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Abstract

Purpose—The calibratable relationship between blood oxygenation (Y) and T2 allows

quantification of cerebral venous oxygenation. We aim to establish a calibration plot between

blood T2, Y, and hematocrit (Hct) at 7T, and using T2-Relaxation-Under-Spin-Tagging (TRUST)

MRI, determine human venous blood oxygenation in vivo.

Methods—In vitro experiments were performed at 7T on bovine blood samples using a CPMG-

T2 sequence, from which we characterized the relationship among T2, Y, and Hct. TRUST MRI

was implemented at 7T to measure venous blood T2 in vivo, from which oxygenation was

estimated using the in vitro calibration plot. Hyperoxia was performed to test the sensitivity of the

method to oxygenation changes, and the 7T results were compared to those at 3T.

Results—In vitro data showed that arterial and venous T2 at 7T are 68ms and 20ms, respectively,

at a typical Hct of 0.42. In vivo measurement showed a cerebral venous oxygenation of 64.7±5.0%

and a test-retest coefficient-of-variation of 3.6±2.4%. Hyperoxia increased Yv by 9.0±1.4%

(P=0.001) and the 3T and 7T results showed a strong correlation (R=0.95) across individuals.

Conclusion—We provided an in vitro calibration plot for conversion of blood T2 to oxygenation

at 7T and demonstrated its utility in vivo.
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Introduction

The knowledge of blood T2 and its dependence on oxygenation (Y) have important

implications in several MRI techniques such as interpretation of Blood-oxygenation-level-

dependent (BOLD) fMRI signal (1,2), blood flow quantification in Arterial-Spin-Labeling
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(ASL) MRI (3), and for optimization of angiogram and venogram sequences (4). A

particularly exciting application of this calibratable relationship is the quantification of

venous oxygen saturation (Yv) via the measurement of blood T2 in vivo (5–17). These

methods have demonstrated potential utilities in the normalization of fMRI signals (18),

evaluation of brain metabolism (19), and understanding brain disorders (20). To date, all

such studies have been performed at field strengths of 3T or lower.

Given that the susceptibility effect of deoxyhemoglobin increases with field strength (21–

23), which has been one of the main motivations for high-field fMRI (23), it would be

important to assess the potential of T2-based oximetry techniques at 7T. It is well accepted

that the blood T2 is dependent on both Y and hematocrit (Hct) (24), since the modulation of

either will cause a change in the local field. Blood T2 at 7T has been measured for

comparison of different biophysical models (11), but a complete calibration plot between T2,

Y, and Hct is not fully established at this field strength. The goals of the present study are

therefore two-fold. First, we aim to obtain the relationship between blood T2 and

oxygenation at 7T (using in vitro blood sample experiment) in the context of various Hct

levels. Second, we implemented a recently developed T2-Relaxation-Under-Spin-Tagging

(TRUST) MRI technique at 7T and determined venous blood T2 in human superior sagittal

sinus. Utilizing the in vitro relationship as a calibration plot, we estimated global cerebral

venous oxygenation. The technique was further evaluated using a hyperoxia maneuver to

test its sensitivity to oxygenation changes. The 7T TRUST results were compared to those at

3T in the same participants.

Methods

In vitro study

In vitro experiments were performed on bovine blood (with 25 mM sodium citrate to avoid

coagulation), which is known to have physiological and MR properties comparable to

human blood (8,12,14,25,26). The blood was used on the same day that the sample was

obtained from the local slaughter house. Experiments were performed on three pre-

determined Hct levels that cover the normal range of this parameter (Hct = 34%, 42%,

54%). At each Hct, 10–18 oxygenation levels (range 27–100%) were assessed, and they are

completed using 2–3 batches of blood. Hct was adjusted by adding or removing plasma after

spinning the blood samples in a centrifuge at 2500 RPM for 30 minutes. The oxygenation of

the sample was modulated with exposure to room air or a nitrogen atmosphere. Oxygenation

and Hct were measured using a blood gas analyzer (Radiometer ABL80 FLEX,

Copenhagen, Denmark).

