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Context:Lowbirthweight(LBW)andunhealthydietsareriskfactorsofmetabolicdiseaseincludingtype
2 diabetes (T2D). Genetic, nongenetic, and epigenetic data propose a role of the key metabolic regulator
peroxisome proliferator-activated receptor �, coactivator 1� (PPARGC1A) in the development of T2D.

Objective: Our objective was to investigate gene expression and DNA methylation of PPARGC1A
and coregulated oxidative phosphorylation (OXPHOS) genes in LBW and normal birth weight
(NBW) subjects during control and high-fat diets.

Design, Subjects, and Main Outcome Measures: Twenty young healthy men with LBW and 26
matched NBW controls were studied after 5 d high-fat overfeeding (�50% calories) and after a
control diet in a randomized manner. Hyperinsulinemic-euglycemic clamps were performed and
skeletal muscle biopsies excised. DNA methylation and gene expression were measured using
bisulfite sequencing and quantitative real-time PCR, respectively.

Results: When challenged with high-fat overfeeding, LBW subjects developed peripheral insulin
resistance and reduced PPARGC1A and OXPHOS (P � 0.05) gene expression. PPARGC1A methyl-
ation was significantly higher in LBW subjects (P � 0.0002) during the control diet. However,
PPARGC1A methylation increased in only NBW subjects after overfeeding in a reversible manner.
DNA methylation of PPARGC1A did not correlate with mRNA expression.

Conclusions: LBW subjects developed peripheral insulin resistance and decreased gene expression of
PPARGC1AandOXPHOSgeneswhenchallengedwithfatoverfeeding.Theextenttowhichourfinding
of a constitutively increased DNA methylation in the PPARGC1A promoter in LBW subjects may con-
tribute needs to be determined. We provide the first experimental support in humans that DNA
methylation induced by overfeeding is reversible. (J Clin Endocrinol Metab 95: 3048–3056, 2010)

Individuals born with low birth weight (LBW) are at in-
creased risk of developing insulin resistance, type 2

diabetes (T2D), and the metabolic syndrome later in life

(1). We have previously identified numerous metabolic
abnormalities relevant to the pathophysiology of T2D in
healthy, young LBW men including impaired insulin-stim-
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ulated glucose uptake in the forearm muscle (2), decreased
whole-body insulin-stimulated glycolytic flux (3), hepatic
insulin resistance (3), and changes in muscle and fat insu-
lin-signaling proteins (4, 5). The increased disease suscep-
tibility in LBW subjects has long been speculated to in-
volve epigenetic programming in utero, and recent studies
have provided preliminary evidence of a connection be-
tween maternal nutrition and health on one side and of
DNA methylation in the offspring on the other (6–8).

One of the best characterized epigenetic mechanisms is
DNA methylation, which may affect gene expression (9)
and genome stability (10). DNA methylations occur
throughout the genome but are mostly studied and
thought to be important at CpG dinucleotides, which are
found in high densities and often unmethylated in gene
promoters, referred to as CpG islands (11). DNA methy-
lations are influenced by environmental factors as evident
by diverging epigenetic patterns with increasing age in
monozygotic twin pairs (12), higher DNA methylation
of cytochrome-c-oxidase subunit VIIa polypeptide 1
(COX7A1) (13), and NADH dehydrogenase-1� subcom-
plex, 6 (NDUFB6) in old compared with young subjects
(14) and by a generally higher DNA methylation with
older age of CpG islands across multiple tissues (15).

Decreased expression of peroxisome proliferator-acti-
vated receptor-�, coactivator-1� (PPARGC1A) may
cause insulin resistance by interfering with multiple key
cellular functions including mitochondrial function (16),
lipid oxidation (17), angiogenesis, and microvascular flow
(18) as well as oxidative stress (19). PPARGC1A may also
play a role in regulation of pancreatic insulin secretion
(20). Decreased expression of PPARGC1A and oxidative
phosphorylation (OXPHOS) genes in skeletal muscle has
been observed in some (16, 21, 22), but not all (23), studies
of T2D patients. Recent studies have shown increased pro-
moter DNA methylation and decreased gene expression of
PPARGC1A in both pancreatic islets (20) and skeletal
muscle biopsies (24) from patients with T2D. Importantly,
we have found that decreased expression of PPARGC1A
in skeletal muscle is associated with LBW in elderly, but
not young, twins (25). Another recent study showed that
maternal obesity is associated with DNA methylation of
PPARGC1A in cord blood from the newborn offspring
pointing toward a potential key role of PPARGC1A meth-
ylation in programming of obesity, T2D, and the meta-
bolic syndrome (6).

