
g
− g

)]
j=1,...,�

⎞⎠
is onto.

Proof. SupposeF is not onto. Therefore, there exists (µ1, . . . , µ2�) ∈ R2�−{(0, . . . , 0)} such thatF
(
O(M(J ))

)
⊂ {(x1, . . . , x2�) |

∑2�
j=1 µjxj = 0}. In other words:

(3.1) Re

⎡⎣ �∑
j=1

(
uj

∫
ℵj

ϕ

g
Φ3 + uj

∫
ℵj

ϕgΦ3

)⎤⎦ = 0 , ∀ϕ ∈ O(M(J )) ,

where uj = µj − iµj+�, j = 1, . . . , 
.
Now, Claims 3.1 and 3.2 guarantee the existence of a differential τ ∈ H satisfying

• (τ)0 ≥
((

1
gΦ3

)∣∣∣
M(J )

)2

0

·
(

(g dg)|M(J )

)
0
;

• Re
[∑�

j=1 uj
∫
ℵj
τ
]

= 1.

Therefore, if we define w := τ
2g dg , then ϕ := g dw

Φ3
∈ O(M(J )). Hence, integrating (3.1) by parts, we obtain

Re

⎡⎣ �∑
j=1

uj

∫
ℵj

ϕgΦ3

⎤⎦ = −Re

⎡⎣ �∑
j=1

uj

∫
ℵj

τ

⎤⎦ = 0 ,

which is absurd. This proves the claim. �

Using the above claim we obtain the existence of {ϕ1, . . . , ϕ2�} ⊂ O(M(J )) such that {F(ϕ1), . . . , F(ϕ2�)}
are linearly independent. Fixed m0 ∈ N, without loss of generality, we can assume

(3.2)

∣∣∣∣∣
2�∑
i=1

xiϕi(p)

∣∣∣∣∣ < 1
m0

,

∀x = (x1, . . . , x2�) ∈ R
2� with ‖x‖∞ < 1, ∀ p ∈M(J ).

3.1. Proof of Lemma 1. Given n ∈ N, we apply a Runge-type theorem onM ′, see [23, Theorem 10], and obtain
a holomorphic function ϑn : M(J ) − ∆ → C such that{

|ϑn − n log(t)| < 1/n in K1 ,

|ϑn| < 1/n in K2 .

Now, for Θ = (λ0, . . . , λ2�) ∈ R2�+1, we consider the map hΘ,n : M(J ) − ∆ → C given by

hΘ,n(p) = exp

⎡⎣λ0 ϑn(p) +
2�∑
j=1

λjϕj(p)

⎤⎦ .
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Label gΘ,n = g/hΘ,n and ΦΘ,n
3 = Φ3. Clearly, we have that ϑn converges uniformly on K2 to ϑ∞ ≡ 0. So, for

Θ = (λ0, . . . , λ2�) ∈ R2�+1 we also define on K2 the Weierstrass data gΘ,∞ = g/hΘ,∞ and ΦΘ,∞
3 = Φ3, where

hΘ,∞ : K2 → C is given by

(3.3) hΘ,∞(p) = exp

⎡⎣ 2�∑
j=1

λj ϕj(p)

⎤⎦ .

Note that the third coordinate of all these Weierstrass representations has no real periods, but the period prob-
lems of the two first ones coordinates are not solved. In order to solve these problems we define, ∀n ∈ N ∪ {∞},
the map Pn : R2�+1 → R2� given by

(3.4) Pn(Θ) =

⎛⎝Re

[∫
ℵj

ΦΘ,n
1

]
j=1,...,�

, Re

[∫
ℵj

ΦΘ,n
2

]
j=1,...,�

⎞⎠ .

Since F is a well-defined immersion, then we have Pn(0, . . . , 0) = 0, ∀n ∈ N∪ {∞}. Moreover, it is not hard
to check that

[Jacλ1,...,λ2�(Pn)](0, . . . , 0) = det(F(ϕ1), . . . ,F(ϕ2�)) �= 0, ∀n ∈ N ∪ {∞} .

Labeling B(0, r) = {Λ ∈ R2� | ‖Λ‖ ≤ r}, we can find ξ > 0 and 0 < r < 1 such that the Jacobian operator
[Jacλ1,...,λ2�(P∞)]

∣∣
[−ξ,ξ]×B(0,r)

�= 0 and P∞(0, ·)
∣∣
B(0,r)

is injective.

As {ϑn}n∈N uniformly converges to ϑ∞ ≡ 0 on K2 and ℵi ⊂ K2, ∀ i = 1, . . . , 
, then it is not hard to see
that {Jacλ1,...,λ2�(Pn)}n∈N uniformly converges to Jacλ1,...,λ2�(P∞) on [0, ξ] × B(0, r). Therefore, there exists
n0 ∈ N satisfying that ∀n ≥ n0, ∃ ξn > 0 such that [Jacλ1,...,λ2�(Pn)](λ0,Λ) �= 0, ∀ (λ0,Λ) ∈ [−ξn, ξ]×B(0, r).
Now, we are able to apply the Implicit Function Theorem to the map P n at (0, . . . , 0) ∈ [−ξn, ξ] × B(0, r) and
obtain a smooth functionLn : In → R

2�, satisfying Pn(λ0, Ln(λ0)) = 0, ∀λ0 ∈ In, where In is an open interval
containing 0 and maximal, in the sense that Ln can not be regularly extended beyond In.

Claim 3.4. There exist ε0 > 0 and n0 ∈ N such that the function Ln : [0, ε0] → B(0, r) is well-defined for all
n ≥ n0.

The proof of Claim 3.4 is a standard argument of classical analysis that can be found in [8].
Take n ≥ n0 large enough so that 1/n ≤ ε0 and label (λn1 , . . . , λ

n
2�) = Ln(1/n). Ifm0 in (3.2) and n ≥ n0 are

sufficiently large, the function

H(p) = exp

⎡⎣ 1
n
ϑn(p) +

2�∑
j=1

λnj ϕj(p)

⎤⎦
satisfies (L1.a) and (L1.b). As the period function Pn vanishes at Θn = (1/n, λn1 , . . . , λn2�), then the minimal

immersion F̃ with Weierstrass data given by (g/H,Φ3) is well-defined. Hence, the function H also satisfies
(L1.c). This completes the proof of Lemma 1.

4. PROPERNESS LEMMA

This lemma asserts that a compact minimal surface whose boundary is close to the boundary of a convexE can
be ‘elongated’ in such a way that the boundary of the new surface achieves the boundary of a bigger convex E ′.
However, the above procedure does not change the topological type of the minimal surface. If E is strictly convex
we are able to obtain some extra information about the resulting surface that will be necessary in proving Theorem
3 (see Remark 5.)

Lemma 2. Let E and E ′ be two bounded regular convex domains in R3, with 0 ∈ E ⊂ E ⊂ E′. Consider
J ′ < J0 multicycles in M ′ and X : M(J0) → R3 a conformal minimal immersion satisfying X(p0) = 0 for a
given point p0 ∈M(J ′), and

(4.1) X(M(J0) −M(J ′) ) ⊂ E′ − E .

Finally, consider b2 > 0 such that E ′
−b2 and E−2b2 exist. Then, for any b1 > 0 there exist a multicycle J and a

conformal minimal immersion Y : M(J ) → R3 satisfying Y (p0) = 0 and:
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(L2.a) J ′ < J < J0;
(L2.b) ‖Y (p) −X(p)‖ < b1, ∀ p ∈M(J ′);
(L2.c) Y (J ) ⊂ E ′ − E′

−b2 ;

(L2.d) Y (M(J ) −M(J ′)) ⊂ R3 − E−2b2 .

4.1. Proof of Lemma 2. Let ω be a meromorphic differential on M ′ so that ω has neither zeroes nor poles on
M(J0). Then, it is well known that ds2 := ‖ω‖2 is a flat Riemannian metric on M(J0).

Remark 1 (developing map). Fixed a point q ∈M(J0) the multivalued map given by:

(4.2) f(p) :=
∫ p

q

ω,

is called the developing map of ‖ω‖2. It is known that ‖ω‖2 = f∗ds20, where ds20 represents the Euclidean metric
of C. In particular, f can be seen as a local isometry.

Given n ∈ N we define an order relation in the set I ≡ {1, . . . , n}× {1, . . . , E}.We say (j, l) > (i, k) if one of
the two following situations occurs: l = k and j > i or l > k. Moreover given p ∈ M(J 0) and r > 0, we denote
D(p, r) = {q ∈ M(J0) | dist(M(J0),ds)(p, q) < r}. We also define two important constants that are chosen as
follows:

• µ = max{distR3(x, ∂E) | x ∈ E′};
• ε0 > 0 which will only depend on the data of Lemma 2 (i.e., X , J 0, J ′, E, E′, b1, and b2.) This positive

constant will be determined later and it must be small enough to satisfy several inequalities appearing in
this section.

4.1.1. The first deformation.

Claim 4.1. There exist a multicycle J1 such that J ′ < J1 < J0, and a set of points {pki | (i, k) ∈ I} included in
M(J1) −M(J ′), satisfying the following properties:

1) For any k, there exists a cycle γk passing trough {pk1 , . . . , pkn} (orderly) and contained in M(J1) −M(J ′);
2) J2 = {γ1, . . . , γE} is a multicycle with M(J ′) ⊂M(J2);
3) There exist open disks Bi,k ⊂ M(J1) − M(J ′) satisfying pki , p

k
i+1 ∈ Bi,k, and such that (we adopt the

convention pkn+1 = pk1)

(4.3) ‖X(p) −X(p′)‖ < ε0 , ∀ p, p′ ∈ Bi,k, ∀ (i, k) ∈ I ;

4) For any (i, k) ∈ I, there exists an orthonormal basis of R3, Ski = {ei,k1 , ei,k2 , ei,k3 }, with ei,k1 = NE(X(pki )),
and satisfying

(4.4)
∥∥∥ei,kj − ei+1,k

j

∥∥∥ < ε0
3µ

, ∀j ∈ {1, 2, 3} (en+1,k
j := e1,kj ) ,

and

(4.5) f(X,Sk
i )(p

k
i ) �= 0 , where f(X,Sk

i ) :=
η(X,Sk

i )

ω
;

5) For each (i, k) ∈ I, there exist a complex constant θki which satisfies |θki | = 1, Im θki �= 0, and

(4.6)

∣∣∣∣∣θki f(X,Sk
i )(pki )

|f(X,Sk
i )(pki )|

− 1

∣∣∣∣∣ < ε0
3µ

.

Proof. Since J ′ is a set of piecewise regular curves, then we know that NE(X(J ′)) omits an open set U of S2.
Hence, we can get a multicycle J1 with J ′ < J1 < J0 and NE(X(M(J1) − M(J ′))) ⊂ S2 − U . Let V1

and V2 be a smooth orthonormal basis of tangent vector fields on S 2 − U . Then, we define ξ1(p) = NE(X(p)),
ξ2(p) = V1 (NE(X(p))) and ξ3(p) = V2 (NE(X(p))), ∀p ∈M(J1) −M(J ′).

If n is large enough, because of the uniform continuity ofX and the fields ξ j , for j = 1, 2, 3,we can find points
{pki | (i, k) ∈ I} ∈M(J1) −M(J ′) satisfying Statements 1), 2), 3), and the following property:

(4.7)
∥∥ξj(pki ) − ξj(pki+1)

∥∥ < ε0/6µ , ∀j ∈ {1, 2, 3} , ∀ (i, k) ∈ I .
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Labeling G as the spherical Gauss map of X , we can write G(pki ) =
∑3
j=1 


i,k
j · ξj(pki ), 


i,k
j ∈ [−1, 1].

Take a ∈ [0, 1] − {
i,k2 | (i, k) ∈ I}, and define ei,k1 = ξ1(pki ), e
i,k
2 = −

√
1 − a2ξ2(pki ) + aξ3(pki ) and ei,k3 =

aξ2(pki )+
√

1 − a2ξ3(pki ). Then, (4.4) is a direct consequence of (4.7). Moreover, note that e i,k3 �= G(pki ), ∀(i, k),
and so (4.5) trivially holds. Finally, the existence of θ ki is straightforward. �

FIGURE 2. The surface M ′ the multicycles J0, J1, J2, J3, and J ′.

Remark 2. Notice that Properties (4.3) and (4.4) are cyclic, i.e., they are true for i = n labeling p kn+1 = pk1 ,
Skn+1 = Sk1 and Bn+1,k = B1,k.

Now, for any (i, k) ∈ I, consider a holomorphic function ζ i,k : M(J0) − {pki } → C having a simple pole at
pki . The existence of such functions is a consequence of the Noether ‘gap’ Theorem (see [6]). Up to multiplying
ζi,k by a complex constant, we can assume that the residue of ζ i,k · ω at pki is −1, for all (i, k) ∈ I.

Claim 4.2. There exists 0 < δ < 1 such that, for any (i, k) ∈ I, there exist a point qki ∈ ∂D(pki , δ) and a regular

simple curve βi,k : [0, 1] → D(pki , δ) satisfying

(1) βi,k(0) = qki , βi,k(1) = pki and βi,k(]0, 1[) ⊂ D(pki , δ);
(2) ζi,k(βi,k(t)) · ωβi,k(t)(β′

i,k(t)) ∈ R+, ∀ t ∈ [0, 1[;
(3) Im(ζi,k(βi,k(t)) · Im(θki ) < 0, ∀ t ∈ [0, 1[.

At this point we can define the following constant:

δ′ := max{lengthds(βi,k) | (i, k) ∈ I} .
Notice that δ′ ≥ δ and limδ→0 δ

′ = 0.

