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ABSTRACT

We study the linear perturbations of collisionless near-Keplerian discs. Such systems are

models for debris discs around stars and the stellar discs surrounding supermassive black holes

at the centres of galaxies. Using a finite-element method, we solve the linearized collisionless

Boltzmann equation and Poisson’s equation for a wide range of disc masses and rms orbital

eccentricities to obtain the eigenfrequencies and shapes of normal modes. We find that these

discs can support large-scale ‘slow’ modes, in which the frequency is proportional to the disc

mass. Slow modes are present for arbitrarily small disc mass so long as the self-gravity of the

disc is the dominant source of apsidal precession. We find that slow modes are of two general

types: parent modes and hybrid child modes, the latter arising from resonant interactions

between parent modes and singular van Kampen modes. The most prominent slow modes

have azimuthal wavenumbers m = 1 and m = 2. We illustrate how slow modes in debris discs

are excited during a fly-by of a neighbouring star. Many of the non-axisymmetric features seen

in debris discs (clumps, eccentricity, spiral waves) that are commonly attributed to planets

could instead arise from slow modes; the two hypotheses can be distinguished by long-term

measurements of the pattern speed of the features.

Key words: methods: numerical – planets and satellites: formation – protoplanetary discs –

galaxies: kinematics and dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

Debris discs are planetesimal discs that are detected through thermal

infrared emission or scattered starlight from dust formed in recent

planetesimal collisions. The bolometric luminosity from detectable

debris discs is typically � 10−5 of the stellar luminosity; the inferred

dust masses are typically � 1M⊕ and the ages of the host stars range

from 10 Myr to 10 Gyr (see Wyatt 2008 for a review).

A variety of features in debris discs have been interpreted as

evidence for planets. These include structures in the β Pictoris disc,

including a warp (Heap et al. 2000), a system of tilted rings (Wahhaj

et al. 2003) and a bright clump (Telesco et al. 2005); clumps in the

discs around Vega (Wyatt 2003), ǫ Eridani (Greaves et al. 2005), η

Corvi (Wyatt et al. 2005) and HD 107146 (Corder et al. 2009); the

eccentricity of the discs around HR 4796A and Fomalhaut (Telesco

et al. 2000; Kalas, Graham & Clampin 2005); spiral structure in the

disc around HD 141569 (Clampin et al. 2003); and sharp inner or

outer edges in the discs around Fomalhaut and HD 92945 (Kalas

et al. 2005; Golimowski et al. 2011).

Detailed dynamical models have shown that most or all of these

features can be produced by planets (see Wyatt 2009 for a review).

⋆E-mail: mjalali@sharif.edu (MAJ); tremaine@ias.edu (ST)

Moreover, in the case of β Pictoris (Lagrange et al. 2010), and

perhaps Fomalhaut (Kalas et al. 2008), planets have been detected

that may indeed be responsible for some or all of these features.

Nevertheless, it is important to ask what long-lived structures could

arise in debris discs without planets.

In this paper we examine the possibility that low-mass discs can

support long-lived normal modes maintained by the self-gravity of

the disc. Normally it is assumed that debris discs cannot support

such modes because of their small masses; all localized disturbances

are dispersed by the Keplerian shear. However, a special feature of

Keplerian orbits is that eccentric orbits do not precess. Thus the

evolution of eccentric disturbances in a debris disc is governed

by the non-Keplerian forces, however small these may be. In this

paper we shall focus on the non-Keplerian forces arising from the

self-gravity of the disc. We neglect other possible perturbations for

a variety of reasons. We ignore gravitational forces from planets

because our principal goal is to understand the properties of discs in

the simplest case, when no planets are present. We ignore radiation

pressure, even though this affects the dynamics of the dust that

dominates the thermal infrared emission and the scattered light;

our justification is that the large planetesimals that generate the

dust are unaffected by radiation pressure but we recognize that the

distribution of (invisible) parent bodies and (visible) dust is likely to

be different. We ignore gas drag since old debris discs contain little
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Density waves in near-Keplerian discs 2369

or no gas, and since the planetesimals are likely to be large enough to

be insensitive to drag. We ignore collisions between planetesimals

because they are likely to be rare; indeed such collisions probably

drive the long-term erosion of the disc in which case the collision

time cannot be much less than the disc age.

Debris discs are distinct from protoplanetary discs: the latter

comprised mostly gas, not dust or planetesimals; they are much

younger (typically less than a few Myr) and more massive (0.001–

0.1 M⊙) than debris discs (see Williams & Cieza 2011 for a review).

Protoplanetary discs are depleted by various processes, including

photoevaporation, accretion on to the host star, condensation of re-

fractory elements into dust grains and then planetesimals, and stellar

winds. Eventually they are likely to evolve into planetesimal/debris

discs. Although our analysis here is restricted to collisionless sys-

tems, many of our results – in particular the existence of stable,

slow, modes supported by the self-gravity of the disc – also apply to

protoplanetary gas discs and may explain some non-axisymmetric

features of these discs.

To summarize we treat debris discs as collisionless systems com-

posed of particles influenced only by the gravity of the host star and

the self-gravity of the disc. Their dynamics is therefore similar to

the dynamics of discs of stars orbiting near the supermassive black

holes found in the centres of most galaxies. Examples of these

include the disc(s) of young stars found in the central parsec of

the Milky Way (Genzel, Eisenhauer & Gillessen 2010), the two

discs – one of young stars at ∼0.1 pc and one of old stars at

∼1 pc – found at the centre of M31 (Bender et al. 2005), and the

stellar discs that are inferred to form in the outer parts of quasar

accretion discs (Goodman 2003).

The properties of the normal modes of low-mass near-Keplerian

discs were investigated by Tremaine (2001, hereafter T01), who

found that (i) the frequency of the mode is proportional to the ratio

μ of the masses of the disc and central star, but the shape of the

mode is independent of μ so long as μ ≪ 1 (hence these are called

‘slow’ modes); (ii) all slow modes are stable; (iii) in discs with rms

eccentricity erms ≪ 1 all slow modes have azimuthal wavenumber

m = 1, i.e. they are lopsided.

The results in T01 are based on linear normal-mode calculations

for discs composed of particles in circular orbits, with softened

self-gravity used to mimic the effects of the velocity dispersion or

non-zero eccentricities of the particles. These calculations are sup-

plemented by analytic results using the WKB (short-wavelength)

approximation, which assumes that the wavelengths of the normal

modes are small compared to the radius. The WKB results appear to

provide a useful guide even though this short-wavelength approxi-

mation is not realistic for some of the disc modes. In this paper the

effects of the velocity dispersion are computed directly, and we ex-

amine discs with a range of rms eccentricities erms, from nearly zero

(‘cold’ discs) to ∼0.35 (‘warm’ discs). Our numerical results are

derived using a finite-element method (FEM) for studying the linear

normal modes of collisionless self-gravitating discs, as described

in Jalali (2010). In particular, we intend to address the following

questions: (i) what are the properties of the frequency spectra of

near-Keplerian discs? (ii) are there any unstable modes? (iii) are

there isolated oscillatory modes in the spectrum that survive Lan-

dau damping? (iii) what are the differences between the spectra of

cold and warm discs? (iv) how can stable density waves be excited

in such discs?

We introduce a family of axisymmetric near-Keplerian discs in

Section 2 and construct their equilibrium phase-space distribution

functions (DFs) in Section 3. We obtain the governing equations

of the perturbed dynamics in Section 4 and explain the numerical

solution procedure in Section 5. We present the frequency spectra of

our discs in Section 6 and discuss the characteristics of eigenmodes

in warm and cold discs. We describe how these waves can be excited

by tidal forces in Section 7. The reader who is mainly interested in

the application of our results to debris discs and galactic nuclei can

focus on Figs 7 and 10 and the discussion in Section 8.

2 TH E M O D E L

We introduce a simple model of annular discs around massive ob-

jects by subtracting two Toomre (1963) discs with n = 1 and n =
2; the resulting surface density is

Sd(r) =
3Md

4πb2

{

1

[1 + (r/b)2]3/2
−

1

[1 + (r/b)2]5/2

}

,

=
3Md

4πb2

(r/b)2

[1 + (r/b)2]5/2
, (1)

where Md is the disc mass, b is a length scale and r is the radial dis-

tance to the central star. The potential corresponding to the surface

density Sd is

�d(r) = −
GMd

2b

1 + 2(r/b)2

[1 + (r/b)2]3/2
, (2)

with G being the gravitation constant. For a central star of mass M⋆,

the total potential governing the motion of particles is

�0(r) = −
GM⋆

r
+ �d(r). (3)

We define

μ =
Md

M⋆

, R = r/b, (4)

and work with the dimensionless unperturbed potential

V0(R) ≡
b�0

GM⋆

= −
1

R
−

μ

2

1 + 2R2

(1 + R2)3/2
, (5)

and density

�0(R) ≡
b2Sd

M⋆

=
3μ

4π

R2

(1 + R2)5/2
. (6)

The top panel in Fig. 1 shows the radial profile of �0/μ.

