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Abstract

The present paper deals with the dependence of eigenvalues of 2nth order boundary

value transmission problems on the problem. The eigenvalues depend not only

continuously but also smoothly on the problem. Some new differential expressions of

eigenvalues with respect to an endpoint, a coefficient, the weight function, boundary

conditions, and transmission conditions, are given.
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1 Introduction

It is well known that boundary value transmission problems are of great importance for

their wide applications in physics and engineering. These problems, such as heat, mass

transfer (see []), and diffraction problems, relate to discontinuous material properties,

and their miscellaneous physical applications connected with these problems are found

in many literature works, see, e.g., [–] and the corresponding references cited therein.

To deal with interior discontinuities, some conditions are imposed on the discontinuous

points, which are often called transmission conditions (see [, , , , , ]), interface

conditions (see [, ]), or point interactions (see []).

Eigenvalue problems play an important role in the theory of differential operators. There

are several methods to characterize the eigenvalues of boundary value problems (see,

for example, [–]), in particular, on the existence of solutions for linear or nonlinear

Sturm-Liouville problems and higher order boundary value problems, we refer to [–].

In the classical case, i.e., without discontinuous points, Dauge and Helffer in [] found

that the Neumann eigenvalues are differentiable functions of the right endpoint b satisfy-

ing a differential equation of the form

λ′ = u(q – λw).

They also obtained the differential expression for the Dirichlet eigenvalues

λ′ = –pu′,
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which is sometimes called Hadamard’s formula. In [], Kong and Zettl gave a different

proof of the Dauge-Helffer theorem and obtained a similar result for coupled boundary

conditions in the case where the space L(a,b) is replaced by L(a,b). In [], Kong and

Zettl showed the continuity and differentiability of eigenvalues for regular Sturm-Liouville

problems with respect to all the parameters and obtained differential expressions of the

eigenvalues. Corresponding results for fourth order case were also obtained by Suo and

Wang in []. Kong et al. generalized the continuity and differentiability of eigenvalues to

higher order case in []. The obtained results on the properties of eigenvalues and eigen-

functions play an important role in the Bailey, Everitt, and Zettl code SLEIGN (see []).

The major general purpose code for the numerical computation of the eigenvalues and

eigenfunctions of boundary value problems is SLEUTH (see []). In recent papers, Zhang

andWang in [] considered the discontinuous Sturm-Liouville eigenvalue problems, and

obtained the differential expressions of eigenvalues with respect to the data. Zhang et al.

also studied singular eigenvalue problems in []. Li et al. considered the fourth order

discontinuous case and obtained some new differential expressions of the eigenvalues in

[].

In this paper, we study the dependence of eigenvalues of nth order boundary value

transmission problems on the problem.Using the ideas ofMukhtarov andYakubov [] and

Wang et al. [], a newHilbert space is constructed, in which the considered problems are

put.Weprove that if λ is an eigenvalue of the considered problem, then λ can be embedded

in a continuous eigenvalue branch. We also give some new differential expressions of the

eigenvalues, which generalize the previous results obtained by Kong et al. (see []).

This paper is composed as follows. We give some notations and preliminaries in Sec-

tion . The continuity results of eigenvalues and eigenfunctions are obtained in Section .

Section  presents differential expressions of the eigenvalues with respect to all the data.

2 Notations and preliminaries

Consider the nth order symmetric differential equation

MP(y) =


w

n∑

k=

(–)k
(
pn–k(x)y

(k)
)(k)

= λy,

on J ′ =
(
a′, c

)
∪

(
c,b′

)
, –∞ ≤ a′ < c < b′ ≤ +∞. (.)

Let

J = J ∪ J, J = [a, c), J = (c,b],a′ < a < c < b < b′.

Consider the boundary conditions

AY (a) + BY (b) =  (.)

and transmission conditions

Y (c–) = CY (c+), (.)
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where

p– (x),p(x), . . . ,pn(x), w(x) ∈ Lloc
(
J ′,R

)
, w(x) >  a.e. on J ′. (.)

Here λ is the spectral parameter, A = (aij) and B = (bij) are n × n complex matrices,

C = (cij) is n× n real matrix, detC = ρn, ρ >  and satisfy

rank(A|B) = n, (.)

ρAQnA
∗ = BQnB

∗, C∗QnC = ρQn, (.)

where

Qn =

(
 En

–En 

)
,

En =

⎛
⎜⎜⎜⎜⎝





. .
.