Claim 4.3. There exists δ > 0 small enough to satisfy Claim 4.2 and the following list of properties:

(A1) There exists J3 a multicycle with M(J3) = M(J2) − ∪(i,k)∈ID(pki , δ) (see Fig. 2) ;

(A2) D(pki , δ) ∪D(pki+1, δ) ⊂ Bi,k, ∀(i, k) ∈ I;

(A3) D(pki , δ) ∩D(plj , δ) = ∅, ∀(i, k) �= (j, l) ∈ I;
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(A4) δ′ · max
D(pk

i ,δ)
{|f(X,Sk

i )|} < 2 ε0, ∀(i, k) ∈ I;

(A5) δ′ · max
D(pk

i ,δ)
{|f(X,Sk

i )g
2
(X,Sk

i )
|} < |Im(θki )| ε0, ∀(i, k) ∈ I;

(A6) 3µ · max
p∈D(pk

i ,δ)
{|f(X,Sk

i )(p) − f(X,Sk
i )(p

k
i )|} < |f(X,Sk

i )(p
k
i )| ε0, ∀(i, k) ∈ I;

(A7) δ′·max
D(pk

i ,δ)
{‖φ‖} < ε0, ∀(i, k) ∈ I , where Φ = φ·ω is the Weierstrass representation of the immersion

X .

Now, we label � := diamds(M(J3)) + 2 δ′ + 2 π δ + 1. For each k = 1, . . . , E, we construct a sequence

FIGURE 3. The conformal disk D(pki , δ).

Ψk = {Ψi,k | i = 1, . . . , n}, where the element Ψi,k = {κki , aki , Cki , Gki ,Φi,k} is composed of:

• κki is a positive real number;
• aki is the first point in the (oriented) curve βi,k , such that

(4.8)
1
2

∣∣∣f(X,Sk
i )(p

k
i )
∣∣∣ ∫

β(qk
i ,a

k
i )

κki ζi,k ω = 3µ ,

where µ was defined at the beginning of the proof of Lemma 2 and β(q, p) denotes the oriented arc of
βi,k([0, 1]) starting at q and finishing at p.

• Cki is a piece of a simple closed regular curve C contained in D(pki , δ) such that aki ∈ Cki and each
connected component of βi,k([0, 1])− {aki } lies on a connected component ofD(pki , δ) −C (see Fig. 3.)

• Gki is a closed annular sector bounded by C k
i , ∂D(pki , δ) and the boundary of a small neighborhood of the

curve β(qki , a
k
i );

• Φi,k = φi,k · ω is a Weierstrass representation defined on M(J1) − ∪(j,l)≤(i,k)U(plj), where U(plj) =

D(plj , δ) −Glj is a small open neighborhood of p lj .

Remark 3. In each family Ψk we will adopt the convention that Ψn+1,k = Ψ1,k. In case k = 1, let Φ0,1 = φ0,1ω
be the Weierstrass representation of the immersion X . We denote Ψ0,1 = {Φ0,1}. In case k > 1, we write
Φ0,k = Φn,k−1 and label Ψ0,k = {Φ0,k}.

Claim 4.4. We can construct the sequence in such way that satisfy

(B1ki ) δ′ · max
D(pl

j ,δ)
{|f(Φi,k,Sl

j)
|} < 2ε0, ∀ (j, l) > (i, k);

(B2ki ) δ′ · max
D(pl

j ,δ)
{|f(Φi,k,Sl

j)
g2
(Φi,k,Sl

j)
|} < |Im(θki )| ε0, ∀ (j, l) > (i, k);

(B3ki ) 3µ · max
p∈D(pl

j ,δ)
{|f(Φi,k,Sl

j)
(p) − f(X,Sl

j)
(plj)|} < |f(X,Sl

j)
(plj)| ε0, ∀ (j, l) > (i, k);

(B4ki ) ‖Re
∫
αp

Φi,k‖ < ε0, ∀p ∈ Cki , where αp is a piece of Cki connecting aki with p;

(B5ki ) Φi,k
(3,Sk

i )
= Φi−1,k

(3,Sk
i )

, where Φi,k
(j,Sk

i )
represents the j-th coordinate of the triple Φi,k in the frame Ski ;

(B6ki ) ‖φi,k(p) − φi−1,k(p)‖ < ε0
nE�

, ∀p ∈ Kk
i := M(J1) −

⎛⎝D(pki , δ) ∪

⎛⎝ ⋃
(j,l)<(i,k)

U(plj)

⎞⎠⎞⎠ ;

(B7ki ) ‖Re
∫
β(qk

i ,a
k
i ) Φi,k − Re

∫
β(qk

i−1,a
k
i−1)

Φi−1,k‖ < 15 ε0, (for i = 2, . . . , n+ 1);
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(B8ki ) For all p ∈ Gki one has∥∥∥∥∥
(

Re
∫ p

qk
i

Φi,k
(1,Sk

i )

)
ei,k1 +

(
Re
∫ p

qk
i

Φi,k
(2,Sk

i )

)
ei,k2 − 1

2

∣∣∣f(X,Sk
i )(p

k
i )
∣∣∣(Re

∫ p

qk
i

κki ζi,k ω

)
ei,k1

∥∥∥∥∥ < 5ε0 ;

(B9ki ) 3µ+ ε0 ≥ 1
2

∣∣f(X,Sk
i )(p

k
i )
∣∣(Re
∫ p
qk

i
κki ζi,k ω) ≥ −ε0, for all p ∈ Gki .

The above properties are true for (i, k) ∈ I , except for (B1 ki ), (B2ki ), and (B3ki ) which hold only for (i, k) �=
(n, E). Similarly, Property (B7ki ) is valid only for i = 2, . . . , n+ 1, and any k ∈ {1, . . . , E} (see Remark 3.)

We define each family Ψk in a recursive way. Before entering in the details of the recursive construction, we
would like to make some remarks:

Remark 4. To construct Ψi,1 starting from Ψi−1,1 we will use Properties (B11
i−1), (B21

i−1) and (B31
i−1). In the

case i− 1 = 0, these properties are a consequence of (A4), (A5), and (A6), respectively.
If k > 1 and Ψi−1,k is already defined, then in order to obtain Ψ i,k from Ψi−1,k we will make use of Properties

(B1ki−1), (B2ki−1) and (B3ki−1). In the case i− 1 = 0, these properties are a consequence of (B1k−1
n ), (B2k−1

n ) and
(B3k−1

n ), respectively.

Assume Ψi−1,k is defined satisfying Properties (B1ki−1),. . . , (B9ki−1).
From item (3) in Claim 4.2 we easily obtain that:

(4.9)
∣∣1 + c θki ζi,k(βi,k(t))

∣∣ ≥ |Im(θki )| > 0, ∀t ∈ [0, 1], ∀c > 0.

Consider a basis of the homology ofM(J0), B = {ℵ1, . . . ,ℵ�}, so that the curves ℵj , j = 1, . . . , 
, are contained
in M(J2) − ∪(j,l)∈ID(plj , δ).

Reasoning as in Claim 3.3 we obtain the existence of {ϕ1, . . . , ϕ2�} ⊂ O(M(J0)) such that {F(ϕ1), . . . ,
F(ϕ2�)} are linearly independent. Up to a suitable shrinking, we can assume

(4.10)

∣∣∣∣∣∣exp

⎡⎣ 2�∑
j=1

xjϕj(p)

⎤⎦ − 1

∣∣∣∣∣∣ < |Im(θki )|
2

,

∀x = (x1, . . . , x2�) ∈ R2� with ‖x‖ < 1, ∀ p ∈ M(J0). Now, for Θ = (λ0, λ1, . . . , λ2�) ∈ R2�+1, we consider
the map hΘ : M(J0) → C given by

hΘ(p) = λ0 θ
k
i ζi,k(p) + exp

⎡⎣ 2�∑
j=1

λjϕj(p)

⎤⎦ .

Observe that hΘ → 1 uniformly on M(J0) −D(pki , δ), as Θ → 0. Then, there exists 1 > r > 0, so that hΘ has
no zeroes in M(J0) −D(pki , δ), for all Θ ∈ B(0, r) = {x ∈ R2�+1 | ‖x‖ < r}.

Label gΘ = g(Φi−1,k,Sk
i )/h

Θ and ΦΘ
3 = Φi−1,k

(3,Sk
i )

. For the associate Weierstrass representation, ΦΘ, we define

the period function P : R2�+1 → R2� given by

P(Θ) =

⎛⎝Re

[∫
ℵj

ΦΘ
1

]
j=1,...,�

, Re

[∫
ℵj

ΦΘ
2

]
j=1,...,�

⎞⎠ .

Notice that P is a mapping of class C1 and P(0, . . . , 0) = 0. Then, applying the Implicit Function Theorem, as in
the proof of Lemma 1, we get the existence of a positive constant κ > 0 and a curve L :] − κ, κ[→ R 2�, such that
(λ0, L(λ0)) ∈ B(0, r) and P(λ0, L(λ0)) = 0, for all λ0 in ] − κ, κ[. Since Φ(λ0,L(λ0)) → Φi−1,k, uniformly on
Kk
i , as λ0 → 0, then we can find κki ∈]0, κ[ so that the Weierstrass data:

(4.11) g(Φi,k,Sk
i ) := g(κk

i ,L(κk
i )) , Φi,k

(3,Sk
i )

:= Φ(κk
i ,L(κk

i ))
3 ,

satisfy Properties (B1ki ), (B2ki ), (B3ki ) and (B6ki ). Furthermore, Property (B5ki ) trivially follows from the definition
of Φi,k.
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For the sake of simplicity we will write hi,k instead of h(κk
i ,L(κk

i )). We would like to point out that the immersion
Xk
i : M(J2) −

(
D(pki , δ) ∪

(
∪(j,l)<(i,k)U(plj)

))
→ R3 with Weierstrass representation Φi,k, in the orthogonal

frame Ski , is well-defined. To obtain the remainder properties we have to work a little further.
To check Property (B8ki ) we write a+ ib ≡ aei,k1 + bei,k2 . Given p ∈ β(qki , a

k
i ), from the definition of βi,k we

get

Re
∫ p

qk
i

κki ζi,k ω =
∫
β(qk

i ,p)

κki ζi,k ω ∈ R
+ .

Hence, using first (4.6) and then (4.8), one obtains:

1
2

∣∣∣∣∣(∣∣∣f(X,Sk
i )(p

k
i )
∣∣∣ − θki f(X,Sk

i )(pki )
)∫

β(qk
i ,p)

κki ζi,k ω

∣∣∣∣∣ < 1
2
ε0
3µ

∣∣∣f(X,Sk
i )(p

k
i )
∣∣∣ ∫

β(qk
i ,p)

κki ζi,k ω ≤ ε0 .

Therefore, we have∣∣∣∣∣Re
∫
β(qk

i ,p)

Φi,k
(1,Sk

i )
+ iRe

∫
β(qk

i ,p)

Φi,k
(2,Sk

i )
− 1

2

∣∣∣f(X,Sk
i )(p

k
i )
∣∣∣ ∫

β(qk
i ,p)

κki ζi,k ω

∣∣∣∣∣ <

(4.12)

∣∣∣∣∣Re
∫
β(qk

i ,p)

Φi,k
(1,Sk

i )
+ iRe

∫
β(qk

i ,p)

Φi,k
(2,Sk

i )
− 1

2
θki f(X,Sk

i )(pki )
∫
β(qk

i ,p)

κki ζi,k ω

∣∣∣∣∣+ ε0

Taking into account the definition of h i,k and (4.10), we can write hi,k = vi,k + θki κ
k
i ζi,k + 1, where vi,k is a

holomorphic function with |vi,k| < |Im(θk
i )|

2 . Moreover, Re Φ1 + iRe Φ2 = 1
2 (η − g2η). Then, expression (4.12)

can be bounded by

1
2

∣∣∣∣∣
∫
β(qk

i ,p)

f(Φi−1,k,Sk
i )θ

k
i κ

k
i ζi,k ω +

∫
β(qk

i ,p)

f(Φi−1,k,Sk
i )(vi,k + 1)ω−

∫
β(qk

i ,p)

f(Φi−1,k,Sk
i )g

2
(Φi−1,k,Sk

i )

ω

hi,k
− θki f(X,Sk

i )(pki )
∫
β(qk

i ,p)

κki ζi,k ω

∣∣∣∣∣+ ε0 ≤

1
2

∣∣∣∣∣
∫
β(qk

i ,p)

(f(Φi−1,k,Sk
i ) − f(X,Sk

i )(pki ))θ
k
i κ

k
i ζi,k ω

∣∣∣∣∣+ 1
2

∣∣∣∣∣
∫
β(qk

i ,p)

f(Φi−1,k,Sk
i )(vi,k + 1)ω

∣∣∣∣∣+
1
2

∣∣∣∣∣
∫
β(qk

i ,p)

f(Φi−1,k,Sk
i )g

2
(Φi−1,k,Sk

i )

ω

hi,k

∣∣∣∣∣+ ε0 < ε0 + ε0

(
1 +

|Im(θki )|
2

)
+ ε0 + ε0 < 5ε0 ,

where in the second inequality we have used (4.8), (B3ki−1), (B1ki−1), (B2ki−1), (4.9) and (4.10). Thus, we have
proved that Property (B8ki ) holds for all p ∈ β(qki , a

k
i ). Hence, if Cki and Gki are chosen close enough to aki and

β(qki , a
k
i ), respectively, we obtain Properties (B4ki ), (B8ki ) and (B9ki ).

