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ABSTRACT: A simple deoxygenation reagent prepared 
in situ from commercially available Mo(CO)6 and ortho-
quinone has been developed for the synthesis of indoline 
and indole derivatives. The Mo/quinone complex effi-
ciently deoxygenates carbonyl compounds bearing a 
neighboring dialkylamino group and effects intramolec-
ular cyclizations with the insertion of a deoxygenated 
carbonyl carbon into a C(sp3)–H bond, in which a car-
bonyl group acts as a carbene equivalent. The reaction 
also proceeds with a catalytic amount of Mo/quinone in 
the presence of Me3SiSiMe3 as an oxygen atom acceptor. 

Diazo compounds are convenient precursors of car-
bene species in organic synthesis because dinitrogen 
extrusion takes place easily upon photoirradiation, heat-
ing, or interaction with metals.1 However, the inherent 
explosive and toxic nature of diazo compounds often 
limits their synthetic applications, which has attracted 
much attention to the identification of stable and safe 
surrogates. 2  Carbonyl compounds, sometimes used as 
precursors of diazo compounds, are stable and readily 
available; therefore, they are attractive candidates. How-
ever, they have been scarcely used as carbene equiva-
lents upon deoxygenation in organic synthesis, except a 
few notable examples using stoichiometric reagents such 
as Sm/SmI23  and Zn(Hg)/R3SiCl.4 Meanwhile, the car-
bene generation from carbonyl compounds has attracted 
some attention from the inorganic chemistry community; 
and several transition-metal complexes such as Zr/Fe,5 
Zr/Co,6  W2(OR)6py2,7  and MCl2(PR3)4 (M = Mo, W) 8 
have been reported to be effective for the transformation. 
However, poor stability or tedious preparation of these 
complexes, including the necessity for specially de-
signed ligands5,6 and reduction steps using Na(Hg)6,8 
have hampered their use in organic synthesis.  

We became particularly interested in M(II)Cl2(PR3)4 
complexes (M = Mo, W)8 and envisioned that a low-

valent molybdenum(II) simultaneously possessing Lewis 
acidity and reducing ability would be prepared by the 
partial oxidation of easy-to-handle zero-valent Mo(CO)6 
with ortho-quinone9,10 and that it would remove an oxy-
gen atom from a carbonyl compound in a pull–push 
manner to afford a carbon unit that functions as a car-
bene equivalent (Scheme 1A). This strategy contrasts 
with the widely employed approaches for the generation 
of low-valent active species by reducing the correspond-
ing high-valent metals (Scheme 1B), examples of which 
include the preparation of deoxygenation reagents such 
as MCl4(PR3)n/Na(Hg) (M = Mo, W)8 and WCl6/RLi,11 
often with the concomitant formation of metal salts.12,13 
Our oxidative approach using commercially available 
Mo(CO)6/quinone for the generation of low-valent ac-
tive species is simple and clean without forming such 
byproducts, which may cause undesired side reactions. 

Scheme 1. Deoxygenation of Carbonyl Compounds 
with Low-Valent Molybdenum Prepared by Oxida-
tion of Mo(0) with Quinone. 

To test the hypothesis, we turned our attention to a 
[1,5]-hydrogen shift for the functionalization of C(sp3)–
H bonds.14 The process is accelerated by introducing a 
heteroatom adjacent to the carbon atom and increasing 
the electrophilicity of the acceptor moiety using Lewis 
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acids. N,N-Dialkyl-2-aminobenzaldehydes are typical 
substrates employed in such reactions, and dihydroben-
zoxazine products are obtained through a [1,5]-H 
shift/C–O bond formation sequence (Scheme 2A). We 
considered that the molybdenum/quinone complex, 
which initially acts as Lewis acid to trigger [1,5]-H shift, 
would remove an oxygen atom from I and that a C–C 
bond would form instead of a C–O bond to afford indo-
line derivatives, compounds of importance for medicinal 
chemistry (Scheme 2B).15 The overall process is the in-
sertion of a deoxygenated carbonyl carbon into a C(sp3)–
H bond, in which a carbonyl group acts as a carbene 
equivalent. The same net transformation has been 
achieved by C–H insertion of a diazo-derived carbene, 
but then has required two-step sequences of hydrazone 
formation/base treatment (Scheme 2C). 16 A rhodium-
catalyzed C–H insertion of diazo-derived metal carbene 
has also been recently reported.17 ,18 In continuation of 
our interest in the use of simple molybdenum complexes 
for deoxygenation19 and other transformations,20 we re-
port here that Mo(CO)6 combined with ortho-quinone 
effects transformations such as those described in 
Scheme 2B, which enables the direct use of readily 
available carbonyl compounds as carbene equivalents 
without recourse to high energy diazo compounds. 