The velocity of circular orbits, vc(R), is determined from

v2
c (R) = R

dV0

dR
=

1

R
+

μ

2

R2(2R2 − 1)

(1 + R2)5/2
. (7)

The second term on the right-hand side of (7) becomes negative for

R2 < 1/2. This means that our discs cannot exist in the absence of

a central point mass. More precisely, v2
c ≥ 0 at all R if and only

if μ ≤ 55/2; this is not a limitation in practice since protoplanetary

discs are expected to have μ ≪ 1.

We restrict ourselves to razor-thin discs since the vertical structure

of thin discs should not strongly affect their large-scale response.

Using the polar coordinates (R, φ) and their corresponding gener-

alized momenta (pR, pφ), the Hamiltonian function governing the

motion of particles reads

H0(pR, pφ, R) ≡ E =
p2

R

2
+

p2
φ

2R2
+ V0(R). (8)

Since φ is a cyclic coordinate, its conjugate momentum pφ is a con-

stant of motion in the unperturbed disc. The orbital energy E is an-

other integral of motion. Canonical perturbation theories describing

the motion of particles, and the perturbed collisionless Boltzmann

equation (CBE), are substantially simplified by using the action

C© 2012 The Authors, MNRAS 421, 2368–2383
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2370 M. A. Jalali and S. Tremaine

Figure 1. Top: surface-density profile of the composite Toomre disc (equa-

tion 6). Bottom: variation of the precession rate 	pr for μ = 0.1. For radial

orbits (eccentricity e = 1) 	pr = 0.

variables J = (JR, Jφ) and their conjugate angles w = (wR, wφ)

with

JR =
1

2π

∮

pR dR, Jφ =
1

2π

∮

pφ dφ = pφ . (9)

These integrals are taken along the orbits, which consist of slowly

precessing Kepler ellipses when μ ≪ 1. The unperturbed Hamil-

tonian H0 depends only on the actions, not the angles. The action

Jφ = L is the magnitude of the angular-momentum vector. In the

angle-action space, the equations of motion become

ẇ = �( J) =
∂H0( J)

∂ J
, J̇ = 0, (10)

and the orbital frequencies �( J) = (	R, 	φ) are computed from

2π

	R( J)
=

∮

dR

pR(R, J)
,

	φ( J)

	R( J)
=

Jφ

2π

∮

dR

R2pR(R, J)
. (11)

In the limit μ → 0, the potential is Keplerian and we have 	R =
	φ = a−3/2 with a being the orbital semi-major axis. For 0 < μ ≪
1 the radial and azimuthal frequencies are no longer equal, but their

difference 	pr = 	φ −	R is small, and that is the precession rate of

the line of apsides. The Taylor expansion of 	pr begins with terms

of O(μ) because 	pr vanishes for Keplerian orbits. Consequently,

for μ ≪ 1, the precession rate is proportional to the disc mass. For

nearly circular orbits, the precession rate is given analytically by

	pr =
3μ

4

R3/2(1 − 4R2)

(1 + R2)7/2
+ O(μ2). (12)

Instead of the actions one may use the semi-major axis a( J) and

eccentricity e( J) defined by

a =
Rmin( J) + Rmax( J)

2
, e =

Rmax( J) − Rmin( J)

Rmin( J) + Rmax( J)
, (13)

where Rmin( J) and Rmax( J) are the minimum and maximum dis-

tances of particles from the central star. These definitions are con-

sistent with the standard Keplerian definitions when the disc mass

vanishes. In the bottom panel of Fig. 1, we have plotted the varia-

tion of 	pr versus a for μ = 0.1 and several choices of e. It is seen

that the precession rate of orbits – of any eccentricity – has a pos-

itive peak within the region where �0 is rising, and then switches

sign and remains negative in the outer regions. The precession rate

crosses through zero near a = 0.5 at all eccentricities. The maxi-

mum precession rate for nearly circular orbits and μ ≪ 1 is given

by equation (12) as ω0 = 0.05861μ, which occurs at R = 0.2859.

In Section 6, we shall show that the pattern speeds of stable waves

are closely related to ω0.

3 PHASE-SPACE DI STRI BU TI ON FUNCTIO N

Particle orbits in collisionless discs are not necessarily circular. We

therefore construct phase-space DFs that enable us to distribute

non-circular orbits in the disc. We seek DFs of the form (Sawamura

1988; Pichon & Lynden-Bell 1996)

f0(E, L) = L2K+2gK (E), E = −E, (14)

where 0 ≤ L ≤ Lc(E), Lc(E) is the angular momentum of a circular

orbit with energy E = −E , and K is a positive integer. To reproduce

the surface density the DF must satisfy the relation

�0(R) = 2

∫ �

0

dE

∫ Lmax

0

f0(E, L) dL
√

L2
max − L2

, � = −V0, (15)

where Lmax = R[2(� − E)]1/2. Substituting (14) into (15) and

performing the integral over L we find

2K+1B

(

K +
3

2
,

1

2

)
∫ �

0

dE gK (E)(� − E)K+1 =
�0(R)

R2K+2
, (16)

where B(p, q) is the beta function. Taking the (K + 2)th-order

derivative of both sides of (16) with respect to � gives an explicit

analytic form of gK ,

gK (�) =
1

√
π2K+1Ŵ(K + 3/2)

dK+2

d�K+2

�0(R)

R2K+2
. (17)

One needs to know explicitly the function R(�) before doing

the derivatives on the right-hand side of (17). Since μ is small in

the discs we are considering, we utilize a perturbation method to

compute R in terms of �. Let us define u = 1/R and rewrite (5) in

the form

� = u + μQ(u), Q(u) =
1

2

u(2 + u2)

(1 + u2)3/2
. (18)

We now assume a formal series expansion for u in terms of μ as

(Bellman 1964)

u(�) = u0(�) + μu1(�) + μ2u2(�) + · · · , (19)

and substitute this into (18). The functions uj(�) are recursively

determined by putting equal to zero the coefficients of μj (j = 0,

1, 2, . . .). The recursion begins with u0 = �. Up to the third-order

terms, we obtain

u1 = −Q(u0),

u2 = −u1Q
′(u0),

u3 = −u2Q
′(u0) −

1

2
u2

1Q
′′(u0), (20)

where Q′(u) = dQ/du. The series for u converges rapidly so keeping

the terms of O(μ2) is quite sufficient for computing R(�) = 1/u(�)

in discs with μ ≤ 0.1.

C© 2012 The Authors, MNRAS 421, 2368–2383
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Density waves in near-Keplerian discs 2371

Figure 2. Contours of log10[f 0(a, e)/μ] for μ = 0.1. The maximum surface

density �0(R) occurs at R = 0.8165. Therefore, the highest phase-space

density appears in the vicinity of log10(a) ≃ 0. Top: K = 5. Bottom: K =
29.

The functions gK (E) admit negative values for K = 0, 1, but they

are positive-definite and therefore physical for plausible values of

μ < 1 when K ≥ 2. We have plotted the contours of log10 (f 0/μ)

using (a, e) as independent variables in Fig. 2 for K = 5 and K =
29. The mean and rms eccentricity of the disc, ē and erms, are given

by

ē =
∫

ef0( J) d2 J
∫

f0( J) d2 J
=

Ŵ( 3
2
)Ŵ( 5

2
+ K)

Ŵ(3 + K)
+ O(μ)

e2
rms =

∫

e2f0( J) d2 J
∫

f0( J) d2 J
=

2

2K + 5
+ O(μ). (21)

Larger values of K correspond to colder discs. For μ ≪ 1 the mean

eccentricity ē = 0.329 for K = 5 and ē = 0.159 for K = 29. When

K ≫ 1 the DF at a given energy or semi-major axis approaches the

Schwarzschild or Rayleigh DF,

f0(e2)de2 ∝ exp(−e2/e2
0)de2, e−2

0 = K + 1/2. (22)

In this limit the mean and rms eccentricity are related to e0 by

ē =
√

πe0/2, erms = e0.

A necessary condition for stability to small-scale axisymmetric

disturbances is that Toomre’s Q > 1; here Q = σR	R/(3.36�0)

where σ R is the radial velocity dispersion. The models in this paper

with μ ≪ 1 have Q > 0.5/μ everywhere and thus are stable in this

sense. The top two panels of Fig. 3 show the rms eccentricity and

σ R as functions of radius; for μ ≪ 1 these are independent of μ. The

bottom panel shows μQ which is also independent of μ for μ ≪ 1.

Note in particular that the rms eccentricity is almost independent of

radius.

Figure 3. The rms eccentricity, radial velocity dispersion and μQ (the

disc/star mass ratio times Toomre’s stability parameter Q) as functions of

radius. When μ ≪ 1 all three plots are independent of μ; the curves are

from numerical models with μ = 0.1.

4 PE RT U R B E D DY NA M I C S

We assume that gas drag, collisions and other non-gravitational ef-

fects are negligible so the disc can be treated as a collisionless fluid.