Finally, we are checking (B7ki ). In order to do this, we write∥∥∥∥∥Re
∫
β(qk

i ,a
k
i )

Φi,k − Re
∫
β(qk

i−1,a
k
i−1)

Φi−1,k

∥∥∥∥∥ ≤∥∥∥∥∥∥
2∑
j=1

[(
Re
∫
β(qk

i ,a
k
i )

Φi,k
(j,Sk

i )

)
ei,kj −

(
Re
∫
β(qk

i−1,a
k
i−1)

Φi−1,k

(j,Sk
i−1)

)
ei−1,k
j

]∥∥∥∥∥∥+

∣∣∣∣∣
(

Re
∫
β(qk

i ,a
k
i )

Φi,k
(3,Sk

i )

)
ei,k3 −

(
Re
∫
β(qk

i−1,a
k
i−1)

Φi−1,k

(3,Sk
i−1)

)
ei−1,k
3

∣∣∣∣∣ ,
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and we separately bound each addend. Using (B8ki ), (B8ki−1), (4.8) and (4.4), we obtain∥∥∥∥∥∥
2∑
j=1

[(
Re
∫
β(qk

i ,a
k
i )

Φi,k
(j,Sk

i )

)
ei,kj −

(
Re
∫
β(qk

i−1,a
k
i−1)

Φi−1,k

(j,Sk
i−1)

)
ei−1,k
j

]∥∥∥∥∥∥ <
1
2

∥∥∥∥∥
(∣∣∣f(X,Sk

i )(p
k
i )
∣∣∣ ∫

β(qk
i ,a

k
i )

κki ζi,k ω

)
ei,k1 −

(∣∣∣f(X,Sk
i−1)

(pki−1)
∣∣∣ ∫

β(qk
i−1,a

k
i−1)

κki−1ζi−1,k ω

)
ei−1,k
1

∥∥∥∥∥+ 10ε0 =∥∥∥3µ ei,k1 − 3µ ei−1,k
1

∥∥∥+ 10ε0 < ε0 + 10ε0 = 11ε0 .

To bound the second addend we use (B5ki ) and (B5ki−1) to obtain∥∥∥∥∥
(

Re
∫
β(qk

i ,a
k
i )

Φi,k
(3,Sk

i )

)
ei,k3 −

(
Re
∫
β(qk

i−1,a
k
i−1)

Φi−1,k

(3,Sk
i−1)

)
ei−1,k
3

∥∥∥∥∥ ≤
∣∣∣∣∣Re
∫
β(qk

i ,a
k
i )

Φi−1,k

(3,Sk
i )

∣∣∣∣∣+(4.13)∣∣∣∣∣Re
∫
β(qk

i−1,a
k
i−1)

Φi−2,k

(3,Sk
i−1)

∣∣∣∣∣ ≤ δ′(max
D(pk

i ,δ)
{‖φi−1,k‖} + max

D(pk
i−1,δ)

{‖φi−2,k‖}) < 2
(
δ′ε0
�

+ ε0

)
< 4ε0 ,

where in the second to last inequality we have used (B6 lj), (j, l) < (i, k), and (A7). Therefore, Property (B7ki )
holds, and so we have constructed the required sequence {Ψ i,k | (i, k) ∈ I}.

4.1.2. Preparing the second deformation. Note that the Weierstrass representations Φ i,k have simple poles and
zeros in M(J1). Our next job is to describe a domain U in M(J1) where the above Weierstrass representations
determine minimal immersions.

We can consider δ′′ > δ such that D(pki , δ′′) ∪D(pki+1, δ
′′) ⊂ Bi,k, ∀(i, k) ∈ I , and D(pki , δ′′) ∩D(plj , δ′′) =

∅, ∀(i, k) �= (j, l) ∈ I.

Let αi,k ⊂ D(pki , δ
′′)−D(pki , δ) be a simple curve connecting ∂D(pki , δ

′′)∩ IntM(J2) with qki and finally let

Nk
i be a small open neighborhood of α i,k ∪ β(qki , a

k
i ) in Gki ∪ (D(pki , δ′′) −D(pki , δ)). The domain U is defined

as

U =

⎛⎝M(J2) −
⋃

(i,k)∈I
D(pki , δ

′′)

⎞⎠ ∪

⎛⎝ ⋃
(i,k)∈I

Nk
i

⎞⎠
If δ′′, αi,k and Nk

i are suitably chosen, then we can guarantee:

Claim 4.5. The domain U satisfies the following properties:

(C1) There exists JU a multicycle with U = M(JU ). From now on, we write M(JU ) instead of U ;
(C2) β(qki , a

k
i ) ⊂M(JU ) and J ′ < JU ;

(C3) diamds(M(JU )) < �;
(C4) M(JU ) ∩D(pki , δ) ⊂ Gki , ∀ (i, k) ∈ I;
(C5) The homology group of M(JU ) is the same as M(J0) and it is generated by the basis B described in page

11.

At this point, it is clear that we are able to find a multicycle, J4, with JU < J4 and satisfying (C3) and (C5),
where the immersions X k

i : M(J4) → R3 given byXk
i (p) = Re

∫ p
p0

Φi,k are still well-defined, for (i, k) ∈ I.

Claim 4.6. For (i, k) ∈ I, we have

(D1ki ) ‖Xk
i (p) −Xk

i−1(p)‖ < ε0
nE
, ∀ p ∈M(J4) −D(pki , δ);

(D2ki ) (Xk
i )(3,Sk

i ) = (Xk
i−1)(3,Sk

i );

(D3ki ) ‖X E
n(a

k
i ) −XE

n(a
k
i+1)‖ < 20ε0;

(D4ki ) X
E
n(a

k
i ) ∈ R3 − E2µ.

Proof. In order to get (D1ki ) we use (B6ki ) and (C3) as follows:

‖Xk
i (p) − Xk

i−1(p)‖ =
∥∥∥∥Re
∫ p

p0

(φi,k − φi−1,k)ω
∥∥∥∥ ≤

∫ p

p0

∣∣φi,k − φi−1,k
∣∣ ‖ω‖ ≤ ε0

nE�

∫ p

p0

‖ω‖ <
ε0
nE

.
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FIGURE 4. The curvesQk
i .

Now, (B5ki ) immediately implies (D2ki ). To check (D3ki ) we apply (D1lj), (j, l) ∈ I , (B7ki+1) and (4.3) to obtain

‖XE
n(a

k
i ) −XE

n(a
k
i+1)‖ ≤ ‖XE

n(a
k
i ) −Xk

i (aki )‖ + ‖XE
n(a

k
i+1) −Xk

i+1(a
k
i+1)‖+

‖Xk
i+1(q

k
i+1) −Xk

i (qki )‖ + ‖(Xk
i (aki ) −Xk

i (qki )) − (Xk
i+1(a

k
i+1) −Xk

i+1(q
k
i+1))‖ <

4ε0 + ‖X(qki+1) −X(qki )‖ +

∥∥∥∥∥Re

(∫
β(qk

i+1,a
k
i+1)

Φi+1,k −
∫
β(ak

i ,q
k
i )

Φi,k
)∥∥∥∥∥ < 4ε0 + ε0 + 15ε0 = 20ε0 .

Finally, we will prove (D4ki ). Using (D1lj), (j, l) > (i, k), one gets

‖XE
n(a

k
i ) −X(pki ) − 3µNE(X(pki ))‖ ≤ ‖XE

n(a
k
i ) −Xk

i (aki )‖ + ‖Xk
i (aki ) −Xk

i (qki ) − 3µNE(X(pki ))‖+

‖Xk
i (qki ) −X(pki )‖ < ε0 + ‖(Xk

i (aki ) −Xk
i (qki ))(∗,Sk

i ) − 3µei,k1 ‖ + |(Xk
i (aki ) −Xk

i (qki ))(3,Sk
i )|+

‖Xk
i (qki ) −X(qki )‖ + ‖X(qki ) −X(pki )‖ < ε0 + 5ε0 + 2 ε0 + ε0 + ε0 = 10 ε0 ,

where in the last inequality we have used (D1ki ), (B8ki ), (4.3), (4.8) and (4.13). As X(pki ) + 3µNE(X(pki )) ∈
R3 − E3µ, then (D4ki ) holds for a small enough ε0. �

4.1.3. The second deformation. For any (i, k) ∈ I, let T k
i = {wi,k1 , wi,k2 , wi,k3 } be a new orthonormal basis such

that

(4.14) wi,k3 = NE(XE
n(a

k
i )) .

Consider also Qki the connected component of the set JU − (Cki ∪ Cki+1) that does not cut C lj , ∀(j, l) ∈ I −
{(i, k), (i+ 1, k)}. Note that {Qki | (i, k) ∈ I} satisfy:

(4.15) Qk
i ∩Qlj = ∅ , for all (i, k) �= (j, l) and Qki ⊂ Bi,k , for all (i, k) ∈ I;

(4.16) Qk
i ∩D(plj , δ) = ∅ , (j, l) /∈ {(i, k), (i+ 1, k)}

and, up to a small perturbation,

(4.17) f(XE
n,T

k
i )(p) �= 0 , ∀ p ∈ Qki .

Now, let Ĉki be an open set containing C k
i and sufficiently small to fulfill

(4.18) ‖X E
n(p) −XE

n(a
k
i )‖ < 3ε0 , ∀ p ∈ Ĉki ∩M(JU ) .

Notice that the above choice is possible due to Properties (D1 lj), (j, l) > (i, k), and (B4ki ). We also define, for any
ξ > 0, Qki (ξ) = {p ∈M(J0) | dist(M(J0),ds)(p,Qki ) ≤ ξ}.

Claim 4.7. There exists ξ > 0 small enough so that:
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(E1) Qki (ξ) ⊂M(J4);
(E2) Qki (ξ) ∩Qlj(ξ) = ∅, for (i, k) �= (j, l);
(E3) Qki (ξ) ∩D(plj , δ) = ∅, for (j, l) �∈ {(i, k), (i+ 1, k)};
(E4) Qki (ξ) ⊂ Bi,k;
(E5) |

∫
[x0,x1]

ω| = ξ/2, ∀x0 ∈ Qki , ∀x1 ∈ ∂D(x0, ξ/2), ∀ (i, k) ∈ I where [x0, x1] represents the length

minimizing arc joining x0 and x1 (recall that ds2 = ‖ω‖2.)
(E6) Given p ∈ Qki , we have |f(XE

n,T
k
i )(p)−f(XE

n,T
k
i )(q)| < ε1, ∀q ∈ D(p, ξ/2),where ε1 = 1

4 minQk
i
{|f(XE

n,T
k
i )|};

(E7) diamds

(
M(JU ) −Qki (ξ)

)
< �.

Observe that Properties (E2), (E3), (E4) and (E7) are consequence of (4.15), (4.16), and (C3). Furthermore,
(E5) holds as the developing map, f, is a local isometry (see Remark 1.) The other ones are straightforward.

We are now ready to construct a sequence {Λ i,k | (i, k) ∈ I} where the element Λi,k = {Y ki , τki , νki } is
composed of:

• Y ki : M(J4) → R3 is a conformal minimal immersion. We also label Y 1
0 = XE

n and Y k0 = Y k−1
n , k ≥ 2;

• {(τki , νki ) ∈ R
+ × R

+ | (i, k) ∈ I}.

Claim 4.8. We can construct the sequence {Λi,k | (i, k) ∈ I} satisfying the following list of properties:

(F1ki ) (Y ki )(3,Tk
i ) = (Y ki−1)(3,Tk

i );

(F2ki ) ‖Y ki (p) − Y ki−1(p)‖ < ε0
nE

, ∀p ∈M(JU ) −Qki (ξ);
(F3ki ) |f(Y k

i ,T
l
j )(p) − f(Y k

i−1,T
l
j )(p)| < ε1

nE
, ∀p ∈M(JU ) −Qki (ξ), for (j, l) > (i, k);

(F4ki )
(

1
τk

i

+ νk
i

τk
i (τk

i −νk
i )

)
maxQk

i (ξ){|f(Y k
i−1,T

k
i )g

2
(Y k

i−1,T
k
i )
|} + νki maxQk

i (ξ){|f(Y k
i−1,T

k
i )|} < 2

ξ ;

(F5ki ) 1
2

(
τk

i ξ
4 minQk

i
{|f(Y 1

0 ,T
k
i )|} − 1

)
> diamR3(E′) + 1;

Assume we have constructed Y 1
0 , Y

1
1 , . . . , Y

k
i−1. Then we use Lemma 1 to get a holomorphic function without

zeros li,k : M(JU ) → C such that

• |li,k(p) − τki | < νki , ∀ p ∈ Qki (ξ/2);
• |li,k(p) − 1| < νki , ∀ p ∈M(JU ) −Qki (ξ);
• The minimal immersion Y k

i with Weierstrass data given by

(4.19) g(Y k
i ,T

k
i ) =

g(Y k
i−1,T

k
i )

li,k
and Φi,k

(3,Tk
i )

= Φi−1,k

(3,Tk
i )
,

is well-defined.

Then, we define the immersion Y k
i as Y ki (p) = Re

∫ p
p0

Φi,k, where the Weierstrass data Φi,k, in the orthogonal

frame T ki , are determined by the López-Ros transformation (4.19). Notice that φ (Y k
i ,T

l
j )

νk
i →0−→ φ(Y k

i−1,T
l
j ) uni-

formly on M(JU ) −Qk,ξi . At this point, if νki is small enough and τ ki is sufficiently large, then to check that
Y ki satisfies Properties (F1ki ),...,(F5ki ) is a straightforward computation, and so we have constructed the sequence
{Λi,k | (i, k) ∈ I}. Note that (4.17) is used in the proof of (F5ki ).

