
 Open access Proceedings Article DOI:10.1109/DASC.1990.111267

DEPEND: a design environment for prediction and evaluation of system
dependability — Source link

Kumar K. Goswami, Ravishankar K. Iyer

Institutions: University of Illinois at Urbana–Champaign

Published on: 15 Oct 1990 - IEEE/AIAA Digital Avionics Systems Conference

Topics: Dependability, Fault injection, Fault tolerance, Component-based software engineering and Application software

Related papers:

 Reliability of fault tolerant control systems: Part I

 FIAT-fault injection based automated testing environment

 An Approach to Improving Reliability for Distributed Video-Based Monitoring Systems

Reliability growth modeling and optimal release policy under fuzzy environment of an N-version programming
system incorporating the effect of fault removal efficiency

 Control reconfiguration in the presence of software failures

Share this paper:

View more about this paper here: https://typeset.io/papers/depend-a-design-environment-for-prediction-and-evaluation-of-
g1ymijncoa

https://typeset.io/
https://www.doi.org/10.1109/DASC.1990.111267
https://typeset.io/papers/depend-a-design-environment-for-prediction-and-evaluation-of-g1ymijncoa
https://typeset.io/authors/kumar-k-goswami-nrwmrtgyao
https://typeset.io/authors/ravishankar-k-iyer-5f7udbgwpp
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/conferences/ieee-aiaa-digital-avionics-systems-conference-3gma0yq5
https://typeset.io/topics/dependability-23csuu5f
https://typeset.io/topics/fault-injection-fe2nxgxf
https://typeset.io/topics/fault-tolerance-2dix0nz6
https://typeset.io/topics/component-based-software-engineering-34zosnte
https://typeset.io/topics/application-software-rtpf67xb
https://typeset.io/papers/reliability-of-fault-tolerant-control-systems-part-i-1slsq3vtka
https://typeset.io/papers/fiat-fault-injection-based-automated-testing-environment-26z7q3jra7
https://typeset.io/papers/an-approach-to-improving-reliability-for-distributed-video-2ly525i1zi
https://typeset.io/papers/reliability-growth-modeling-and-optimal-release-policy-under-5wsf84svha
https://typeset.io/papers/control-reconfiguration-in-the-presence-of-software-failures-3wlagsx0u4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/depend-a-design-environment-for-prediction-and-evaluation-of-g1ymijncoa
https://twitter.com/intent/tweet?text=DEPEND:%20a%20design%20environment%20for%20prediction%20and%20evaluation%20of%20system%20dependability&url=https://typeset.io/papers/depend-a-design-environment-for-prediction-and-evaluation-of-g1ymijncoa
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/depend-a-design-environment-for-prediction-and-evaluation-of-g1ymijncoa
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/depend-a-design-environment-for-prediction-and-evaluation-of-g1ymijncoa
https://typeset.io/papers/depend-a-design-environment-for-prediction-and-evaluation-of-g1ymijncoa

J u ly 1990 U I L U - E N G -9 0 -2 2 2 8

C S G -1 2 7

C O O R D I N A T E D S C I E N C E L A B O R A T O R Y

College o f Engineering

D E P E N D : A D E S I G N
E N V I R O N M E N T
F O R P R E D I C T I O N
A N D E V A L U A T I O N
O F S Y S T E M
D E P E N D A B I L I T Y

K u m a r K . G o s w a m i

R a v i s h a n k a r K . I y e r

U N I V E R S I T Y O F I L L I N O I S A T U R B A N A - C H A M P A I G N

A pproved for Public R elease. D istribution U nlim ited.

i f c C U K I i r V»L>0 3 i r i 0 » u v j n y j r m u r w u c

REPORT D O CU M EN T A T IO N PAGE
Form Approved
OMB No* 0704-0184

u . REPORT secur it y cl assif icat ion

Un c l a s s i f i e d

1b. RESTRICTIVE MARKINGS

N o n e

2a. SECURITY CLASSIFICAT ION AUTHORIT Y

2b. DECLASSIFICATION / DOW NGRADING SCHEDULE

3 . DIST RIBUT ION/ AVAILABILIT Y OF REPORT

Approved for public release;
distribución unlimited

4. PERFORMING ORGANIZAT ION REPORT NUMBER(S)

UILU-ENG-9 0 -2 2 2 8 (CSG 127)