 
Scheme 2. Strategies for Intramolecular C(sp3)–H 
Bond Functionalization. 

 
 
A typical reaction procedure is described first (Eq. 1). 

A toluene solution of Mo(CO)6 (1.2 equiv) and 3,5-di-
tBu-1,2-benzoquinone (L1, 1.2 equiv) was heated at 
160 °C for 15 min to form a Mo(CO)n/quinone complex, 
whose intense purple color was suggestive of charge 
transfer from the Mo center to the quinone. 2-(1-
Piperidinyl)benzophenone (1a) was added to the reac-
tion mixture, and heating the solution at 135 °C for 24 h 
afforded indoline 2a as a mixture of diastereomers and 
indole 3a, in 68% and 22% yields, respectively. Use of 

1.0 equiv of Mo/L1 slightly reduced the reaction effi-
ciency to afford the products in 61% (2a) and 18% (3a) 
yields, respectively (Table 1, entry 2). Treatment of the 
crude mixture with p-chloranil afforded 3a as the sole 
product in 83% yield.21 We noticed that the introduction 
of a small amount of air into the reaction mixture after 
the preparation of the Mo/L1 complex slightly improved 
the reaction efficiency when this quinone was used, the 
reason for which remains unclear at the moment22,23 

Brief screening of other commercially available qui-
nones revealed that o-chloranil (L2) and 9,10-
phenanthrenequinone (L3) were less efficient (Table 1, 
entries 3 and 4). The deoxygenative cyclization did not 
proceed at all in the absence of either Mo(CO)6 or qui-
nones, and 1a was largely recovered (entries 5 and 6). 
Consistent with the latter, the reaction efficiency de-
creased when Mo(CO)6, L1, and 1a were mixed at the 
same time (entry 7), highlighting the importance of pre-
complexation of Mo and L1. The 1:1 ratio of Mo/L1 
was found optimal (Table S7). Other Mo(0) precursors 
such as Mo(CO)3(MeCN)3 and Mo(benzene)2 also 
worked,20 while other metal carbonyl complexes such as 
Cr(CO)6, W(CO)6, Mn2(CO)10, and Re2(CO)10 were less 
efficient or ineffective for the transformation  (Table 
S9). 

 
Table 1. Deoxygenative Cyclization of 1a 

 
aThe reaction was performed on a 0.2 mmol scale in toluene (1.0 mL) at 
135 °C for 24 h. b1H NMR yields using 1,1,2,2-tetrachloroethane as an 
internal standard. cMo(CO)6/L1 (1.2 equiv). dIn the absence of Mo(CO)6. 
eMo(CO)6, L1, and 1a were mixed at the same time. 
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The scope of the reaction was investigated under the 
optimized conditions (Table 2). Both an electron-
donating group and a withdrawing group on the benzene 
rings were tolerated, and the corresponding indoles were 
obtained after oxidation of the crude reaction mixture 
containing indolines (entries 1–9). Consistent with the 
reluctance of molybdenum to undergo oxidative addition 
with aryl halides,24 halogen groups remained intact dur-
ing the reaction. While tert-butyl 2-(1-
piperidinyl)phenyl ketone gave indoline 2j (trans only) 
and indole 3j in moderate yields (entry 10), indolines or 
indoles could not be obtained from ketones with a 
smaller alkyl substituent such as a methyl group or 2-(1-
piperidinyl)benzaldehyde because of the decomposition 
of substrates or products to intractable compounds. Ben-
zofused substrates such as 2-naphthyl phenyl ketone 
with a 1-piperidinyl group and benzophenone with a 2-
tetrahydroisoquinolinyl group afforded the tetracyclic 
compounds in good yields (entries 11 and 12). The latter 
substrate underwent a selective C(sp3)–H bond function-
alization at the more reactive benzylic position to afford 
3l as a major product. 4-Substituted piperidinyl groups 
were tolerated, while morpholinyl and piperazinyl     
groups were less efficient (entries 13–16). Ketones pos-
sessing other cyclic amino groups with different ring 
sizes and a noncyclic amino group such as a dibutyla-
mino group also participated in the reaction, although 
modifications of the reaction conditions by replacing L1 
with L2 or L3 and increasing the reaction temperature 
were necessary to obtain the products in reasonable 
yields (entries 17–19). 2-Cylohexylbenzophenone did 
not participate in the reaction and the starting material 
was largely recovered, indicating the importance of a 
nitrogen atom adjacent to a C(sp3)–H bond. 
 