4.1.4. The immersion Y solving Lemma 2. Consider the minimal immersion Y : M(JU ) → R3 given by Y = Y E
n .

We are going to check that Y satisfies all the statements of Lemma 2.

Item (L2.b): Items 2 and 3 in Claim 4.1 and Properties (E4) and (A2) imply thatM(J ′) ⊂M(JU )−
(
∪(i,k)∈I

D(pki , δ)
)
∪
(
∪(i,k)∈I Qki (ξ)

)
. So, we can successively apply (D1ki ) and (F2ki ), (i, k) ∈ I, to obtain ∀p ∈M(J ′)

(4.20) ‖Y (p) −X(p)‖ ≤ ‖Y E
n (p) − Y 1

0 (p)‖ + ‖XE
n(p) −X(p)‖ < 2ε0 < b1 ,

where the last inequality occurs if ε0 is small enough.

Items (L2.a) and (L2.c): As a previous step we will prove the following claim:
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Claim 4.9. Every connected curve γ in M(JU ) connecting M(J ′) with JU contains a point p′ ∈ γ such that
Y (p′) ∈ R3 − E′.

Proof. Let γ ⊂M(JU ) be a connected curve with γ(0) ∈M(J ′) and γ(1) = x0 ∈ JU .

Case i) Assume x0 ∈ Ĉki ∩Qki (ξ). Using Properties (E2), (F2lj) for (j, l) �= (i, k), (F1ki ) and Inequality (4.18), we
infer

(4.21) |(Y E
n (x0) −XE

n(a
k
i ))(3,Tk

i )| ≤ ‖Y E
n (x0) − Y ki (x0)‖ + |(Y ki (x0) − Y ki−1(x0))(3,Tk

i )|+
‖Y ki−1(x0) − Y 1

0 (x0)‖ + ‖XE
n(x0) −XE

n(a
k
i )‖ < ε0 + ε0 + 3ε0 = 5ε0 .

If we write T as the tangent plane to ∂E at the pointPE(XE
n(aki )), then we know that distR3(p, ∂E) ≥ distR3(p, T )

for any p in the halfspace determined by T that does not contain ∂E. If ε 0 is small enough, (D4ki ), (4.14), and
(4.21) guarantee that Y E

n (x0) belongs to the above halfspace, and moreover we have

(4.22) distR3(Y E
n (x0), ∂E) ≥ distR3(Y E

n (x0), T ) = (Y E
n (x0) − PE(XE

n(a
k
i )))(3,Tk

i ) >

(XE
n(a

k
i ) − PE(XE

n(a
k
i )))(3,Tk

i ) − 5ε0 > 2µ− 5ε0 > µ .

From the definition of µ we conclude Y E
n (x0) ∈ R3 − E′.

Case ii) Assume x0 ∈ Ĉki ∩Qki−1(ξ). Reasoning as in the above case and using Property (D3ki−1), we obtain

|(Y E
n (x0) −XE

n(a
k
i−1))(3,Tk

i−1)| ≤ |(Y E
n (x0) −XE

n(a
k
i ))(3,Tk

i−1)| + ‖XE
n(a

k
i ) −XE

n(a
k
i−1)‖ < 25ε0 .

Now, following the arguments of (4.22), we conclude Y (x 0) ∈ R3 − E′.

Case iii) Assume x0 ∈ Ĉki − ∪(j,l)∈IQlj(ξ). Taking into account (F2lj), for (j, l) ∈ I, and (4.18), one has

‖Y E
n (x0) −XE

n(a
k
i )‖ ≤ ‖Y E

n (x0) − Y 1
0 (x0)‖ + ‖XE

n(x0) −XE
n(a

k
i )‖ < 4ε0 ,

and then we can finish as in the preceding cases.

Case iv) Finally, suppose that x0 ∈ Qki − ∪(j,l)∈IĈlj . For the sake of simplicity, we will write f i−1,k and

gi−1,k instead of f(Y k
i−1,T

k
i ) and g(Y k

i−1,T
k
i ), respectively, and a + i b instead of awi,k1 + bwi,k2 . Hence, for x1 ∈

γ ∩ ∂D(x0, ξ/2), taking into account (F2lj), for (j, l) > (i, k), and the definition of Y k
i one has

‖Y E
n (x0) − Y E

n (x1)‖ > ‖Y ki (x0) − Y ki (x1)‖ − 2ε0 ≥ ‖(Y ki (x0) − Y ki (x1))(∗,Tk
i )‖ − 2ε0 =

1
2

∣∣∣∣∣
∫

[x1,x0]

f i−1,kli,k ω −
∫

[x1,x0]

f i−1,k(gi−1,k)2

li,k
ω

∣∣∣∣∣− 2ε0 ≥ 1
2

∣∣∣∣∣τki
∫

[x1,x0]

f i−1,k ω

∣∣∣∣∣−
1
2

∣∣∣∣∣ 1
τki

∫
[x1,x0]

f i−1,k(gi−1,k)2 ω

∣∣∣∣∣− 1
2

∣∣∣∣∣
∫

[x1,x0]

f i−1,k(li,k − τki )ω

∣∣∣∣∣−
1
2

∣∣∣∣∣
∫

[x1,x0]

f i−1,k(gi−1,k)2
(

1
li,k

− 1
τki

)
ω

∣∣∣∣∣− 2ε0 ≥

using the definition of li,k and (E5), we obtain

≥ τki
2

∣∣∣∣∣
∫

[x1,x0]

f i−1,k ω

∣∣∣∣∣− ξ

4

(
1
τki

maxQk
i (ξ){|f i−1,k(gi−1,k)2|} + νki maxQk

i (ξ){|f i−1,k|}+

νki
τki (τki − νki )

maxQk
i (ξ){|f i−1,k(gi−1,k)2|}

)
− 2ε0 ≥ 1

2

(
τki

∣∣∣∣∣
∫

[x1,x0]

f i−1,k ω

∣∣∣∣∣− 1

)
− 2ε0 ,



DENSITY THEOREMS FOR COMPLETE MINIMAL SURFACES IN R
3 17

where we have used (F4ki ) in the last inequality. On the other hand, we make use of (E5), (E6), and (F3 lj),
(j, l) < (i, k), to deduce∣∣∣∣∣

∫
[x1,x0]

f i−1,k ω

∣∣∣∣∣ ≥
∣∣∣∣∣f(Y 1

0 ,T
k
i )(x0)

∫
[x1,x0]

ω

∣∣∣∣∣−
∣∣∣∣∣
∫

[x1,x0]

(f(Y 1
0 ,T

k
i )(x0) − f(Y 1

0 ,T
k
i ))ω

∣∣∣∣∣
−
∣∣∣∣∣
∫

[x1,x0]

(f(Y 1
0 ,T

k
i ) − f i−1,k)ω

∣∣∣∣∣ ≥ ξ
2 (|f(Y 1

0 ,T
k
i )(x0)| − 2ε1) ≥ ξ

4 minQk
i
{|f(Y 1

0 ,T
k
i )|} .

Therefore, by using (F5ki ) for ε0 small enough we have

‖Y E
n (x0) − Y E

n (x1)‖ >
1
2

(
τki

ξ
4 minQk

i
{|f(Y 1

0 ,T
k
i )|} − 1

)
− 2ε0 > diamR3(E′) + 1 − 2ε0 > diamR3(E′) .

From the above inequality we conclude that γ satisfies the claim in this last case. It is clear that x 0 has to lie in one
of the above cases, hence, we have proved the claim. �

Moreover, if ε0 is small enough, (4.20) and the convex hull property for minimal surfaces guarantee that
Y (M(J ′)) ⊂ E′. Claim 4.9 implies that we can find a multicycle J satisfying (L2.a) and (L2.c).

Item (L2.d): Given p ∈ M(J ) −M(J ′) there are five possible situations for the point p (recall that Qk
i (ξ) ∩

D(plj , δ) = ∅, (j, l) /∈ {(i, k), (i+ 1, k)}).

Case I) Suppose p �∈ (∪(i,k)∈ID(pki , δ)) ∪ (∪(i,k)∈IQki (ξ)). In this case we can use Properties (D1ki ), (F2ki ),
(i, k) ∈ I to conclude that:

‖Y E
n (p) −X(p)‖ ≤ ‖Y E

n (p) − Y 1
0 (p)‖ + ‖XE

n(p) −X(p)‖ < ε0 + ε0 = 2ε0 < 2b2 .

As usual, we have assumed that ε0 is small enough.
The above fact jointly with Hypothesis (4.1) of Lemma 2 give us that Y (p) �∈ E−2b2 .

Case II) Suppose p ∈ D(pki , δ) − ∪(j,l)∈IQlj(ξ), for an (i, k) ∈ I . In this case, one has〈
Y E
n (p) −X(pki ), e

i,k
1

〉
=
〈
Y E
n (p) − Y 1

0 (p), ei,k1

〉
+
〈
XE
n(p) −Xk

i (p), ei,k1

〉
+〈

Xk
i (p) −Xk

i (qki ), e
i,k
1

〉
+
〈
Xk
i (qki ) −X(qki ), e

i,k
1

〉
+
〈
X(qki ) −X(pki ), e

i,k
1

〉
>

using (D1lj), ∀ (j, l) �= (i, k), (F2lj), ∀ (j, l) ∈ I , and (4.3),

>
〈
Xk
i (p) −Xk

i (qki ), e
i,k
1

〉
− 4ε0 >

1
2
|f(X,Sk

i )(p
k
i )|
(

Re
∫ qk

i

p

κki ζi,k ω

)
− 9ε0 ≥ −10ε0 > −b2 ,

where we have used (B8ki ) and (B9ki ). Recall that ei,k1 = NE(X(pki )). Therefore, again as a consequence of
Hypothesis (4.1), we infer Y E

n (p) �∈ E−b2 . In particular Y E
n (p) �∈ E−2b2 .

Case III) Assume p ∈ D(pki , δ) ∩Qki (ξ), for some (i, k) ∈ I. This case is slightly more complicated.
As a previous step we need to get an upper bound for ‖w i,k

3 − ei,k1 ‖. Remember that when we checked (D4ki ),
we obtained ‖X E

n(a
k
i ) − (3µei,k1 +X(pki ))‖ ≤ 11ε0. Therefore,

(4.23) ‖wi,k3 − ei,k1 ‖ = ‖NE(XE
n(aki )) −NE(X(pki ))‖ =

‖NE(XE
n(a

k
i )) −NE(3µei,k1 +X(pki ))‖ ≤M‖XE

n(a
k
i ) − (3µei,k1 +X(pki ))‖ ≤ 11Mε0 ,

where M represents the maximum of ‖dNE‖ in R3 − E. Note that M does not depend on ε0. On the other hand,
using (F1ki ) and (4.23), we find

(4.24)
∣∣∣〈Y ki (p) − Y ki−1(p), e

i,k
1

〉∣∣∣ = ∣∣∣〈Y ki (p) − Y ki−1(p), e
i,k
1 − wi,k3

〉∣∣∣ ≤ 11Mε0(‖Y ki (p)‖ + ‖Y ki−1(p)‖) .
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Now, making use of (F2lj), (j, l) �= (i, k), (4.24) and (D1lj), (j, l) > (i, k), one obtains

(4.25)
〈
Y E
n (p) −X(pki ), e

i,k
1

〉
≥
〈
Y ki (p) −X(pki ), e

i,k
1

〉
− ε0 ≥

〈
Y ki−1(p) −X(pki ), e

i,k
1

〉
−

11Mε0(‖Y ki (p)‖ + ‖Y ki−1(p)‖) − ε0 ≥
〈
Xk
i (p) −X(pki ), e

i,k
1

〉
− 11Mε0(‖Y ki (p)‖ + ‖Y ki−1(p)‖) − 3ε0 .

At this point, we can argue as in the previous case to conclude

(4.26)
〈
Y E
n (p) −X(pki ), e

i,k
1

〉
> −b2 − 11Mε0(‖Y ki (p)‖ + ‖Y ki−1(p)‖) − 3ε0 .

Observe that Item (L2.c), the convex hull property and (F2 lj), (j, l) > (i, k), guarantee that Y k
i (p) ∈ E′

ε0 . Further-
more, notice that

(4.27) ‖Y k
i−1(p) −X(qki )‖ ≤ ‖Y ki−1(p) −Xk

i (p)‖ + ‖(Xk
i (p) −X(qki ))(∗,Sk

i )‖+
|(Xk

i (p) −X(qki ))(3,Sk
i )| < 2ε0 + ε0 + 5ε0 + 3µ+ ε0 + 2ε0 = 3µ+ 11ε0 ,

where we have used (F2lj), (j, l) < (i, k), and (D1lj), (j, l) > (i, k), to get a bound of the first addend; (B8ki ),
(B9ki ) and (D1lj), (j, l) ≤ (i, k), to get a bound of the second addend; and (D2 ki ), (D1lj), (j, l) < (i, k), and (4.3)
to get a bound of the third one. Then ‖Y k

i (p)‖ and ‖Y ki−1(p)‖ are bounded in terms of ε0. So, we infer from (4.26)
that Y (p) �∈ E−2b2 , if ε0 is small enough.

Case IV) Suppose p ∈ D(pki+1, δ) ∩ Qki (ξ). Reasoning as in the preceding case, now we can deduce from (4.4)

‖ei+1,k
1 − wi,k3 ‖ ≤ ‖ei+1,k

1 − ei,k1 ‖ + ‖ei,k1 − wi,k3 ‖ < ε0
3µ + 11Mε0 and obtain∣∣∣〈Y ki (p) − Y ki−1(p), e

i+1,k
1

〉∣∣∣ = ∣∣∣〈Y ki (p) − Y ki−1(p), e
i+1,k
1 − wi,k3

〉∣∣∣ ≤ (11Mε0 + ε0
3µ)(‖Y ki (p)‖+ ‖Y ki−1(p)‖) .