S. MONIT ORING ORGANIZAT ION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZAT ION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If sppilcebie)

___ N/ A

7a. N AME OF MONIT ORING ORGANIZAT ION

NASA and JSEP

6 c ADDRESS (C/ ty, Sfata, and ZIP Cod«)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS {Gty. Staff , end ZIP Code)

NASA Lan gle y Re se ar ch Ce n t e r , Hampton, VA

23665 and A r l i n gt o n , VA 22217

8a. NAME OF FUNDING / SPONSORING
ORGANIZAT ION

NASA JSEP

8b. OFFICE SYMBOL
(If eppUcebte)

9. PROCUREMENT INST RUMENT IDENTIFICATION NUMBER

NASA: NAG-1 -6 1 3

JSEP: NQQ0 14 -9 Q-J-1 27 0_ __ __ __ __ __ _ _

8 c ADDRESS (Ot y, Stata, and ZIP Cod«)

NASA Lan gle y

10. SOURCE OF FUNDING NUMBERS

JSEP PROGRAM PROJECT T ASK

23665 A r l i n gt o n , VA
ELEMENT NO. NO. NO.

22217

W ORK UNIT
[ACCESSION NO.

11. TITLE (Indud« Security Qessifketion)

"DEPEND: A De sign Environm e nt f o r Pr e d ic t io n and Ev a lu a t io n o f Syste m D e p e n d a b i l i t y "

12. PERSONAL AUT HOR(S)

Kumar K. Goswami and Ra v ish a n k a r K. Iy e r

13a. TYPE OF REPORT

Technical

13b. T IME COVERED

F RO M _____ TO

14. DATE OF REPORT (Y«*r, Month, D«y)

19 90 July______________

IS. PAGE COUNT

15

16. SUPPLEMENT ARY NOT ATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT T ERMS (Continu« on reverse If necessery an d identify by block numb«r)

f a u l t - t o l e r a n c e , d e sign , e v a lu a t io n , sim u la t io n ,

f a u l t - i n j e c t i o n , d i st r i b u t e d syst e m s

19. ABST RACT (Continue on reverse if necessery a n d identify by block number)

T h i s p a p e r d e s c r i b e s t h e d e v e l o p m e n t o f D E P E N D , a n i n t e g r a t e d s i m u l a t i o n

e n v i r o n m e n t f o r t h e d e s i g n a n d d e p e n d a b i l i t y a n a l y s i s o f f a u l t - t o l e r a n t s y s t e m s .

D E P E N D m o d e l s b o t h h a r d w a r e a n d s o f t w a r e c o m p o n e n t s a t a f u n c t i o n a l l e v e l ,

a n d a l l o w s a u t o m a t i c f a i l u r e i n j e c t i o n t o a s s e s s s y s t e m p e r f o r m a n c e a n d r e

l i a b i l i t y . I t r e l i e v e s t h e u s e r o f t h e w o r k n e e d e d t o i n j e c t f a i l u r e s , m a i n t a i n

s t a t i s t i c s a n d o u t p u t r e p o r t s . T h e a u t o m a t i c f a i l u r e i n j e c t i o n s c h e m e i s g e a r e d

t o w a r d e v a l u a t i n g a s y s t e m u n d e r h i g h s t r e s s (w o r k l o a d) c o n d i t i o n s . T h e f a i l

u r e s w h i c h a r e i n j e c t e d c a n a f f e c t b o t h h a r d w a r e a n d s o f t w a r e c o m p o n e n t s . T o

i l l u s t r a t e t h e c a p a b i l i t y o f t h e s i m u l a t o r , a d i s t r i b u t e d s y s t e m w h i c h e m p l o y s a

p r e d i c t i o n - b a s e d , d y n a m i c l o a d - b a l a n c i n g h e u r i s t i c i s e v a l u a t e d . E x p e r i m e n t s

a r e c o n d u c t e d t o d e t e r m i n e t h e i m p a c t o f f a i l u r e s o n s y s t e m p e r f o r m a n c e a n d ,

t o i d e n t i f y t h e f a i l u r e s t o w h i c h t h e s y s t e m i s e s p e c i a l l y s u s c e p t i b l e .

