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Abstract Performance of a recently proposed technique for
gravity field modeling has been assessed with data from the
CHAMP satellite. The modeling technique is a variant of
the acceleration approach. It makes use of the satellite accel-
erations that are derived from the kinematic orbit with the
3-point numerical differentiation scheme. A 322-day data
set with 30-s sampling has been used. Based on this, a new
gravity field model – DEOS CHAMP-01C 70 - is derived.
The model is complete up to degree and order 70. The geoid
height difference between the DEOS CHAMP-01C 70 and
EIGEN-GRACE01S models is 14 cm. This is less than for
two other recently published models: EIGEN-CHAMP03Sp
and ITG-CHAMP01E. Furthermore, we analyze the sensi-
tivity of the model to some empirically determined parame-
ters (regularization parameter and the parameter that controls
the frequency-dependent data weighting). We also show that
inaccuracies related to non-gravitational accelerations, which
are measured by the on-board accelerometer, have a minor
influence on the computed gravity field model.

Keywords Earth’s gravity field · Satellite accelerations ·
Acceleration approach · CHAMP · DEOS CHAMP-01C 70

1 Introduction

Challenging minisatellite payload (CHAMP) is a German
satellite mission launched in 2000 for geoscientific and atmo-
spheric research and applications (Reigber et al. 1996). To
facilitate studies of the Earth’s gravity field, the satellite is
equipped with a high-quality GPS receiver as well as with a
3-axis accelerometer to measure non-gravitational forces that
influence the satellite motion (e.g. the atmospheric drag).
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Computation of gravity field parameters from a satellite
orbit has been a research issue for a number of decades (see
e.g., O’Keefe, 1957; Ilk 1984; Schrama 1986; Reigber 1989).
However, the launch of the CHAMP mission has triggered a
rebirth of interest in this subject. A number of models have
been obtained from CHAMP data with the approach based on
integration of the variational equations, when the functional
model makes use of GPS data or of the satellite orbit (Reigber
et al. 2002, 2003a,b,c, 2005a). An alternative approach has
been used by Ilk et al. (2003, 2005) and Mayer-Gürr et al.
(2005), who exploted a linear functional model connecting
the satellite orbit with gravity field parameters (Ilk, 1984).
There have been also attempts to derive a gravity field model
using the energy balance approach, which is based on the
measured kinetic energy of the satellite (Sneeuw et al. 2002;
Han et al. 2002; Howe et al. 2003; Gerlach et al. 2003a,b).
Besides, the acceleration approach has been tried, when the
observed satellite accelerations are exploited (Reubelt et al.
(2003a,b); Fengler et al. (2004)). In this paper, we follow a
new technique (Ditmar and van Eck van der Sluijs 2004),
which is a variant of the acceleration approach. Our objec-
tives are to assess the performance of the proposed technique
with data from the CHAMP mission and to compare the com-
puted Earth’s gravity field model with those obtained from
CHAMP data in alternative ways.

The technique under consideration is based on satellite
accelerations that are derived from an orbit with the three-
point difference scheme:

ā(t) = x(t − �t) − 2x(t) + x(t + �t)

(�t)2
, (1)

where x(t) is the satellite position vector at time t , �t is the
data sampling interval, and ā(t) is the derived acceleration.
The motivation to use only three orbit points for deriving
accelerations is the following: (1) less information is lost
in the presence of data gaps (in comparison with a multi-
point differentiation scheme) and (2) the covariance matrix
of acceleration noise can be easier determined and inverted.
It is important that the accelerations are derived in an inertial
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frame. Ditmar and van Eck van der Sluijs (2004) have shown
that the accelerations ā(t) in Eq. (1) are weighted averages:

ā(t) =
�t∫

−�t

w(s) a(t + s) ds, (2)

where the weight function w(s) is a piece-wise linear func-
tion:

w(s) = �t − |s|
(�t)2

. (3)

It is interesting to note that our approach can be linked to the
one of Ilk et al. (2003), provided that the arc length in the
latter approach is set equal to the double sampling interval.

We would like to stress that it is advisable to derive accel-
erations from a kinematic orbit, i.e., the orbit determined
directly from GPS measurements without any information
about forces that influence the satellite motion. Though a
kinematic orbit may contain numerous interruptions and rel-
atively large noise at high frequencies, it is, unlike a reduced-
dynamic orbit, not directly influenced by any existing gravity
field model. Therefore, we fully control the stochastic proper-
ties of input data and can build the optimal procedure for their
processing. As far as noise is concerned, it can be suppressed
later in well-known ways (e.g., by means of a regularization
technique).

The accelerations derived from the satellite orbit are an
input to produce residual acceleration, i.e., those that cannot
be explained by models. In doing so, we deduce the refer-
ence accelerations, which are computed on the basis of a
reference gravity field model and tide models. Furthermore,
non-gravitational accelerations, which are measured by the
accelerometer on board the satellite, are deduced as well.
The residual accelerations are used to compute spherical har-
monic coefficient corrections. The computed corrections are
summed with the spherical harmonic coefficients from the
reference model, yielding the final product: a new model of
the static gravity field of the Earth. A general flow-chart of
the data processing is shown in Fig. 1.

Section 2 contains a detailed description of how we de-
rived residual satellite acceleration from the CHAMP or-
bit. Furthermore, this section explains how the gravity field
model is obtained from these accelerations. Section 3 is de-
voted to the analysis of the model obtained and to its com-
parison with some other models based on CHAMP data.

2 Data processing

2.1 Input data

In our computations, we have used a set of CHAMP data
from March 10, 2002 to January 25, 2003 (in total, 322 days).
The data set contains six 1-day gaps and two-day gaps. Apart
from the primary data set – the kinematic orbit — some addi-
tional data were also used: accuracy description of the kine-
matic orbit in the form of a 3×3 position covariance matrix
per epoch and a reduced-dynamic satellite orbit. The latter

one is a result of an orbit integration based on given force
model; once per 6 min, the orbit experiences a discontinu-
ity in terms of velocities so that a consistency with on-board
GPS measurements is preserved. All these data were kindly
provided to us by D. Švehla and M. Rothacher, Technical
University Munich (Švehla and Rothacher 2003). The data
were defined relatively to the ITRF2000 datum (IGS00 real-
ization). Besides, we have used the CHAMP accelerometer
and star camera data distributed by CHAMP’s Information
System and Data Center (ISDC) at GeoForschungsZentrum
Potsdam (GFZ).