Using these inequalities as in the former case, we deduce Y (p) �∈ E−2b2 .

Case V) Finally, assume p ∈ Qk
i (ξ) − ∪(j,l)∈ID(plj , δ). Reasoning as in inequality (4.25), we have〈

Y E
n (p) −X(pki ), e

i,k
1

〉
>
〈
X(p) −X(pki ), e

i,k
1

〉
− 11Mε0(‖Y ki (p)‖ + ‖Y ki−1(p)‖) − 3ε0 ,

and using now (4.3), we obtain for a sufficiently small ε 0,〈
Y E
n (p) −X(pki ), e

i,k
1

〉
> −11Mε0(‖Y ki (p)‖ + ‖Y ki−1(p)‖) − 4ε0 ≥ −2b2 .

This concludes the proof of Item (L2.d) and completes the proof of Lemma 2.

Remark 5. If E is strictly convex, then the above proof also gives that

‖Y (p) −X(p)‖ <M(b2, E,E′) :=

√
2 (δH(E,E′) + 2 b2)

κ1(∂E)
+ δH(E,E′)2 , ∀p ∈M(J ) −M(J ′) ,

where δH means the Hausdorff distance.

5. COMPLETENESS LEMMAS

This is the moment of employing the Runge type result proved in Section 3 as well as López-Ros deformation
in order to perturb a given minimal surface with finite topology about its boundary. In this way, we are able of
increasing the intrinsic diameter of the surface, but preserving the extrinsic one. The proofs of the lemmas bellow
are inspired in a new technique introduced by Nadirashvili and the last author in [14].

In order to state the next lemma, we shall denote M = M ′ − ∪E
i=1Di, where Di, i = 1, . . . , E, are conformal

disks in the compact surface M ′. As in the previous section, ω will represent a holomorphic 1-form without zeros
in M and ds2 = ‖ω‖2. For any i ∈ {1, . . . , E}, let Σi be an analytic cycle around Di and βi : Σi → Γi ⊂ R3 an
analytic Jordan curve. Given T (Σi) a tubular neighborhood of Σ i in (M,ds2), we denote by Pi : T (Σi) → Σi the
natural projection. In this setting we have:

Lemma 3. Consider J = {γ1, . . . , γE} a multicycle on M , X : M(J ) → R3 a conformal minimal immersion,
p0 a point in M(J ), and r > 0, such that:
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(1) X(p0) = 0
(2) γi ⊂ T (Σi), for i = 1, . . . , E;
(3) ‖X(p)− βi(Pi(p))‖ < r, for all p ∈ γi and for all i = 1, . . . , E .

Then, for any s > 0, and any ε > 0 so that p0 ∈ M(J ε), there exist J̃ = {γ̃1, . . . , γ̃E} a multicycle and a

conformal minimal immersion X̃ : M(J̃ ) → R3, with X̃(p0) = 0, and satisfying:

(L3.a) γ̃i ⊂ T (Σi), for i = 1, . . . , E;
(L3.b) J ε < J̃ < J ;
(L3.c) s < dist

(M(J̃ ),X̃)
(p, J̃ ), ∀p ∈ J ε;

(L3.d) ‖X̃(p) − βi(Pi(p))‖ < R =
√

4s2 + r2 + ε, ∀p ∈ γ̃i, ∀i = 1, . . . , E.

Lemma 4. Let J = {γ1, . . . , γE} be a multicycle, X : M(J ) → R3 a conformal minimal immersion, and p0 a
point in M(J ) such thatX(p0) = 0.

Then, for any λ > 0 and for any µ > 0 so that p0 ∈M(J µ), there exists a multicycle Ĵ = {γ̂1, . . . , γ̂E} and a

conformal minimal immersion X̂ : M(Ĵ ) → R3, with X̂(p0) = 0, and satisfying:

(L4.a) J µ < Ĵ < J ;
(L4.b) dist

(M(Ĵ ),X̂)
(p, Ĵ ) > λ, ∀p ∈ J µ;

(L4.c) ‖X − X̂‖ < µ, in M(Ĵ ).

5.1. Proof of Lemma 3. As analytic Jordan curves are dense in the set of piecewise regular Jordan curves, we
can assume (without lost of generality) that the multicycle J is analytic. Let ζ 0 ∈]0, ε[ be small enough so that
γζ0i ⊂ T (Σi), for i = 1, . . . , E. ConsiderN ∈ N such that 2/N < ζ0, and:

(5.1)

{
‖X(p) − βi(Pi(p))‖ < r, for all p in the connected component of

M(J ) −M(J 2/N ) around Di, ∀i = 1, . . . , E.

Remark 6. Throughout the proof of the lemma a set of real positive constants depending onX , J , r, ε, and s will
appear. The symbol ‘const ’ will denote these different constants. It is important to note that the choice of these
constants does not depend on N .

For the sake of simplicity, we will consider again an order relation in the set I ≡ {1, . . . , 2N} × {1, . . . , E}.
We say (j, l) > (i, k) if one of the two following situations occurs: l = k and j > i or l > k.

For each k = 1, . . . , E, let {v1,k, . . . , v2N,k} be a set of points in the curve γk that divide γk into 2N equal
parts (i.e., curves with the same length). Following the normal projection, we can transfer the above partition to
the curve γ2/N

k : {v′1,k, . . . , v′2N,k}. We define the following sets:

• Li,k = [vi,k , v′i,k], ∀ (i, k) ∈ I.Recall that [vi,k , v′i,k] represents the minimizing geodesic in (M(J ), ds2)
joining vi,k and v′i,k;

• Gj,k = γ
j/N3

k , ∀ j = 0, . . . , 2N2 (recall that γj/N
3

k means the parallel curve to γk, inM(J ), such that the
distance between them is j/N 3);

• Ak =
⋃N2−1
j=0 IntG2j+1,k − IntG2j,k and Ãk =

⋃N2

j=1 IntG2j,k − IntG2j−1,k;

• Rk =
⋃2N2

j=0 Gj,k;
• Bk =

⋃N
j=1 L2j,k and B̃k =

⋃N−1
j=0 L2j+1,k;

• Lk = Bk ∩Ak , L̃k = B̃k ∩ Ãk, and Hk = Rk ∪ Lk ∪ L̃k;
• ΩN,k = {p ∈ Int (G2N2,k) − Int (G0,k) | dist(M,ds)(p,Hk) ≥ 1

4N3 };
• ΩN =

⋃E

k=1 ΩN,k;
• ωki is the union of the curveLi,k and those connected components of ΩN,k that have nonempty intersection

with Li,k for (i, k) ∈ I;
• �k

i = {p ∈ M | dist(M,ds)(p, ωki ) < δ(N)}, where δ(N) > 0 is chosen in such a way that the sets �k
i ,

(i, k) ∈ I, are pairwise disjoint.

Claim 5.1. If N is large enough, for any (i, k) ∈ I, one has

(1) diam(M,ds)(�k
i ) <

const
N ;
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FIGURE 5. The labyrinth around the boundary of M(J ).

(2) If λ2 · ds2 is a conformal metric on M(J ) that satisfies

λ ≥
{
c in M(J )
c N4 in ΩN ,

for c > 0, and if α is a curve in M(J ) connecting γ ζ0k and γk, for some k ∈ {1, . . . , e}, then we have
length(M,λ·ds)(α) ≥ const c N .

Proof. The proof of item (1) in the above claim is straightforward. In order to prove item (2), we denote α j as

the piece of α connecting γ j/Nk and γ(j+1)/N
k , for j = 0, . . . , N 2 − 1. Then either the length of αj (in (M,ds2))

is greater than const
N or the length of αj ∩ ΩN,k is greater than 1

2N3 . To see the former assertion, the reader only
have to consider that this fact is true for curves in C and take into account that the developing map of ω is a local
isometry (see Remark 1.) These facts and our assumption about λ give us item (2). �

At this point, for a sufficiently large N , we construct a sequence of conformal minimal immersions (with
boundary) defined on M(J ), {F k

i | (i, k) ∈ I}, by using López-Ros transformations with parameters given by
Lemma 1. We consider F 1

0 = X and denote F k0 = F k−1
2N , ∀k = 2, . . . , E.

Claim 5.2. These immersions will be constructed to satisfy

(b1ki ) F
k
i (p) = Re

(∫ p
p0

Φi,k
)

, where Φi,k = φi,k ω;

(b2ki ) ‖φi,k(p) − φi−1,k(p)‖ ≤ 1/N2, for all p ∈M(J ) −�k
i ;

(b3ki ) ‖φi,k(p)‖ ≥ N7/2, for all p ∈ ωki ;
(b4ki ) ‖φi,k(p)‖ ≥ const√

N
, for all p ∈ �k

i ;

(b5ki ) distS2(Gki (p), G
k
i−1(p)) <

1
N2 , for all p ∈ M(J ) − �k

i , where distS2 is the intrinsic distance in S
2 and

Gki represents the Gauss map of the immersion F k
i ;

(b6ki ) There exists an orthonormal basis of R3, Ski = {e1, e2, e3} such that

(b6.1ki ) For any p ∈ �k
i with ‖X(p) − βk(Pk(p))‖ ≥ 1/

√
N , we have ‖(X(p) − βk(Pk(p)))(∗,Sk

i )‖ <
const√
N

;

(b6.2ki ) (F ki (p))(3,Sk
i ) = (F ki−1(p))(3,Sk

i ), for all p ∈M(J );
(b7ki ) ‖F ki (p) − F ki−1(p)‖ ≤ const

N2 , ∀ p ∈M(J ) −�k
i .

Proof. The sequence {F k
i | (i, k) ∈ I} is constructed in a recursive way. The order we will follow in this recursive

construction is similar to the procedure explained in page 11 for the family Ψ i,k. When i − 1 = 0 we adopt the
convention that F k

0 := F k−1
2N , if k > 1, and F 1

0 := X . The same occurs for the Weiertrass representations.
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Suppose that we have {F l
j | (j, l) < (i, k)} satisfying Items (b1lj), . . . , (b7lj). First we need to check the

following assertions.

Claim 5.3. For a large enoughN , the following statements hold:

(c1) ‖φi−1,k‖ ≤ const in M(J ) − ∪(j,l)<(i,k)�
k
i ;

(c2) ‖φi−1,k‖ ≥ const in M(J ) − ∪(j,l)<(i,k)�
k
i ;

(c3) The diameter in R3 of F ki−1(�
k
i ) is less than 1√

N
;

(c4) The diameter in S2 of Gki−1(�
k
i ) is less than 1√

N
. In particular Gki−1(�

k
i ) ⊂ Cone

(
g, 1√

N

)
, for some

g ∈ Gki−1(�
k
i ), where Cone(x, θ) := {y ∈ R3 | ∠(x, y) < θ};

(c5) There exists an orthogonal frame S ki = {e1, e2, e3} in R3, satisfying
(c5.1) ∠(e3, X(p) − βk(Pk(p))) ≤ const√

N
, for all p ∈ �k

i with ‖X(p)− βk(Pk(p))‖ ≥ 1/
√
N ;

(c5.2) ∠(±e3, Gki−1(p)) ≥ const√
N
, for all p ∈ �k

i .

To deduce (c1), we write ‖φi−1,k‖ ≤
∑

(j,l)<(i,k) ‖φj,l− φj−1,l‖+ ‖φ0,1‖ ≤ 2E/N + ‖φ0,1‖ ≤ const , where

we have used (b2lj), (j, l) < (i, k). Using the same property and taking N large enough, we have ‖φ i−1,k‖ ≥
‖φ0,1‖ −

∑
(j,l)<(i,k) ‖φj,l − φj−1,l‖ ≥ ‖φ0,1‖ − 2E/N ≥ const , so we have obtained Property (c2). To check

(c3), consider p, p′ ∈ �k
i , then

‖F ki−1(p) − F ki−1(p
′)‖ =

∥∥∥∫ p′

p

φi−1,k ω
∥∥∥ ≤ ∫ p′

p

‖φi−1,k‖ ‖ω‖ ≤ const · diam(M,ds)(�k
i ) <

const
N

<
1√
N

,

where we have used (c1), Claim 5.1.1 and we have takenN large enough. Now, observe that using Claim 5.1.1 we
obtain diamS2(G1

0(�
k
i )) < sup{‖(dG1

0)p‖ | p ∈ �k
i } diam(M,ds)(�k

i ) <
const
N , therefore, (b5lj), (j, l) < (i, k),

guarantee (c4). Finally, in order to prove (c5), consider C = Cone
(
g, 2√

N

)
, where g is given by Property (c4),

and

N =
{

X(p) − βk(Pk(p))
‖X(p) − βk(Pk(p))‖

∣∣∣∣ p ∈ �k
i and ‖X(p)− βk(Pk(p))‖ ≥ 1/

√
N

}
.

To obtain (c5.2) it suffices to take e3 in S2 − H , where H = (−C) ∪ C. On the other hand, in order to satisfy
(c5.1), the vector e3 must be chosen as follows:

• If (S2 −H) ∩N �= ∅, then we take e3 in that set;
• If (S2 −H) ∩N = ∅, then we take e3 ∈ S2 −H satisfying ∠(e3, q′) < 2√

N
for some q′ ∈ N .

