

Density Waves in Solids

George Grüner

Department of Physics and Solid State Science Center University of California, Los Angeles

Addison-Wesley Publishing Company The Advanced Book Program

Reading, Massachusetts • Menlo Park, California • New York Don Mills, Ontario • Wokingham, England • Amsterdam Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan Paris • Seoul • Milan • Mexico City • Taipei

Notation Legend xv Preface xix

1 ■ The One-Dimensional Electron Gas 1

- 1.1 The Response Function of the One-Dimensional Electron Gas 1
- 1.2 Instabilities in a One-Dimensional Electron Gas: g-ology 8
- 1.3 Correlations and Fluctuations 13

2 Materials 15

- 2.1 Inorganic Linear Chain Compounds 18
- 2.2 Organic Linear Chain Compounds 25

3■ The Charge Density Wave Transition and Ground State: Mean Field Theory and Some Basic Observations 31

- 3.1 The Kohn Anomaly and the Peierls Transition: Mean Field Theory 32
- 3.2 Single Particle Transitions: Tunneling and Coherence Factors 50
- 3.3 Experimental Evidences for the Charge Density Wave Transition and Ground State 55
- 4 The Spin Density Wave Transition and Ground State: Mean Field Theory and Some Basic Observations 71
 - 4.1 Mean Field Theory of the Spin Density Wave Transition 72
 - 4.2 Experimental Evidences for the Spin Density Wave Transition and Ground State 79

5 🔳	Fluc	ctuation Effects 86	-
	5.1	Fluctuations in Quasi-One-Dimensional Metals 87	
	5.2	Charge Density Wave Fluctuations in $K_{0.3}MoO_3$ 10	1
6 🔳	Coll	ective Excitations 106	
	6.1	Ginzburg-Landau Theory of Charge Density Wave Excitations 108	
	6.2	Excitations of the Spin Density Wave Ground State	124
	6.3	Experiments on Charge Density Waves: Neutron and Raman Scattering 127	
	6.4	Experiments on Spin Density Waves: AFMR and Magnetization 132	
7 🔳	Com	nmensurability and Near Commensurability Effects 136	
	7.1	Models of Commensurability Effects 137	
	7.2	Experiments: Search for Commensurability Effects and Solitons 147	
8 🔳	The	Interaction Between Density Waves and Impurities 150	
	8.1	Theories of Density Wave-Impurity Interaction 151	
	8.2	Experimental Evidence for Finite Correlation Lengths 158	
9 🔳	The	Electrodynamics of Density Waves 164	
	9.1	The Electrodynamics of Density Waves 165	
	9.2	Frequency Dependent Conductivity of Charge Density Waves 174	
	9.3	Frequency Dependent Conductivity of Spin Density Waves 179	
10 🔳		linear Transport 182	
		Models of Density Wave Transport 183	
	10.2	Experiments on the Nonlinear Dynamics of the Collective Modes 192	

11 Current Oscillations and Interference Effects in Driven Charge Density Wave Condensates (Reprinted in part from Progress in Low Temperature Physics, vol. XII. Ed.: D.F. Brewer, Elsevier Publishers, B.V. 1989). 198 11.1 Introduction 198 11.2 Current Oscillations 200 11.3 Interference Phenomena 212 11.4 Conclusions 239 References 244 Appendix: Some Books, Conference Proceedings, and Review Papers. 252

Index 254