Recent studies have suggested that epigenetic traits are
influenced by different dietary conditions and interven-
tions including calorie restriction in humans (26). Studies
in rodents have shown that high-fat diets increase DNA
methylation of the leptin promoter (27) and prolong the
presence of DNA methylation in liver and lung tissue after

treatment with a carcinogenic agent (28, 29). A study of
human skeletal muscle cell cultures showed a higher
degree of methylation of PPARGC1A when incubated
with free fatty acids (FFA) (24). Interestingly, sustained
cellular exposure to saturated fatty acids (30) as well as 3 d
intake of a high-fat diet resulted in reduced expression of
PPARGC1A in young men (31).

We hypothesized that young and healthy LBW men
exhibit altered DNA methylation in the promoter region
of PPARGC1A in skeletal muscle as a result of fetal pro-
gramming resembling that seen in patients with overt
T2D. To unmask metabolic abnormalities potentially
conferring susceptibility to T2D in LBW subjects, LBW as
well as normal birth weight (NBW) subjects were studied
both during a control diet as well as after exposure to a diet
high in fat and calories for a 5-d period.

Subjects and Methods

Subjects
Twenty-six healthy, young, lean male volunteers with LBW

(�10th percentile) and 20 subjects with NBW (50–90th percen-
tile) were recruited as previously described (2–4, 32). All subjects
were born at term, and the groups were matched according to age
and body mass index (BMI). The subjects had no family history
of diabetes in two generations, and subjects with a BMI higher
than 30 kg/m2 or a high physical activity level (�10 h/wk) were
excluded. Control in vivo data including muscle OXPHOS gene
expression and metabolic responses to high-fat overfeeding in
NBW subjects (not in LBW subjects) were published previously
(3, 33). The protocol conformed to the Declaration of Helsinki
and was approved by the ethics committee for Copenhagen
County, and all subjects signed an informed consent form.

Experimental protocol
The study was a randomized crossover study, with a washout

period of 6–8 wk, as previously reported for the NBW control
subjects (33). In brief, subjects were examined twice with a hy-
perinsulinemic-euglycemic clamp after intake of a 3-d control
diet including 30% fat (mean 11.9 � 1.1 MJ) and after a 5-d
high-fat overfeeding diet (mean 17.6 � 1.4 MJ) containing 50%
extra calories and 60% fat.

Hyperinsulinemic-euglycemic clamp
The clamp was performed and analyzed as previously de-

scribed (3). A primed continuous infusion of tritiated [3-3H]glu-
cose was initiated at 0 h, and an insulin infusion of 80 mU/
m2 � min was used throughout the 180-min clamp to maintain
euglycemia. Glucose and fat oxidation rates were measured by
indirect calorimetry (34), and basal and insulin-stimulated bi-
opsies were excised from musculus vastus lateralis in 35 of the 46
subjects using a Bergström needle. The tissue was immediately
frozen in liquid nitrogen and stored at �80 C. Body composition
was assessed by dual-energy x-ray absorptiometry scanning (Lu-
nar Radiation, Madison, WI).
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Quantitative real-time-PCR
Total RNA was extracted from the muscle biopsies using TRI

reagent (Sigma-Aldrich, St. Louis, MO). cDNA was synthesized
using QuantiTect reverse transcription kit (QIAGEN, Valencia,
CA). mRNA levels were detected with the ABI 7900 sequence
detection system (Applied Biosystems, Foster City, CA) using gene-
specific probe/primer pairs for NDUFB6 (Hs00159583_m1),
ubiquinol-cytochrome c reductase binding protein (UQCRB)
(Hs00559884_m1), COX7A1 (Hs00156989_m1), ATP synthase,
H� transporting, mitochondrial F1 complex, O subunit (ATP5O)
(Hs00426889_m1), and PPARGC1A (Hs00173304_m1) (Ap-
plied Biosystems). All samples were run in duplicate and the stan-
dard curve approach used for quantification. The transcript quan-
tity was normalized to mRNA levels of cyclophilin A (PPIA)
(4326316E; Applied Biosystems).