It is straightforward to check that this choice of e3 guarantees (c5). �

At this point we are able to construct the element F k
i . Let (gi−1,k,Φi−1,k

3 ) be the Weierstrass data of F ki−1 in the

frame Ski . Applying Lemma 1, we can construct a family of holomorphic functions h α : M(J ) → C∗ satisfying

• |hα − α| < 1/α, in ωki ;
• |hα − 1| < 1/α, in M(J ) −�k

i ;
• The minimal immersion F k

i (p) = Re
∫ p
p0

Φi,k is well-defined in M(J ),

where α > 0. Using hα as a López-Ros parameter, we define the Weierstrass data of F k
i in the coordinate system

Ski as gi,k = gi−1,k/hα and Φi,k3 = Φi−1,k
3 . Taking into account the fact that hα → 1 (resp. hα → ∞) uniformly

onM(J )−�k
i (resp. on ωki ), as α→ ∞, it is clear that properties (b1ki ), (b2ki ), (b3ki ), (b5ki ), and (b7ki ) hold for a

large enough value of the parameter α. Moreover, (b6.2 ki ) trivially holds and (b6.1ki ) is a immediate consequence
of (c5.1). In order to prove (b4ki ), observe that from (c5.2) we obtain

sin
(

const√
N

)
1 + cos

(
const√
N

) ≤ |gi−1,k| ≤
sin
(

const√
N

)
1 − cos

(
const√
N

) in �k
i ,

and so, taking (c2) into account one has (if N is large enough)

‖φi,k‖ ≥ |φi,k3 | = |φi−1,k
3 | ≥

√
2‖φi−1,k‖ |gi−1,k|

1 + |gi−1,k|2 ≥ const · sin
(

const√
N

)
≥ const√

N
in �k

i .
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Proposition 1. If N is large enough, then F E
2N satisfies

(d1) 2s < dist(M(J ),F E
2N )(J ,J ζ0);

(d2) ‖F E
2N (p) −X(p)‖ ≤ const

N , ∀ p ∈M(J ) − ∪(i,k)∈I�k
i ;

(d3) There exists a multicycle J̃ = {γ̃1, . . . , γ̃E} satisfying
(d3.1) J ζ0 < J̃ < J ;
(d3.2) s < dist(M(J ),F E

2N )(p,M(J ζ0)) < 2s, ∀ p ∈ J̃ ;

(d3.3) The curve γ̃i ⊂ T (Σi), for i = 1, . . . , E;
(d3.4) ‖F E

2N (p) − βk(Pk(p))‖ < R, ∀ p ∈ γ̃k, ∀k = 1, . . . , E.

Proof. Properties (c2), (b2ki ), (b3ki ) and (b4ki ), (i, k) ∈ I, guarantee

‖φ2N,E‖ ≥
{

const√
N

in M(J )
const√
N
N4 in ΩN .

Moreover, we know ds2
F E

2N
= 1

2‖φ2N,E‖2 ds2. Therefore, if N is large enough, from Claim 5.1.2 we have

dist(M(J ),F E
2N )(J ,J

ζ0) ≥ const
const√
N

N = const
√
N > 2s ,

which proves item (d1). Property (d2) is deduced from (b7 ki ), (i, k) ∈ I.

In order to construct the multicycle J̃ of the statement (d3), we consider the set

D = {p ∈M(J ) −M(J ζ0) | s < dist(M(J ),F E
2N )(p,M(J ζ0)) < 2s} .

From (d1), D �= ∅ and J and J ε are contained in different connected components of M − D. Therefore, we can
choose a multicycle J̃ on D satisfying (d3.1), (d3.2) and (d3.3).

The proof of (d3.4) is more complicated. Consider k ∈ {1, . . . , E}, q ∈ γ̃ k and assume that F E
2N (q) �=

βk(Pk(q)), otherwise we have nothing to prove. At this point, we have to distinguish two cases:

Case 1. Suppose q /∈ ∪(i,k)∈I�k
i . Then, item (d2) gives ‖F E

2N (q) −X(q)‖ ≤ const /N. Hence, taking (5.1) into
account and choosingN large enough we obtain ‖F E

2N (q) − βk(Pk(q))‖ ≤ r < R.

Case 2. Suppose there exists (i, k) ∈ I with q ∈ �k
i . In this situation, item (d3.2) guarantees the existence of

a curve ζ : [0, 1] → M(J ) satisfying ζ(0) ∈ J ε, ζ(1) = q and length(ζ, F E
2N ) ≤ 2s. Label t = sup{t ∈

[0, 1] | ζ(t) ∈ ∂�k
i } and q = ζ(t). Notice that the previous supremum exists because� k

i ⊂M(J )−M(J ε) (for
a large enoughN ). Then, taking Properties (b7 lj), (j, l) > (i, k), into account, we obtain

(5.2) ‖F ki (q) − F ki (q)‖ ≤ ‖F ki (q) − F E
2N (q)‖ + ‖F E

2N (q) − F E
2N (q)‖ + ‖F E

2N (q) − F ki (q)‖ ≤

≤ const
N

+ length(ζ, F E
2N ) +

const
N

≤ const
N

+ 2s .

On the other hand, using again (b7 lj), for (j, l) > (i, k), one has

(5.3) ‖F E
2N (q) − βk(Pk(q))‖ ≤ ‖F ki (q) − βk(Pk(q))‖ +

const
N

.

Once more, we have to discuss two different cases:
Case 2.1. Assume ‖X(q) − βk(Pk(q))‖ ≤ 1/

√
N. Hence, using (5.2), (b7lj), for (j, l) ≤ (i, k), and (c3), we get

‖F ki (q) − βk(Pk(q))‖ ≤ ‖F ki (q) − F ki (q)‖ + ‖F ki (q) − F ki−1(q)‖ + ‖F ki−1(q) − F ki−1(q)‖+

‖F ki−1(q) −X(q)‖ + ‖X(q) − βk(Pk(q))‖ ≤ const
N

+ 2s+
const
N2

+
1√
N

+
const
N

+
1√
N

< R ,

whereN has to be large enough. The above inequality and (5.3) gives (d3.3).
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Case 2.2. Assume now that ‖X(q) − βk(Pk(q))‖ > 1/
√
N. Then we can use (b6.2ki ), (b7lj), for (j, l) < (i, k),

and (5.1) to obtain

(5.4) |(F ki (q) − βk(Pk(q)))(3,Sk
i )| = |(F ki−1(q) − βk(Pk(q)))(3,Sk

i )| ≤

|(F ki−1(q) −X(q))(3,Sk
i )| + |(X(q) − βk(Pk(q)))(3,Sk

i )| ≤
const
N

+ r .

On the other hand, using (5.2), (b7 lj), for (j, l) ≤ (i, k), (c3) and (b6.1ki ) one has

(5.5) ‖(F ki (q) − βk(Pk(q)))(∗,Sk
i )‖ ≤ ‖(F ki (q) − F ki (q))(∗,Sk

i )‖ + ‖(F ki (q) − F ki−1(q))(∗,Sk
i )‖+

‖(F ki−1(q) − F ki−1(q))(∗,Sk
i )‖ + ‖(F ki−1(q) −X(q))(∗,Sk

i )‖ + ‖(X(q) − βk(Pk(q)))(∗,Sk
i )‖ ≤

const
N

+ 2s+
const
N2

+
1√
N

+
const
N

+
const√
N

≤ 2s+
const√
N

.

Therefore, making use of (5.4) and (5.5), we infer

‖F ki (q) − βk(Pk(q))‖ <

√(
2s+

const√
N

)2

+
(
r +

const
N

)2

.

Then, using this upper bound and (5.3), we conclude

‖F E
2N (q) − βk(Pk(q))‖ <

√(
2s+

const√
N

)2

+
(
r +

const
N

)2

+
const
N

.

So, for a large enoughN , it is obvious that ‖F E
2N (q) − βk(Pk(q))‖ < R in this last case.

This completes the proof of (d3.4) and concludes the proposition. �

From the above proposition it is straightforward to check that X̃ = F E
2N : M(J̃ ) → R3 proves Lemma 3.

5.2. Proof of Lemma 4. Consider c0, r1 and ρ1 three positive constants to be specified later, and define

rn =

√
r2n−1 +

(
2c0
n

)2

+
c0
n2

and ρn = ρ1 +
n∑
i=2

c0
i
, ∀n ≥ 2 .

The constants r1 and c0 have to be chosen so that

(5.6) lim
n→∞ rn <

µ

2
.

In order to apply Lemma 3, we consider a family of analytic cycles in M ′, Σi, i = 1, . . . , E, such that γi ⊂
T (Σi), for i = 1, . . . , E, where T (Σi) is a tubular neighborhood of the curve Σ i described at the beginning of this
section.

Hereafter, we will construct a sequence χn = {Jn, Xn, εn} consisting of:

• Jn = {γn,1, . . . , γn,E} is a multicycle with γn,i ⊂ T (Σi) for i = 1, . . . , E;
• Xn : M(Jn) → R3 is a conformal minimal immersion;
• {εn} is a decreasing sequence of positive real numbers with εn < c0/n

2.

Claim 5.4. The sequence {χn} can be constructed to satisfy:

(An) J µ < J εn
n−1 < Jn < Jn−1;

(Bn) dist(M(Jn),Xn)(p,Jn) > ρn, for all p ∈ J µ;
(Cn) ‖Xn(p) −X(Pk(p))‖ < rn, ∀p ∈ γn,k, ∀k = 1, . . . , E.

Notice that (An) only holds for n ≥ 2. Once again, the sequence will be obtained following a inductive method.
For the first term, we chooseX1 = X and J1 = J . Finally, we take ρ1 and ε1 satisfying

ρ1 < dist(X1,M(J1))(p,J1), for all p ∈ J µ and ε1 < min{c0, r1} .

Moreover, we take ε1 small enough so that γ ε1i ⊂ T (Σi), i = 1, . . . , E, and

(5.7) ‖X(p)−X(Pk(p))‖ < r1 <
µ

2
,
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for any p in the connected component of M(J ) −M(J ε1) around γk, ∀k = 1, . . . , E.
Assume now that we have constructed χ1, . . . , χn−1. In order to define χn we take a real number εn <

min{εn−1,
c0
n2 }. Then we consider the multicycle Jn and the immersion Xn : M(Jn) → R3 given by Lemma 3,

for the data
X = Xn−1 , J = Jn−1 , r = rn−1 , s =

c0
n

and ε = εn .

So, we get χn satisfying properties (An), (Bn) and (Cn).
From (An), (Bn) and the fact that the sequence {ρn}n∈N diverges, we find n0 ∈ N with dist(M(Jn),Xn)(p,Jn) >

λ, ∀p ∈ J µ, ∀n ≥ n0. Choose X̂ = Xn0 and Ĵ = Jn0 . Properties (L4.a) and (L4.b) trivially hold. Now, taking
(5.7), (Cn0 ) and (5.6) into account, we obtain

‖X(p)− X̂(p)‖ ≤ ‖X(p) −X(Pk(p))‖ + ‖X(Pk(p)) − X̂(p)‖ < µ

2
+ rn0 < µ , ∀p ∈ γ̂k , ∀k = 1, . . . , E .

Hence, ‖X(p)− X̂(p)‖ ≤ µ for any p ∈ Ĵ . Finally, the Maximum Principle guarantees that this inequality occurs
for any p ∈M(Ĵ ), so we have checked (L4.c).

Remark 7. From the arguments of the above proof, it is almost trivial to deduce that:

δH
(
X(M(J )), X̂(M(Ĵ ))

)
< 2µ.

This estimation will be important to prove Theorem 2.

6. JOINING TOGETHER PROPERNESS AND COMPLETENESS

As the title indicates, in this section we put together the information obtained in the previous two sections in
order to state the precise lemma that we will use in the proof of the main theorems.

Lemma 5. Let J be a multicycle inM , p0 ∈M(J ), andX : M(J ) → R3 a conformal minimal immersion with
X(p0) = 0. Consider E and E ′ bounded convex regular domains, with 0 ∈ E ⊂ E ⊂ E ′, and let a and ε be
positive constants satisfying that p0 ∈M(J ε) and

(6.1) X(M(J ) −M(J ε)) ⊂ E − E−a .

Then, for any b > 0 there exist a multicycle J̃ and a conformal minimal immersion Y : M(J̃ ) → R3 such that
Y (p0) = 0 and

(L5.a) J ε < J̃ < J ;
(L5.b) dist

(M(J̃ ),Y )
(p,J ε) > 1/ε, ∀p ∈ J̃ ;

(L5.c) Y (J̃ ) ⊂ E′ − E′
−b;

(L5.d) Y (M(J̃ ) −M(J ε)) ⊂ R3 − E−2b−a;
(L5.e) ‖X − Y ‖ < ε in M(J ε).
Furthermore if E is strictly convex, the immersion Y also satisfies:

(L5.f) ‖X − Y ‖ < m(a, b, ε, E,E ′) := ε+
√

2(δH(E,E′)+a+2b)
κ1(∂E) + (δH(E,E′) + a)2, in M(J̃ ).

Proof. First, we apply Lemma 4 to the immersion X , for λ > 1/ε and a small enough µ > 0 which will be

determined later. Then, we get a new multicycle Ĵ and a immersion X̂ : M(Ĵ ) → R3, such that:

(a) J ε < J µ < Ĵ < J ;
(b) dist

(M(Ĵ ),X̂)
(Ĵ ,J µ) > λ;

(c) ‖X − X̂‖ < µ, in M(Ĵ ).