20. DIST RIBUT ION/ AVAILABILIT Y OF ABST RACT

SU N CLASSIF IED/ U N LIM IT ED □ SAME AS RPT. □ DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICAT ION

Unclassified

22b. TELEPHONE (Indud« Ar t a Cod«) 22c. OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions ere obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

D E P E N D :

A D e s i g n E n v i r o n m e n t f o r P r e d i c t i o n a n d E v a l u a t i o n o f S y s t e m D e p e n d a b i l i t y

Kumar K. Goswami Ravishankar K. Iyer

July 1990

C e n t e r f o r R e l i a b l e a n d H i g h P e r f o r m a n c e C o m p u t i n g

C o o r d i n a t e d S c i e n c e L a b o r a t o r y

U n i v e r s i t y o f I l l i n o i s a t U r b a n a - C h a m p a i g n

U r b a n a , I L 6 1 8 0 1

U S A

A b s t r a c t

This paper describes the developm ent o f DEPEND, an integrated sim ulation environm ent for the design

and dependability analysis o f fault-tolerant systems. DEPEND models both hardw are and software

com ponents at a functional level, and allows automatic failure injection to assess system perform ance

and reliability. It relieves the user o f the woric needed to inject failures, m aintain statistics and output

reports. T he autom atic failure injection schem e is geared toward evaluating a system under high stress

(workload) conditions. The failures w hich are injected can affect both hardw are and software com

ponents. To illustrate the capability o f the sim ulator, a distributed system w hich em ploys a prediction-

based, dynam ic load-balancing heuristic is evaluated. Experim ents are conducted to determ ine the

im pact o f failures on system perform ance and, to identify the failures to w hich the system is especially

susceptible.

K e y w o r d s : Fault-tolerance, Design, Evaluation, Sim ulation, Fault-Injection Distributed Systems.

2

1 . I n t r o d u c t i o n

The application o f com puters in com mercial, military, health and industrial environm ents has increased

rapidly and along w ith it has risen the need for these com puters to be reliable and offer high perfor

m ance. Tools are now needed to assist in the design and dependability analysis o f reliable computer

systems. Currently there are a few tools which allow some autom ated design and evaluation. Analyti

cal tools like SHARPE [Sahner 87], SAVE [Goyal 86], and M ET AS AN [Sanders 86] have been in use

for some time. R ecent research has been directed tow ard the creation o f sim ulators and test environ

ments. For exam ple, FIA T [Segall 88] is a testing environm ent w hich is designed to inject errors into a

software application in order to validate error detection and recovery m echanism s. OODRA [Hwang

89] is a visually-oriented workbench that is used for evaluating the perform ance and reconfiguration

capabilities o f highly concurrent application specific architectures. FOCUS [Choi 89] is a hierarchical

m ixed-m ode sim ulator that is used to evaluate the fault-tolerance and reliability o f VLSI systems with

specific em phasis on transient errors. In [Kubiak 89], the authors describe an event-driven sim ulator

called GRACE and use it to study the dependability o f a bit-serial processing elem ent.

This paper describes the developm ent o f DEPEND, an integrated sim ulation environm ent for the

design and dependability analysis o f fault-tolerant systems. D EPEND models both hardware and

software com ponents at a functional level, and allows autom atic failure injection to assess system per

form ance and reliability. Com plex hardw are/software interactions can also be studied. The environm ent

is designed to expedite and sim plify the process o f simulating a fault-tolerant architecture. It relieves the

user o f the w ork needed to inject failures, m aintain statistics and output reports. The autom atic failure

injection schem e is geared tow ard evaluating a system under high stress (workload) conditions. The

failures w hich are injected can affect both the hardware and the software com ponents. To illustrate the

capability o f the simulator, a distributed system which em ploys a prediction-based, dynam ic load-

balancing heuristic is evaluated. Experim ents are conducted to determ ine the im pact o f failures on sys

tem perform ance and, to identify the failures to which the system is especially susceptible.