Blood samples were placed in 27 mm plastic tubes and scanned using a small animal 7T

(16-cm horizontal bore) MR scanner (Varian Inc, Palo Alto, CA) with a 38 mm birdcage RF

coil. The temperature of the blood was controlled by initially placing the tubes in a 37°C

water bath while gently agitating the sample to keep the erythrocytes in suspension. The

sample was then transferred to the scanner, where the ambient temperature of the magnet

bore was maintained at 37°C with heated air on a temperature-controlled feedback loop. The

blood T2 was measured with a Carr-Purcell-Meiboom-Gill (CPMG) T2 spectroscopy

sequence (27,28) with τCPMG = 5 ms and effective echo time (eTE) = 10, 20, 40, 80, 160,
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and 320 ms, corresponding to 2, 4, 8, 16, 32, and 64 hard refocusing pulses (180° pulse =

235 μs pulse duration), TR = 15,000 ms, 2 averages, and scan duration = 3 minutes.

Estimation of T2 was based on standard mono-exponential fitting and the goodness-of-fit

was evaluated by a Matlab (Mathworks, Natick, MA) function, nlparci, which provides the

standard error (=95% confidence interval/2/1.96) of the parameter estimation. The blood T2

was measured twice on each Hct-Y combination, and the second measurement was

constrained to provide a T2 value that was within 1 ms of the first measurement. If not, the

sample was agitated and the T2 measured again, in case precipitation had occurred during

the scan. We note that we only had to re-agitate the sample in 2 out of 40 measurement

sessions. Thus, the precipitation effect within the 6-minute session (3 minutes × 2) is

minimal. This is also consistent with the relatively slow sedimentation rate of erythrocyte of

approximately 1 mm/hour (29,30).

To establish the calibration plot, we first fitted the T2-Y data at each Hct value to a model

proposed by Wright et al. (7) and Golay et al. (8) :

[1]

where A, B, and C are coefficients estimated from the data fitting. Linear interpolation of

each coefficient was then used to cover the entire range of Hct. With this procedure, we

obtained a 3D plot completely characterizing the relationship among T2, Y, and Hct.

In vivo study: general procedures

In vivo study was performed on a 7 Tesla whole-body MRI scanner (Achieva, Philips

Medical Systems, Best, The Netherlands). The protocol was approved by the University of

Texas Southwestern Medical Center's Institutional Review Board. RF transmission and

reception was achieved via a volume Transmit/Receive head coil (Nova Medical Inc,

Wilmington, MA), where quadrature was used for transmission, and 16 channels were used

for receiving. The subjects were instructed not to fall asleep (verified after the scan), and

foam padding was placed around the head to minimize motion.

The placement of the imaging and labeling slab for 7T TRUST is depicted in Figure 1a,

where the yellow rectangle represents the imaging slab, and the green rectangle represents

the labeling slab. The pulse sequence diagram of the 7T TRUST is similar to the one

previously developed at 3T (5,6) and is illustrated in Fig. 1b. It applies the spin labeling

principle (red-box) on the venous side and acquires control and labeled images, the

subtraction of which yields pure venous blood signal (5). T2 value of the pure venous blood

was then determined using non-selective T2-preparation pulses (blue-box), minimizing the

effect of flow on T2 estimation. Due to relatively large flow velocities, TRUST

measurements in large venous vessels, e.g. sagittal sinus, was found to be particularly

robust, and was thus chosen as the vessel-of-interest in the present study. A pre-saturation

pulse train (green-box) is applied on the imaging plane to suppress static tissue signal using

a Water suppression Enhanced through T1 effects (WET) scheme (τWET = 10 ms, θ1 =

106.8°, θ2 = 86.8°, θ3 = 76.0°, θ4 = 153.6°) (31,32). A non-selective post-saturation pulse

train (black-box) is used to “reset” the magnetization of all spins, which was shown to
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improve the measurement accuracy in TRUST (6) and other sequences (33–35). Single slice

acquisition (orange-box) used a single-shot gradient-echo EPI.

The T2-preparation incorporated hard composite refocusing pulses (90x-180y-90x) using a

MLEV-16 phase cycling scheme (36), which requires that a multiple of four refocusing

pulses be used in order to minimize the effect of imperfection in flip angle (due to B1 and B0

inhomogeneities). We used τCPMG = 5 ms (Figure 1, blue-box) to match our in vitro blood

calibration curve. Two eTEs of 20 and 40 ms (composed of 4 and 8 refocusing pulses

respectively) were used, since the blood T2 at the target Hct-Y combination is short and a

larger number of refocusing pulses (e.g. 12, 16, etc) would result in excessively diminished

signal. Other imaging parameters are as follows: FOV = 220 × 220 mm2, Acquisition matrix

= 64 × 64, in-plane resolution 3.4 × 3.4 mm2, half-scan factor = 0.636, SENSE factor = 3

(AP), echo time (TE) = 2.7 ms, 1 slice, slice thickness = 5 mm, TR = 3.3 sec, inversion time

(TI) = 800 ms, label thickness = 100 mm, label gap (between imaging and label slab) = 22.5

mm, head SAR = 3.7 W/kg, 16 averages, scan duration = 3.5 minutes. The imaging slice is

placed parallel to the AC-PC line, 30 mm above the draining vessel's confluence point.