If µ is sufficiently small, then X̂(Ĵ ) ⊂ E − E−a. Thus, we can find ν > 0 so that J µ < Ĵ ν and:

dist
(M(Ĵ ν),X̂)

(Ĵ ν ,J µ) > λ(6.2)

X̂
(
M(Ĵ ) −M(Ĵ ν)

)
⊂ E − E−a.(6.3)
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At this point, we apply Lemma 2 to the following data:

X = X̂, E = E−a, E′, J0 = Ĵ , J ′ = Ĵ ν , b2 = b,

and arbitrary b1 > 0. Hence, we obtain a new multicycle J̃ , Ĵ ν < J̃ < Ĵ , and a minimal immersion Y :
M(J̃ ) → R3, satisfying:

(A) ‖Y − X̂‖ < b1, in M(Ĵ ν);
(B) Y (J̃ ) ⊂ E′ − E′

−b;

(C) Y (M(J̃ ) −M(Ĵ ν)) ⊂ R
3 − E−2b−a.

Furthermore, if E is strictly convex, then we have the extra information provided by Remark 5:

(D) ‖Y − X̂‖ <M(b, E−a, E′) <
√

2(δH(E,E′)+a+2 b)
κ1(∂E) + (δH(E,E′) + a)2, in M(J̃ ) −M(Ĵ ν).

Item (A) says to us that Y converges to X̂ uniformly on M(Ĵ ν), as b1 → 0. Therefore, if b1 is small enough we
also have dist(M(Ĵ ν),Y )(Ĵ ν ,J µ) > λ (see (6.2)), which implies (L5.b). Item (L5.c) directly follows from (B).
Moreover, (c) and (A) give (L5.e), provided that µ+ b 1 < ε.

Taking (6.1), (c) and (A) into account, we can deduce that Y (M( Ĵ ν) −M(J ε)) ⊂ R3 − E−a, provided that
µ and b1 are sufficiently small. So, the above inclusion and (C) demonstrate (L5.d).

Finally, if E is strictly convex, then (c), (A) and (D) imply (L5.f), provided that µ and b 1 are small enough. �

7. DENSITY THEOREMS FOR COMPLETE MINIMAL SURFACES IN R
3

Now, we are able to prove the theorems stated in the introduction. Although all the theorems of this section
are stated in terms of Riemann surfaces with boundary that are open regions of compact Riemann surfaces, this
does not represent any restrictions over our work. In order to prove Theorem A in the introduction we notice that
any Riemann surface with finite topology and analytic boundary can be seen as the closure of an open region of a
compact Riemann surface (see [1].)

Remark 8. In this section, we will use several times the sequence of positive reals given by:

α1 := 1
2 e1/2, αn := e−1/2n

, for n > 1.

Notice that 0 < αi < 1 and {
∏n
i=1 αi}n∈N converges to 1/2.

Theorem 1. Let D andD′ be two bounded, convex regular domains satisfying 0 ∈ D ⊂ D ′. Let ϕ : M(Γ) → R3

be a conformal minimal immersion, where Γ is a multicycle inM ′. Assume that ϕ(p0) = 0 and ϕ(Γ) ⊂ D−D−d
where p0 is a point in M(Γ) and d is a positive constant.

Then for any µ > 0, there exists a domain Mµ in M ′, with M(Γ) ⊂ Mµ and there exists a complete proper
minimal immersion ϕµ : Mµ → D′ such that:

(a) ‖ϕµ − ϕ‖ < µ in M(Γ);
(b) ϕµ(Mµ −M(Γ)) ⊂ D′ −D−2d−µ.

Proof. First of all, we define a sequence {En} of bounded convex regular domains in the following way. Consider
ν > 0 small enough to satisfy that D ′

−ν̃ exists, D ⊂ D′
−ν̃ , where ν̃ =

∑∞
k=2 ν/k

2. Then, we define

E1 := D and En := D′
−∑∞

k=n ν/k
2 , n ≥ 2.

We also take a decreasing sequence of positive reals {bn} with b1 = d, and:

bn < min
{

distR3(∂En, ∂En+1)
2

,
d

2

}
, for n > 1.

Next, we use Lemma 5 to construct a sequence

χn = (ϕn : M(Γn) → R
3,Γn, εn, ξn),

where ϕn are conformal minimal immersions with ϕn(p0) = 0, Γn are multicycles, and {εn}, {ξn} are sequences
of positive numbers decreasing to zero, and satisfying

∑∞
k=1 εk < µ.

Furthermore, the sequence ϕn : M(Γn) → R3 must satisfy the following properties:

(An) Γξn−1
n−1 < Γεn

n−1 < Γξn
n < Γn < Γn−1;
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(Bn) ‖ϕn(p) − ϕn−1(p)‖ < εn, ∀p ∈M(Γεn
n−1);

(Cn) dsϕn(p) ≥ αn · dsϕn−1(p), ∀p ∈ M(Γξn−1
n−1 ), where {αi}i∈N is given by Remark 8 (recall that dsϕn means

the Riemannian metric induced by ϕn);
(Dn) 1/εn < dist

(M(Γξn
n ),ϕn)

(Γξn−1
n−1 ,Γ

ξn
n );

(En) ϕn(p) ∈ En − (En)−bn , for all p ∈ Γn;
(Fn) ϕn(p) ∈ R3 − (En−1)−bn−1−2bn , for all p ∈M(Γn) −M(Γεn

n−1).
The sequence {χn} is constructed in a recursive way. To define χ1, we take ϕ1 := ϕ and ξ1 > 0 small enough

so that Γ−ξ1 is well-defined, ϕ is defined in M(Γ−ξ1) and

(7.1) ϕ
(
M(Γ−ξ1) −M(Γ)

)
⊂ D −D−d.

By definition Γ1 := Γ−ξ1 . In particular Property (E1) holds. The other properties do not make sense for n = 1.
Suppose that we have χ1, . . . , χn. In order to construct χn+1, we consider the following data:

E = En, E′ = En+1, a = bn, X = ϕn, J = Γn.

Furthermore, Property (En) tells us that X(J ) ⊂ E − E−a. Then it is straightforward that we can find a small
enough positive constant κ, such that Lemma 5 can be applied to the aforementioned data, and for any ε ∈]0,κ[.

Take a sequence {ε̂m}m∈N ↘ 0, with ε̂m < min{κ, bn+1}, ∀m. For each m, we consider J ′
m and Ym :

M(J ′
m) → R3 given by Lemma 5, for the above data and ε = b = ε̂m. If m is large enough, Assertions (L5.a)

and (L5.e) in Lemma 5 tell us that Γξn
n < J ′

m and the sequence {Ym} converges to ϕn uniformly in M(Γξn
n ). In

particular, {dsYm}m∈N converges uniformly to dsϕn in M(Γξn
n ). Therefore there is a m0 ∈ N such that:

Γξn
n < Γε̂m0

n < J ′
m0
,(7.2)

dsYm0
≥ αn+1 · dsϕn in M(Γξn

n ).(7.3)

We define ϕn+1 := Ym0 , Γn+1 := J ′
m0

, and εn+1 := ε̂m0 . From (7.2) and Statement (L5.b), we infer that
1/εn+1 < dist(M(Γn+1),ϕn+1)(Γ

ξn
n ,Γn+1). Finally, take ξn+1 small enough such that (An+1) and (Dn+1) hold.

The remaining properties directly follow from (7.2), (7.3) and Lemma 5. This concludes the construction of the
sequence {χn}n∈N.

Now, we extract some information from the properties of {χn}. First, from (Bn), we deduce that {ϕn} is a
Cauchy sequence, uniformly on compact sets of Mµ =

⋃
nM(Γεn+1

n ) =
⋃
nM(Γξn

n ), and so {ϕn} converges
on Mµ. If one employs the properties (An), then the set Mµ is an expansive union of domains with the same
topological type as M(Γ). Therefore, elementary topological arguments give us that M µ has the same topological
type as M(Γ). Let ϕµ : Mµ → R3 be the limit of {ϕn}. Then ϕµ has the following properties:

• ϕµ is a conformal minimal immersion, (Properties (Cn));
• ϕµ : Mµ −→ D′ is proper. Indeed, consider a compact subset K ⊂ D ′. Let n0 be a natural so that

K ⊂ (En−1)−bn−1−2bn−∑k≥n εk
, ∀n ≥ n0.

From Properties (Fn), we have ϕn(p) ∈ R3 − (En−1)−bn−1−2bn , ∀p ∈ M(Γn) −M(Γεn
n−1). Moreover,

taking into account (Bk), for k ≥ n, we obtain

(7.4) ϕµ(M(Γn) −M(Γεn
n−1)) ⊂ R

3 − (En−1)−bn−1−2bn−∑k≥n εk
.

Then, we have ϕ−1
µ (K) ∩

(
M(Γn) −M(Γεn

n−1)
)

= ∅ for n ≥ n0. This implies that ϕ−1
µ (K) ⊂

M(Γεn0
n0−1), and so it is compact in Mµ.

• Completeness of ϕµ follows from Properties (Dn), (Cn), and the fact that {1/εn}n∈N diverges.
• Statement (a) in the theorem is a direct consequence of Properties (Bn) and the fact

∑∞
n=1 εn < µ.

• In order to prove Statement (b), we consider p ∈ Mµ − M(Γ). If there exists n ∈ N such that p ∈
M(Γn) −M(Γεn

n−1), then (7.4) implies ϕµ(p) ∈ R3 −D−2d−µ. If p ∈ M(Γε21 ) −M(Γ1), then we use
properties (Bk), k ≥ 1, and (7.1) to obtain

ϕµ(p) ∈ R
3 −D−d−∑k≥1 εk

⊂ R
3 −D−2d−µ.
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�
If we follow the proof of the above theorem, but making use of Lemma 4 and Remark 7 instead of Lemma 5,

then we obtain the following theorem:

Theorem 2. Let ϕ : M(Γ) → R3 be a conformal minimal immersion, where Γ is a multicycle inM ′. Then for any
µ > 0, there exists a domainMµ in M ′, with M(Γ) ⊂Mµ and there exists a complete proper minimal immersion
ϕµ : Mµ → R3 such that:

(a) ‖ϕµ − ϕ‖ < µ in M(Γ);

(b) δH
(
ϕ(M(Γ)), ϕµ(Mµ)

)
< 2µ.

Under the assumption of strictly convexity we can sharpen the previous arguments in order to prove the follow-
ing theorem.

Theorem 3. Let C be a strictly convex bounded regular domain of R3. Consider a multicycle Γ in the Riemann
surface M ′ and ϕ : M(Γ) → C a conformal minimal immersion satisfying ϕ(Γ) ⊂ ∂C.

Then, for any ε > 0, there exist a subdomain, Mε, with the same topological type as M(Γ), M(Γε) ⊂ Mε ⊂
Mε ⊂M(Γ), and a complete proper conformal minimal immersion ϕε : Mε → C so that

‖ϕ− ϕε‖ < ε , in Mε .

Proof. Consider t0 > 0 so that, for any t ∈] − t0, 0[, we have:

• Ct is well-defined;
• Γt := ϕ−1(∂Ct ∩ ϕ(M(Γ))) is a multicycle satisfying Γε < Γt.

Fix c1 > 0 small enough so that
∑
k≥1 c

2
1/k

4 < min{t0, ε}. At this point, for any n ≥ 1, consider a positive
constant tn =

∑
k≥n c

2
1/k

4 and a strictly convex bounded regular domain E n = C−tn . We also take a decreasing
sequence of positive reals {bn}n∈N, with bn < c21/n

4, ∀n ∈ N.
Now, we use Lemma 5 to construct, for any n ∈ N, a family χn = {Jn, Xn, εn, ξn} , where

• Jn is a multicycle;
• Xn : M(Jn) → C is a conformal minimal immersion;
• {εn}n∈N and {ξn}n∈N are sequences of positive real numbers converging to zero and satisfying ε n <
c1/n

2.

Notice that the function given in (L5.f) satisfies m(bn, bn+1, εn+1, E
n, En+1) < c1

n2

(
1 + 2

√
c12

n4 + 2
κ1(∂C)

)
,

∀n ∈ N, therefore, we can choose c1 sufficiently small so that

(7.5)
∞∑
n=2

m(bn−1, bn, εn, E
n−1, En) < ε .

We will construct the sequence {χn}n∈N so that the following properties hold:

(An) J ξn−1
n−1 < J εn

n−1 < J ξn
n < Jn < Jn−1;

(Bn) ‖Xn(p) −Xn−1(p)‖ < εn, ∀p ∈M(J εn
n−1);

(Cn) dsXn(p) ≥ αn · dsXn−1(p), ∀p ∈M(J ξn−1
n−1 ), where {αi}i∈N is given by Remark 8;

(Dn) 1/εn < dist
(M(J ξn

n ),Xn)
(J ξn−1

n−1 ,J ξn
n );

(En) Xn(p) ∈ En − (En)−bn , for all p ∈ Jn;
(Fn) Xn(p) ∈ R

3 − (En−1)−bn−1−2bn , for all p ∈M(Jn) −M(J εn
n−1);

(Gn) ‖Xn −Xn−1‖ < m(bn−1, bn, εn, E
n−1, En) in M(Jn).

The construction of the sequence {χn}n∈N, is as in the proof of Theorem 1, except for properties (Gn) that are
consequence of the successive use of (L5.f) in Lemma 5. To define χ 1,we takeX1 = ϕ, J1 = Γt1 and appropriate
ε1 and b1. We choose ξ1 so that Γε < J ξ1

1 . Observe that in this case properties (Gn), n ∈ N, and (7.5) guarantee
that ‖ϕε − ϕ‖ < ε, in Mε. �
Corollary 1. Let D′ be a convex domain (not necessarily bounded or smooth) in R

3. Consider J a multicycle in
M ′ and ϕ : M(J ) −→ R3 a conformal minimal immersion satisfying:

(7.6) ϕ(J ) ⊂ D −D−d.
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where D is a bounded convex regular domain satisfying D ⊂ D ′ and d > 0 is a constant.
Then, for any ε > 0, there exist a subdomain, Mε, with M(J ) ⊂ Mε ⊂ Mε ⊂ M(J −ε), and a complete

proper conformal minimal immersion ϕε : Mε −→ D′ so that

(A) ‖ϕ− ϕε‖ < ε , in M(J ) ;
(B) ϕε(Mε −M(J )) ⊂ R3 −D−2d−ε .