2 . T h e D E P E N D S i m u l a t i o n T o o l

In DEPEND a library o f objects is used to simulate hardware com ponents (e.g., CPUs, com m uni

cation channels and disks). The fault-tolerant characteristics o f an object are specified by the user. The

3

degradation), the type o f failures injected (perm anent or transient) and the m ethod by which failures are

injected. Each object contains routines w hich automatically inject failures, m aintain a record o f all

failures injected, keep error statistics (e.g., m ean tim e betw een failures) and output reports. The

software com ponents are m odeled by C++ routines written by the user.

The sim ulation environm ent is shown in Figure 1. It is based on CSIM [Schwetman 86] which is

a process-based sim ulation language written in C. The user sees an object-oriented interface because the

DEPEND library is written in C++. The sim ulator contains a view ing system called PARAGRAPH,

which graphically displays the key perform ance indicators during a simulation [Lee 89]. Both actual

program s o r trace files from actual workloads can be used in the simulations. The next subsection

F i g u r e 1 . T h e D E P E N D s i m u l a t i o n e n v i r o n m e n t .

4

describes the m ain objects defined in the DEPEND library.

2 . 1 T h e O b j e c t s

The m ost basic object in the DEPEND library is called Basic_svr. This object is used to simulate

servers like CPUs and disks and it is also used to build more com plex objects. Basic_svr consists of

m ethods which can be invoked by a user to simulate the functions o f a server, inject failures and repair

servers. For exam ple, the Fault 0 m ethod is used to inject a failure into a server. Both transient and

perm anent failures can be injected. W hen a server is injected with a failure it becom es inoperative, (i.e.,

all processes using the server are deleted and no others are accepted until the server is repaired). In

addition, event flags associated with the server are set to notify the user o f a change in the server’s

status. These event flags can be m onitored by calling m ethods like, w a i tJ o r J a u l t () and

wa itJo r_ repa ir Q and then can be used to trigger remedial action such as reconfiguration. The

No J a u l t () method is used to repair a server o r its spare (for stand-by redundancy). By controlling the

time betw een a call to Fault 0 and No J a u l t 0, the duration o f a failure can be controlled. The reserve (),

use () and release () m ethods are used to sim ulate the acquisition, use and release o f a server. In addition

to these m ethods, there are m any others w hich allow the user to check the server’s status and acquire

perform ance m easurem ents like the server’s utilization, queue length and throughput. M ore complex

objects like the Distributed_system objects and the Communication_channel objects are built using

Basic_svr objects.

A Distributed_system object sim ulates a distributed set o f processors. This object does not specify

the connectivity o f these processors. The connectivity is specified by Network objects w hich are used in

conjunction w ith the Distributed_system object. A Distributed jy s tem object consists o f m any instances of

Basic_svr and a set o f failure injection routines. The instances o f Basic svr are used to sim ulate the pro

cessors. The failure injection routines automatically inject transient and perm anent failures into the pro

cessors based on the specifics o f the injection strategies described in Section 2.2. These routines are also

responsible for m aintaining a record o f all injected failures and for keeping perform ance measurements.

They also provide a full report o f all injected failures, (e.g., where and w hen failures were injected, the

m ean tim e betw een failures and the m ean failure/recovery duration).

A Network object is used to define the connectivity o f the processors in a Distributed_system . A

Communication_channel object is a type o f a Network object w hich simulates a single bus comm unication

5

channel. It consists o f a Basic_svr object (to simulate the com m unication channel), several Port objects

(to simulate the I/O ports) and failure injection routines. Currently, three types o f channel failures can

be simulated. The first sim ply m akes the Communication_channel inoperative, (i.e., no messages can be

sent via the channel). The second causes the com m unication channel to occasionally lose messages.

The third failure type causes the channel to intermittently corrupt m essages. The latter two failure types

simulate a ’no isy’ com m unication channel.

2 . 2 T h e F a u l t I n j e c t i o n S c h e m e s

Three fault injection strategies are currently available in DEPEND. All three are incorporated

into the Distributed_system and the Communication_channel objects described above. In the first scheme,

faults are injected at a constant rate. In the second scheme, faults are injected based on an exponential

distribution; the duration o f transients is based on exponential or norm al distributions. The third

approach injects faults such that there is a high probability o f injections under heavy workloads. On one

hand this ensures that the system is tested under stress conditions. On the other, it models the

workload/failure dependency observed in [Iyer 82] & [Castillo 82]. The duration o f transients is based

on exponential and norm al distributions.