We impose small-amplitude disturbances to the surface density,

potential and DF:

�(R, φ, t) = �0(R) + ǫ�1(R, φ, t), (23)

V (R, φ, t) = V0(R) + ǫV1(R, φ, t) + ǫVe(R, φ, t), (24)

f (w, J, t) = f0( J) + ǫf1(w, J, t), (25)

where ǫ ≪ 1 and Ve is an external perturbing potential, perhaps

induced by a binary companion, an encounter with a passing star

or the tidal field of the birth cluster. The perturbed surface density

�1 and its corresponding potential V1 are related through Poisson’s

integral:

V1(R, φ, t) = −G
� �1(R′, φ′, t)R′ dR′ dφ′

√

R2 + R′2 − 2RR′ cos(φ − φ′)

+GR
� �1(R′, φ′, t) cos(φ − φ′) dR′ dφ′

R′ , (26)

and we consider self-consistent density perturbations so that

�1 =
∫

f1 d2v. (27)

The second term on the right-hand side of (26) is the indirect poten-

tial perturbation that arises because we are working in a non-inertial

reference frame centred on the star. It is non-zero only for m = 1

perturbations since perturbations with m �= 1 leave the centre of

mass of the disc unchanged. For a particle with actions J , the radial

distance R and exp (imφ) can be expanded as Fourier series in the

angle variables,

R =
+∞
∑

l=−∞

ξl( J)eilwR , eimφ = eimwφ

+∞
∑

l=−∞

ηl( J)eilwR . (28)

C© 2012 The Authors, MNRAS 421, 2368–2383

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
1
/3

/2
3
6
8
/1

0
7
8
3
4
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



2372 M. A. Jalali and S. Tremaine

Any function of R and φ that is 2π-periodic in φ can thus be

expressed in the (w, J) coordinates. For the Hamiltonian function

that governs the motion of particles, we write

H = H0( J) + ǫV1(w, J, t) + ǫVe(w, J, t), (29)

where H0 is defined in equation (8). Therefore, the perturbed equa-

tions of motion become

ẇ =
∂H

∂ J
= �( J) + ǫ

∂

∂ J
(V1 + Ve) , (30)

J̇ = −
∂H

∂w
= −ǫ

∂

∂w
(V1 + Ve) . (31)

It is obvious that the actions vary slowly in the perturbed disc.

Subtracting the evolutionary equations of wφ and wR gives the

apsidal precession rate in the perturbed disc,

ẇφ − ẇR = 	pr( J) + ǫ

(

∂

∂Jφ

−
∂

∂JR

)

(V1 + Ve) . (32)

Since 	pr = O(μ), for low-mass discs (μ ≪ 1) this equation

contains two small parameters, μ and ǫ.

The DF in the perturbed disc obeys the CBE,

df

dt
=

∂f

∂t
+ [f ,H] = 0, (33)

where [ ·, ·] denotes a Poisson bracket. Here we confine ourselves

to the linearized equation:

∂f1

∂t
+ [f1,H0] + [f0, V1] = − [f0, Ve] . (34)

The remainder of this paper is devoted to the study of solutions of

this equation and their application to collisionless near-Keplerian

discs.

5 T H E F I N I T E - E L E M E N T M E T H O D

The dynamics and stability of collisionless discs are usually studied

by one of two numerical methods: (i) N-body simulations (e.g. Sell-

wood 1987); (ii) expansion of the perturbed gravitational potential

in a set of basis functions, followed by the evaluation of a matrix

representing the response of the disc to a given imposed potential

(e.g. Kalnajs 1977). Neither of these methods, however, is ideal

for investigation of the oscillations and response of low-mass near-

Keplerian discs, for several reasons: (i) slow oscillations are stable

(T01) and therefore more difficult to detect than growing modes;

(ii) slow oscillations have low frequencies, and thus N-body simu-

lations must be followed for many dynamical times; (iii) low-mass

discs also support short-wavelength fast (i.e. frequency independent

of μ) oscillations and these cannot be resolved without a large set of

basis functions; (iv) we shall find that some slow oscillations have

nearly singular components. Here, we adopt an FEM and reduce

the linearized CBE to a system of ordinary differential equations

that describes the temporal evolution of the disc, both the eigen-

frequency spectrum of an isolated disc and the response of a disc

to external perturbations. We use a C0 FEM (all functions are con-

tinuous, but not necessarily differentiable at boundaries between

elements) in the configuration space.

In this section, we briefly review the principles of FEM mod-

elling. For a general introduction see Zienkiewicz, Taylor & Zhu

(2005). Detailed descriptions of the application of an FEM to col-

lisionless self-gravitating systems can be found in Jalali (2010) for

perturbed systems and in Jalali & Tremaine (2011) for equilibrium

models.

5.1 Finite ring elements in the configuration space

We split the configuration space into N ring elements. The nth

element is characterized by its nodes at Rn and Rn +1, and by a

linear interpolating vector Gn(R) defined by

Gn =
[

G1,n G2,n

]

, G1,n = 1 − R̄, G2,n = R̄, (35)

where R̄ = (R − Rn)/�Rn and �Rn = Rn +1 − Rn. Since we

are interested only in linear perturbations, disturbances of different

azimuthal wavenumber m are independent. For the wavenumber m,

the potential V1 and the surface density �1 are thus computed from

V1(R, φ, t) = Re

N
∑

n=1

Hn(R)Gn(R) · an(t)eimφ, (36)

�1(R, φ, t) = Re

N
∑

n=1

Hn(R)Gn(R) · bn(t)eimφ . (37)

The function Hn(R) is unity for Rn ≤ R ≤ Rn +1 and zero otherwise.

The column vectors

an =
[

an1 an2

]T
, bn =

[

bn1 bn2

]T

contain the nodal potentials and densities, respectively. According

to the definition of Gn(R), �1 is equal to Re bn1exp (imφ) at R = Rn

and to Re bn2exp (imφ) at R = Rn +1. Similarly, the nodal potentials

at these radii involve an1 and an2. The perturbed surface density and

its corresponding potential are continuous and differentiable inside

elements and the continuity of these functions at the boundaries of

elements (nodes of rings) implies

an2 = an+1,1, bn2 = bn+1,1. (38)

This means that for a given m we have N t = N + 1 independent

nodal potentials/densities.

The angle-action representation of the perturbed potential V1

reads

V1(w, J, t) = Re

+∞
∑

l=−∞

h̃1,l( J, t) ei(lwR+mwφ ), (39)

where

h̃1,l( J, t) =
N

∑

n=1

� l(n, J) · an(t), (40)

� l(n, J) =
1

2π

∮

Hn(R)Gn eim(φ−wφ )e−ilwR dwR. (41)

The external disturbance Ve can also be expressed in terms of angle

and action variables. To compute the perturbed DF f1(w, J, t), we

use Fourier series of angle variables and write

f1(w, J, t) = Re

N
∑

n=1

∞
∑

l=−∞

El(n, J) · zn
l (t) ei(lwR+mwφ ), (42)

where

El(n, J) =
[

El1(n, J) El2(n, J)
]

(43)

is an interpolating vector in the action space (to be specified in

Section 5.3) and

zn
l =

[

zn
l1 zn

l2

]T
(44)

is a column vector of to-be-determined DFs whose elements should

satisfy the continuity condition

zn
l2 = z

(n+1)
l1 . (45)
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Density waves in near-Keplerian discs 2373

Equation (42) calculates the distribution of perturbed orbits based

on their passage through ring elements in the configuration space.

If an orbit stays only inside the nth element, its DF becomes

f̂n(w, J, t) = Re

∞
∑

l=−∞

El(n, J) · zn
l (t) ei(lwR+mwφ ). (46)

In general, eccentric orbits may visit more than one ring element.

The summation over n in (42) takes this behaviour into account.

5.2 Projected evolutionary equations

We use the conditions (38) and assemble the nodal densities bn(t)

and potentials an(t) in the global N t-dimensional vectors d(t) and

p(t), respectively. Similarly, zn
l (t) are collected in zl(t). We now

take the inner product of (34) with

e−i(l′wR+mwφ )[El′ (n
′, J)]T,

and integrate the resulting systems of equations over the angle-

action space to obtain the Galerkin-weighted residual form of (34)

as

U1(l) ·
dzl(t)

dt
= −iU2(l) · zl(t) + iU3(l) · p(t) + iZl(t). (47)

Here U1, U2 and U3 are constant square matrices of dimension

N t × N t, and Zl(t) is an N t-dimensional column vector, which is

the Galerkin projection of −[f 0, Ve].

One can also verify that the Galerkin projections of (26) and (27),

respectively, become

p(t) = C · d(t), d(t) =
∑

l

F(l) · zl(t). (48)

The constant matrices C and F(l) are of dimension N t × N t. We

combine (47) and (48) to express p(t) in terms of zl(t), and trans-

form (47) to a non-homogeneous ordinary differential equation for

zl(t):

dzl(t)

dt
= −iU−1

1 (l) · U2(l) · zl(t) + iU−1
1 (l) · Zl(t)

+
+∞
∑

l′=−∞

iU−1
1 (l) · U3(l) · C · F(l′) · zl′ (t), (49)

for l, l′ = 0, ±1, ±2, . . .. By defining

z(t) =
[

. . . zT
−2 zT

−1 zT
0 zT

+1 zT
+2 . . .

