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The musculoskeletal system is an extremely complex
structure with many levels of organization, varying from
the arrangement of molecules in myofilaments to that of
muscle–tendon complexes in the skeleton. It is generally
acknowledged that the global design of the system is the
outcome of an evolutionary process and that differences in
design among species are related to differences in functional
demands. Our challenge is to find relationships between design
aspects and functional demands. The obvious problem with
this challenge is that we do not really know for which demands
a given design aspect is the solution.

One of the intriguing design aspects of the human
musculoskeletal system is that distal muscle–tendon complexes,
notably those of the plantar flexors, span the large distance
between origin and insertion with long tendinous structures and
very short muscle fibres (5–6cm). For example, each muscle
fibre of the gastrocnemius is linked to tendinous tissue with a
total length of more than 35cm. Obviously, the arrangement
of many short muscle fibres in parallel allows for a large
physiological cross-sectional area, and thus a large muscle force,

at the expense of the range of shortening and the maximal
shortening velocity of the muscle fibres. But what is the role of
the tendinous tissue? The consensus of opinion is that tendinous
tissue does not simply transfer muscle forces to the skeleton. It
is compliant and can therefore also store and release energy. It
has been argued that this mechanism may help to increase
efficiency during so-called stretch–shortening exercises such as
running, in which active muscles are stretched prior to
shortening (e.g. Cavagna, 1977; Minetti et al., 1999). It has also
been argued that storage of elastic energy during a pre-stretch
may help to increase the maximum work produced during
shortening over that produced without pre-stretch (Asmussen
and Bonde-Petersen, 1974; Komi and Bosco, 1978; Svantesson
et al., 1991). This latter argument, however, has been refuted
(Bobbert et al., 1996; van Ingen Schenau et al., 1997) because,
when the length of a muscle–tendon complex (MTC) at the start
of shortening is fixed, storage of elastic energy requires
lengthening of series elastic elements (SEEs), and such
lengthening can occur only at the expense of the potential
shortening distance of contractile elements.
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The purposes of this study were to determine the
dependence of human squat jump performance on the
compliance of series elastic elements (SEEs) of the triceps
surae (consisting of the soleus and gastrocnemius) and
to explain this dependence. Vertical squat jumps were
simulated using an optimal control model of the human
musculo-skeletal system. Maximum jump height was found
for several values of triceps surae SEE strain at maximum
isometric force (ε0). When ε0 was increased from 1 to 10 %,
maximum jump height increased by 8 cm. This was partly
due to a higher work output of contractile elements (CEs)
of the muscles, primarily of the soleus, and also partly to
an increased efficacy of converting muscle work to energy
contributing to jump height. The soleus produced more
work at ε0=10 % because, as a result of SEE recoil, the CE
covered its shortening range at lower velocity and hence
produced more force. Efficacy was higher at ε0=10 %
because a higher vertical velocity at take-off was achieved

with a lower rotational energy of the body segments. This
apparent discrepancy was explained by increased angular
velocities of the shanks and feet, which have small moments
of inertia, and decreased angular velocities of the thighs
and trunk, which have larger moments of inertia. This
redistribution of segmental contributions to the vertical
velocity of the centre of mass was possible because the
increased compliance of the triceps surae SEE enhanced
the energy-buffering capacity of this muscle group and,
thereby, allowed for a higher power output at the ankles.
It seems that long compliant tendons in the plantar flexors
are an elegant solution to the problem of maximizing
jumping performance.

Key words: musculoskeletal model, optimal control, muscle
functioning, jump performance, contractile element, series elastic
element, strain, human.
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The compliance of series elastic structures may not affect
maximum work output during shortening of an MTC, but it
will affect the rate at which energy can be released. Using a
model of the triceps surae MTC driven by muscle stimulation
and kinematic patterns measured during human jumping, it has
been shown that a large compliance of the SEE of the triceps
surae MTC is required to explain the high power output
measured at the ankle (Bobbert et al., 1986b). Achieving a high
power output about the ankle, in turn, was argued to be of
crucial importance in jumping (Bobbert et al., 1986b). These
arguments were tested in optimal control studies using a
forward dynamic model of the musculoskeletal system
(Anderson and Pandy, 1993; Pandy, 1990; Pandy et al., 1990).
In that model, the tendinous tissue was characterized by a
linear stress/strain relationship with values for the strain of the
SEE at maximum isometric force (ε0) of 2.5–5.3 % (Pandy et
al., 1990). Anderson and Pandy (Anderson and Pandy, 1993)
found that increasing ε0 of the proximal MTCs (vasti, rectus
femoris, glutei and hamstrings) to the physiological limit of
10 % produced only a 3 % increase in maximum jump height
(which was 65 cm in that study). This led them to conclude that
SEE compliance did not affect jump height significantly.
Pandy (1990) also found that increasing ε0 of the plantar
flexors (soleus and gastrocnemius) from 2.6 to 10 % caused
squat jump height to increase from 33 to 40.5 cm (Pandy,
1990). Despite this 23 % increase in performance, Pandy
(1990) again concluded that the contribution of SEE
compliance to jumping performance was negligible, probably
because the effect of a particular relative change in SEE
compliance (i.e. a change expressed as a fraction of the
reference value) was small compared with the effect of the
same relative change in other variables (such as the maximal
shortening velocity of muscle fibres and the body strength to
weight ratio), and probably also because Pandy (Pandy, 1990)
felt that a value of 10 % for ε0 was far from realistic.