2.2 Inertial frame

An inertial frame is used not only for derivation of acceler-
ations from the satellite orbit but also in some other proce-
dures that will be addressed later. The inertial frame we use is
the Celestial Reference Frame (CRF); all the transformations
from the Terrestrial Reference Frame (TRF) to the CRF and
back are performed in compliance with the IERS conventions
2003 (McCarthy and Petit 2003).

2.3 Local orbital reference frame

Prior to gravity field modeling, a rotation operation is applied
in order to transform the accelerations from the CRF into
the Local Orbital Reference Frame (LORF). The axes of the
LORF are defined as follows: the X-axis is directed along the
track, the Y -axis coincides with the direction of the orbital
angular momentum and the Z-axis completes the frame to a
right-handed one. There are at least two reasons to use the
LORF in the definition of the functional model: (1) the consis-
tency with non-gravitational acceleration measurements (the
orientation of the on-board accelerometer axes is very close
to the LORF) and (2) a dominant block-diagonal structure of
the normal matrix in that case, which leads to a numerically
efficient data processing scheme. The latter aspect has been
already considered in detail by Ditmar and van Eck van der
Sluijs (2004).

In order to transform an arbitrary three-component vector
from the TRF into the LORF, the rotation matrix RTRF→LORF
has to be applied. This matrix represents a composition of
four elementary rotations:

RTRF→LORF = Ry(−α) Rz(−β) Ry(−θ) Rz(λ − π), (4)

where λ is the longitude of the current point, θ is its (geo-
centric) co-latitude, α is the angle between the horizon and
the satellite velocity vector, and β is the azimuth of the satel-
lite velocity vector, i.e., is the (clockwise) angle between the
northward direction and the projection of the velocity vec-
tor onto the horizontal plane. The velocity should be defined
relatively to the CRF.

In order to determine the satellite velocity at a particular
point, we use the reduced-dynamic orbit because it represents
the satellite motion more accurately than the kinematic orbit.
The velocity is derived with a 13-point numerical differen-
tiation scheme (the scheme is defined on the basis of the
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Fig. 1 Flow-chart of data processing

Taylor expansion of the function to be differentiated around
the central point)

2.4 Derivation of the observed satellite accelerations

The stochastic description of the kinematic orbit, which is
provided in the form of a 3 × 3 position covariance matrix

per epoch Q(TRF)

j , plays an important role in the data process-
ing. To stay consistent with the definition of the functional
model, we rotate these covariance matrices into the LORF:

Q(LORF)

j = RTRF→LORF Q(TRF)

j RLORF→TRF. (5)

Then we determine the positioning errors in the LORF for
a given epoch by taking the square root of the diagonal
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Table 1 Statistics of position data screening

Category Number of Percentage of
epochs the total number

Absent kinematic position or covariance matrix 94,290 10.2
Position error > 5 cm 22,959 2.5
Distance between the kinematic and reduced-dynamic orbit > 50 cm 13,216 1.4
Identified as outliers 38,875 4.2
Passed all the tests 758,020 81.7
Total for 322 days 927,360 100.0

elements of the matrix Q(LORF)

j . These errors are used for a
preliminary data screening. If at least one of the components
of the positioning error exceeds a given threshold (5 cm), the
epoch is discarded. Furthermore, there are epochs not sup-
plied with covariance matrices at all; such epochs are also
discarded.

The next data processing stage is to compute the orbit
discrepancies �y(TRF)

j as differences between the kinematic
and the reduced-dynamic orbits:

�y(TRF)

j = y(kin)

j − y(rd)

j . (6)

The orbit discrepancies are also rotated into the LORF:

�y(LORF)

j = RTRF→LORF �y(TRF)

j . (7)

The rotated orbit discrepancies are used in the further data
screening. First of all, we eliminate the epochs when the
length of the discrepancy vector exceeds a given threshold
(50 cm). After that, we run a procedure for the identification
of orbit discontinuities. These discontinuities frequently cor-
respond to epochs when the number of visible GPS satellites
changes. The orbit discontinuities do not reflect the physical
motion of the satellite. It is, therefore, important to exclude
the epochs when a discontinuity is observed, otherwise the
gravity field model can be distorted.

The identification procedure uses the time-differences
of the orbit discrepancies �yj,j+1 ≡ �y(LORF)

j+1 − �y(LORF)

j
(the superscript “LORF” is omitted for brevity). Our basic
assumption is that these differences reflect, generally speak-
ing, random noise in the kinematic orbit. The influence of
other factors, like noise in the reduced-dynamic orbit and a
signal in the kinematic orbit not explained by the reduced-
dynamic orbit, is neglected. Furthermore, noise in kinemati-
cally determined positions is assumed to be Gaussian,
non-correlated in time and having zero mean. Under these
assumptions, the vector �yj,j+1 is a random vector with zero
mean and the covariance matrix Qj,j+1:

Qj,j+1 = UQ̃j,j+1UT, (8)

where matrix U is defined as:

U =

−1 0 0 1 0 0

0 −1 0 0 1 0
0 0 −1 0 0 1


 , (9)

and Q̃j,j+1 is the 6 × 6 matrix:

Q̃j,j+1 =
(

Q(LORF)

j 0

0 Q(LORF)

j+1

)
. (10)

An orbit discontinuity manifests itself as an outlier in
the series of �yj,j+1. To detect such an outlier, we execute
the generalized likelihood ratio test (Teunissen 2000). Two
hypotheses about the expectation of the vector �yj,j+1 are
considered:

H0 : E{�yj,j+1} = 0 versus HA : E{�yj,j+1} �= 0. (11)

Acceptance of the hypothesis HA means that the current vec-
tor �yj,j+1 is identified as an outlier. In order to make the
decision, we compute

η = �yT
j,j+1Q−1

j,j+1�yj,j+1. (12)

From the definition of Qj,j+1 and �yj,j+1, it follows that η
must be a random value characterized by the distribution
χ2(3, 0). We compare η with a certain threshold k(α), which
is a function of the probability in the right-hand tail αp. The
hypothesis HA is accepted if η > k(αp): in this case the
deviation of the vector �yj,j+1 from zero is too large to be
explained by random noise in the kinematic orbit. Identifica-
tion of the vector �yj,j+1 as an outlier leads to the exclusion
of both epochs j and j + 1 from the further data processing.
After several tries, the threshold k(αp) was set equal to 2.366,
which corresponds to αp = 0.50.