]T
, (50)

and collecting the elements of U
−1
1 (l) · Zl(t) (for all l = 0, ±1,

±2, ···) in the global forcing vector F(t), the system (49) can be

cast into the standard form of linear evolutionary equations:

d

dt
z(t) = −iA · z(t) + iF(t). (51)

In the absence of external disturbances, F(t) = 0, the corre-

sponding homogeneous equation admits a solution of the form

z(t) = exp(−iωt)c that yields the linear eigensystem:

A · c = ωc. (52)

We find the spectrum of ω using Hessenberg transformation of

A followed by QR factorization. The eigenvector conjugate to a

given eigenfrequency ωj is then computed using the singular value

decomposition

A − ωj I = V
T
1 · W · V2, (53)

where W is a diagonal matrix whose elements are the singular

values of A − ωjI, and I is the identity matrix. The column of V2

corresponding to the smallest singular value is the eigenvector z(j )

associated with ωj.

5.3 Interpolating functions in the action space

In our C0 FEM analysis, the local interpolating vector functions

Gn(R) (also known as shape functions) can reconstruct the spatial

profile of any oscillatory wave whose wavelength is sufficiently

large compared to the sizes of elements. However, we must also

interpolate f 1 in the action space, which requires defining the inter-

polating vectors El(n, J) (equation 42). To do this we use arbitrary

dynamic solutions of the linearized CBE, which should be an ade-

quate representation of the DF for the purposes of interpolation. In

the angle-action space, and using equation (39), one can show

eimφ Gn(R) = Ṽ1(n, J,w) =
+∞
∑

l=−∞

� l(n, J) eilwR+imwφ . (54)

We assume ∂f1/∂t = −iγ f1, substitute Ṽ1(n, J, w) into the lin-

earized CBE and solve the resulting equation to obtain the interpo-

lating vector in action space (cf. equation 42)

El(n, J) =
l∂f0/∂JR + m∂f0/∂Jφ

l	R + m	φ − γ
� l(n, J). (55)

The physical eigenfrequency ω will thus be equal to ωc + γ with ωc

being the computed eigenvalue of (52). Varying γ tests the robust-

ness of our numerical methods since the results should be indepen-

dent of γ . Our tests show that in general our results are insensitive to

variations of γ . Nevertheless, the choice γ � max[	pr( J)] offers

better performance, particularly in colder models. We originally

used γ = 0, corresponding to the use of static CBE solutions as

interpolating vectors in action space, but with this choice we found

occasional spurious growing modes.

We remark that we do not generate a finite-element mesh in action

space for two reasons: (i) to reduce the size of the Galerkin-weighted

evolutionary equations; and (ii) to avoid creating spurious growing

modes. The second of these properties has a straightforward math-

ematical explanation: the number of reachable eigenmodes in the

configuration space is equal to the number of independent nodal

variables, which is N + 1 in our FEM analysis. However, the eigen-

value problem (52) has been formulated in the phase space and

the number of computed eigenmodes is equal to (N + 1) × (lmax

− lmin + 1) where lmin < 0 and lmax > 0 are the lower and upper

bounds in the l sums. Since the nodal densities d are related to

zl through equation (48), there will be (N + 1) × (lmax − lmin)

computed eigenmodes more than N + 1 eigenmodes that the di-

mension of d determines. The extra modes should therefore overlap

in groups of (lmax − lmin) members to avoid spurious modes. This

happens in our numerical calculations performed in Section 6 when

the Fourier expansions over wR converge inside all ring elements,

as is expected for the reconstruction of V1 and f 1 in the (wR, wφ)-

subspace. Generating a finite-element mesh, let us say with Na

nodes in the two-dimensional J-space, will result in 2Na × (lmax −
lmin + 1) modes, but assuming the convergence of Fourier series,

only (N + 1) groups of them will correspond to eigenmodes in

the configuration space. Consequently, 2Na − N + 1 computed

modes will be spurious, and our calculations show that such spuri-

ous modes are growing. Working with 2Na = N + 1 will not help

because it does not necessarily guarantee the convergence of FEM

model in the action space.

Only few modes out of N + 1 possible states in the configuration

space (see Section 6) are physical. The rest are either singular, or

do not satisfy the boundary conditions as R → ∞. Note that for

frequencies ω that lie between the maximum and minimum of the

precession frequency 	pr the singular modes may be van Kampen

modes (restricted to the surface in action space on which ω = 	pr)

C© 2012 The Authors, MNRAS 421, 2368–2383
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2374 M. A. Jalali and S. Tremaine

which would be damped by the Landau mechanism. However, not

all modes with frequency in this range are necessarily van Kampen

modes, since the mode may not be produced by the orbits associated

with that resonance. Thus discrete modes may overlap in frequency

space with continuous modes.

6 PRO G R A D E WAV E S

Our finite-element mesh is uniform in log radius,

Rn = 10−α1+α2y(n,N), (56)

y(n,N ) =
1

2(N + 1)
+

n − 1

N + 1
, n = 1, 2, . . . , N. (57)

The numerical computation of the Fourier coefficients � l (n, J)

and then the interpolating vectors E l (n, J) needs a mesh in the

(a, e) space. Such a grid is not arbitrary because there must be at

least one orbit that visits the nth ring element in configuration space.

We fulfil this requirement using the following two-dimensional grid

(ai, ej ) = [Ri, y(j,Me)] ,

where the grid points along the a-direction exactly coincide with the

boundary nodes of the mesh in the configuration space, and there

are j = 1, 2, . . . , Me + 1 grid points in the e-direction. A circular

orbit is indeed assigned to each boundary of a ring element. This

is particularly helpful in cold discs where one must interpolate the

population of circular orbits. The parameters α1 and α2 are chosen

so that the computed disc mass 4π2
∫

f ( J) d J using the grid points

in the (a, e)-space agrees with the actual disc mass within 1 per cent.

In this paper we focus on slow modes with azimuthal wavenum-

ber m = 1. Slow modes exist with larger m, so long as the cal-

culation includes Fourier terms with index l = −m. In particular,

we have found a number of isolated, non-singular m = 2 modes;

these are present only if we use a fine FEM mesh, since they are

more compact and have shorter wavelengths than the m = 1 modes.

The wavelengths of m = 2 modes shrink to zero as the disc be-

comes colder (see Appendix). This behaviour is expected since the

only large-scale slow modes in cold low-mass discs have m = 1.

We found no unstable modes, which is also expected for low-mass

discs (T01).

We began our calculations with N = Me = 70 and l = −1, and

increased the number of Fourier terms and ring elements until the

eigenfrequencies of stable modes found from (52) converged to a

fractional accuracy of 10−4. Typically this required computing all

Fourier terms with −2 ≤ l ≤ 3 and a grid with N = 160 and Me =
140 (N = 180 and Me = 140 for the models with the lowest rms

eccentricity, corresponding to K = 29). We have also experimented

with including terms with larger values of |l| but these had only a

small effect on our results. Taking grid points in the regions with tiny

values of f (a, e) (see Fig. 2) leads to large errors in the properties of

the calculated density waves because the FEM discretization errors

become larger than the absolute magnitudes of physical quantities.

We evade this difficulty by generating the FEM mesh only in the

annular region 0.01 ≤ R ≤ 100 using the parameters (α1, α2) =
(2, 4) in equation (57).

All non-singular eigenmodes with m = 1 were found to be pro-

grade (ω > 0). We find two general types of modes: a parent family

that is already present when only the l = −1 Fourier component is

included in the calculation, and a child family that bifurcates from

the parent family as more l-terms are included. The eigenfrequen-

cies of child modes are very close to those of their parent mode

(typically within 1–2 per cent). They emerge from resonant inter-

actions between two approximate modes that are weakly coupled:

the parent modes and singular van Kampen modes. For l = 0 and

l = +1 the singular components of the child modes correspond to

the corotation resonance (CR) and outer Lindblad resonance (OLR),

respectively. The coupling between slow and van Kampen modes is

probably due mostly to highly eccentric orbits that are perturbed by

the gravity from both waveforms. The main evidence for this is that

as the mean eccentricity ē shrinks, child modes collapse to singular

modes and disappear.

We denote the maximum precession rate of circular orbits by

ω0 = max[	pr( J)]; from equation (12) ω0 = 0.05861μ + O(μ2).

We then plot our results using the normalized frequency ω̄ = ω/ω0.