⎞
⎟⎟⎟⎟⎠
,

Y (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y(x)

y[](x)
...

y[n–](x)

y[n–](x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Here y[](x), y[](x), . . . , y[n–](x) are called quasi-derivatives of y which are defined by (see

[])

y[k](x) =
dky

dxk
, k = , , . . . ,n – ,

y[n](x) = p
dny

dxn
,

y[n+k](x) = pk
dn–ky

dxn–k
–

d

dx
y[n+k–], k = , , . . . ,n.

Let Rz(x) = (z[](x), z[](x), . . . , z[n–](x)), Cy(x) = (y[](x), y[](x), . . . , y[n–](x))T , the equa-

tion

MP(y)z̄ – yMP(z̄) =
d

dx
[y, z](x) (.)

is called Lagrange formula [], where

[y, z](x) =W (y, z̄;x)

=

n∑

k=

{
y[k–](x)z̄[n–k](x) – y[n–k](x)z̄[k–](x)

}

= Ry(x)QnCz̄(x). (.)
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Following Mukhtarov and Yakubov [] and Wang et al. [], we construct a new inner

product in the Hilbert space H = Lw(J)⊕ Lw(J) and a self-adjoint operator defined on H

such that the eigenvalues of (.)-(.) coincide with the spectra of this operator. To this

end, the inner product is defined by

〈f , g〉 =

∫ c

a

f gwdx + ρ

∫ b

c

f gwdx

for all f , g ∈H .

Let us consider the operator L with domain

D(L) =
{
f ∈ H|f , f [], . . . , f [n–] ∈ ACloc(J),

AF(a) + BF(b) = ,F(c–) = CF(c+),Lf ∈H
}
, (.)

Lf =MP(f ), f ∈ D(L).

Lemma  (See []) Let (.)-(.) hold, the operator L be defined as in (.). Then L is a

self-adjoint operator in H . The eigenvalues of L are real, and they are finite or countably

infinite without finite accumulation point.

3 Continuity of eigenvalues and eigenfunctions

In this section, we prove the continuity of eigenvalues and normalized eigenfunctions for

the nth order boundary value transmission problems. Moreover, the characterization of

the eigenvalues as zeros of an entire function is established.

Denoted by ϕ(x,λ), ϕ(x,λ), . . . ,ϕn(x,λ) and χ(x,λ), χ(x,λ), . . . ,χn(x,λ) the solu-

tions of (.) on the interval [a, c) satisfy the initial conditions

(Cϕ ,Cϕ , . . . ,Cϕn ,Cχ ,Cχ , . . . ,Cχn )(a,λ) = I, (.)

where I is the identity matrix. Obviously, the above solutions are linearly independent.

Let ϕ(x,λ), ϕ(x,λ), . . . ,ϕn(x,λ) and χ(x,λ), χ(x,λ), . . . ,χn(x,λ) be the solutions of

equation (.) on the interval (c,b] satisfying the conditions

(Cϕ ,Cϕ , . . . ,Cϕn ,Cχ ,Cχ , . . . ,Cχn )(c–,λ)

= C · (Cϕ ,Cϕ , . . . ,Cϕn ,Cχ ,Cχ , . . . ,Cχn )(c+,λ). (.)

According to the properties of dependence of the solutions on the parameter, the Wron-

skian

wi(λ) =W
(
ϕi(x,λ),ϕi(x,λ), . . . ,ϕin(x,λ),χi(x,λ),χi(x,λ), . . . ,χin(x,λ)

)
(i = , )

are independent of the variable x and are entire functions of parameter λ. Short calculation

yields that

w(λ) =


ρn
w(λ), (.)
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which implies that ϕ(x,λ), ϕ(x,λ), . . . ,ϕn(x,λ) and χ(x,λ), χ(x,λ), . . . ,χn(x,λ) are

linearly independent on the interval (c,b].

Let

�(x,λ) = (Cϕ ,Cϕ , . . . ,Cϕn ,Cχ ,Cχ , . . . ,Cχn )(x,λ), x ∈ [a, c) (.)

and

�(x,λ) = (Cϕ ,Cϕ , . . . ,Cϕn ,Cχ ,Cχ , . . . ,Cχn )(x,λ), x ∈ (c,b],λ ∈ C, (.)

where �(c,λ) and �(c,λ) are defined by left and right limits. Let

�(x,λ) =

⎧
⎨
⎩

�(x,λ), x ∈ [a, c),

�(x,λ), x ∈ (c,b],

and�(c–,λ) = �(c,λ),�(c+,λ) = �(c,λ). For arbitrary x ∈ J , �(x,λ) is an entire function

of λ.