DNA methylation
Genomic DNA was extracted collectively with RNA from mus-

cle biopsies and partitioned into a separate fraction for further
processing. Bisulfite conversion was completed using the EZ DNA
methylation kit (Zymo Research, Orange, CA) and amplified using
forward and reverse primers designed by MethPrimer (35). The
PPARGC1A promoter sequence contains four CpG sites and is
identical to that studied by Ling et al. (20) in �-cells from T2D
patients and was located 624–867 bp upstream from the tran-
scription start and amplified using forward primer 5�-TATTTTA-
AGGTAGTTAGGGAGGAAA-3� and reverse primer 5�-
CCCATAACAATAAAAAATACCAACTC-3� (Fig. 1A). We
included NDUFB6 as a control gene because it is not directly

involved in transcriptional activities, is reduced in T2D, and is
possibly regulated by epigenetic factors (14). The NDUFB6
sequence was located 392–611 bp upstream from the transcrip-
tion start and amplified with forward primer 5�-GTTGTTTTTT-
GATTGTTGTATTATAATTTA-3� and reverse primer 5�-
AAAATACCCTAAACAACTATCTCAT-3�. The NDUFB6
sequence contains three CpG sites and one polymorphism creating
a possible methylation site (rs629566, A/G). The amplicons were
visualized after electrophoresis through a 2% ethidium bro-
mide-stained agarose gel. Small fragments were removed by
ExoSAP-IT treatment (USB Corp., Cleveland, OH). DNA
was precipitated with ethanol and sequencing PCR per-
formed using BigDye Terminator version 3.1 cycle sequenc-
ing kit (Applied Biosystems). The samples were sequenced
with the ABI 3130xl genetic analyzer (Applied Biosystems).
Trace files were subject to quality control and analysis using
the ESME software (Epigenomics, Berlin, Germany) (Fig. 1B) (36).

Statistical analysis
Statistical analyses were performed with SAS Statistical Anal-

ysis Package (SAS Institute, Cary, NC; version 8.2). Normality
was evaluated by Kolmogorov-Smirnov’s test and normality
plots. Data are presented as mean � SD or SEM, whenever appro-
priate. Basal and insulin-stimulated gene expression was com-
bined because no effect of insulin on gene expression was ob-
served. Two-sided Student’s t test was used to identify significant
differences between NBW and LBW subjects (unpaired) and be-
tween diets (paired). P � 0.05 was considered significant. Cor-
relations were calculated using Pearson’s correlation coefficient.

FIG. 1. Sequencing of a subset of the PPARGC1A promoter. A, Visualization of the specific section of the promoter region of PPARGC1A, which
was sequenced, stretching from �624 to �867 upstream of the transcription start (arrow). The four CpG sites investigated are marked with a
perpendicular line. B, ESME output file of methylation sites and degree of methylation (site �841, 17%; site �816, 16%; and site �783, 11%,
respectively) in the PPARGC1A promoter. The sample sequence is aligned to a genomic database reference sequence. Methylation sites are
identified by unconverted cytosine (C) bases in the sample sequence.
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Interaction of birth weight and diet was investigated by a normal
mixed model. ESME analysis software version 3.2.1 (Epigenom-
ics, Berlin, Germany) was employed in quality control and anal-
ysis of the methylation data. In brief, ESME align the bisulfite
converted sequence to a reference sequence and provides an av-
erage degree of methylation at each CpG site according to the
fluorescent signal detected from methylated and unmethylated
cytosines. The mean methylations obtained for the same CpG
site using forward and reverse primers were used to express the
CpG site-specific degree of methylation.

Results

Subjects characteristics
The LBW subjects were smaller at birth, had a signifi-

cantly lower final height, and were more abdominally
obese compared with NBW subjects (Table 1), which is in
accordance with previous findings (3). Weight and body
composition were not affected by overfeeding (data not
shown).