In order to im plem ent a workload dependent injection strategy, a statistical clustering algorithm is

first used to identify high-density regions o f the workload. These regions (defined as states) are used to

build a state transition diagram to characterize the workload [Hsueh 88]. Associated with each state is a

visit counter which counts the num ber o f visits to that state. Also associated is a fault rate, X, which the

system experiences in that state. Periodically, the workload is m onitored to identify the workload state

and to update the appropriate visit counter. Based on the injection in terva l, the inform ation from the

state transition diagram is used to estim ate a weighted average failure arrival rate (W g tjam bda) as fol

lows:

Wgt_lambda = £ visitjratioi x X; (1)
;=i

where:

N = the num ber o f states
. . counter for state i,

visit ratiOi = -----------■-------------------------- - — ■— ---------------

~ total visits to all the states

Once W gtjam bda is determ ined, it is used to compute the probability o f a failure injection (P J n je c t (t))

over the last interval t (= injection in terva l) as follows:

6

PJnjectÇt) = \-e~wstJambda x *

3 . T h e S i m u l a t e d D i s t r i b u t e d S y s t e m

This section briefly describes the distributed system used to demonstrate some o f the features of

DEPEND. A detailed description can be found in [Goswami 89].

Figure 2 is a fram ework for the distributed system. The sim ulated system contains a hom ogene

ous set o f processors connected by a single com m unication channel. The system is assum ed to have a

reconfiguration m echanism that repairs faulty processors and restarts the processes, which were execut

ing on the processor, w ithin a short period o f tim e (e.g., in less than 2 minutes). Processor 0 contains

the central scheduler w hich consists o f a predictor and a scheduler. The predictor uses a statistical

pattern-recognition m ethod to predict the CPU, I/O and m emory requirem ents o f a program prior to its

execution [Devarakonda 89]. The scheduler executes a load-balancing heuristic called M INQ which

uses predicted process resource requirements to determ ine the processor load and send incoming

processes

o o process arrives

Predictor

Scheduler

node 0

status update
message

o o o

jrocess scheduled

F i g u r e 2 . M I N Q : C e n t r a l i z e d l o a d - s h a r i n g w i t h p r e d i c t i o n .

7

processes to the processor with the least load. The form ula used by M INQ to estim ate the processor

load is as follows:

CPU_LOAD i = 2
CPUREQj

/Si CPUREQj+IOREQj

where:
Ni = the num ber o f processes in processor i

IOREQj is the predicted I/O requirem ent

o f process j in units o f time

CPUREQj is the predicted CPU requirem ent

o f process j in units o f time

(2)

W hen a process completes its execution the processor sends the ac tua l resources used by the pro

cess to the central scheduler via a status update m essage. This m essage is used to update the databases

m aintained by the predictor and decrem ent the CPU LOAD value o f the processor w hich sent the m es

sage.

In this study, we define the workload on a processor to be its CPU utilization. To characterize the

workload, each processor has its own state transition diagram in which a state represents a specific utili

zation level o f the processor. Each processor’s utilization is m easured every second and, its state transi

tion diagram is appropriately updated. Every 20 seconds the state transition diagram o f a processor is

used to compute the processor’s weighted average fault rate by equation 1. This value is then used to

determ ine the probability o f a fault injection (P Jn je c t(t)). Since this procedure is followed for each pro

cessor independently, m ultiple processors can fail at a given time.

4 . T h e F a u l t M o d e l s

In DEPEND, com ponents are sim ulated at a functional level, therefore, the im pact o f physical

faults is m odeled by a change in the functional behavior. The fault m odels used in this study simulate

failures in the processor and the com m unication channel. Both transient and perm anent failures can be

injected. The duration o f transients and interm ittents is selected based on a norm al distribution.

The p ro ce sso r fa u l t m od e l used to inject failures into a processor is defined as follows:

1. All processes executing on the processor are ejected.

2. Ejected processes hang until the processor is revived and then are restarted from the beginning.

3. All messages sent to the processor, while it is failed, are collected but not processed until the pro

cessor is revived.