Fig. 4 shows the eigenfrequency spectra of prograde m = 1 parent

modes for the mass ratios μ = 0.025 and μ = 0.05, and for four

Figure 4. Eigenfrequency spectra of stable, prograde density waves in near-

Keplerian discs. Only parent modes are shown. The vertical axis is the

mean eccentricity ē and the horizontal axis is ω̄ = ω/ω0 where ω0 =
0.05861μ +O(μ2). These models correspond to DFs of the form (14) with

K = 5, 10, 20, 29. The calculation includes Fourier terms l = −2, −1, 0,

1. Note the logarithmic scale of the horizontal axis. Top: μ = 0.025 and

ω0 = 0.00146. Middle: μ = 0.05 and ω0 = 0.00293. The eigenfrequencies

of modes D1 and D2 are very close and indistinguishable in the plots. They

are ω̄D1
= 4.659 and ω̄D2

= 4.647. Similarly, we have ω̄H1
= 4.700 and

ω̄H2
= 4.689. Note the similarity of the spectra in the top and middle

diagrams despite the change of a factor of 2 in the disc mass μ; this feature

is characteristic of slow modes. Mode shapes associated with the labelled

frequencies have been plotted in Figs 5, 6 and 7. Bottom: eigenfrequency

spectra derived from the WKB approximation described in the Appendix.

Each plotted point represents a degenerate leading/trailing pair of modes.
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Density waves in near-Keplerian discs 2375

values of the mean eccentricity ē. The frequencies of child modes

are not shown to avoid overcrowding the diagrams. Although the

maximum precession rate ω0 is proportional to μ, the spectra of ω̄

agree to within 1 per cent in the models with μ = 0.025 and μ =
0.05. This scaling shows that our results can be directly applied to

all discs with mass ratios μ ≪ 1, in particular to the tiny mass ratios

μ � O(10−3) characteristic of debris discs.

Fig. 4 shows that the modes become more closely spaced as their

frequency decreases and the minimum frequency in each spectrum is

an accumulation point. This implies the existence of prograde waves

with arbitrarily short wavelengths. There is also a nice correlation

between the precession rate of the most eccentric orbit in the model

(see Figs 1 and 2) and the lowest frequency in the spectrum. Models

with highly eccentric orbits have an accumulation point of lower

frequency. Fig. 4 shows that the number of modes increases with

decreasing ē. In the limit of ē → 0, however, dispersion-supported

waves (or p modes) cannot exist according to WKB results (T01).

The frequency spacing between modes B1 and B2 is larger than

the spacing between C1 and C2, which in turn is larger than the

spacing between D1 and D2 (which is so small that the two points

are indistinguishable in the figure). Similar behaviour is seen in

the F, G and H families in the middle panel of the figure. In the

limit ē → 0, the parent modes tagged with the numbers 2j + 1

and 2j + 2 (j = 0, 1, 2, . . .) become degenerate. In the language of

T01, they form a degenerate leading/trailing pair of p modes (see

Appendix). The pairing process begins from modes with highest

pattern speeds, for the resonant cavities of those modes are fed

mostly by near-circular orbits, which are the only population used

in the WKB analysis. The child modes of degenerate pairs also

disappear because their supporting eccentric orbits disappear as

ē → 0. Modes with ω̄ → 1 and sufficiently large ē engage highly

eccentric orbits and thus lead to more complex dynamics. Eccentric

orbits are indeed the backbones of discs, and when perturbed, they

affect a vast radial domain while near-circular orbits have only a

local influence on developing patterns.

We now examine the shapes of the modes. After finding ω, we

calculate its corresponding eigenvector c, and use this to compute

the nodal potentials p and nodal densities d from (48). Defining

X(R) = Re

N
∑

n=1

Hn(R)Gn(R) · bn, (58)

Y (R) = Im

N
∑

n=1

Hn(R)Gn(R) · bn, (59)

one can compute the perturbed density patterns

�1(R, φ, t) = X(R) cos(mφ − ωt) − Y (R) sin(mφ − ωt) (60)

for a single wavenumber m. Note that bn are extracted from the

elements of d using the following formula:

bn = [ dn dn+1 ]T, n = 1, 2, . . . , N. (61)

Fig. 5 shows the profile of X(R) for the labelled parent modes

of Fig. 4. Not only are the normalized frequencies of the modes Aj

and Ej identical, but also their mode shapes are very similar. These

remarks apply to the pairs (Bj, Fj), (Cj, Gj) and (Dj, Hj) as well, and

demonstrate that the waveforms are independent of μ so long as μ

≪ 1, as one would expect for slow modes. The figure also shows

that the wavelength of oscillations increases with the pattern speed

ω in a given disc, and decreases as the mean eccentricity of the disc

shrinks. The number of nodes increases as the frequency decreases.

An interesting property of the waves showing multiple nodes is that

their density peaks are approximately equally spaced in logarithmic

scales.

The child modes are hybrid modes that inherit the features of

their parents in the central regions of the disc, but have a spike at

the location of singular modes that couple to them. Fig. 6 displays

the parent mode D8 of frequency ω̄ = 2.083 (see Fig. 4) and its

children D8,CR with ω̄ = 2.0765 and D8,OLR with ω̄ = 2.0728,

which contain singular van Kampen modes at the CR and OLR,

respectively. In low-mass discs, these resonances are at large radii

where the surface density is small, so the singular component of a

child mode involves only a small fraction of the mass involved in the

parent mode. As the disc mass shrinks to zero the child modes merge

with the parent mode. The reason is that the eigenfrequency of the

parent mode is proportional to the disc mass so with very small

disc masses the CR and OLR are at extremely large radii where the

surface density is negligible. Thus the distinction between parent

and child modes is unimportant for low-mass discs such as debris

discs.

Fig. 7 displays shaded contour plots of the pattern of �1(R, φ,

t) for some models with μ = 0.025 (mode shapes corresponding

to μ = 0.05 are similar). It is seen that the wave packets are more

radially compact in the colder (K = 29) model than warmer (K =
5, 10) ones.

The properties of these modes can be explored using the short-

wavelength or WKB approximation described in the Appendix.

The validity of this approximation requires k > h/R where k is the

wavenumber and h is a dimensionless number of order unity. If two

adjacent nodes of a wave are at R1 and R2 then
∫ R2

R1
k dR = π so the

condition for validity of the WKB approximation may be written

as π > h log R2/R1 or log10R2/R1 < 1.36/h. Inspection of Fig. 6

shows that for h = 1 this condition is satisfied by the majority of

modes we have computed.

The bottom panel of Fig. 4 shows the WKB frequency spectrum.

Each point corresponds to a degenerate pair of modes, one com-

posed of leading spiral waves and the other of trailing. These modes

arise from waves in the resonant cavities defined by the closed fre-

quency contours in Fig. A1. The WKB approximation correctly

reproduces several striking features of the FEM frequency spectra:

(i) all modes are prograde (ω > 0); (ii) both the number of modes

and the maximum frequency grow as the mean eccentricity ē of

the disc shrinks; (iii) there is an accumulation point of modes near

ω/ω0 = 1 in the FEM spectra and at ω/ω0 = 1 in the WKB spectra;

(iv) there is also reasonable quantitative agreement between the fre-

quencies derived by the two methods, at least for the discs with the

lowest mean eccentricity. The WKB analysis in the Appendix fails

to find the child modes for two reasons: (i) it is based on the epicy-

cle approximation, which assumes that the eccentricity is small and

thus neglects the highly eccentric orbits that couple the slow and

van Kampen modes; (ii) it is based on the approximation that the

disc mass μ → 0, and in this limit the pattern speed of the slow

mode goes to zero so the OLR and CRs are at very large radii where

the disc surface density is negligible.

7 E X C I TAT I O N O F O S C I L L ATO RY WAV E S

Protostars live in the harsh environments of their birth clusters.

Simulations of the Orion nebula (Scally & Clarke 2001) show that

about 10 per cent of stars can have encounters closer than 100 au

within 107 years. Such encounters can excite waves in planetesi-

mal/debris discs. Encounters were invoked as a possible explanation

for the asymmetries in the β Pictoris debris disc by Kalas & Jewitt

(1995) and Larwood & Kalas (2001) but these authors treated the

C© 2012 The Authors, MNRAS 421, 2368–2383
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2376 M. A. Jalali and S. Tremaine

Figure 5. Perturbed density components X(R) (cf. equation 60) for some stable modes in near-Keplerian discs of μ = 0.025 (solid lines) and μ = 0.05 (dotted

lines). In several panels the dotted line is not visible because it lies under the solid line. There are N = 160 ring elements in the configuration space for K = 5,

10 and 20, and N = 180 elements for K = 29. Filled circles mark the locations of element nodes. In all panels, the maximum of |X(R)| has been normalized to

unity.

debris disc as a collection of test particles, which can give mislead-

ing results since the self-gravity of the disc dominates the apsidal

precession.

Since our goal here is only to illustrate this process we confine

ourselves to in-plane parabolic encounters. Consider a disc particle

orbiting around a star of mass M⋆, and assume a perturber of mass

Mp. As in earlier sections, we scale all lengths so that the disc length

scale b is unity, and denote the normalized position vectors of the

particle and perturber (with respect to the host star) by R and Rp,

respectively. The equation of motion for a disc particle is

d2 R

dt2
= −∇

[

a⋆ · R + V0(R) + V1(R, t) + Vp(R, Rp)
]

, (62)

where a⋆ is the acceleration vector of the host star in an inertial

frame, V0 is the unperturbed gravitational potential due to M⋆ and

the self-gravity of the disc, V1 is the perturbed self-gravitational

potential of the disc, and Vp = −(Mp/M⋆)/|Rp − R| is the potential

field of the perturber. The gradient ∇ is taken over the R space, and

the normalized time t is related to the actual time tactual through

t/tactual = (GM⋆/b3)1/2.