Some statistical information regarding CHAMP data
screening is shown in Table 1. Surprisingly, the outlier detec-
tion procedure has discarded less than 5% of the data (the
specified threshold suggests that as much as 50% of differ-
ences �yj,j+1 are to be identified as outliers for purely statis-
tical reasons). Such a discrepancy can be probably explained
by an imperfectness of the available statistical information
about noise in the kinematic orbit (overestimated noise mag-
nitude or/and neglected temporal correlations).

The kinematically determined positions that passed all
the tests (cf. Table 1) were used to derive the accelerations
of the CHAMP satellite. These position vectors were trans-
formed from the TRF into the CRF, after which the numerical
differentiation of Eq. (1) was applied. Finally, the accelera-
tions were transformed into the LORF. In this way, 717,776
three-component acceleration vectors were produced (77.4%
of the total number of epochs in the 322-day time interval).

2.5 Computation of the reference accelerations

Computation of the reference accelerations is performed in
two steps: (1) computation of point-wise reference acceler-
ations and (2) averaging. The point-wise reference acceler-
ations are computed on the basis of the EGM96 model of
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Table 2 Statistics of accelerometer and star camera data screening

Category Number of data Percentage of the total number

Totally absent observations 14,795 0.5
Absent star camera observations 118,563 4.3
Complete observations 2,648,722 95.2
Total for 322 days 2,782,080 100.0

the Earth’s static gravity field (Lemoine et al. 1998). Fur-
thermore, astronomic (direct), solid Earth, and ocean tides
are taken into account. Astronomic and solid Earth tides are
modeled both for the Sun and the Moon, using the DE405
ephemerides (Standish 1998); the influence of planets is ne-
glected. The tidal potential is represented by a spherical
harmonic expansion complete to degree 4 (Lambeck 1988;
Schrama 1995). In computations of the solid Earth tides, the
Earth is assumed to be elastic and spherically symmetric;
Love numbers are specified in compliance with the PREM
model (Dziewonski and Anderson 1981): k2 = 0.303, k3 =
0.0937, k4 = 0.0423. The ocean tides are modeled accord-
ing to the GOT00.2 model [which is an update of an earlier
model GOT99.2, (Ray 1999)] with eight largest diurnal and
semi-diurnal constituents taken into account: Q1, O1, P1,
K1, N2, M2, S2, and K2. For each constituent, the corre-
sponding potential is transformed into a spherical harmonic
expansion up to degree and order 24. The load Love num-
bers are defined in compliance with the IERS conventions:
k′

2 = −0.3075, k′
3 = −0.195, k′

4 = −0.132, k′
5 = −0.1032,

and k′
6 = −0.0892 (McCarthy and Petit 2004).

To be consistent with our functional model, the point-
wise accelerations have to be transformed into averaged ones.
According to Eq. (2), the most straightforward way to do so
is just a numerical integration. This would require, however,
a sufficiently dense distribution of points at which the point-
wise accelerations are known (much denser than the data
sampling interval). To make the computations faster, we have
used instead an alternative algorithm proposed by Ditmar and
van Eck van der Sluijs (2004), which does not require the
reference accelerations to be computed with a smaller sam-
pling rate than that of the observed average accelerations. In
brief, the algorithm is as follows. A set of point-wise accel-
erations is computed at the points of the reduced-dynamic
orbit with the same sampling interval as that of the observed
accelerations: 30 s (at this stage, the reduced-dynamic orbit is
superior to the kinematic orbit because the latter one suffers
from high-frequency noise). As long as a satellite orbit is a
very smooth curve, it is fair to assume that a set of point-
wise accelerations to be integrated in compliance with Eq.
(2) can be accurately approximated by a high-order polyno-
mial (in practice, a 16-order polynomial is used). Then, the
integral of Eq. (2) can be computed analytically. Besides,
it can be shown that the value of this integral depends on
the point-wise accelerations linearly, and the proportional-
ity coefficients are independent of time (Ditmar and van Eck
van der Sluijs 2004). Therefore, transformation of point-wise
accelerations into averaged ones can be realized by applying
a proper filter, which is called hereafter “averaging filter”. It

is important that this operation is performed in the CRF. The
computed averaged accelerations have to be rotated into the
LORF.

2.6 Processing of non-gravitational satellite accelerations

Information about non-gravitational accelerations is provided
by the accelerometer on board the CHAMP satellite. This
information is given in the accelerometer instrument refer-
ence frame which can be related to the CRF, thanks to the star
camera data. In the distributed files, both types of data are
given as point-wise values with a 10-s sampling. There is a
limited amount of epochs when the sensor measurements are
incomplete: either both types of data or only star camera data
are absent. In both cases, such epochs are excluded from the
further consideration. Some statistical information regarding
the satellite sensor data is given in Table 2.

The set of complete sensor measurements has been used
in the further processing. First of all, we have transformed
non-gravitational accelerations into the CRF. The next task
was to convert these measurements into averaged accelera-
tions with the 30-s sampling. As follows from Eqs. (2) and
(3), the average acceleration at time t is equal to:

ā(t) = 1

900

30∫

−30

(30 − |s|) a(t + s) ds. (13)

The values of the function a(t + s) at epochs t − 30, t − 20,
. . . , t+30 are just measured non-gravitational accelerations,
i.e., are known. Hence Eq. (13) can be approximated by a
numerical integration formula. As long as a series of non-
gravitational accelerations can be well approximated by a
smooth function, a simple trapezium rule can be used, which
yields:

ā(t) = 1

9
(a(t − 20) + 2a(t − 10) + 3a(t) + 2a(t + 10)

+a(t + 20)) . (14)

If sensor data are absent at one or more of five epochs in Eq.
(14), the output value is not computed, and the current epoch
t is excluded from the further data processing. In this way,
we have produced a series of 834,437 three-component data
with 30-s sampling. The final stage of accelerometer data
processing is the transformation of the averaged non-gravi-
tational accelerations into the LORF.
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2.7 Residual accelerations and observation equations

Elements of the data vector d that consists of residual satellite
accelerations are computed as follows:

dj = a
(obs)
j − a

(ref)
j − a

(ng)

j , (15)

where a
(obs)
j are the observed accelerations derived as dis-

cussed in Sect. 2.4, a(ref)
j are the reference accelerations com-

puted as explained in Sect. 2.5, a(ng)

j are the non-gravitational
accelerations obtained as discussed in Sect. 2.6, and the index
j indicates a given component at a given epoch. We would
like to remind that all these quantities should be understood
as average ones and rotated into the LORF.