In vivo study design

A total of 24 subjects were scanned, and were categorized into one of three study sub-

groups: feasibility, reproducibility, or sensitivity study. Feasibility of the proposed TRUST

sequence was tested in an initial sub-group of 15 participants (age 31±8 years, range 23–54,

11 Males). Reproducibility of the TRUST protocol was evaluated in a second sub-group of 5

subjects (age 33±4 years, range 27–39, 4 Males), by repeating the scan 5 times in one

session. Coefficient of Variation (CoV) was calculated based on standard deviation of the

multiple scans divided by their mean.

Sensitivity of the technique to oxygenation changes was tested by inducing hyperoxia in a

third sub-group of 4 subjects (age 33±8 years, range 26–41, 3 Males) (37). For verification

of the 7T results, we also performed the TRUST scans on a 3T (Achieva, Philips Medical

Systems, Best, The Netherlands), which we have validated previously (26). The 3T protocol

and imaging parameters were similar to an optimized protocol (38), though some parameters

were altered to match the 7T protocol in scan duration (TR=3.3 sec, TI=1064 ms, 64

dynamics, 8 averages). This resulted in matched scan duration of 3.5 minutes at both field

strengths. Each subject was scanned on both 7T and 3T on the same day, the order of which

was counterbalanced across participants. On each scanner, a baseline (normoxia) TRUST

scan was conducted while the subject breathed room-air. Then, without repositioning the

subject, hyperoxia was induced by having the subject inhale a gas mixture of 98% O2 and

2% CO2, using procedures described previously (37). The small amount of CO2 was added

to offset the subject hyperventilation and to maintain the constant end-tidal CO2 (37). After

switching the gas, a 3 minute waiting period was used to allow the subject's physiology to

stabilize, after which a TRUST scan under hyperoxic state was conducted. Vital signs

including end-tidal O2, and end-tidal CO2 were continuously monitored during the entire

session. After all scans, 5cc of blood was drawn from the arm to determine the subject's Hct

using a micro-centrifuge (Hemata STAT II, Separation Technology, Inc., Altamonte
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Springs, FL, USA). Comparison between results at the two field strengths was conducted

using scatter plot, paired Student t-test, and Pearson correlation coefficient.

In vivo MRI Data Analysis

The in vivo imaging data was analyzed using in-house Matlab (Mathworks Inc, Natick, MA)

codes as described previously (5). Briefly, a difference image between control and label

images was computed. The four voxels in the sagittal sinus with the largest difference signal

were included in the ROI mask. The averaged signal in the mask was fitted to a mono-

exponential function of eTE to obtain the decay constant, d. Blood T2 was then calculated by

1/T2 = d + 1/T1. We point out that, since blood T1 at 7T (~2100ms (39–41)) is more than 20

times greater than T2, the impact of the T1 variation is minimal. Note that, in this study, we

delineated the vessel voxels using the TRUST difference image instead of a separate

anatomic image. The reason is that voxel masks defined on anatomic image may not be

readily applicable to the TRUST data due to several factors including differences in spatial

resolution, EPI distortion in the TRUST images, and potential subject motion between the

TRUST and anatomic scans.

Results

In vitro T2 relaxometry

The in vitro data resulted in reliable T2 fittings. The standard error of the estimated R2

(=1/T2) was 1.1±1.4 Hz (mean±sd, range 0.1–6.0 Hz, N=40). Figure 2a shows the in vitro

blood T2 versus Y at each Hct level. There is a minor influence from Hct, with major

changes in T2 resulting from changes in Y. The constants for Equation [1] can be found in

Table 1. Linear interpolation of each coefficient can be used to describe T2-relaxometry at

other Hct values. At a typical Hct level of 0.42, arterial (assuming 100% oxygenation) and

venous (assuming 60% oxygenation) blood T2 are expected to be 68 ms and 20 ms,

respectively. Comparing to lower field strengths of 3T (26) and 1.5T (13), the blood R2

(=1/T2) at 7T (acquired in this study) changes much more rapidly with Y (Figure 2b).