8

4. If the processor contains the central scheduler, the databases m aintained by the predictor and the

scheduler are erased.

Two fault models are used for com m unication channel faults. In the first, a m essage loss fa u l t

m odel, the com m unication channel is assumed to incur interm ittent failures that cause a specified per

centage o f all m essages processed by the comm unication channel to be lost. A m essage that is lost is

sim ply destroyed and not delivered to its destination. In the second, a m essage ga rb le fa u l t m ode l, the

com m unication channel is assum ed to incur interm ittent failures that corrupts pre-specified bytes in a

message. Only messages that are processed by the com m unication channel when the channel is faulty

(or ’noisy’) are garbled.

These fault m odels were selected because they can be used to inject faults in areas that are crucial

to the functionality o f the distributed system discussed above. A centralized load-balancing heuristic is

especially vulnerable to failures in the processor w hich houses the scheduler and, to failures that affect

the status update m essages received by the scheduler.

5 . T h e E x p e r i m e n t s

Our experim ents showed that, for the type of system studied, a single failure, even in the proces

sor containing the central scheduler, has an insignificant im pact on the response tim e so long as

reconfiguration is achieved within a sm all period o f time. The problem s that im pact system perfor

m ance quite significantly are due to intermittents [Iyer 90] occurring in close succession (e.g., 5 to 10

failures per hour). In this paper, we consider the impact o f interm ittent failures.

T a b l e 1 . T h e t r a n s i t i o n d i a g r a m u s e d b y a l l p r o c e s s o r s .

S t a t e L o w U t i l . H i g h U t i l . L a m b d a (f a i l u r e / h r)

1 0 . 0 0 . 4 0 .1

2 0 . 4 0 .8 0 .3

3 0 .8 1 .0 1 .0

The experim ents were conducted on a ten processor system. An actual trace file containing

processes run on a V A X -11/780 was used as input to the simulation. The trace file was also used to

derive the state-transition diagram , shown in table 1, to characterize the workload for failure injection

9

purposes. The failure rates shown in the table were selected to create frequent intermittents. For each

experim ent, the sim ulation was executed five to six times with different random seeds and an average of

these results is shown in the graphs below. The m ain perform ance m etric used in the study is the

response times for all o f the processes.

5 . 1 P r o c e s s o r F a i l u r e s

The p ro ce sso r fa u l t m od e l was used to inject failures into the processors in the system. Figure 3

shows the response times o f M INQ for the 10 processor system , w hen transients o f 0, 10, 30, 60, 90 and

120 second duration were injected. Each sim ulation lasted about 1.5 hours and approxim ately 7 failures

were injected during this period. O f these failures, typically 16% were injected to the processor contain

ing the central scheduler.

Results in figure 3 show that persistent intermittents degrade system perform ance considerably.

For two m inute transients, there was a 46% increase in the response time. However, as stated earlier,

in sim ulations where only one or two failures were injected, there was little or no perform ance degrada

tion.

5 . 2 C o r r u p t e d S t a t u s U p d a t e M e s s a g e s

F i g u r e 3 . I m p a c t o f t r a n s i e n t f a i l u r e s .

1 0

An im portant issue in the design o f these systems is the im pact o f corrupted messages. To evalu

ate this effect, the m essage ga rb le fa u l t m ode l was used in conjunction with the constant fault injection

schem e to corrupt status update messages. Specifically, the fault injections were designed to corrupt the

CPUREQx field in the status update m essage. The CPUREQx field is used by M INQ to decrem ent the

CPU LOAD value. Corruption o f the CPUREQx field has the m ost adverse im pact on the database m ain

tained by the scheduler and hence allows a worst case evaluation o f the system. Figure 4 shows the

results from experim ents where 0, 5, 10 and 20% o f the messages were conupted. There is a 15%

degradation in the response tim e when 5% o f the m essages are corrupted. The degradation more than

doubles to 35% when 10% o f the m essages are corrupted.

5 . 3 L o s i n g S t a t u s U p d a t e M e s s a g e s

The m essage loss fa u l t m od e l was used in this experim ent to destroy the status update messages

sent to the central scheduler. Figure 5 is a graph o f M IN Q ’s response times when 0, 5, 10, 20 and 30%

o f the status update messages were destroyed. Relative to figures 3 and 4, M INQ seems to be extremely

sensitive to lost status update messages. W ith only 10% o f the messages destroyed there is nearly a

300% increase in the response time.