In vivo metabolism
The LBW subjects had elevated fasting glucose and in-

sulin levels compared with NBW subjects on the control
diet (Table 2). In response to high-fat overfeeding, both
groups had significantly increased fasting blood glucose
and C-peptide levels (NBW only) and decreased FFA lev-
els, whereas there were no changes in serum insulin. As
previously published, LBW and NBW subjects had a sim-
ilar degree of peripheral insulin action (M-value) after the
control diet (3). Likewise, basal and insulin-stimulated
rates of whole-body fat and glucose oxidation (Table 2)
and hepatic glucose production were similar in the two
groups on the control diet (3). Nevertheless, in contrast to
the NBW subjects (33), the LBW subjects developed a
significant deterioration of peripheral insulin action (Ta-
ble 2), when exposed to 5 days of overfeeding. Moreover,

the LBW subjects showed an increased rate of insulin-
stimulated fat oxidation after overfeeding, which was also
higher than the NBW subjects during both the control and
overfeeding diet. In other words, the high-fat overfeeding

TABLE 1. Subject characteristics of the NBW and LBW
groups at baseline (control diet)

NBW LBW
Birth weight (g) 3893 � 207 2688 � 269c

Age (yr) 24.6 � 1.0 24.2 � 0.5
Height (m) 1.83 � 0.07 1.77 � 0.05b

Weight (kg) 78.3 � 9.1 77.7 � 10.9
BMI (kg/m²) 23.4 � 2.4 24.8 � 3.7
Trunk fat mass/total

fat mass (g)
0.50 � 0.04 0.53 � 0.04a

Leg fat mass/total
fat mass (g)

0.37 � 0.04 0.34 � 0.03a

Trunk fat mass/total
fat mass (%)

1.09 � 0.18 1.23 � 0.17a

Data are mean � SD.
a-c NBW (n � 26) vs. LBW (n � 20): a P � 0.05; b P � 0.01; c P � 0.001.

TABLE 2. In vivo data from the hyperinsulinemic-
euglycemic clamp examination including glucose, insulin,
and C-peptide concentrations and metabolic flux data
after the control and overfeeding diet

Diet NBW LBW
Fasting (baseline)

Blood glucose (mmol/liter)
Control 4.59 � 0.46 4.96 � 0.46a

Overfeeding 5.05 � 0.40c 5.18 � 0.33b

Serum insulin (pmol/liter)
Control 30.9 � 14.1 40.7 � 14.4a

Overfeeding 43.4 � 29.2 42.9 � 18.8
Serum C-peptide (pmol/liter)

Control 408 � 146 483 � 118
Overfeeding 521 � 269b 530 � 174

Plasma FFA (mmol/liter)
Control 334 � 136 401 � 190
Overfeeding 205 � 82c 188 � 91c

Glucose oxidation (mg/kg
FFM � min)

Control 2.41 � 0.83 1.96 � 0.74
Overfeeding 2.43 � 0.90 2.20 � 0.56

Fat oxidation (mg/kg
FFM � min)

Control 0.98 � 0.39 1.12 � 0.51
Overfeeding 0.94 � 0.39 1.17 � 0.33a

Insulin stimulated (clamp)
Blood glucose (mmol/liter)

Control 5.11 � 0.31 5.06 � 0.30
Overfeeding 5.17 � 0.30 5.07 � 0.30

Serum insulin (pmol/liter)
Control 870 � 232 816 � 114
Overfeeding 867 � 181 842 � 125

Serum C-peptide (pmol/liter)
Control 406 � 279 366 � 120
Overfeeding 453 � 195 390 � 143

Plasma FFA (mmol/liter)
Control 9.3 � 4.4 9.6 � 4.8
Overfeeding 12.4 � 6.4 14.4 � 7.8b

M-value (mg/kg FFM � min)
Control 13.73 � 2.32 13.43 � 2.98
Overfeeding 13.29 � 3.32 11.89 � 3.57b

Glucose oxidation (mg/kg
FFM � min)

Control 5.18 � 0.80 4.89 � 0.93
Overfeeding 4.83 � 1.34 4.74 � 0.82

Fat oxidation (mg/kg
FFM � min)

Control 0.02 � 0.25 0.14 � 0.44
Overfeeding 0.15 � 0.29 0.37 � 0.34a,b

Data are mean � SD and are shown for NBW (n � 26) vs. LBW
(n � 20) subjects. FFM, Fat-free mass.
a Significant differences between NBW and LBW subjects at P � 0.05.
b,c Paired comparisons between control and overfeeding include n �
25 (NBW) and n � 18 (LBW) subjects. Significant differences between
the control and overfeeding diet are indicated as follows: b P � 0.05;
c P � 0.001.
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challenge unmasked a selective risk of developing insulin
resistance and elevated fat oxidation in only the LBW
subjects.