Proof. Without loss of generality we can assume 0 ∈ D and ϕ(p0) = 0, for a certain p0 in M(J ). Define
V n := [(1 − 1/n) ·D′] ∩ B(0, n), where by (1 − 1/n) ·D′ we mean the set {(1 − 1/n) · x | x ∈ D′}. Making
use of Minkowski’s theorem (see page 4) we can guarantee, for each n ∈ N, the existence of a regular bounded

domain V̂ n in R3 such that V n ⊂ V̂ n ⊂ V̂ n ⊂ V n+1. Notice that {V̂ n}n∈N is an expansive sequence of bounded
convex regular domains whose limit is D ′. Then there exists k ∈ N so that D ⊂ V̂ m for any m ≥ k. Taking all
these arguments into account, we define the following sequence of open convex domains:

E1 := D, En := V̂ n+k−2, n ≥ 2.

Following the scheme of the previous proofs, we will construct a sequence Ξn := (Jn, ϕn : M(Jn) → R3, dn, εn),
where:

• Jn is a multicycle in M ′;
• ϕn : M(Jn) → R3 is a conformal minimal immersion;
• {dn}n∈N and {εn}n∈N are two sequences of positive real numbers decreasing to 0. Moreover we want

that
∑∞

k=1 εk < ε, to do this we will choose εn < 6ε
π2n2 , n ∈ N.

The limit of {Ξn}n∈N will provide the minimal immersion we are looking for. To do this we need that Ξ n satisfies
the following properties:

(In) Jn−1 < Jn;
(IIn) ‖ϕn(p) − ϕn−1(p)‖ < εn, for all p in M(Jn−1);

(IIIn) dsϕn ≥ αn · dsϕn−1 in M(Jn−1), where {αi}i∈N is the sequence of Remark 8;
(IVn) dist(M(Jn),ϕn)(p0,Jn) > n− 1;

(Vn) ϕn(Jn) ⊂ En − (En)−dn ;
(VIn) ϕn

(
M(Jn) −M(Jn−1)

)
⊂ R3 − En−1

−2dn−1−εn
.

Once again the sequence {Ξn}n∈N satisfying the above properties is defined following an inductive process.
The elements of Ξ1 are ϕ1 := ϕ, d1 = d, J1 = J and ε1 < 6 ε

π2 .
Assume now we have defined Ξn. To construct the element Ξn+1 we apply Theorem 1 to the minimal immersion

ϕn : M(Jn) → En ⊂ En+1, where En, En+1, εn+1, and dn play the role of D, D ′, µ, and d in the statement
of Theorem 1, respectively. Then we get a domain M εn+1 in M ′, with M(Γn) ⊂ Mεn+1 , and a complete proper
minimal immersion ϕn+1 : Mεn+1 → En+1 satisfying:

‖ϕn+1 − ϕn‖ < εn+1, in M(Jn);(7.7)

ϕn+1(Mεn+1 −M(Jn)) ⊂ R
3 − En−2dn−εn+1

.(7.8)

From (7.7) we have that (IIIn+1) holds provided that εn+1 is taken small enough. As ϕn+1 is complete and
proper, then it is possible to find Jn+1 satisfying (In+1), (IVn+1) and (Vn+1). Properties (IIn+1) and (VIn+1) are
consequence of (7.7) and (7.8), respectively.

At this point we defineMε := ∪∞
n=1M(Jn) and ϕε : Mε → D′ as the uniform limit of the sequence {ϕn}n∈N.

Following similar arguments to those used in the proof of Theorem 1, it is easy to check that ϕ ε is the minimal
immersion that proves the corollary. �

8. THE CONSTRUCTION OF A COMPLETE PROPER MINIMAL SURFACE WITH UNCOUNTABLY MANY ENDS

The most interesting application of the results in the preceding section is the construction of the first examples
of complete properly immersed minimal surfaces in Euclidean space with an uncountable number of ends. It is
important to note that this kind of surfaces cannot be embedded as a consequence of a result by Collin, Kusner,
Meeks and Rosenberg [5]. Given p ∈ C and r > 0, we will write D(p, r) = {z ∈ C | |z − p| < r}. As usual, the
unit disk will be denoted by D, instead of D(0, 1).
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FIGURE 6. The construction of a minimal surface with uncountably many ends consists of mod-
ifying a given minimal surface in R3 by adding more and more ends. In each step of this proce-
dure we add two new ends in a neighborhood of each end of the previous surface.

FIGURE 7. The multicycles Γ1, Γ2, and Γ3.

Theorem 4. There exists a domain Ω ⊂ C and a complete proper minimal immersion ψ : Ω → R3 which has
uncountably many ends.

Proof. The required immersion will be obtain as a limit of a sequence of complete proper minimal immersions
defined on subdomains of the complex plane. Along this section, given α a Jordan curve in C, we denote by I(α)
as the bounded connected component of C − α. In the following, we construct a sequence

χn = {Γn,Mn, Xn, dn, εn, rn} , where

(a) {dn}n, {εn}n and {rn}n are sequences of positive real numbers decreasing to zero such that
∑∞
i=n εi < rn.

(b) Γn = {βn} ∪ {γn(k1, . . . , kj) | ki ∈ {0, 1} , 1 ≤ i ≤ j , 1 ≤ j ≤ n} ⊂ C is a family of curves with
(b. 1) βn ⊂ C − D, n ∈ N, are Jordan curves wich satisfy I(βn−1) ⊂ I(βn).
(b. 2) γn(k1, . . . , kj) are cycles in I(βn) satisfying the following properties

(b. 2. 1) For each 1 ≤ j < n the cycle γn(k1, . . . , kj) is in the homology class of γn−1(k1, . . . , kj)
and I(γn(k1, . . . , kj)) ⊂ I(γn−1(k1, . . . , kj)).

(b. 2. 2) γn(k1, . . . , kn) is a circle centered at c(k1, . . . , kn) and radius rn > 0, where c(k1, . . . , kj) =
c(k1, . . . , kj−1) + (−1)kjε(j)ρ(k1, . . . , kj), with ε(j) = i if j is odd, ε(j) = 1 if j is even
and ρ(k1, . . . , kj) are positive real number sufficiently small so that

(8.1) D(c(k1, . . . , kn), rn) ⊂ D(c(k1, . . . , kn−1), rn−1) − I(γn(k1, . . . , kn−1)) .
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Observe that Γn is a multicycle in C = C ∪ {∞} with Σn
k=02

k cycles. The disk Int(βn) coincides with
C − I(βn) and Int(γn(k1, . . . , kj)) = I(γn(k1, . . . , kj)). Note also that M(Γn−1) ⊂M(Γn).

(c) Mn is a domain in C topologically equivalent to M(Γn) and such that M(Γn) ⊂Mn ⊂M(Γ−εn
n ).

(d) Xn : Mn −→ R3 is a conformal complete proper minimal immersion.

FIGURE 8. The domainsM(Γ1) and M(Γ2).

Let see that the sequence {χn}n∈N can be constructed to satisfy the following conditions

(Z.1n) ‖Xn −Xn−1‖ < εn in M(Γn) , n ≥ 2;
(Z.2n) Xn(Mn −M(Γn)) ⊂ R3 −B(0, n− 2dn − εn), where B(0, r) = {x ∈ R3 | ‖x‖ < r} for r > 0;
(Z.3n) Xn (Γn) ⊂ B(0, n+ εn) −B(0, n− dn − εn) .
(Z.4n) λXn ≥ αn λXn−1 in M(Γn) where SXn = λXn · < ·, · > , and {αn}n∈N is the sequence of Remark 8.

First we present the first term of the sequence. Let X : D → B(0, 1) be the immersion given by the inclusion,
{dn}n and {εn}n∈N two sequences of positive real numbers decreasing to zero such that

∑∞
i=1 εi <

1
32 . Now we

consider β1 the circle of radius 1 − 1
32 and center 0, and γ1(0), γ1(1) the circles of radius r1 = 1

16 and centers
c(0) = 7

8 i and c(1) = − 7
8 i, respectively. Then, we can apply Corollary 1 to the immersionX , the convex domain

D = B(0, 1), the multicycle Γ1 = {β1} ∪ {γ1(0), γ1(1)}, d = d1 = 1
4 and ε = ε1 to obtain a domain M1 with

M(Γ1) ⊂ M1 ⊂ M1 ⊂ M(Γ−ε1
1 ) and a conformal complete proper minimal immersion X 1 : M1 −→ R3 such

that ‖X −X1‖ < ε1 in M(Γ1) and X1(M1 −M(Γ1)) ⊂ R3 − B(0, 1
2 − ε1). From here it is easy to check that

(Z.31) is satisfied.
Assume we have constructed {χ1, . . . , χn} satisfying the corresponding definitions and properties. We will

define now χn+1. From Property (d) and (Z.3n) we can assert that there exist cycles βn+1 and γn+1(k1, . . . , kj)
fulfilling the conditions (b.1) and (b.2.1), respectively, and such that

Xn

(
βn+1 ∪

(
∪nj=1γn+1(k1, . . . , kj)

))
⊂ B(0, n+ 1) −B(0, n+ 1 − dn+1) .

Furthermore, we can find ρ(k1, . . . , kn+1) and rn+1 > 0 appropriate so that (8.1) is satisfied for n + 1 and the
curves γn+1(k1, . . . , kn+1) described in (b.2.2) also fulfill the above equation, it is to say

(8.2) Xn(Γn+1) ⊂ B(0, n+ 1) −B(0, n+ 1 − dn+1) .

Recall that we have a sequence {εi}i such that
∑∞
i=j εi < rj for j ≤ n. If

∑∞
i=n+1 εi < rn+1 we do not modify the

sequence {εi}i. If it is not the case we consider a new sequence {ε ′i}i defined as ε′i = εi for i ≤ n and ε′i = εirn+1

for i ≥ n+ 1. It is clear that
∑∞

i=n+1 ε
′
i < rn+1. Moreover, for j ≤ n we have

∑∞
i=j ε

′
i ≤
∑∞

i=j εi < rj . For the
sake of simplicity, we continue denoting the new sequence as {ε i}i.

Taking into account (8.2) we can apply Corollary 1 to the immersion X n, the multicycle Γn+1, the convex
D = B(0, n + 1), d = dn+1 and ε = εn+1 to obtain a domain Mn+1 with M(Γn+1) ⊂ Mn+1 ⊂ M(Γ−εn+1

n+1 )
and a conformal complete proper minimal immersion Xn+1 : Mn+1 −→ R3 satisfying (Z.1n+1) and (Z.2n+1).
Moreover, from (Z.1n+1) we obtain that if εn+1 is sufficiently small the property (Z.4n+1) is also satisfied. Finally,
(Z.3n+1) follows from (8.2) and (Z.1n+1). Consequently, we have the sequence {χn}.
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Hereafter, we define the required immersion ψ. We denote by Ω =
⋃∞
n=1M(Γn). Clearly Ω is a do-

main, since it is the union of domains with non empty intersection. Furthermore, from (Z.1 n) we deduce that
the sequence {Xn}n∈N converges uniformly on compact sets of Ω and so we can define ψ : Ω → R 3 as
ψ(z) = limi→∞,i≥nXi(z) for z ∈ M(Γn). By making use of Harnack’s theorem we know that ψ is a har-
monic map. Let us see that ψ is immersion. Take z ∈ Ω. Thus, there exists n ∈ N such that z ∈ M(Γn). Then,
according to properties (Z.4m) form ≥ n, we have

λXm ≥ αm λXm−1 ≥ · · · ≥
m∏
i=n

αi λXn−1 ≥ 1
2
λXn−1 > 0 .

By taking limits in the above inequality as m → ∞ we obtain λψ(z) > 0. On the other hand, it is easy to obtain
the properness (and therefore the completeness) of ψ from properties (Z.2 n).

Finally, let us demonstrate that ψ : Ω → R3 possesses uncountably many ends. Let Q denote a sequence
Q = {ki}i∈N, where ki ∈ {0, 1}. Next, we consider any proper arc σQ : [0,∞[ → Ω satisfying

(8.3) σQ([j,∞[) ⊂ D(c(k1, . . . , kj), rj) , ∀ j ∈ N .

We note first that if Q = {ki}i∈N and Q′ = {k′i}i∈N are two sequences as above such that Q �= Q ′ then there
exists j0 = min{j ∈ N | kj �= k′j}. Thus, (8.3) implies that D(c(k1, . . . , kj0), rj0 ) and D(c(k′1, . . . , k

′
j0

), rj0) are
two disks containing σQ([j0,∞[) and σQ′([j0,∞[), respectively. Since

D(c(k1, . . . , kj0), rj0 ) ∩ D(c(k′1, . . . , k
′
j0

), rj0 ) = ∅ ,
we can consider ∂(D(c(k1, . . . , kj0), rj0 )) as a compact set separating σQ([j0,∞[) and σQ′([j0,∞[). Therefore,
σQ and σQ′ are two distinct topological ends. As there exists an uncountable number of sequences Q, we deduce
that there are uncountably many ends. �

Finally, we would like to mention the following:

Remark 9. With the same ideas presented in the proof of the above theorem it is also possible to construct properly
immersed minimal surfaces with uncountably many ends in such a way that all the ends are limit ends.
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