An element of the data vector is produced only when all
three input quantities - a

(obs)
j , a

(ref)
j , and a

(ng)

j - are available.
In this way, we have produced a data vector consisting of
3×666,581 elements. From these data, the Earth’s gravity
field model or, more specifically, a set of corrections to the
reference spherical harmonic coefficients, is computed. In
doing so, we take into account an imperfectness of the satel-
lite accelerometer: its readings may suffer from inaccurately
determined scale factors and, furthermore, can be biased. For
simplicity, we do not distinguish the imperfectness of original
accelerometer readings as distributed by the GeoForschungs-
Zentrum (i.e., point-wise non-gravitational accelerations in
the accelerometer instrument reference system) and the pre-
processed non-gravitational accelerations a

(ng)

j . Our motiva-
tion is as follows: (1) the satellite attitude control system
maintains the satellite attitude to be very close to the LORF;
and (2) the difference between point-wise and averaged non-
gravitational accelerations is minor because they vary slowly
in time. For each data component, the scale factor correction
and the bias is estimated once per a 10-day interval.

To begin with, consider the problem of an unknown scale
factor in non-gravitational accelerations. Let us write the
observation equations as follows:∑

i

A
(gr)
j i x

(gr)
i + (

1 + ck(j)

)
a

(ng)

j = a
(obs)
j − a

(ref)
j , (16)

where x
(gr)
i are unknown spherical harmonic coefficient cor-

rections, A(gr)
j i are design matrix elements related to the grav-

ity field parameters, and ck(j) are residual accelerometer scale
factors (i.e., the scale factor corrections) each of which is
related to the corresponding time interval k(j). Subtraction of
the measured non-gravitational acceleration a

(ng)

j from both
parts of Eq. (16) yields:∑

i

A
(gr)
j i x

(gr)
i + ck(j)a

(ng)

j = dj . (17)

Thus, the problem of unknown accelerometer scale factors
can be solved by just adding the corresponding corrections
ck(j) to the list of unknown parameters. The price to pay is
an increased number of unknown parameters, which makes
the data processing somewhat more time-consuming.

Now let us consider the problem of bias. In principle, a
bias can be handled similarly to an unknown scale factor:

by extending the list of unknown parameters further. We find
it, however, more elegant to use another approach. Let the
observation equations of Eq. (17) be represented in the ma-
trix form as follows:
Ax = d, (18)
where x is the vector of all unknown parameters and A is the
complete design matrix:

x =




x
(gr)
1
...

x
(gr)
M

ck(1)

...
ck(N)




;

A =




A
(gr)
11 . . . A

(gr)
1M a

(ng)

1 0 . . . . . . 0
A

(gr)
21 . . . A

(gr)
2M a

(ng)

2 0 . . . . . . 0
...

... . . . . . . . . . . . . . . .

A
(gr)
N1 . . . A

(gr)
NM 0 . . . . . . 0 a

(ng)

N


 (19)

with N the number of observations and M the number of
unknown gravity filed parameters. In the absence of noise
other than a bias, the vector on the left-hand side of Eq. (18)
differs from that on the right-hand side by a constant. In order
to remove such a difference, it is enough to subtract the mean
value from both vectors. This is the idea behind the bias-free
observation equations:
BAx = Bd, (20)
where the matrix B is such that its application to a (data)
vector subtracts the mean within a given interval; in practice,
these intervals are set equal to those for which the acceler-
ometer scale factor corrections are computed. Obviously, the
matrix B can be represented explicitly as follows:

B=




1 − 1
N1

− 1
N1

. . . − 1
N1

0 . . . . . . 0
− 1

N1
1 − 1

N1
− 1

N1
0 . . . . . . 0

. . .

− 1
N1

. . . 1 − 1
N1

0 . . . . . . 0
. . .

. . .

0 . . . . . . 0 1 − 1
Nn

− 1
Nn

. . . − 1
Nn

0 . . . . . . 0 − 1
Nn

1 − 1
Nn

− 1
Nn

. . .

0 . . . . . . 0 − 1
Nn

. . . 1 − 1
Nn




,

(21)

where N1, N2,...,Nn is the number of observations falling into
the interval 1, 2,... n.

2.8 Normal equations and computation of the Earth’s
gravity field model

Let the data covariance matrix be Cd, whereas the a priori
covariance matrix of the solution be Cr. In practice, the part
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of the matrix Cr that corresponds to the spherical harmonic
coefficients is taken over from the known covariance matrix
of the EGM96 model. Due to that, we are able to produce
a combined solution that fully exploits a priori information
from the GM96 model. The a priori covariances of the other
unknowns are assumed to be large (the corresponding ele-
ments in the matrix C−1

r are set equal to zero). Furthermore,
the explicit specification of the matrix Cd is discussed in Sect.
2.9.

The statistically optimal solution x̂ of the system of obser-
vation Eq. (20) can be found by solving the system of normal
equations:

x̂ = N−1AT BC−1
d Bd, (22)

where N is the normal matrix:

N = ATBC−1
d BA + αC−1

r , (23)

and α a coefficient to be found empirically. We have intro-
duced it in order to account for a possibility that one or both
of the matrices Cd and Cr are known up to a constant factor.
Hereafter the coefficient α will be referred to as the “regular-
ization parameter” because it is similar to the regularization
parameter in the Tikhonov regularization concept (Tikhonov
and Arsenin 1977). For the data set under consideration, the
optimal α has been found to be 0.03; for more details, see
Sect. 3.2.

An efficient way to solve the system of normal equations
is the pre-conditioned conjugate-gradient method (PCCG)
(Hestenes and Stiefel 1952), as it was proposed in the con-
text of global gravity field modeling by Schuh (1996). An
advantage of this method is that it does not require an explicit
assembly of the normal matrix: it is enough to have a pro-
cedure for multiplication of the normal matrix with a given
vector. Obviously, this procedure can be split into several
sub-procedures, each of which multiplies one of the matrices
mentioned in Eq. (23) (namely, AT, B, C−1

d , A, and C−1
r ) to

a vector. Matrices B and C−1
r can be multiplied to vector in a

straightforward manner, whereas application of matrices AT

and A to a vector can be implemented with fast co-synthe-
sis and fast synthesis algorithms, respectively (Ditmar et al.
2003; Ditmar and van Eck van der Sluijs 2004). Finally, an
efficient implementation of the multiplication of the matrix
C−1

d to a vector is dependent on the noise model; this issue
is discussed in more details below.