Lemma  A complex number λ is an eigenvalue of the operator L if and only if

�(λ) = det
(
A + B�(b,λ)

)
= .

Proof Let λ be an eigenvalue of L and u(x) be the corresponding eigenfunction. Then

u(x) can be represented by (see [])

u(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cϕ(x,λ) + · · · + cnϕn(x,λ) + cn+χ(x,λ) + · · · + cnχn(x,λ),

x ∈ [a, c),

cϕ(x,λ) + · · · + cnϕn(x,λ) + cn+χ(x,λ) + cnχn(x,λ),

x ∈ (c,b],

where at least one of coefficients ci (i = , , . . . , n) is not zero. Substituting u(x) into

boundary conditions (.) yields

A(Cϕ , . . . ,Cϕn ,Cχ , . . . ,Cχn )(a,λ)(c, . . . , cn)
T

+ B(Cϕ , . . . ,Cϕn ,Cχ , . . . ,Cχn )(b,λ)(c, . . . , cn)
T = .

By (.), (.), and (.), one gets that

(
A + B�(b,λ)

)
(c, . . . , cn)

T = . (.)

Since c, . . . , cn are not all zero, det(A + B�(b,λ)) = .
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On the contrary, if det(A + B�(b,λ)) = , then the homogeneous system of the linear

equations (.) for the constants ci (i = , . . . , n) has non-zero solution (c′, . . . , c
′
n). Let

u(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c′ϕ(x,λ) + · · · + c′nϕn(x,λ) + c′n+χ(x,λ) + · · · + c′nχn(x,λ),

x ∈ [a, c),

c′ϕ(x,λ) + · · · + c′nϕn(x,λ) + c′n+χ(x,λ) + · · · + c′nχn(x,λ),

x ∈ (c,b],

then u(x) is the non-trivial solution of equation Lu = λu satisfying conditions (.) and

(.). Therefore, λ is an eigenvalue of L. �

In the following, we introduce the notation

� =
{
ω = (a,b,A,B,C, /p,p, . . . ,pn,w)

}

such that (.)-(.) hold.

We aim to illustrate the continuous dependence of eigenvalues and eigenfunctions on

the problem, i.e., one small change of the problem only results in a diminutive change of

each eigenvalue and eigenfunction. This means we need to compare the spectra of dif-

ferent problems which may be defined on different intervals determined by different ω.

From the definition of �, we know that each of ω ∈ � uniquely determines a boundary

value transmission problem. And the values of 
p
,p, . . . ,pn,w outside the interval J , i.e.,

in J ′ \ J , do not affect the spectrum determined by ω. For these reasons, let

�̃ =
{
ω = (a,b,A,B,C, ̃/p, p̃, . . . , p̃n, w̃)

}
,

where

̃/p =

⎧
⎨
⎩
/p, x ∈ J ,

, x ∈ J ′ \ J ,

and p̃, . . . , p̃n, w̃ have similar definitions. Then we investigate the Banach space which is

defined as

X =R×R×Mn×n(C)×Mn×n(C)×Mn×n(R)× L(a′ ,b′) × · · · × L(a′ ,b′)︸ ︷︷ ︸
n+

,

and its norm is given by

‖ω‖ = |a| + |b| + ‖A‖ + ‖B‖ + ‖C‖ +

∫ b′

a′

(
|̃/p| +

n∑

i=

|p̃i| + |w̃|

)
, (.)

where ‖ · ‖ is any fixed matrix norm. Because /p,p, . . . ,pn,w are only defined in Lloc(J
′),

� is not a subset of X, but �̃ is. To study the continuity of eigenvalues and eigenfunc-

tions on the problem, � is assumed to be a subset of X and inherits its norm from X on

which the convergence in � depends. Because every point in � is an accumulation point
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of � in relation to the norm (.), so it is meaningful to discuss convergence of boundary

value transmission problems with respect to this norm. Based on the space X, the set �

and Lemma , we obtain that the eigenvalues of nth order boundary value transmission

problems depend continuously on the problem.