We assume that a⋆ is due to the encounter; thus we ignore the

cluster’s tidal field. Consequently,

a⋆ · R =
(

Mp

M⋆

)

Rp · R

R3
p

, Rp = |Rp|. (63)
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Density waves in near-Keplerian discs 2377

Figure 6. Perturbed density components X(R) for the parent mode D8 and

two of its associated child modes D8,CR and D8,OLR, in which the parent

mode is coupled to singular modes at the CR and OLR. The model parame-

ters are μ = 0.025 and K = 29.

For a distant encounter, R ≪ Rp, the potential Vp can be expanded

as the following series:

Vp = −
(

Mp

M⋆

)

1

Rp

∞
∑

i=0

(

R

Rp

)i

Pi

[

cos
(

φ − φp

)]

,

cos
(

φ − φp

)

=
Rp · R

RpR
, (64)

where φ and φp are, respectively, the azimuths of the disc particle

and perturber measured from an inertial reference line, and Pi are

Legendre polynomials. The effective potential due to a flying-by

perturber thus reads

Ve = a⋆ · R + Vp,

= −
(

Mp

M⋆

)

1

Rp

∞
∑

i=2

(

R

Rp

)i

Pi

[

cos
(

φ − φp

)]

, (65)

where we have dropped the i = 0 term in (64) because it makes no

contribution to the force, and the i = 1 term has been cancelled by

a⋆ · R.

Modes having azimuthal wavenumber m = 1 can only be excited

by those i ≥ 3 terms of Ve that produce cos φ and sin φ factors.

Modes with m = 2 are excited by the i = 2 term of Vp, which is

much larger than the i ≥ 3 terms for distant perturbers (R/Rp ≪
1); however, we have found (Section 6) that slow modes with m =
2 have wavelengths that are generally smaller than those of m =
1 modes, even for discs with a relatively large mean eccentricity

ē, and which shrink to zero as ē → 0. Thus m = 2 modes couple

less effectively to smooth perturbing potentials. We conclude that

the dominant slow mode excited by an external perturber may have

either m = 1 or m = 2.

For brevity, we shall examine only m = 1 modes here. The

dominant term of (65) for m = 1 perturbations is

Ve ≃ −
3

8

(

Mp

M⋆

) (

1

Rp

) (

R

Rp

)3

cos
(

φ − φp

)

. (66)

This can be expressed in the angle-action variables as (cf. equa-

tion 39)

Ve ≃ Re

+∞
∑

l=−∞

Q(t)h̃e,l( J)ei(lwR+wφ ), (67)

where

Q(t) = −
3

8

(

Mp

M⋆

)

1

[Rp(t)]4
e−iφp(t) (68)

is the time-varying part of the external perturbation, and

h̃e,l( J) =
1

2π

∮

R3 cos
[

lwR + (wφ − φ)
]

dwR. (69)

For a parabolic encounter with minimum distance Rp,min and gravity

parameter M̄ = 1+Mp/M⋆, the true anomaly φp and radial distance

Rp are computed through the following equations:

t(φp) =
√

2

ωp

[

tan

(

φp

2

)

+
1

3
tan3

(

φp

2

)]

, (70)

Figure 7. The patterns of oscillatory waves in the configuration space for a near-Keplerian disc with the mass ratio μ = 0.025. We have displayed only the

positive part of �1(R, φ, t) at t = 0. Maximum densities of all panels have been normalized to unity, and the contour levels range from 0 to 1. The point mass

sits at (0, 0). Left: K = 5. Middle: K = 10. Right: K = 29.

C© 2012 The Authors, MNRAS 421, 2368–2383

Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
1
/3

/2
3
6
8
/1

0
7
8
3
4
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



2378 M. A. Jalali and S. Tremaine

Rp =
2Rp,min

1 + cos(φp)
, M̄ = ω2

pR
3
p,min. (71)

The effect of the external perturbation on the evolution of f 1

inside the nth element is determined by the Galerkin projection of

the Poisson bracket −[f 0, Ve] as

4π2iZn′
l′ (t) = −

∫ ∫

ET
l′ (n

′, J)[f0, Ve]

×e−i(l′wR+wφ ) d2 J d2w. (72)

Substituting from (67) into (72) and performing the integral over

the angle space give the two-vector

Zn
l (t) = Q(t)

∫
(

l
∂f0

∂JR

+
∂f0

∂Jφ

)

h̃e,l( J)ET
l (n, J) d2 J, (73)

whose components (Zn
1,l and Zn

2,l) are, respectively, the contribution

of the disturbing force to the inner and outer nodes of the nth ring

element in the configuration space. The disturbance at the jth ring

node thus reads

Zj,l(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Z
j

1,l , j = 1,

Z
j

1,l + Z
j−1
2,l , 1 < j < N + 1,

ZN
2,l , j = N + 1,

(74)

and we obtain

Zl(t) =
[

Z1,l Z2,l . . . ZN,l Z(N+1),l

]T
. (75)

Defining Fl = U
−1
1 (l) · Zl , the global forcing vector is assembled

as

F(t) =
[

. . . FT
−1(t) FT

0 (t) FT
+1(t) . . .

]T
,

= Q(t)g, (76)

where g is a constant vector. For each Fourier number l, we have

N t unknown DFs collected in the vector zl (t). The Fourier series in

terms of wR is usually truncated at some lmin < 0 and lmax > 0. We

thus haveN = (lmax −lmin +1)×Nt unknown DFs that we collect in

theN -vector z(t). Similarly, F(t) and g areN -dimensional vectors.

Any excited wave is a superposition of all eigenmodes of (52):

z(t) =
N

∑

j=1

qj (t)z(j ), (77)

but not all eigenvectors z(j ) are physical. Increasing the number of

elements increases the accuracy of the eigenvalues and eigenvectors

describing the isolated oscillatory modes but also adds spurious

and/or singular modes. Such non-physical modes can contribute

noise to the calculated disc response. To keep only physical modes,

we introduce

q =
[

q1 q2 . . . qN
]T

,

M =
[

z(1) z(2) . . . z(N )
]

,

and express (77) in the matricial form z = M · q. This is substituted

into (51) to obtain

d

dt
q = −iJ · q + iQ(t)M−1 · g, (78)

where J = M−1 · A · M is a diagonal matrix – or a Jordan form if

there are degenerate eigenvalues (Perko 2001) – whose elements are

the eigenfrequencies of (52). The diagonalizing matrix M is often

called the modal matrix.

We call the N -dimensional vector ζ = M
−1 · g the forcing vector

and rewrite (78) in terms of its components:

d

dt
qj (t) = −iωjqj (t) + iQ(t)ζj , j = 1, 2, . . . ,N . (79)

Equations associated with non-physical ωj can now be dropped from

(79) and we find both the homogeneous and particular solutions,

qj (t) = e−iωj (t−t0)qj (t0) + iζj

∫ t

t0

Q(τ )e−iωj (t−τ ) dτ, (80)

for j = 1, 2, . . . ,Np with Np being the number of physical modes.

Fly-by perturbations begin at t = t0 = −∞ (φp = −π) with qj(t0) =
0 (∀j). Consequently, using the orbit equations (70) and (71), and

defining β = ωp/ωj, we arrive at

qj (t, φp) = −i
3
√

2(M̄ − 1)

64M̄4/3
ω

5/3
j ζjQj e−iωj t , (81)

Qj

(

φp, β
)

= β5/3

∫ φp

−π

(1 + cos ξ )2 eiωj t(ξ )−iξ dξ, (82)

which leaves behind the permanent oscillation

qj (t) = −i
3
√

2(M̄ − 1)

64M̄4/3
ω

5/3
j ζjQj (π, β)e−iωj t , (83)

when the encounter ends at φp = +π. The integrands of the

real and imaginary parts of Qj (π, β) are, respectively, even and

odd functions of φp over the interval [−π, +π]. One thus obtains

Im[Qj (π, β)] = 0. The real part of Qj (π, β)/β5/3 is positive-

definite, and therefore, a necessary and sufficient condition for the

excitation of the jth oscillatory mode is that the corresponding com-

ponent of the forcing vector ζj �= 0. The asymptotic forms are

Qj (π, β) ≈ 2πβ5/3, (84)

for β ≫ 1, and

Qj (π, β) ≈
215/4π1/2

3
β1/6 exp

(

−
2
√

2

3β

)

, (85)

for β ≪ 1. The exponential decay for small ωp is due to adiabatic

invariance.