Upon close exam ination it becam e apparent that the poor perform ance was not due to the predic

to r or the scheduler but due to an im plem entation detail. M INQ uses status update m essages, sent by

F i g u r e 4 . I m p a c t o f c o r r u p t e d s t a t u s u p d a t e m e s s a g e s .

1 1

2 4

F i g u r e 5 . I m p a c t o f l o s t s t a t u s u p d a t e m e s s a g e s .

the processors, to decrem ent the processor load. W hen m essages are lost, due to a faulty com m unica

tion channel, the load values are not decremented. Processor 0, however, houses the scheduler and does

not use the com m unication channel to send status update m essages. Hence, processor 0’s load is always

decrem ented and appears low er than that o f the other processors. This causes M INQ to assign a dispro

portionate num ber o f processes to processor 0, resulting in the extrem ely poor perform ance shown in

Figure 5. In fact, the sim ulations showed that processor 0 had 4 to 20 tim es m ore processes assigned to

it than the other processors. Thus, faults that im pair the com m unication channel for a reasonable period

o f time and prevent status update m essages from reaching the scheduler can cause severe problems

unless the im plem entation is changed.

To reduce this problem , processor 0 was forced to use the com m unication channel when sending

status update m essages. The experim ent was re-run with this set up. The results for the ten processor

system are shown in Figure 6. The sensitivity seen in Figure 5 has disappeared because, now all the pro

cessors lose their status update messages. M INQ (with the new set up) shows only a 16% increase in the

response time when 10% o f the messages are lost as opposed to the 300% increase seen in Figure 5.

An additional result can be deduced from figures 4 and 6. A fter approxim ately 10% o f the status

update m essages are lost or corrupted, the increase in the response time levels out. At this stage, the

database used by M IN Q is so corrupted that M INQ seems to schedule processes randomly. Thus,

increasing the num ber o f destroyed o r corrupted m essages does not further degrade system perform ance.

1 2

Sr-

4 .5 -

M e a n

R e s p o n s e

-A MINQ

t im e

in s e c .

3 . 5 -

0 5 10 1 5 2 0

P e r c e n t o f M e s s a g e s L o s t

F i g u r e 6 . I m p a c t o f u n i f o r m m e s s a g e l o s s .

In the experim ents, where up to 50% o f the status update m essages were destroyed the response time

was still approxim ately 4.5 seconds.

This paper presented DEPEND, a simulation-based tool for design and reliability analysis o f com

puter systems. DEPEN D consists o f a library o f basic objects that simulate com ponents like C PU ’s,

com m unication channels and disks. The failure characteristics o f an object, such as the type o f fault-

tolerance m echanism (e.g. stand-by redundancy or graceful degradation) used and the type o f failures

(transients or perm anent) injected can be specified by the user. These objects serve as the building

blocks with w hich a com plex system can be simulated for dependability evaluation.

DEPEND also features a workload-based fault injection schem e w hich ensures an increased pro

bability o f fault injection under heavy workload conditions. One o f the advantages o f DEPEND is that

it readily allows the user to simulate complex architectures as well as simulate the interaction between

the hardware and the software.

To illustrate some o f the features o f DEPEND, a distributed system em ploying M INQ, a

prediction-based centralized load-balancing heuristic, was m odeled and analyzed to determ ine its suscep

tibility to interm ittent failures. The results show that frequent interm ittents cause significant perfor

m ance degradation. M IN Q was m oderately sensitive to corrupted status update m essages. However,

6 . C o n c l u s i o n

1 3

sim ulations using DEPEND helped identify an im plem entation problem which m ade M INQ extremely

susceptible to failures that destroy status update messages.

7 . A c k n o w l e d g e m e n t s

This w ork was supported by the National Aeronautics and Space Adm inistration under NASA

grant NAG-1-613 and in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, U.S.

A ir Force) under grant N00014-90-J-1270. Special thanks are due to Bob Dimpsey and Inhwan Lee for

their helpful suggestions.