Gene expression
The NBW and LBW subjects had similar gene expres-

sion on the control diet (Fig. 2A). When exposed to high-
fat overfeeding, mRNA levels of NDUFB6, UQCRB, and
ATP5O (all P � 0.02) as well as of PPARGC1A (P � 0.05)
were significantly lower by approximately 25% in skeletal
muscle from LBW compared with NBW subjects (Fig. 2B).
A similar trend was observed for COX7A1 (P � 0.12)
(Fig. 2B). The difference arose as the NBW subjects
showed a trend toward higher expression after the over-
feeding diet, being statistically significant only for
NDUFB6 (P � 0.04) (Fig. 2C), whereas the LBW subjects
remained unchanged with a tendency toward decreased
expression (Fig. 2D). The dietary intervention was per-
formed in a randomized crossover manner, enabling us to
document reversibility of changes of gene expression in-
duced by the high-fat diet. We were, however, unable to
identify any reversibility of gene expression induced by
the overfeeding diet of either PPARCG1A or OXPHOS
genes (data not shown). OXPHOS genes are considered to
be tightly regulated by PPARGC1A, which was supported
by significant positive correlations between PPARGC1A
and the OXPHOS genes during both the control (r �
0.56–0.83, P � 0.01) and overfeeding (r � 0.50–0.63;
P � 0.01) diets. As previously published (3), skeletal mus-

cle PPARGC1A and OXPHOS mRNA expression was
similar in the two groups during the control diet (Fig. 2A).
The gene expression level of PPARGC1A as well as of the
OXPHOS gene did not correlate with whole-body insulin
action (M-value) or with the rates of glucose or fat oxi-
dation, as assessed during either the basal or the insulin-
stimulated state.

DNA methylation
DNA methylation was investigated in the promoter re-

gion of PPARGC1A at four CpG sites (Fig. 1A). The mean
DNA methylation was significantly higher in the LBW
than NBW subjects after the control diet (P � 0.0002).
The differences between NBW and LBW subjects were
significant at three CpG sites during the control diet (Fig.
3A) (site �841: 32%, P � 0.05; site �816: 59%, P �
0.001; site �783: 59%, P � 0.008; site �652: 41%, P �
0.42). Measures of the fourth CpG site (�652) were
obtained for only half of the subjects, resulting in a less
powerful analysis. When exposed to overfeeding, meth-
ylation of PPARGC1A increased in the NBW only, and
the differences between the groups were subsequently at-
tenuated (Fig. 3B). The change in methylation during over-
feeding in NBW subjects reached statistical significance
for two CpG sites (site �841: 30%, P � 0.01; site �816:
31%, P � 0.10; site �783: 43%, P � 0.008; site �652:
6%, P � 0.93) (Fig. 3C). The LBW subjects showed similar
PPARGC1A methylation during the two diets (Fig. 3D).
When investigating the reversibility of the DNA methyl-
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ation induced by the high-fatdiet,wewereable todocument
a significant reduction of methylation in NBW subjects that
were first studied after overfeeding and subsequently
shifted to the control diet (P � 0.03) (Fig. 3, E and F).
Furthermore, a highly statistical significant interaction of
birth weight group by dietary intervention affected DNA
methylation (P � 0.009), strongly supporting the idea
that the difference in methylation responses to the two
diets was dependent on birth weight. Interestingly,
NDUFB6 was methylated to a much higher degree (81 �
11%) than PPARGC1A (10 � 2%), and no methylation
changes were observed for NDUFB6 in relation to the
birth weight or diet intervention (Fig. 4, A–D). Limited
data were obtained for the CpG site (�418) in NDUFB6,
containing the polymorphism rs629566, that indicate a low
occurrence of G at the A/G polymorphism site. We observed
no significant correlations between DNA methylation

and gene expression of PPARGC1A or
NDUFB6. Furthermore, no statistical
significant correlations between the
levelofDNAmethylationofPPARGC1A
or of NDUFB6 with basal or insulin-
stimulated in vivo metabolism includ-
ing the M-value was observed in any of
the study groups before or after over-
feeding (data not shown).