We have computed ζ for all parent modes of Fig. 4, and have

plotted its components ζ j in Fig. 8 for two μ = 0.05 models with

different mean eccentricities. The results for child modes and other

models are similar. In our models ζ j is larger for modes with low

frequencies. This can be understood as a competition between two

effects seen in Fig. 5: (i) as the mode frequency decreases, the

number of its nodes increases, so the coupling of the mode to a

smooth external field is reduced; (ii) as the frequency decreases, the

outermost peak of X(R) shifts to a larger radius and hence contributes

more to the term −[f 0, Ve] in (34) – recall that Ve ∼ R3. In general

Figure 8. The forcing vector components ζ j for the modes of the discs

having μ = 0.05 and K = 20 and 29. The corresponding frequency spectra

have been plotted in Fig. 4.
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Density waves in near-Keplerian discs 2379

Figure 9. The profile of Qj (π, β) (solid line) together with its analytic

asymptotes when β → 0 (dashed line; equation 85) and β → ∞ (dotted

line; equation 84). The excitation is efficient for β > βc with βc = 0.169367

(see text for definition).

the second effect wins, causing the coupling, as measured by ζ , to

be larger for low-frequency modes.

We also find that the range of ζ is similar for all K models (Fig. 8).

This shows that the response of a near-Keplerian disc is not sensitive

to its mean eccentricity: m = 1 slow modes in warm and cold discs

have an equal chance of being excited by encounters.

The excitation efficiency of modes is determined by the function

Qj (π, β), which has been plotted in Fig. 9. The excitation of mode

j is inefficient for ωp � βcωj where we have defined the critical

frequency ratio βc = 0.169 367 as the point where Qj (π, β) drops

to 10 per cent of its value predicted by its β → ∞ asymptote (equa-

tion 84). For a given mass parameter M̄ , a perturber can only excite

mode j efficiently if its orbit has periastron Rp,min � [M̄/(β2
c ω2

j )]1/3.

Faster modes have larger ωj, and therefore need closer encounters

to be excited.

In Fig. 10, we illustrate the excitation of mode D1 at four az-

imuths during the fly-by of a disc with mass ratio μ = 0.025, for

an encounter with the parameter ωp =
√

2ωD1
= 0.0096538. The

interaction begins at φp = −π (t = −∞) and ends at φp = +π

(t = +∞). We plot the positive part of the response density:

�1,D1
(R, φ, t) = Re

{

qj [t, φp(t)] eimφ−iωj t

×
N

∑

n=1

Hn(R)Gn(R) · b(j )
n

}

, (86)

where j corresponds to mode D1 and the vectors b(j )
n are extracted

from d(j ) =
∑

l F(l) · z
(j )
l as we did in equation (61).

We remark that stable modes always rotate with a constant angu-

lar velocity, but the perturber-star centreline has a variable angular

velocity. Therefore the perturber may lead or lag the maximum re-

sponse in azimuth, and the maximum response may occur some

time after closest approach.

In general, of course, the close passage of a perturber will

excite multiple modes. The main visual difference between

a single-mode and multi-mode response is the occurrence of

long-period beating patterns in the latter case. We have con-

structed animations of the evolution of the multi-mode pat-

tern during an encounter and the beating can be quite striking

(http://www.youtube.com/watch?v=ZTyXK7H6Q8E). This anima-

tion is for a model with K = 10 and μ = 0.025, and the 11 modes

with the highest frequencies are participating in the response.

8 A PPLI CATI ON TO D EBRI S DI SCS AND

G A L AC T I C N U C L E I

We have shown that low-mass, near-Keplerian, collisionless discs

can support stable, long-lived, large-scale slow modes. The most

prominent of these are expected to have azimuthal wavenumbers

m = 1 and m = 2.

8.1 Debris discs

The existence of slow modes implies that debris discs can support

waves in the planetesimal population that provides most of the

disc mass, and suggests that collisions in this non-axisymmetric

distribution could generate non-axisymmetric dust distributions that

would be visible in thermal emission or scattered light.

Non-axisymmetric structures in debris discs are normally as-

sumed to be produced by planets, but our results imply that some

or even most of these structures may be density waves. Specific

examples include the following.

(i) β Pictoris: scattered starlight reveals that this star is sur-

rounded by a debris disc extending to � 1000 au. The disc is brighter

on one side than the other, perhaps due to an m = 1 slow mode, and

also contains brightness enhancements that could be due to shorter-

wavelength density waves. The disc exhibits warps or tilted rings at

various radii (Heap et al. 2000; Wahhaj et al. 2003); although the

present paper examines only in-plane slow modes, there should also

be slow bending modes, and these provide a possible explanation

for the warps. There is a 10MJ planet orbiting at ∼10 au in the β

Pic system (Lagrange et al. 2010) but it is far from clear that this

is the cause of the warps and other features; several authors have

argued that the asymmetries provide evidence for two or even three

planets (Freistetter, Krivov & Löhne 2007; Currie et al. 2011) but it

is implausible to invoke a new planet for every feature.

(ii) Fomalhaut: this star is surrounded by a ring of dust with a

sharp inner edge at 130 au. The centre of the ring is offset by 15

au from the host star, implying an eccentricity of 0.11; the ring is

narrowest at apastron, implying that the eccentricity declines with

radius (Kalas et al. 2005). Quillen (2006) stressed that these features

could be produced by a planet orbiting just inside the ring, and a

possible planet was subsequently discovered (Kalas et al. 2008).

The eccentricity of the ring could be forced by the planet or a slow

density wave, depending on whether the planet mass or ring mass

is larger. The sharp inner edge of the ring is most likely due to the

planet.

(iii) Vega: observations at a variety of wavelengths between

350 µm and 1.3 mm reveal a face-on dust ring of radius ∼100

au, dominated by two clumps (see Marsh et al. 2006 for a summary

of the data, and beware that Piétu et al. 2011 question the reality

of non-axisymmetric structure in the disc). The clumps are usually

ascribed to dust trapped in a resonance with an unseen planet (e.g.

Kuchner & Holman 2003; Wyatt 2003), but m = 1 and m = 2 slow

density waves provide an alternative explanation. Within a few years

we may be able to distinguish these hypotheses by measurements

of the motion of these clumps relative to the host star: the expected

angular speed of the planet is ∼1◦ yr−1 while slow modes should

have negligible pattern speeds.
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2380 M. A. Jalali and S. Tremaine

Figure 10. The evolution of mode D1 in a disc with mean eccentricity ē = 0.159 as a perturber on a parabolic orbit encounters the star-disc system. φp is the

azimuthal angle of the flying-by star; the line φp = 0 coincides with the x-axis and with the direction of periastron. We have φp = (−π, +π) for t = (− ∞, +∞).

The contours show the positive part of the response density. The periastron distance of the perturber is Rp,min = 188.58(1 + Mp/M⋆)1/3(Md/10−3M⋆)−2/3.

(iv) ǫ Eridani: a nearly face-on ring of dust surrounds this star

at ∼60 au. The disc exhibits several clumps and a lopsided bright-

ness distribution in images at 450 µm and 850 µm (Greaves et al.

2005). Some but not all of these peaks may be background sources.

Models in which the clumps are due to resonances with a planet are

described by Ozernoy et al. (2000), Quillen & Thorndike (2002)

and Deller & Maddison (2005). These features could be due to slow

modes, but the presence of density maxima at several azimuths

would require that more than one mode was present. Resonance

models predict angular velocities around the host star of about

1◦ yr−1.

(v) HR 4796A: there is an edge-on debris ring ∼80 au from the

host star. One ansa of the ring is brighter, hotter and at smaller

radius than the other (Telesco et al. 2000; Moerchen et al. 2011).
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Density waves in near-Keplerian discs 2381

This asymmetry is most naturally explained by an eccentric dust

ring (e ≃ 0.06); at periastron the dust is closer to the star and

therefore hotter and brighter (‘pericentre glow’, Wyatt et al. 1999).

The ring eccentricity is usually assumed to be excited by secular

perturbations from a nearby planet but an m = 1 slow mode of the

disc is an alternative. The mode might be excited by the companion

star HR 4796B, currently at a projected separation of ∼500 au.

(vi) AB Aurigae: near-infrared images reveal a debris disc of over

1000 au radius. The disc shows spiral arms at radii of several hun-

dred au, some of which are also seen at submillimetre wavelengths,

as well as rings, gaps and clumps at smaller radii (Hashimoto et al.

2011). As in the case of other systems, the features could be due to

planets or slow modes, and these hypotheses can be distinguished

by proper-motion measurements.

(vii) η Corvi: the disc surrounding this star appears at 450 µm

as two equally bright peaks equidistant from the host star at 100 au;

these can be modelled either as the ansae of an edge-on axisym-

metric ring or as a more face-on disc containing dust trapped in a

resonance with a planet (Wyatt et al. 2005). A third possibility is an

m = 2 slow mode in a face-on disc.

(viii) HD 141569A: Clampin et al. (2003) have detected strong

spiral structure in the debris disc around this star, at about 400 au

radius. They suggest that the spiral may be excited by tides from

nearby stars. There is also a gap in the disc at about 250 au radius;

both of these features might be due to planets but only if planets can

form at radii exceeding 200 au. Wyatt (2005) has suggested that the

spiral could be caused by a Jupiter-mass planet on an eccentric orbit

(e ≃ 0.2, a ≃ 250 au) but slow modes provide a more economical

explanation, especially given the difficulties of forming planets at

such large distances.