Similar field-dependent curves for blood R2* have been shown by Blockley, et al. (40).

In vivo study

Figure 3 shows a representative TRUST dataset at 7T. TRUST MRI results in a label and

control image for each eTE, which are then magnitude subtracted to provide a difference

image of pure blood signal (Figure 3a). Note that the blood signal in the target vessel, the

superior sagittal sinus, is quite robust and decays with T2-preparation duration (eTE),

allowing for a reliable R2 fitting (Figure 3b). The standard error of the R2 estimation was 4.8

± 2.3 Hz. Of the 15 subjects scanned for the feasibility test, the blood T2 was 25.0 ± 4.8 ms

(Mean ± STD). Using the in vitro calibration plot established above, these T2 values were

converted to Yv of 64.7 ± 5.0%.

The reproducibility of TRUST at 7T was investigated by repeating the protocol 5 times in a

single session in a group of subjects. CoV of the measurements was 3.6 ± 2.4%, which is

larger than the 3T TRUST CoV of 1.9 ± 0.6 % reported in the literature (38), but is still

relatively small compared to normal variation of human Yv from 50–75% (42). The effect of
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ROI size was tested by varying the number of selected voxels from 1 to 6, and it was found

that the estimated T2 was not dependent on the ROI size, consistent with previous

observations at 3T (5).

Data from the physiologic challenge study are summarized in Table 2. TRUST scans at the

7T showed that hyperoxia maneuver increased Yv by 9.0 ± 1.4 % (Mean ± STD, P=0.001),

which is consistent with the 10.6% increase reported in the literature using a similar gas

mixture (37). The 7T results were also supported by the 3T data collected in the same

subjects, which showed an 8.3 ± 1.0 % increase in Yv. The increase in Yv measured at 3T

was not significantly different than 7T, as evaluated with a paired t-test (P = 0.57).

Furthermore, the 3T and 7T Yv results are significantly (R=0.95, P=0.0004) correlated

across individuals (Figure 4). There was no difference in the Yv values measured at 3T

versus 7T (P=0.77), and their regression slope was close to unity (slope=0.998).

Discussion

The present study showed that blood CPMG-T2 at 7T is dependent on both hematocrit and

oxygenation levels, the slope of which is greater than those at lower fields. Using this

relationship as a calibration plot, venous oxygenation in the human brain can be estimated in

vivo. The oxygenation values measured at 7T were in excellent agreement with the 3T

results and also showed a strong sensitivity to oxygenation changes induced by hyperoxia.

Dependence of blood T2 and T2* on oxygenation has been well established at 1.5T

(7,12,13,32,43), and 3T (14,26,43), but the literature at 7T is not extensive. The only report

we are aware of on CPMG-T2 at 7T is the study of Gardener et al. (11), who compared the

exchange and diffusion models in describing the T2 relaxation process in blood. In the

present study, blood T2 was only measured at a τCPMG = 5 ms, since our goal is to provide a

calibration plot rather than performing an investigation of biophysical modeling. We

compared the T2 values (at τCPMG = 5 ms) and their dependence on oxygenation between

the two studies. T2 of fully oxygenated blood in the present study and Gardener et al. is 68

ms and 64 ms, respectively, showing good agreement. The values, however, showed some

discrepancy for less oxygenated blood. Specifically, the T2 data from the present study

revealed a stronger dependence on oxygenation (solid blue curve in Figure 2c), compared to

the data in the earlier study (dashed blue curve in Figure 2c). One possible reason for the

discrepancy is the condition of the blood samples used. In all of our experiments, the blood

samples were scanned within 5 hours of collection from the animal, thus the fraction of

lysed cells is expected to be minimal. In the earlier study, blood samples up to 48 hours after

drawing were used, and the likelihood of cell lysing is greater. Lysed cells are known to be

associated with a longer T2 (23). Our testing showed that, for fully oxygenated blood, T2 of

lysed cells is approximately 20% greater than that of whole blood. For venous blood

oxygenation, this difference could be more than 90%. Note also that this effect is expected

to be present at all field strengths. Another potential reason is the species-dependent

differences in blood properties. The present study used bovine blood, as opposed to human