Discussion

Several findings of potential impor-
tance for understanding the mecha-
nisms by which both the prenatal
(LBW) as well as postnatal (high-fat
overfeeding) environments interact to
cause insulin resistance and eventually
T2D were observed in this study. First,
young and otherwise healthy LBW sub-
jects but not NBW controls developed
peripheral insulin resistance and a dis-
proportionately elevated lipid oxida-
tion rate after exposure to 5 d of high-
fat feeding. Second, the LBW subjects
had elevated DNA methylation of the
PPARGC1A promoter at baseline, and
the mRNA expression of PPARGC1A
and coregulated OXPHOS genes was
reduced in LBW subjects when chal-
lenged by the high-fat overfeeding diet.
Finally, we found that short-term high-
fat feeding increased DNA methylation
of PPARGC1A in a reversible manner
in the NBW subjects only. The extent

towhich the constitutively elevatedPPARGC1Apromotor
methylation may be involved in, or responsible for, the dif-
ferential development of insulin resistance as well as de-
creased expression of PPARGC1A and OXPHOS genes in
theLBWsubjectsduringoverfeedingremainstobedetermined.

Recently, increased DNA methylation of PPARGC1A
in pancreatic �-cells as well as in muscle biopsies from
T2D patients was reported (20, 24), which was speculated
to be involved in the reduced tissue gene expression of
PPARGC1A and subsequently in the development of im-
paired insulin secretion and action in T2D patients. Epi-
genetic alterations observed in LBW subjects at increased
risk of developing T2D could therefore reflect DNA
methylation remnants established during fetal life, pos-
sibly affecting tissue development in organs relevant to
T2D pathophysiology during phases with active cell di-
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visions. Importantly, this study shows that the exact same
PPARGC1A CpG sites reported to be more highly meth-
ylated in pancreatic �-cells from T2D subjects (20) are
methylated to a higher extent in young and lean LBW
compared with NBW subjects when studied during an
isocaloric control diet.

Our finding that 5 d of high-fat overfeeding caused an
increased DNA methylation of PPARGC1A in muscle tis-
sue of NBW subjects is in accordance with the recent re-
port of increased DNA methylation of PPARGC1A after
48 h fatty acid exposure in cultured muscle cells (24). In
light of these findings, the coordinated changes in DNA
methylation across all CpG sites after the overfeeding diet
may reflect a more widespread genome-wide response, at
least in promoter regions that are responsive to methyl-
ation changes. We cannot exclude the possibility that
short-term diet-induced methylation, in contrast to a long-
term and more constitutive methylation, may exert some
beneficial cellular effects as a part of a normal physiolog-
ical response involved in the day-to-day regulation of
mechanisms influenced by the diet. Short-term methyl-
ation (and potentially corresponding gene expression)
changes of PPARGC1A could for example relate to pro-
tection of the cell against futile OXPHOS and ATP syn-
thesis and, with that, the generation of free radicals and
oxidative stress (19). It remains to be determined whether
diet-induced DNA methylation becomes more permanent
with longer exposures to a high-fat diet. If so, this could
contribute to the notion of a general increase of DNA
methylation with age (12) and/or reduced longevity asso-
ciated with chronic high-energy diet intake (37). The ob-

served reversibility of the DNA meth-
ylation induced by 5 d of high-fat
overfeeding in the NBW subjects is an-
other novel finding, which theoretically
could be essential for biological signals
to function and thereby in a dynamic
fashion respond to changing physiolog-
ical cues (38). In contrast, the constitu-
tively increased DNA methylation of
PPARGC1A in LBW subjects indicates
a lower sensitivity to environmental
challenges such as high-fat feeding. The
extent to which such metabolic inflex-
ibility in terms of acute regulation of
DNA methylation may contribute to an
increased risk of T2D in LBW subjects
remains uncertain.