Theorem  Let ω = (a,b,A,B,C,


p
,p , . . . ,pn ,w) ∈ �. Assume that μ = λ(ω) is

an eigenvalue of the operator L determined by ω. Then λ is continuous at ω, that is, given

any ε > , there exists δ >  such that

‖ω –ω‖ < δ

for any ω ∈ �, then

∣∣λ(ω) – λ(ω)
∣∣ < ε.

Proof From Lemma , we get that for ω ∈ �, λ(ω) is an eigenvalue of the operator L if and

only if �(ω,λ) = . For any ω ∈ �, �(ω,λ) is an entire function of λ and is continuous in

ω (see [], Theorems ., .), and �(ω,μ) = . Since the operator L is self-adjoint, we

know that μ is an isolated eigenvalue, and then �(ω,λ) is not constant in λ. Hence there

exists ρ >  such that �(ω,λ) �=  for λ ∈ Sρ := {λ ∈ C : |λ –μ| = ρ}. By the well known

theorem on continuity of the roots of an equation as a function of parameters (see [],

..), the proof for Theorem  is completed. �

In what follows we will always assume that each eigenvalue λ(ω) is embedded in a con-

tinuous eigenvalue branch.

Lemma  Consider the initial value problem

⎧
⎨
⎩

∑n
k=(–)

k(pn–k(x)y
(k))(k) = λwy,

y(t) = d, y[](t) = d, . . . , y[n–](t) = dn–,

where t ∈ [a, c)∪ (c,b]∪ {c+, c–}. Then the unique solution

y = (·, t,d, . . . ,dn–,C, /p,p, . . . ,pn,w)

satisfying the above mentioned initial conditions and transmission conditions (.) is a

continuous function of all its variables. That is, for any ε > , there exists δ >  such that if

|t – t| +

n–∑

i=

|di – di | + ‖C –C‖ +

∫ b

a

(∣∣∣∣


p
–



p

∣∣∣∣ +
n∑

i=

|pi – pi | + |w –w|

)
< δ,

then

∣∣∣∣y
(
x, t,d, . . . ,dn–,C,



p
,p, . . . ,pn,w

)

– y

(
x, t,d , . . . ,d(n–) ,C,



p
,p , . . . ,pn ,w

)∣∣∣∣ < ε,
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∣∣∣∣y[]
(
x, t,d, . . . ,dn–,C,



p
,p, . . . ,pn,w

)

– y[]
(
x, t,d , . . . ,d(n–) ,C,



p
,p , . . . ,pn ,w

)∣∣∣∣ < ε,

...
∣∣∣∣y[n–]

(
x, t,d, . . . ,dn–,C,



p
,p, . . . ,pn,w

)

– y[n–]
(
x, t,d , . . . ,d(n–) ,C,



p
,p , . . . ,pn ,w

)∣∣∣∣ < ε

uniformly for all x ∈ J .

Proof For t = c– and x = c+, by transmission conditions (.) and detC = detC = ρn > ,

the result holds for x = c+. By the extension of continuity of y(x,λ) on J or J, respectively,

the statement can be seen fromLemma . in []when x ∈ J . As t = c+, utilizing the same

method, the result follows. For x ∈ J , using Lemma . in [] and the above method, the

statement follows. �

Lemma  Let ω = (a,b,A,B,C,


p
,p , . . . ,pn ,w). Let λ = λ(ω) be an eigenvalue of

the operator L. If the multiplicity of λ(ω) is , then there exists a neighborhood N of ω

belonging to � such that the multiplicity of λ(ω) is  for every ω in N .

Proof If λ(ω) is simple, then �′(λ(ω)) �= . Since �(λ) is an entire function of λ, then the

conclusion follows from Theorem . �

A normalized eigenfunction u of the operator Lmeans an eigenfunction u satisfies

〈u,u〉 =

∫ c

a

uuwdx + ρ

∫ b

c

uuwdx = .

Theorem  Let the notation and hypotheses of Theorem  hold. If the multiplicity of eigen-

value λ(ω) is l (l = , , . . . , n) for all ω ∈ N , and N ∈ � is a neighborhood of ω. Then there

exist l linearly independent normalized eigenfunctions uk(·,ω) of λ(ω).As ω → ω,we have

uk(·,ω) → uk(·,ω),

u
[j]
k (·,ω) → u

[j]
k (·,ω), k = , , . . . , l, j = , , . . . , n – ,

(.)

uniformly on the interval J .