The convergence rate of the PCCG method depends on
the selection of the pre-conditioner (a matrix that approx-
imates the true normal matrix). In the context of satellite
accelerations, this issue has been extensively discussed by
Ditmar and van Eck van der Sluijs (2004). The only real new
feature in the currently implemented procedure is the pres-
ence of additional unknown parameters (accelerometer scale
factors). The corresponding extension of the pre-conditioner
has been done by the explicit computation of the diagonal
elements related to the additional parameters and setting all
other elements equal to zero.

2.9 Noise model

An important aspect of the data processing is a proper sto-
chastic description of noise in the data. The noise model we
use is more general than the one proposed by Ditmar and van
Eck van der Sluijs (2004) because a non-stationary of noise
can be taken into account. To begin with, assume that the
data series is uninterrupted. According to Eq. (1), derivation
of the observed satellite accelerations a(obs) from kinemati-
cally determined satellite positions y(kin) in the CRF can be
written in the matrix notation as:

a(obs) = Dy(kin), (24)

where D is the matrix of the double numerical differentiation
with the three-point scheme; for each observational compo-
nent, the corresponding fragment of this matrix is as follows:

D = 1

(�t)2




1 −2 1
. . .

. . .
. . .

1 −2 1


 (25)

By taking the rotation to/from the CRF into account, the
following expression can be written for the data covariance
matrix Cd:

Cd = RCRF→LORF D RLORF→CRF C(LORF)
y RCRF→LORF DT

RLORF→CRF, (26)

where C(LORF)
y is the covariance matrix of kinematically deter-

mined positions [it consists of 3 × 3 blocks Q(LORF)

j which
are defined by Eq. (5)]; and RCRF→LORF and RLORF→CRF are
rotation matrices (the names are self-explaining). The rota-
tion matrices also consist of blocks, each of which is a 3 × 3
rotation matrix for a given epoch.

Unfortunately, the definition of the covariance matrix
(26), even if formally correct, leads in practice to models
of poor quality. This can be understood as follows. Assume
that noise in kinematically-determined satellite positions is
stationary and non-correlated (the matrix Cy is proportional
to the unit one). The double differentiation of a time series is
approximately equivalent in the Fourier domain to multipli-
cation of its spectrum by the factor −ω2, where ω is the cyclic
frequency. Hence, the double differentiation of positions con-
taminated by white noise would make the noise power spec-
tral density proportional to ω4. The optimal data weighting
procedure compensates such an increase by assigning to data
the weights which are inversely proportional to the power
spectral density. It means that the signal at high frequencies
gets low weights, whereas weights at low frequencies in-
crease almost infinitely as the frequency approach zero! In
other words, the formal data weighting suggests that orbit-
derived accelerations are extremely accurate at low frequen-
cies. Of course, such an assumption is not realistic. There
are a number of reasons for accelerations to be inaccurate at
low frequencies such as accelerometer noise and noise in the
reduced-dynamic orbit. Therefore, it makes sense to update
the formal data weighting scheme so that data weights at low
frequencies are kept limited. It can be shown (Ditmar and
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van Eck van der Sluijs 2004) that the factor −ω2 turns into
−[ω2 + (ε/�t)2] if the double differentiation matrix D in
the expression for the data covariance matrix (26) is replaced
with its regularized version D̃:

D̃ = 1

(�t)2




−1 2 + ε2 −1
. . .

. . .
. . .

−1 2 + ε2 −1


 , (27)

where the sign of all the entries is changed in order to make
the matrix D̃ positive-definite [this can be done with impunity
because the matrix D appears in Eq. (26) twice].

To clarify the influence of the parameter ε on data weight-
ing, we find it important to mention that the matrix D̃ has a
pseudo-inverse matrix F in the following sense:
(
D̃D̃T

)−1 ≈ F2 (28)

(Ditmar and van Eck van der Sluijs 2004). The matrix F
is a Toeplitz one, i.e., its application to a vector is nothing
but filtering this vector. The explicit expression for the filter
coefficients fj is:

fj = �t τ

2
e−(|j |�t/τ), (29)

where τ = �t/ε. Obviously, the filter represented by the
matrix F is a low-pass filter with a half-width τ . The extreme
case τ → ∞ (ε → 0) corresponds to the matrix D̃ with
no regularization, i.e., to purely non-correlated noise in posi-
tions. The extreme case τ → 0 (ε → ∞) makes the matrix
D̃ proportional to the unit one (with two extra columns filled
with zeroes):

D̃ −−−−→
τ→0

1

τ 2




0 1 0
. . .

. . .
. . .

0 1 0


 . (30)

This case corresponds to non-correlated noise in accelera-
tions. In processing the CHAMP data under consideration,
the parameter τ has been set equal to 60 s (ε2 = 0.25); see
Sect. 3.2 for more details.

Numerical examples show (Ditmar and van Eck van der
Sluijs 2004) that for a sufficiently short filter (for example,
τ ≤ 600 s), the influence of rotation to/from the CRF in the
covariance matrix of Eq. (26) becomes negligible. For the
extreme case τ → 0, this is obvious. Thus, the final expres-
sion for the data noise covariance matrix Cd can be written
as follows:

Cd = D̃ C(LORF)
y D̃T. (31)

In case of a data set with gaps, the noise covariance matrix
can be obtained from that of Eq. (31) by removing rows and
columns which correspond to discarded epochs (Ditmar and
van Eck van der Sluijs 2004). The matrix C(LORF)

y , which
describes the position accuracy, is assumed to be uninter-
rupted in any case.

In order to apply the inverse covariance matrix C−1
d to a

vector efficiently and accurately, we make use of a low-level

PCCG scheme (Ditmar and van Eck van der Sluijs 2004;
Ditmar et al. 2004). The accuracy of this scheme depends on
how accurately the covariance matrix Cd can be multiplied
with a vector. Fortunately, this is not a problem, even if data
contain gaps (Ditmar and van Eck van der Sluijs 2004). The
numerical efficiency is controlled by the pre-conditioning
operation, where the matrix C−1

d has to be applied to a vector
approximately. To make the pre-conditioning efficient, the
pre-conditioner should deviate from the true matrix as little
as possible. We have found that the inverse covariance matrix
approximated as

C−1
d ≡ F

(
C(LORF)

y

)−1
F (32)

can be used as an extremely efficient pre-conditioner (the
number of PCCG iterations typically remains in the range of
10–20).