blood used by Gardener, et al. However, we point out that bovine blood has been widely

used in previous T2-relaxometry studies (8,10,14,26,39,44,45) and has been shown to be

valid for human data calibration (8,9,16,26), mainly because its physiologic and MR
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properties are comparable to human blood (25). Thus, the effect of species difference is

expected to be relatively small. There are other factors that could affect the estimated T2

values, such as sample preparation, the actual degree of the refocusing pulse angles, and

details of the pulse sequences. We would like to point out that our in vivo data appears to

support the in vitro results, in that the estimated venous oxygenation values using the in

vitro calibration plot are well within the expected range and are in excellent agreement with

the 3T results. We have also tested the calibration plot by Gardener et al. to calibrate our in

vivo data. We found a normoxia venous oxygenation of 19.3% and a hyperoxia oxygenation

of 44.3%, which are considerably lower than the present 3T results and the normoxia

literature values of 58.4–67.1% (5,8,15,17,19,37,38,46–51) and hyperoxia literature values

of 75.5% (37).

To our knowledge, the present study is the first report to quantitatively evaluate blood

oxygenation in humans at 7T. Our observed venous oxygenation at 7T was within the

expected range, and was further supported by the 3T results, which suggests that in vivo

measurement of blood T2 at 7T is feasible. Although this study has primarily focused on a

global oxygenation technique, it should be noted that the T2-versus-oxygenation relationship

provided in the present study is not limited to TRUST application, but can also be used for

calibration of other T2-based oximetry techniques, such as QUIXOTIC (16), VSEAN (17),

TRU-PC (15,52), and IQ-OEF (53). It should also be mentioned that other oximetry

techniques that do not require T2-calibration are available. These methods include

quantitative Blood-Oxygenation-Level-Dependent (qBOLD) contrast (46,50,54,55),

susceptibility phase based techniques (47–49,51), gas inhalation techniques (56–58), and

quantitative susceptibility mapping (QSM) methods (59). Most of these techniques may also

benefit from the increased field strength at 7T.

Comparing T2 oximetry between 7T and 3T, the higher field strength provides certain

advantages, but also presents new challenges. The advantages associated with the higher

field include greater intrinsic SNR and increased susceptibility effects of deoxyhemoglobin,

which results in a steeper dependence of blood R2 on oxygenation. However, greater B0 and

B1 inhomogeneities at higher fields also bring several obstacles. For example, we were not

able to use an eTE of 0 ms (i.e. tip-down followed immediately by tip-up pulse) when the

signal is supposedly the strongest. This is because there is a finite amount of time (~0.6 ms)

between the tip-down and tip-up pulse, which causes the magnetization to rotate away from

the original axis when the spin is off-resonance. Thus, the tip-up pulse is not able to return

all of the magnetization back to the longitudinal direction. This effect manifests itself as an

eTE=0 signal that is consistently lower than the fitting curve. Therefore, the shortest TE we

could use in this 7T study was eTE = 20 ms. Note that this factor by itself reduced our

starting SNR by approximately 63% (assuming a blood T2 of 20 ms). We believe this was a

major reason for the larger variability of our 7T data compared to previous 3T results (38).

Another issue is that we were not able to use a long eTE of 80 ms, because the signal would

have decayed too much (to about 2% of the original signal) considering a blood T2 of 20 ms.

As a consequence of both effects, our 7T protocol used two eTE values corresponding to 4

and 8 refocusing pulses, as opposed to our standard 3T protocol in which we use four eTE

values corresponding to 0, 4, 8, and 16 refocusing pulses. As a simple demonstration, we
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took the 3T TRUST reproducibility data (CoV quoted at 1.88% (38)) and re-analyzed the

data by excluding eTE 0 and 160 ms. The new average intra-session CoV at 3T becomes

4.3±3.7%, which is larger than the 7T CoV of 3.6±2.4%. Therefore, future efforts for 7T T2-

based oximetry should emphasize the improvement of B0 and B1 homogeneity. For small

vessel techniques, it may be helpful to use local volume shimming or apply dielectric bags

for these purposes (60). Additionally, SAR is greater at 7T, which increased our TR (to 3300

ms) compared to the optimized TR of 3000 ms at 3T. B1 shimming may be useful to reduce

the SAR constraints.