8 . R e f e r e n c e s

[C a s t i l l o 8 2]

X. Castillo and D. Siewiorek, "A W orkload Dependent Software Reliability Prediction Model,"

D igest, 12 th In t. Sym p . on F au lt-T o le ra n t C om puting , Santa M onica, Ca., June 22-24, 1982.

[C h o i 8 9]

G.S. Choi, R .K. Iyer and V. Carreno, "FOCUS: An Experim ental Environm ent for Validation of

Fault Tolerant Systems, Case Study o f a Jet-Engine Controller, IE E E In terna tio na l C on ference on

Com pu te r D esign : V LS I in C om pu ters & P rocesso rs (IC CD), Cam bridge, M A, O ctober 2 - 4 , 1989,

pp. 561-564.

[D e v a r a k o n d a 8 9]

M. D evarakonda and R. K. Iyer, "Predictability o f Process Resource Usage: A M easurem ent-
Based Study o f UNIX," IE E E Trans, on So ftw are E ng ., Vol. 15, No. 12, D ecem ber 1989.

[G o s w a m i 8 9]

K. Goswami, R. Iyer, and M. Devarakonda, "Load Sharing Based on Task Resource Prediction,"

P roc . 22 n d A n n u a l H aw a ii In te rna tio na l Conf. on System Sc iences , Volume 2, January 1989, pg

921-927.

[G o y a l 8 6]

A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenborg, "The system availability estimator,"

P roc . 16 th In t. Sym p. F au lt-T o le ran t C om pu t., V ienna, Austria, July 1986, pp. 84-89.

[H s u e h 8 8]

M. C. Hsueh, R. K. Iyer and K. S. Trivedi, "Perform ability M odeling Based on Real Data: A

Case Study," IE E E Tran, on C om pu t., Vol., 37, No. 4, April 1988.

[H w a n g 8 9]

D. K. Hwang and W. K. Fuchs, "CSP-Based Object-Oriented Description o f Parallel

Reconfigurable Architectures," Proc . IE E E In ti. Conf. on W a fer-Sca le In teg ra tion , Jan. 1989, pp.

111 - 120 .

[I y e r 8 2]

R. K. Iyer, S. E. Burner, E. J. M cCluskey, "A Statistical Failure/Load Relationship: Results of a

M ulticom puter Study," IE E E Trans, on C om puters , Vol. SE-8, No. 4, July 1982, pp. 354-370.

[I y e r 9 0]

R.K. Iyer, L.T. Young, and P.V.K. Iyer, "Automatic Recognition of Interm ittent Failures: An

Experim ental Study o f Field Data," IE E E T ransactions on C om puters , S p ec ia l Is sue on F au lt

To le ra n t C om pu ting , Vol. 39, No. 4, April, 1990, pp. 525-536.

[K u b ia k 8 9]

K. Kubiak and W. K. Fuchs, "Reliability Analysis o f Application-Specific Architectures," In te rn t’ l

W orkshop on D e fec t & F a u lt T o lerance in VLS I S ystem s, Oct. 1989.

1 4

[Lee 89]

K. D. Lee, "PARAGRAPH: A Graphics Tool for Perform ance and Reliability Analysis," U IUC

Coord ina ted Sc ien ce L abo ra to ry Tech . R epo r t # U ILU -ENG -89 -2239 , Nov. 1989.

[Sanders 86]

W. H. Sanders and J. F. M eyer, "METASAN: A Perform ability Evaluation Tool Based on Sto

chastic Activity Networks," 1986 F a ll J o in t Comp. C o n f, Dallas, TX , Nov. 1986, pp. 807-816.

[Schwetman 86]

H. Schwetm an, "CSIM: A C-BASED, Process-Oriented Sim ulation Language," P roceed ing s

W in ter S im u la tion C on ference , 1986.

[Sahner 87]

R. A. Sahner and K. S. Trivedi, "Reliability modeling using SHARPE," IE E E Trans. R eliab ility ,

Vol R-36, No. 2, June 1987, pp. 186-193.

[Segall 88]

Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R. Dancey, A. Robin

son, T. Lin, "FIAT - Fault Injection Based Autom ated Testing Environm ent," FTC S-18 , June,

1988, pp. 102-107.

15