Particularly, if λ(ω) is simple for some ω ∈ �, then there exists a normalized eigenfunc-

tion u = u(·,ω) such that (.) holds for k = .

Proof (a) If the multiplicity of λ(ω) is , then, by Lemma , there exists a neighborhood

N of ω such that the multiplicity of λ(ω) is  for any ω ∈ N . For each ω ∈ N , choose an

eigenfunction u = u(·,ω) of λ(ω) satisfying

∥∥U(x,ω)
∥∥ =

∣∣u(x,ω)
∣∣ +

∣∣u[](x,ω)
∣∣ + · · · +

∣∣u[n–](x,ω)
∣∣ = , u(x,ω) > ,
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for some x ∈ (a, c)∪(c,b) and xnear x, whereU(·,ω) = (u(·,ω),u[](·,ω), . . . ,u[n–](·,ω))T .

It is sufficient to prove that

U(x,ω) →U(x,ω), ω → ω,ω ∈ �. (.)

If (.) is not fulfilled, then we can choose a sequence ωk → ω such that

U(x,ωk) → Y , ωk → ω,ω ∈ �.

Due to the normalization at x, Y and U(x,ω) are two linearly independent vectors in

C
n. Let Z(x) be the vector solution of (.) with ω = ω, λ = λ(ω) and the initial condition

Z(x) = Y . By Lemma , U(x,ωk) → Z(x) uniformly on J . Particularly,

U(a,ωk) → Z(a), U(b,ωk) → Z(b),

U(c–,ωk) → Z(c–), U(c+,ωk) → Z(c+).

Since U(·,ωk) satisfies the conditions

AkU(a,ωk) + BkU(b,ωk) = , U(c–,ωk) = CkU(c+,ωk),

by taking limits as k → ∞, we obtain that

AZ(a) + BZ(b) = , Z(c–) = CZ(c+).

Hence Z(x) is a vector eigenfunction for ω = ω and λ = λ(ω), which contradicts the fact

that λ(ω) is simple.

Again by Lemma , u(x,ω) → u(x,ω),u
[](x,ω) → u[](x,ω), . . . ,u

[n–](x,ω) →

u[n–](x,ω) as ω → ω, and x ∈ J . The conclusion follows.

(b) If the multiplicity of λ(ω) is l (l = , . . . , n) for all ω in some neighborhood N of ω

in �. Then we can choose eigenfunctions of λ(ω) satisfying the same initial conditions at

c for some c ∈ J since a linear combination of l linearly independent eigenfunctions can

be chosen to satisfy arbitrary initial conditions.

The above discussion illustrates that for every self-adjoint boundary value transmis-

sion problem and every eigenvalue λ(ω), the eigenfunction u(·,ω) and its quasi-derivatives

u[](·,ω), . . . ,u[n–](·,ω) are uniformly convergent in ω for x ∈ J . Then we normalize the

eigenfunctions to end the proof. �

4 Differential expressions of eigenvalues on the problem

In this section, we will obtain the differential expressions of eigenvalues with respect to

the data. To this end, we will use Frechet derivative and list its definition as follows.

Definition  (See []) Let X, Y be Banach spaces. A map T : X → Y is Frechet differ-

entiable at a given point x ∈ X if a bounded linear operator dTx : X → Y satisfies that for

h ∈ X

∣∣T(x + h) – T(x) – dTx(h)
∣∣ = o(h) as h→ .
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Lemma  (See []) Assume a real-valued function f ∈ Lloc(a,b). Then

lim
h→



h

∫ x+h

x

f = f (x) a.e. in (a,b).

Lemma  Suppose that P = (p,p, . . . ,pn) and Q = (q,q, . . . ,qn). Then we have

〈MPy, z〉 – 〈y,MQz〉

= [y, z]ca + ρ[y, z]bc +

∫ c

a

n–∑

k=

(–)n+k(pn–k – qn–k)y
(k)z̄(k) +

∫ c

a

(p – q)y
(n)z̄(n)

+ ρ

∫ b

c

n–∑

k=

(–)n+k(pn–k – qn–k)y
(k)z̄(k) + ρ

∫ b

c

(p – q)y
(n)z̄(n). (.)