It is worth adding that Eq. (32) is, strictly speaking, not
correct from the point of view of linear algebra because matri-
ces F and C(LORF)

y have different sizes. If the data series
is uninterrupted, the number of rows/columns in the latter
matrix exceeds that in the former one by 2; for an interrupted
data set, this difference is even larger. There are, however, no
reasons to worry about this fact because the pre-conditioning
is an approximate operation anyway. In practice, it is enough
just to truncate “spare” rows and columns of matrix C(LORF)

y
in Eq. (32) (in case of an uninterrupted data set, these are the
first and the last column and row).

3 Results

3.1 The optimal gravity field model

Processing of the CHAMP data as outlined above has resulted
in a new Earth’s gravity field model complete up to degree
and order 70, which was called DEOS CHAMP-01C 70. The
key features of the data set and of the processing strategy
exploited are listed in Table 3. The potential coefficients and
other parameters comprising the model are available at the
web-page http://icgem.gfz-potsdam.de/ICGEM/shms/deos
champ-01c.gfc. Furthermore, the necessary information to
supplement the model coefficients is given in Table 4.

Figure 2 shows the difference between the DEOS
CHAMP-01C 70 model on the one hand and two other mod-
els – EGM96 and EIGEN-GRACE01S–on the other hand,
expressed in terms of geoid heights; the latter two models are
truncated at degree 70. Thereafter, we consider the EIGEN-
GRACE01S model (http://www.gfz-potsdam.de/pb1/op/
grace/results/index RESULTS.html) as the “ground truth”
because its accuracy is much higher than that of any model
derived from CHAMP data (except for, may be, degree 2).
It is noteworthy, that our model is much closer to the EI-
GEN-GRACE01S model than to the EGM96, even though
some information in our model definitely originates from the
EGM96 model (this is due to the fact that the EGM96 model
is used as the reference one, whereas the EGM96 covariance
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Table 3 The data set and processing strategy used in the computation of the DEOS CHAMP-01C 70 model

Time interval covered by the observations March 10, 2002 to January 25, 2003
Number of three-component accelerations used 666,581
Reference static gravity field model EGM96
Tides corrected for Astronomic (Moon and Sun), solid Earth, and ocean
Numerical ephemerides (moon and sun) DE405
Love numbers in solid Earth tides modeling PREM
Model of the ocean tides GOT00.2
Load love numbers IERS conventions
Maximum degree and order solved for 70
Parameter τ in the noise model 60 s
Regularization matrix Covariance matrix of the EGM96 model
Regularization parameter (α) 0.03
Time intervals defined for an estimation
of residual accelerometer scale factors and
elimination of a bias 10 days

Table 4 Necessary information to supplement the spherical harmonic
coefficients of the DEOS CHAMP-01C 70 model

Semi-major axis of the 6,378,136.3 m
reference ellipsoid (a)
GM factor 3.986004415 × 1014 m3/s2

Tidal system Tide-free
Reference epoch (middle of the 16 August, 2002
observation interval)
Reference frame ITRF2000 (IGS00 realization)

matrix is utilized as the regularization matrix). Especially
large deviations between the DEOS CHAMP-01C 70 and
EGM96 models are observed in remote areas: Antarctica,
Amazon river basis, and Himalayas, i.e., in the areas which
were hardly studied at the time when the EGM96 model was
assembled (see Fig. 2a). It is interesting that the same geo-
graphical areas show also a relatively big difference between
the DEOS CHAMP-01C 70 and the EIGEN-GRACE01S
models, especially at high spatial frequencies. This is an evi-
dence of a relatively low accuracy of our model in these
areas. Such a behavior is not surprising because recovery of
a gravity field from CHAMP data inevitably introduces some
smoothing. As long as the residual gravity field in the remote
areas is large, the errors caused by smoothing are also more
prominent.

Figure 3 offers other ways to compare the DEOS CHAMP-
01C 70 model with EIGEN-GRACE01S: as cumulative geoid
height differences and as geoid height differences per de-
gree. These differences are remarkably small. In particular,
the cumulative geoid height difference stays below 1 cm up
to degree 20 and below 10 cm up to degree 60.

Furthermore, we have compared the DEOS CHAMP-
01C 70 model with two other recently distributed models that
have been derived from CHAMP data: EIGEN-3p (Reigber
et al. 2005a) and ITG-CHAMP01E (Mayer Gürr et al. 2005).
For all the models, the difference with respect to the EIGEN-
GRACE01S has been computed in terms of geoid heights; all
the models being truncated at degree 70 (Table 5). To obtain
the geoid height differences, we have computed the residual
potential on a regular grid at the reference sphere with radius
of 6,371 km, and then divided it by 9.8 m/s2 . It goes without

saying that the area weights are applied when computing the
RMS differences. It is worth noticing that some authors set
the radius of the reference sphere equal to the equatorial ra-
dius of the Earth. In that case, the geoid height differences
may decrease by a few percents. To make the comparison
more comprehensive, the differences are presented also in
terms of cumulative geoid heights (Fig. 4).

Another way to compare models is to use them for a
numerical integration of a satellite orbit. Such a test was
kindly done for us by P. Visser (DEOS, Delft Technical Uni-
versity). In this test, a high-quality reduced-dynamic orbit
solution (van den IJssel et al. 2003) was used as pseudo-
observations in a purely dynamic orbit determination. These
pseudo-observations are the inertial X, Y and Z coordinates,
sampled at 60-s time interval in daily batches (i.e., 1,441
points per day). The data period covers DOY 140-150 in
2001, which is the period used in the CHAMP IGS LEO or-
bit comparison campaign (http://nng.esoc.esa.de/gps/CH
campaign.html). A dynamic orbit is computed per day. In
total, 13 parameters are estimated: (1) initial state vector
(6 parameters); (2) along-track and cross-track accelerom-
eter bias and scale factor (4 parameters); (3) radial bias + 1
cycle-per-revolution sine/cosine (3 parameters). Three mod-
els have been compared in this way: EGM96, EIGEN-3p,
and DEOS CHAMP-01C 70 (Table 6).