A limitation of the present study is that the in vivo and in vitro data were acquired on

different MRI systems. We chose to perform the in vitro study on an animal system, because

the B1 and B0 inhomogeneities will be minimized in the smaller bore of the animal system.

However, since the MRI systems were different, the resulting pulse sequences, in particular

the T2-preparation pulses, were not exactly matched. This raised the question whether it is

valid to use the in vitro data to calibrate the in vivo T2 in our results. We therefore conducted

additional experiments on the 3T to verify the 7T Yv values. The excellent agreement

between the 7T and 3T data (Figure 4) suggests that the calibration results were generally

acceptable. We speculate that two processes in the human 7T MRI system may be in play

concomitantly, and their consequences in biasing T2 estimation partially cancel out. One is

that the human 7T sequence used a composite refocusing pulse, which is known to result in

a longer apparent T2. The other is that human 7T imaging is known to suffer from B1

inhomogeneity, the consequence of which is a shortened apparent T2. We did not perform a

dedicated B1 map in our study. However, using signal intensities in the TRUST images, we

estimated that the B1
+ field in the sagittal sinus area was 83±2% (mean±SD, N=5) of the

nominal value. According to our simulation, the effect of this reduced B1
+ in combination

with the pulse width effect will yield a T2 that is 94±7% of the true T2. Future study using

B1 mapping and, preferably, improved B1 homogeneity is needed to verify these predictions.

Conclusion

We characterized the relationship between blood T2, oxygenation, and Hct at the field

strength of 7T, thereby providing a foundation for future experimental or simulation studies

that may benefit from this information. We also reported the first study to quantitatively

estimate blood oxygenation in human brain at 7T and verified the results with 3T

experiments.
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Figure 1.
Description of the methods used for in vivo quantification of blood T2. (a) Slice positioning

of the T2-Relaxation-Under-Spin-Tagging (TRUST) scan. (b) Pulse sequence diagram of

TRUST MRI. A complete data set includes control and label images acquired at two

different T2-preparation durations (referred to as effective TE, eTE). In practice, 16

repetitions are used.
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Figure 2.
Results of the in vitro study on blood samples. (a) Blood T2 is plotted as a function of Y for

three different Hct levels used in the experiments. The solid lines show the fitted curves

based on Equation [1]. (b) Comparison of blood R2 (=1/T2) at 7T with literature reports at

1.5T and 3T, where Hct = 0.51. 1.5T data were based on Stefanovic et al. (13). 3T data were

based on Lu et al. (26). At each field strength, R2 is plotted as a function of Y. Also plotted

are results from an earlier report of blood R2 at 7T (11).
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Figure 3.
A representative set of images for the TRUST MRI scan at 7T. (a) Control and Label images

at two eTEs. The posterior portions of the “Control” images show a bright blood signal in

the region of the superior sagittal sinus. This signal is suppressed in the “Label” images. The

“Difference” image is the subtraction of “Label” from the “Control” image, removing tissue

signal and leaving pure blood signal. (b) “Difference” signal as a function of eTE. There are

16 data points for each eTE. The solid line shows the fitted curve. The fitted equation is also

listed.
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Figure 4.
A scatter plot of correlation between TRUST data at 7T and at 3T. The data were obtained

from a group of four subjects. Each subject contributed two data points to the plot, one

during normoxia (open diamond symbols) and the other duration hyperoxia (filled triangle

symbols).
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Table 1

Fitted values of coefficients in Equation [1]. The coefficients were obtained by fitting the experimental data to

Equation [1] at each hematocrit. Linear interpolation of each coefficient can be used to describe T2-

relaxometry at other Hct values.

Hct A B C

34% 14.6 −31.2 223.5

42% 14.9 −17.6 264.0

54% 16.7 3.7 240.9
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Table 2

Physiologic responses to hyperoxia challenge at 3T and 7T (Mean ± STD, N=4).

Normoxia Hyperoxia

B0 EtO2 EtCO2 T2 Yv EtO2 EtCO2 T2 Tv

3T 135±3 41±3 60.3±5.9 60.5±3.6 697±6 39±2 77.2±8.3 68.9±3.7

7T 133±2 41±3 20.5±4.3 60.0±5.6 701±2 38±2 29.7±6.9 69.0±6.1

B0 – field strength, EtO2 – end-tidal O2 (mmHg), EtCO2 – end-tidal CO2 (mmHg), T2 – in vivo blood T2 (ms), Yv – venous blood oxygenation

(%).
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