Proof This follows directly from integration by parts. �

Theorem  Let ω = (a,b,A,B,C,P,w) ∈ � with P = ( 
p
,p, . . . ,pn) and λ = λ(ω) be an

eigenvalue of operator L connected with ω, and let u = u(·,ω) be the corresponding eigen-

function. Assume that λ(ω) has constant geometric multiplicity in some neighborhood

N ⊂ � for all fixed components of ω except one component.

. Let all components of ω except pk for some (k = , , . . . ,n) be fixed. Consider λ as a

function of pk ∈ L(J). Then λ is Frechet differentiable at pk and

dλpk (h) =

∫ c

a

(–)n+k
∣∣u(k)

∣∣h + ρ

∫ b

c

(–)n+k
∣∣u(k)

∣∣h, h ∈ L(J). (.)

. Let all components of ω except /p be fixed. Consider λ as a function of /p ∈ L(J).

Then λ is Frechet differentiable at /p and

dλ/p (h) = –

(∫ c

a

∣∣pu(n)
∣∣h + ρ

∫ b

c

∣∣pu(n)
∣∣h

)
, h ∈ L(J). (.)

. Let all components of ω except w be fixed. Consider λ as a function of w ∈ L(J). Then λ

is Frechet differentiable at w and

dλw(h) = –λ

(∫ c

a

|u|h + ρ

∫ b

c

|u|h

)
, h ∈ L(J). (.)

Proof We only give the proofs of (.) and (.) since (.) can be proved similarly. Let

u = u(·,pk) and v = u(·,pk +h) such that u
(k)(·,pk +h) → u(k)(·,pk) (k = , , . . . ,n) uniformly

on J as h→ . From (.) and (.) it is obtained that

[
λ(pk + h) – λ(pk)

]
〈u, v〉

= –[u, v]ca – ρ[u, v]bc +

∫ c

a

(–)n+ku(k)v̄(k)h + ρ

∫ b

c

(–)n+ku(k)v̄(k)h.

Condition (.) implies

[u, v]ca + ρ[u, v]bc = ,
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then by Theorem  and Theorem  we have

[
λ(pk + h) – λ(pk)

](
 + o()

)
=

∫ c

a

(–)n+k
∣∣u(k)

∣∣h + ρ

∫ b

c

(–)n+k
∣∣u(k)

∣∣h + o(h),

and hence

λ(pk + h) – λ(pk) =

[∫ c

a

(–)n+k
∣∣u(k)

∣∣h + ρ

∫ b

c

(–)n+k
∣∣u(k)

∣∣h + o(h)

](
 + o()

)

= (–)n+k
∫ c

a

∣∣u(k)
∣∣h + (–)n+kρ

∫ b

c

∣∣u(k)
∣∣h + o(h) as h→ .

Therefore, the proof for (.) is completed.

In the following, we prove formula (.). Let u = u(·, 
p
) and v = u(·, 

q
) with 

q
= 

p
+h,

and when h→ , u(·, 
q
) → u(·, 

p
). Then

p – q = pqh.

Using (.) and the integration by parts, we can obtain

[
λ

(


p

)
– λ

(


q

)]
〈u, v〉 = [uv]ca + ρ[uv]bc +

∫ c

a

(p – q)u
(n)v̄(n)

+ ρ

∫ b

c

(p – q)u
(n)v̄(n).

From condition (.) we get that

[
λ

(


q

)
– λ

(


p

)]
〈u, v〉 = –

∫ c

a

pu
(n)qv̄

(n)h + ρ

∫ b

c

pu
(n)qv̄

(n)h.

Taking limits as h→ , we complete the proof of (.). �

Theorem  Assume that the assumptions in Theorem  hold. Let all components of ω

except b be fixed, and let λ = λ(b) and u = u(·,b). Then λ is differentiable at b and

λ′(b) = ρ

n∑

k=

(
u[k–](b)

(
ū[n–k]

)′
(b) – u[n–k](b)

(
ū[k–]

)′
(b)

)
, a.e. for b ∈

(
c,b′

)
. (.)

Proof For small h, choose u = u(·,b) and v = u(·,b + h). By (.), (.), and Lemma , we

get that

[
λ(b + h) – λ(b)

]
〈u, v〉

= –[uv]ca – ρ[uv]bc = [uv](a) – ρ[uv](b)

= Ru(a)QnCv̄(a) – ρRu(b)QnCv̄(b)

= Ru(b,b)
(
A–B

)
QnA

–BCū(b + h,b + h) – ρRu(b,b)QnCū(b,b + h)

= ρRu(b,b)QnCū(b + h,b + h) – ρRu(b,b)QnCū(b,b + h)
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= ρRu(b,b)Qn

∫ b+h

b

C′
ū(s,b + h)ds

= ρRu(b,b)Qn

[∫ b+h

b

C′
ū(s,b)ds + o(h)

]
.