From the comparisons, one can see that DEOS CHAMP-
01C 70 shows less geoid height errors at large degrees than
EIGEN-3p model. This can be explained by the fact that
the EIGEN-3p model, unlike the DEOS CHAMP-01C 70,
was computed independently from EGM96. At intermedi-
ate degrees, the EIGEN-3p model is more accurate. Also, the
orbit integration based on the EIGEN-3p model demonstrates
a higher accuracy. This is not very surprising because the
EIGEN-3p model used more data than our model (3 year vs.
322 days).At low degrees, DEOS CHAMP-01C 70 seems to
have smaller errors in terms of geoid heights than the EIGEN-
3p model. The probable explanation is a proper frequency-
dependent data weighting we apply (see also a discussion
in Sect. 4). The same explanation can probably be used to
explain differences between the DEOS CHAMP-01C 70 and
the ITG-CHAMP01E models.
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Fig. 2 Geoid height difference between the DEOS CHAMP-01C 70 model and a EGM96 (the rms difference is 0.342 m, the maximum difference
is 5.61 m); b EIGEN-GRACE01S (the rms difference is 0.142 m, the maximum difference is 1.29 m)

Table 5 Difference between various gravity field models and the EIGEN-GRACE01S model in terms of geoid heights (a truncation at degree 70
is applied)

Model RMS geoid height Maximum geoid height
difference (m) difference (m)

EGM96 0.36 5.92
EIGEN-3p 0.30 2.98
ITG-CHAMP01E 0.18 1.69
DEOS CHAMP-01C 70 0.14 1.29

3.2 Dependence of the model on empirically determined
parameters

A number of parameters have been chosen empirically when
computing the gravity field model DEOS CHAMP-01C 70.

We found that two of them influence the resulting model
mostly: (1) the parameter τ in the data weighting scheme and
(2) the regularization parameter α. In order to choose these
parameters optimally, a series of models has been produced,
each of which was compared with the EIGEN-GRACE01S.
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Fig. 3 Comparison of the DEOS CHAMP-01C 70 model with EIGEN-GRACE01S (in black): cumulative geoid height differences (solid line)
and geoid height difference per degree (dotted line). Geoid height differences between EGM96 and EIGEN-GRACE01S models (cumulative and
per degree) are shown for a reference (grey lines)

Fig. 4 Comparison of various CHAMP-based models in terms of cumulative geoid height differences with respect to EIGEN-GRACE01S;
EGM96 model is included as a reference. Degree 1 terms in the EIGEN-3p model are ignored

Table 6 Performance of different gravity field models in purely dynamic orbit determination of CHAMP satellite

Gravity Inertial Number Mean fit Rms fit
field model coordinate epochs (cm) (cm)

X 15851 2.74 173.14
EGM96 Y 15851 −4.05 117.36

Z 15851 0.76 128.96
X 15851 −2.65 22.87

EIGEN-3p Y 15851 4.06 17.18
Z 15851 0.01 26.90
X 15851 −2.50 31.96

DEOS CHAMP-01C 70 Y 15851 3.77 25.42
Z 15851 −0.08 40.67

Figure 5 shows the cumulative geoid height differences for
three values of the parameter τ : 60 s, 180 s, and τ → 0. The
latter case corresponds to the matrix D̃ set equal to 1/(�t)2I,
where I is the unit matrix [possibly, with some extra columns
filled with zeroes, cf. Eq. (30)]; in other words, noise in accel-
erations is assumed to be non-correlated in time. Importantly,
each of the shown curves corresponds to the optimally cho-
sen regularization parameter α. RMS and maximum geoid

height differences with respect to the EIGEN-GRACE01S
model for τ equal to 0, 60, 180, 600, and 1,200 s are given
in Table 7. One can seen that the model quality remains rel-
atively high for short τ (including τ → 0) but degrades for
larger τ .

Furthermore, Table 7 shows how the model depends on
the regularization parameter, provided that τ is optimal
(60 s). The comparison in terms of cumulative geoid height
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Fig. 5 Dependence of the gravity field model on the parameter τ in the data weighting scheme (the regularization is optimal): a The (normalized)
filter that approximates the matrix D̃−1 [see Eq. (28)], in the time domain; b cumulative geoid height difference between the computed gravity
field models and EIGEN-GRACE01S. The dotted, solid, and dashed lines correspond to the data weighting with τ → 0, with τ = 60 s (the
optimal model), and with τ = 180 s, respectively

Table 7 Dependence of the model quality on the empirically determined parameters. The table shows rms and maximum geoid height differences
with respect to to EIGEN-GRACE01S model truncated at degree 70

Parameter τ Regularization RMS geoid height Maximum geoid height
in the noise model (s) parameter (α) difference (m) difference (m)

0 (Optimal) 0.143 1.35
60 0.03 (optimal) 0.142 1.29
180 (Optimal) 0.171 1.99
600 (Optimal) 0.254 2.38
1,200 (Optimal) 0.280 2.81
60 0.003 0.199 1.24
60 0.01 0.160 1.06
60 0.1 0.148 1.51
60 0.3 0.170 1.84

differences is presented in Fig. 6. One can see that modest
deviations of the regularization parameter from the optimal
value do not distort the model significantly, whereas larger
deviations (say, more than three times relatively to the opti-
mal values) can make the model rather inaccurate.

3.3 Accelerometer scale factors

As was explained in Sect. 2.7, the gravity field model has been
computed simultaneously with residual accelerometer scale
factors ck(j). We found, however, that the estimated scale
factors are rather sensitive to the data processing strategy

exploited, especially at the radial component. An example of
such a sensitivity is given in Fig. 7 which shows the estimated
scale factors for 3 values of parameter τ (0, 60, and 180 s).
Furthermore, another selection of time intervals at which the
scale factors are assessed (say, once per day) can make these
estimations totally unreasonable. Thus, it is not advisable to
use the proposed data processing technique for computation
of accelerometer scale factors. It is important to notice, how-
ever, that variations of these scale factors practically do not
influence the gravity field model. In the context of gravity
field studies, such a behavior can be considered as an asset
rather than a drawback.
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Fig. 6 Dependence of the gravity field model on the regularization parameter α (τ = 60 s): cumulative geoid height difference between the
computed models and EIGEN-GRACE01S. The dotted, solid, and dashed line correspond to the parameter α equal to 0.003, 0.03, and 0.3,
respectively

Fig. 7 Sensitivity of the computed residual accelerometer scale factors
to the data weighting scheme (a along-track component; b cross-track
component; c radial component). The dotted, solid, and dashed lines
correspond to the parameters τ set equal to 0, 60 s (the optimal model),
and 180 s, respectively

4 Discussion and conclusions

A new gravity field model DEOS CHAMP-01C 70 has been
computed from observed accelerations of the CHAMP

satellite, according to the computational scheme proposed
by Ditmar and van Eck van der Sluijs (2004). This model can
successfully compete with other CHAMP-based models pub-
lished recently. To a large extent, this is due to the fact that our
functional model exploits satellite accelerations rather than
positions (or velocities) of the satellite. Then, even without
putting much efforts into frequency-dependent data weight-
ing, we are able to produce a high-quality model, which is
insensitive to low-frequency noise. In particular, the errors
related to non-gravitational accelerations (e.g., due to inac-
curately determined accelerometer scale factors) fall mostly
in the low-frequency band and therefore do not propagate into
the model. The situation is different when, for example, the
approach based on the integration of variational equations is
applied. In that case, the absence of a frequency-dependent
data weighting means that noise is assumed to be white in
terms of satellite positions. This corresponds to the assump-
tion that noise in accelerations increases proportionally to
the frequency squared. Thus, data at lowest frequencies are
weighted extremely high, and even minor errors at those fre-
quency can distort the model noticeably.A poor quality of our
models produced with a too large parameter τ serves a good
illustration of how over-weighted low-frequency information
can deteriorate a model.