Table 2. Deoxygenative Cyclization with C(sp3)–H Bond 
Cleavage for the Synthesis of Indolesa  

aThe reaction was performed with Mo(CO)6/L1 (1.2 equiv) on a 0.2 mmol 
scale in toluene (1.0 mL) at 135 °C for 24 h, followed by oxidation with p-
chloranil. bIsolated yields. cReaction at 160 °C for 24 h. dThe crude prod-
uct was not treated with p-choranil because of the difficulty in oxidizing 
2j. eA regioisomer, 12-phenyl-6,11-dihydroindolo[1,2-b]isoquinoline (3l’) 
was obtained in 2% yield. fReaction in mesitylene at 180 °C for 72 h. 
gReaction with Mo(CO)6/L3 (1.2 equiv) at 160 °C for 24 h. hReaction with 
W(CO)6/L2 (1.2 equiv) at 160 °C for 24 h. 
 

 
We next attempted the deoxygenative cyclization reac-

tion in a catalytic manner by decreasing the amount of 
the Mo/quinone complex in the presence of an oxygen 
atom acceptor. While phosphines, which we used as a 
reductant for the stereospecific deoxygenation of epox-
ides,19 completely shut off the reaction, the use of a non-
coordinating disilane, Me3SiSiMe3, effected the catalytic 
deoxygenative cyclization with 10 mol% catalyst to af-
ford 2a and 3a in 58% and 6% yields, respectively,25 
which after treatment with p-chloranil afforded 3a as the 
sole product in 51% yield (Eq. 2). The reaction could be 
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similarly performed on 1 gram scale (4.0 mmol of 1a) 
using PhMe2SiSiMe2Ph as a reductant. 

 

 
To confirm that the carbonyl carbon had indeed been 

inserted into a C(sp3)–H bond, decadeuterated substrate 
1b-[d] was subjected to the standard reaction conditions, 
to find almost quantitative transfer of the -D atom to 
the carbonyl carbon (Eq. 3). The result is consistent with 
the mechanistic scenario shown in Scheme 2B. Howev-
er, with the precedent of carbene generation via C=O 
double bond cleavage by related complexes, MCl2(PR3)4 
(M = Mo, W) in mind,8 we cannot yet exclude the reac-
tion path initiated by carbene generation followed by 
insertion into a C(sp3)–H bond (Scheme S3). 
 

 
 

In summary, we found that the Mo(CO)6/quinone rea-
gent, which is easily prepared in situ using commercially 
available compounds without purification or specially 
designed ligands, effects deoxygenative insertion of a 
carbonyl carbon into a C(sp3)–H bond, where the car-
bonyl carbon acts as a carbene equivalent. The deoxy-
genative cyclization also proceeded with a catalytic 
amount of a Mo/quinone complex using Me3SiSiMe3 as 
an oxygen atom acceptor. This new protocol allows the 
direct use of carbonyl compounds as carbene equivalents 
upon deoxygenation and omits the transformation of 
carbonyl groups to hydrazones or related diazo com-
pounds, streamlining the overall process. Further studies 
toward diazo-free syntheses by replacing diazo com-
pounds with carbonyl compounds and mechanistic stud-
ies are in progress. 
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