Therefore, from Lemma  we have

λ(b + h) – λ(b) = ρRu(b,b)Qn

[∫ b+h

b

C′
ū(s,b)ds + o(h)

]

= ρhRu(b,b)QnC
′
ū(b,b) + o(h) a.e. in

(
c,b′

)
.

Dividing both sides of the above equality by h and letting h→  yield that

λ′(b) = ρRu(b,b)QnC
′
ū(b,b) = ρ

[
u,u′

]
(b).

Then the result follows from (.). �

Theorem  Assume that the assumptions in Theorem  hold.

. Let all components of ω except A be fixed. Denote the eigenvalue and the normalized

eigenfunction with respect to A by λ = λ(A) and u = u(·,A), respectively. For all E

satisfying ρ(A + E)Qn(A + E)∗ = BQnB
∗ in the neighborhood of A, λ is differentiable

at A and

dλA(E) = –Ru(a)QnA
–HCū(a). (.)

. Let all components of ω except B be fixed. Denote the eigenvalue and the normalized

eigenfunction with respect to B by λ = λ(B) and u = u(·,B), respectively. For all E

satisfying ρAQnA
∗ = (B + E)Qn(B + E)∗ in the neighborhood of B, λ is differentiable

at B and

dλB(E) = ρRu(b)QnB
–HCū(b). (.)

. Let all components of ω except C be fixed. Denote the eigenvalue and the normalized

eigenfunction with respect to C by λ = λ(C) and u = u(·,C), respectively. For all E

satisfying det (C + E) = ρn and (C + E)∗Qn(C + E) = ρQn in the neighborhood of C, λ

is differentiable at C and

dλC(E) = –Ru(c+)C
∗QnHCū(c+). (.)

Proof For small E, choose u = u(·,A), v = u(·,A+E) such that u(·,A+E)→ u(·,A) as E → ,

then by condition (.) we have

[
λ(A + E) – λ(A)

]
〈u, v〉

= [u, v](a) – ρ[u, v](b)

= Ru(a)QnCv̄(a) – ρRu(b)QnCv̄(b)

= Ru(a)QnCv̄(a) – ρRu(a)
(
BA–

)
QnB

–(A + E)Cv̄(b). (.)
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By (.) one gets that

A∗–QnA
– = ρB∗–QnB

–, (.)

and hence

(
B–A

)∗
QnB

–A =


ρ
Qn. (.)

Substituting (.), (.) into (.) and letting E → , we get that

λ(A + E) – λ(A) = –Ru(a)QnA
–ECū(a) + o(E),

this completes the proof of (.). The proof for (.) is similar to this proof, hence is omit-

ted here.

Let u = u(·,C), v = u(·,C + E) and assume that when E → , u(·,C + E) → u(·,C). Using

the same method mentioned above, we can get

[
λ(C + E) – λ(C)

]
〈u, v〉 = –[uv]ca – ρ[uv]bc .

By condition (.) and transmission conditions (.) we have

[
λ(C + E) – λ(C)

]
〈u, v〉

= –[uv](c–) + ρ[uv](c+)

= ρRu(c+)QnCv̄(c+) – Ru(c–)QnCv̄(c–)

= ρRu(c+)QnCv̄(c+) – Ru(c+)C
∗Qn(C + E)Cv̄(c+)

= –Ru(c+)C
∗QnECv̄(c+).

Let E → , then we get (.). �

5 Conclusion

The dependence of eigenvalues with respect to the data plays an important role in the

theory of differential operators. It gives theoretical support for the numerical computation

of eigenvalues.Moreover, the properties ofmonotonicity of eigenvalueswith respect to the

parameters can be obtained by the derivatives of eigenvalues on the given parameter.

In this article, we obtained the continuity results of eigenvalues and eigenfunctions and

presented some new differential expressions of the eigenvalues with respect to the data.

Our results in this article generalize the previous results by Kong et al. [] into a discon-

tinuous version. It can be verified that it turns into the classical case when ρ = .
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