(ix) HD 100546: this disc exhibits an apparent dark hole and

bright clump at about 30 au from the host star (Quanz et al. 2011).

These features could be due to an orbiting planet or a slow density

wave. The Keplerian motion at this radius is about 3◦ yr−1. At much

larger radii, ∼250 au, the disc exhibits spiral structure (Grady et al.

2001). Possible explanations include a planet at several hundred au

from the star or density waves excited by a passing star. The latter

possibility was discussed by Quillen et al. (2005) but dismissed

because their estimated lifetime for the spiral structure was only

∼104 yr and no suitable nearby star could be found; the results of

the present paper imply that the structure could last for a much

longer time – perhaps as long as the 10 Myr age of the star – so the

chance of a suitable encounter in the past is much larger.

(x) HD 61005: this star is surrounded by an asymmetric edge-on

debris disc of radius ∼60 au. The asymmetry can be modelled as

a mean eccentricity of 0.05, but there are no planets more massive

than ∼3 Jupiter masses close to the ring (Buenzli et al. 2010).

(xi) HD 15115: this star hosts an edge-on debris disc; the domi-

nant thermal emission from the disc arises at radii ∼35 au but the

disc is visible to much larger radii. The surface brightness of the east

side of the disc is about 1 mag fainter than the west side at a given

radius and the surface-brightness distribution perpendicular to the

disc midplane is asymmetric on the west side (Kalas, Fitzgerald

& Graham 2007); both features can arise naturally from an m = 1

distortion.

(xii) HD 107146: there is a dust ring at 100 au that exhibits

clumps and a lopsided brightness distribution in 1.3 mm images

(Corder et al. 2009). These might be due either to a planetary

resonance or to slow density waves; however, 880 µm observations

with similar resolution do not confirm the existence of the clumps

(Hughes et al. 2011).

8.2 Discs in galactic nuclei

The results of this paper also illuminate our understanding of stellar

discs in galactic nuclei. They can be applied directly to such discs

if the apsidal precession is dominated by the self-gravity of the

disc, rather than relativistic effects or the gravitational field from a

spherical stellar population in the nucleus.

The apparent ‘double’ nucleus of M31 is most likely a stellar

disc that has been distorted by a large-amplitude slow mode (see

Peiris & Tremaine 2003, Salow & Statler 2004, and references

therein). Such modes arise naturally in N-body simulations (Jacobs

& Sellwood 2001). They can be excited by gas inflow and star for-

mation in the central few parsec of the galaxy (Hopkins & Quataert

2010a) or by instabilities induced by a small population of counter-

rotating stars (Touma 2002). Slow modes may also play a cen-

tral role in feeding supermassive black holes (Hopkins & Quataert

2010b).

9 D I SCUSSI ON

The finite element formulation has enabled us to explore the modal

spectrum of low-mass near-Keplerian collisionless discs, and to

calculate the corresponding mode shapes for a wide range of ini-

tial radial dispersions (rms eccentricities). Our method also yields

moments of the DF, which provide the evolutionary equations for

energy and angular-momentum transport in perturbed discs, and

allows the accurate representation of modes that contain a singular

resonant component (e.g. Fig. 6).

We find that near-Keplerian discs support ‘slow’ modes, that

is, modes for which the eigenfrequency or pattern speed is pro-

portional to the disc mass. WKB analysis shows that these modes

are closely related to the p modes found by Tremaine (2001) in

cold near-Keplerian discs with softened gravity. Both our numeri-

cal results and analytic arguments imply that there are no unstable

slow modes. All slow modes in the discs we have examined are

prograde (positive pattern speed). Slow modes can exist with arbi-

trary azimuthal wavenumber m, but modes with m = 1 and m = 2

have the largest scale and are the easiest to excite by an external

perturber.

The eigenmodes of the linearized CBE bifurcate from the de-

generate leading/trailing modes predicted by the WKB theory. The

modes are degenerate for cold discs and split into close (in fre-

quency) pairs as the mean eccentricity grows, until for ē � 0.2

there is no apparent pairing in frequency space (see Fig. 4).

Some of the non-axisymmetric structures that are commonly ob-

served in debris discs, such as clumps, lopsided rings, and spiral

arms, may be due to slow modes, perhaps excited by the fly-by

of a passing star or binary companion. These features are nor-

mally ascribed to hypothetical massive planets embedded in the

disc. The two hypotheses can be distinguished in some discs by

monitoring the motion of these features over decade time-scales:

many features associated with planets should orbit the host star at

a pattern speed that is not far from the Keplerian angular speed

of the planet, whereas slow modes should have negligible pattern

speeds. Structures induced by modes and planets may also be distin-

guishable in the future by high-resolution far-infrared observations

by interferometers or large single-dish telescopes (e.g. ALMA or

CCAT).

Future theoretical work should include the exploration of slow

bending modes and of the behaviour of slow modes in thick discs

that resemble the discs seen in galactic nuclei.
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A P P E N D I X A : W K B A NA LY S I S

The dispersion relation for a collisionless disc can be computed an-

alytically in the WKB or short-wavelength approximation (Binney

& Tremaine 2008)

1 =
2πG�0|k|

	2
R

G

[

ω − m	φ

	R

,

(

σRk

	R

)2
]

,

where G(s, χ ) =
2

χ
e−χ

∞
∑

n=1

In(χ )

1 − s2/n2
. (A1)

Here 	R and 	φ are the orbital frequencies (equation 11), In(χ )

is a modified Bessel function, m is the azimuthal wavenumber, σ R

is the radial velocity dispersion and the perturbed surface density is

assumed to vary as �1(R, φ, t) ∝ exp[i(mφ +
∫ r

k(r ′)dr ′ − ωt)].

The dispersion relation (A1) is valid if σ R ≪ 	φR and |k|R ≫ 1.

For low-mass discs, μ ≪ 1, the precession frequency is 	pr =
	φ − 	R = O(μ) (equation 12) and the surface density �0 is also

O(μ). For slow modes ω is O(μ), and since s = (ω −m	φ)/	R is

nearly −m, the denominator 1 − s2/n2 becomes small for n = m and

the solution of the dispersion relation for a given m is obtained by

keeping the dominant n = m term of the summation in (A1). More-

over σ 2
R = 1

2
e2

rmsR
2	2

R where erms is the rms eccentricity defined in

equation (21) – strictly, this is the rms eccentricity at a given radius

rather than of the whole disc but in our models the rms eccentricity

is almost independent of radius (Fig. 3). The dispersion relation for

slow modes then simplifies to

ω = m	pr +
mπ�0|k|

	R

Fm

[

(ermskR)2/2
]

where Fm(χ ) =
2

χ
e−χIm(χ ).

(A2)

Here all quantities are written in the dimensionless units of Sec-

tion 2. Note that as z → 0, Im(z) → zm/(2mm!). Thus as the rms

eccentricity shrinks to zero the wavenumber of a slow mode must

vary as k ∼ e2(1−m)/(2m−1)
rms . In other words, for m = 1 slow modes

have |kR| ∼ 1 even for cold discs – in this case the use of the

WKB approximation for slow modes is not formally justified, but

the results provide a useful qualitative guide to the behaviour of the

frequency spectra that we find using FEM (see further discussion at

the end of Section 6). For m > 1 slow modes exist but with wave-

lengths that shrink as erms declines. For cold discs Fm(χ ) = 0 for

m > 1 so the disc supports only singular modes at the resonances

ω = m	pr.
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Density waves in near-Keplerian discs 2383

Figure A1. Contours of constant ω in the WKB approximation, from equation (A2) for m = 1 (left) and m = 2 (right). The disc has mean eccentricity

ē = 0.159. The horizontal axis is the wavenumber and the vertical axis is the log of the radius (base 10). Lighter shades correspond to higher values of ω.

In the WKB approximation, disturbances in the disc can be de-

composed into wavepackets that propagate at the group velocity

dω/dk along contours of constant frequency ω. These contours are

illustrated in Fig. A1 for a disc with mean eccentricity ē = 0.159

and m = 1, 2. Wavepackets that propagate along open contours even-

tually wind up (|k| → ∞) and disappear. Discrete normal modes

can arise for closed contours if the appropriate resonance condition

is satisfied. Consider the case m = 1 (left-hand panel of Fig. A1).

For the closed contours centred on |k| = 10, R = 0.6 the resonance

condition is (T01)1

∮

dk dR = 2π

(

n −
1

2

)

, (A3)

1 The factor of 2 on the left-hand side of equation (56) in T01 is incorrect.

where n = 1, 2, 3, . . . and the integral is taken over the area in (k,

R) space enclosed by the contour. These modes, called p modes by

T01, occur in degenerate pairs, one composed of leading and one

of trailing waves (k < 0 and k > 0, respectively).

Equation (A3) can be solved numerically to find the frequencies

of the p modes. These are plotted in the bottom panel of Fig. 4

for m = 1, and are in good qualitative agreement with the fre-

quencies calculated by FEM. There is similar agreement between

equation (A3) and FEM for m = 2 modes.
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