We determined mRNA expression of
PPARGC1A and coregulated OXPHOS
genes to establish whether a functional
significance of LBW, high-fat overfeed-
ing and/or of DNA methylation per se

could be identified. Although DNA methylation of the
PPARGC1A promoter was elevated in LBW subjects al-
ready during the control diet, we found no difference in
PPARGC1A or OXPHOS gene expression between the
two groups, and no correlation between DNA methyl-
ation and gene expression was observed. However, when
challenged with high-fat overfeeding, the expression of
PPARGC1A and OXPHOS genes was decreased in LBW
compared with NBW subjects. In other words, the high-fat
diet unmasked a disproportionately reduced expression of
PPARGC1A as well as a panel of OXPHOS genes that
previously were reported to be down-regulated in skeletal
muscle obtained from patients with overt T2D in some
studies (16, 21, 22). Thus, metabolic challenges such as
high-fat diets and/or exercise experiments (39) may be
required to unmask significant down-regulation of genes
including PPARGC1A relevant to metabolic control and
insulin action. Following this line of thinking, it may help
understanding and accepting that the degree of DNA
methylation may not necessarily correlate with the level of
gene expression during nonchallenged resting states.
Sparks et al. (31) reported down-regulation of
PPARGC1A and OXPHOS genes after a 3-d high-fat diet
in healthy young men. However, they did not stratify for
birth weight, and the subjects may have consumed high-fat
diets for even longer periods of time.

Another novel finding in this study was the differential
development of peripheral insulin resistance and a dispro-
portionately elevated fat oxidation rate in LBW but not in
NBW subjects when exposed to a high-fat diet. This pro-
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vides further support of LBW representing a significant pre-
diabetic state. However, the extent to which differen-
tial DNA methylation and/or reduced expression of
PPARGC1A and OXPHOS genes are related in a potential
causal manner to the development of peripheral insulin re-
sistance in the LBW subjects after high-fat overfeeding re-
mains to be elucidated. Indeed, and in contrast to previous
studies of PPARGC1A methylation in patients with overt
T2D (20, 24), we were unable to demonstrate significant
correlations between skeletal muscle PPARGC1A methyl-
ation on one side and PPARGC1A mRNA expression on
the other side. This may be explained by a too short duration
of the excess methylation in the NBW subjects to exhibit any
functional impact as well as the notion that some regions of
the gene promoter could be more or less accessible to the
binding of transcription factors (e.g. due to histone acetyla-
tion). Another explanation for the lack of correlation be-
tween DNA methylation and gene expression may be that
DNA methylation of genes such as PPARGC1A influence
gene expression and organ development during fetal life
primarily or exclusively and that little functional impact of
altered DNA methylation, at least for some genes, may be
operating in the fully developed adult subjects. Poor corre-
lations between degree of DNA methylation and gene ex-
pression for most genes was also reported in the Human
Epigenome Project (40) as well as in a recently published
study on calorie restriction (26), supporting the lack of cor-
relations in the current study.

The constitutively elevated DNA methylation of
PPARGC1A, but not of NDUFB6, in the LBW subjects
demonstrates some degree of gene specificity of epigenetic
programming in LBW subjects. Recent observations
showed that offspring of mothers periconceptionally ex-
posed to famine had lower methylation of several genes
including IGF2 in their adult life than their unexposed,
same-sex siblings, supporting our current finding that ear-
ly-life conditionsmay indeedcause epigenetic changesper-
sisting throughout life (7, 8).

In conclusion, our data demonstrate increased DNA
methylation in the promoter region of PPARGC1A in
skeletal muscle of young and otherwise healthy LBW sub-
jects when studied on a control diet. Furthermore, we pro-
vide the first experimental support in humans that DNA
methylations are induced by high-fat overfeeding in a re-
versible manner only in NBW control subjects. The extent
to which a constitutively elevated DNA methylation of
PPARGC1A contributes to the novel finding of a differ-
ential development of peripheral insulin resistance and
decreased gene expression of PPARGC1A and co-regu-
lated OXPHOS genes in LBW subjects during high-fat
overfeeding, as well as to the later risk of metabolic disease
including T2D in LBW subjects, remains to be determined.
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