It is worth noticing that an important stage of data pro-
cessing is data screening. In this way, large errors in the kine-
matic orbit can be eliminated. Of course, the data screening
should be done with caution. A too strict threshold in data
screening can remove not only outliers but also good mea-
surements in remote geographic areas, where the reference
model is especially inaccurate (e.g., in Antarctica). To prove
that this does not happen in our case, we have plotted the
geographical location of the epochs discarded (Fig. 8). One
can see that the eliminated points are evenly distributed over
the globe; a correlation with remote areas is not observed.

The functional model we exploit is defined in the LORF.
This offers an easy way to exclude the radial component of
satellite accelerations from gravity field modeling.At the first
glance, this is an attractive option because this component
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Fig. 8 Geographical location of the epochs discarded (a) because the kinematic orbit deviated by more than 50 cm from the reduced-dynamic
one and (b) because a discontinuity in the kinematic orbit has been revealed as explained in section 2.4

suffers from systematic distortions caused by a poor per-
formance of the corresponding accelerometer axis. On the
other hand, the exclusion of the radial component reduces
the amount of input data for gravity field modeling. Even
though the radial component contains less information than
the horizontal ones (this is an intrinsic property of GPS data
reflected also in the stochastic models), a gravity field model
obtained without this component can be somewhat worse. To
see which of the two effects dominates, we have repeated the
data processing as outlined above, but using the along-track
and cross-track acceleration component only. The quality of
the resulting model can be evaluated with Fig. 9. One can see
that at the low degrees elimination of the radial component
improves the gravity field model.At higher degrees, however,
the alternative model is slightly worse. The rms geoid height
difference between the alternative model and the EIGEN-
GRACE01S is 0.144 m, whereas the maximum difference is
1.34 m (compare this with results of 3-component data pro-
cessing: 0.142 and 1.29 m, respectively). Thus, distortions of
the radial accelerations caused by the accelerometer do not
play a significant role. This is one more evidence that the

proposed data processing scheme is not sensitive to acceler-
ometer errors.

Another issue to be discussed is the accuracy of the EI-
GEN-GRACE01S model, which is used as the ground truth
throughout the paper. This model is based on only 39 days of
GRACE data. One may expect, therefore, that at least a part
of the differences between a CHAMP-based and the EIGEN-
GRACE01S models can be explained by an inaccuracy of
the EIGEN-GRACE01S model itself. In order to clarify this
issue, we have compared also the DEOS CHAMP-01C 70
model with EIGEN-CG01C (Reigber et al. 2005b). The latter
is definitely more accurate than EIGEN-GRACE01S because
it is based, in particular, on 200 days of GRACE data. Never-
theless, only negligible changes could be observed in geoid
height differences. In particular, the rms value has decreased
to 0.141 m and the maximum value has increased to 1.30 m.

It is, naturally, annoying that we have to rely on a GRACE-
derived model in order to determine optimally some of the
parameters in the data processing scheme. For this reason,
we work on a further improvement of the processing meth-
odology so that it becomes totally independent of the “ground
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Fig. 9 Processing of horizontal acceleration components only: comparison of the resulting gravity field model with EIGEN-GRACE01S (in
black): cumulative geoid height differences (solid line) and geoid height difference per degree (dotted line). Geoid height differences between
DEOS CHAMP-01C 70 and EIGEN-GRACE01S models (cumulative and per degree) are shown for a reference (grey lines)

truth.” In particular, we study options to improve the stochas-
tic model of data noise. Until now, we relied on the noise
estimations that are distributed together with the kinematic
orbit in the form of a 3 × 3 covariance matrix per epoch.
There are, however, reasons to assume that these estima-
tions are incomplete and/or inaccurate. The first evidence
is a “strange” behavior of the outlier detection procedure,
which screens out only 4% data, though at least 50% must
be screened out for purely statistical reasons, even if there
were no outliers at all. The second evidence is a low value of
the optimal regularization parameter (0.03). It is important
to note that just a scaling of the provided covariance matri-
ces is not enough to improve the stochastic noise model. It
will be necessary, at least, to estimate also the dependence
of noise on frequency. A better knowledge of data noise will
allow us to make the data screening procedure justified bet-
ter and to find the optimal parameter τ in the data weighting
procedure. Furthermore, it will make the introduction of the
“regularization” parameter α not necessary: it will be close to
1 (provided that the covariance matrix of the EGM96 model
is sufficiently accurate).

It will also be important to increase the maximum degree
of the model obtained. The maximum degree of 70, which
has been used so far, is dictated by the fact that the complete
covariance matrix of the EGM96 model exists only up to this
degree. It will be, therefore, important to find the optimal way
to specify the regularization matrix when information about
stochastic properties of the reference model is incomplete.

We have not studied yet if the proposed technique can
be adjusted to provide not only a gravity field model, but
also accurate estimations of accelerometer scale factors. It
is likely that the goal can be reached by switching from the
LORF to the Satellite Body Frame (SBF) in the definition
of the functional model. Then, scale factors ck(j) in Eq. (17)
could be associated with accelerometer axes exactly rather
than approximately. Of course, the question is if the usage of
another frame for the definition of the functional model may

influence the gravity field model itself. In our opinion, this
is unlikely (it could happen if our model were sensitive to
inaccuracies in accelerometer scale factors, but this is not the
case). Furthermore, we do not expect that such a re-defini-
tion of the functional model will change the numerical perfor-
mance of the procedure for computing the (residual) spherical
harmonic coefficients. Differences between the LORF and
the SBF are as small as a fraction of degree and, therefore,
the dominant block-diagonal structure of the normal matrix
is preserved so that the block-diagonal pre-conditioner we
use must not loose its efficiency.
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wintzer P, Tilgner C (1996) CHAMP phase B executive summary.
GFZ, STR96/13, Potsdam
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