So, from the above studies, the general consensus is that
jump height is insensitive to changes in SEE compliance
(Zajac, 1993). However, we feel that that this may not be
correct for several reasons. First, the effect of a change in
compliance from the reference value does not provide
information on the role of that compliance at the reference
value. Second, recent studies suggest that high values for SEE
compliance are in fact realistic. In one of these studies (Hof,
1998), subjects first produced a voluntary isometric contraction
with their triceps surae in a dynamometer. When the force had
reached a plateau, the dynamometer rapidly rotated the foot,
imposing a shortening velocity on the triceps surae MTC much
higher than the maximum shortening velocity of the contractile
elements. The shortening distance at which the force was
reduced to zero was determined. Hof (Hof, 1998) concluded
that, at maximum isometric force, series elastic structures
could be stretched by 3.6 cm, implying a strain of
approximately 10 %. Similarly high values for SEE compliance
may be derived for the vastus lateralis from ultrasonography
data (Kubo et al., 1999).

The purposes of the present study were to investigate further

the dependence of squat jump performance on the compliance
of the tendinous tissue of the triceps surae and to try to explain
this dependence. To this end, an optimal control approach was
used with a model of the musculoskeletal system. Simulation
results were compared with data collected during maximum-
height squat jumps of a human subject.

Materials and methods
Experimental data

To acquire initial conditions for simulations and to evaluate
simulation results, we used kinematic and kinetic data from
an experienced male jumper (mass 85 kg, height 1.91 m)
performing maximum-height squat jumps. These data were
collected as part of a study described in detail elsewhere
(Bobbert et al., 1996). Briefly, the subject started his jumps
from a semi-squatting position and was instructed to make
no countermovements. Sagittal plane coordinates of markers
placed at the height of the neck, hip joint, knee joint, ankle
joint and fifth metatarsophalangeal joint were obtained using a
VICON high-speed video-analysis system (Oxford Metrics
Ltd, Oxford, UK) operating at 200 frames s−1. Ground reaction
forces produced during jumping were measured using a Kistler
force platform (type 9281B, Kistler Instrument Corp.,
Amherst, NY, USA) and sampled simultaneously with the
kinematic data. From the positional data, we calculated jump
height, defined as the difference between the height of the
centre of mass of the body at the apex of the jump and the
height of this centre of mass when the subject was standing
upright with the heels on the ground. The highest of three squat
jumps was selected for further analysis. Net joint moments,
power output and work were obtained by performing an
inverse-dynamics analysis (Elftman, 1939), combining
kinematic information and ground reaction forces.

Simulation model

For the simulations, we used the two-dimensional forward
dynamic model of the human musculoskeletal system shown
in Fig. 1. The model, which calculated internal states and MTC
forces as well as the motion of body segments corresponding
to stimulation-time input of the muscles, has been described in
detail elsewhere (van Soest et al., 1993). It consisted of three
rigid segments, representing the feet (F), shanks (S) and thighs
(T), and a fourth rigid segment representing the head, arms and
trunk (HAT). The segments were interconnected by hinge
joints representing the hip, knee and ankle joints. In the skeletal
submodel, which had a total mass of 82 kg, the following six
major MTCs contributing to extension of the lower extremity
were embedded: hamstrings, gluteus maximus, rectus femoris,
vasti, gastrocnemius and soleus. The six MTCs were
represented using a Hill-type muscle model (Hill, 1938). This
model consisted of a contractile element (CE), a series elastic
element (SEE) and a parallel elastic element (PEE) and has
also been described in detail elsewhere (van Soest and Bobbert,
1993). Briefly, the behaviour of the SEE and PEE was
determined by a quadratic force–length relationship. The
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behaviour of the CE was more complex: CE contraction
velocity l

.
CE depended on active state q, CE length lCE and

force F. Following Hatze (Hatze, 1981), the relationship
between q (essentially representing the relative amount of Ca2+

bound to troponin) and muscle stimulation STIM was
modelled as a first-order process. STIM, ranging between 0
and 1, is a one-dimensional representation of the effects of
the recruitment and firing frequency of α-motoneurons. The
description of the relationship between contraction velocity
and force was based on Hill’s equation (Hill, 1938):

(F + a)(V + b) = (F0 + a)b , (1)

where V is shortening velocity, F0 is maximum isometric force,
and a and b are constants. In the present study, V was replaced
by −l

.
CE, and F0 was replaced by Fmax fisomq, where Fmax is the

maximum isometric force of the muscle at maximum active
state (q=1) and optimum CE length (lCE,opt), and fisom indicates
which fraction of this force can be produced at other CE
lengths (see below). For further details of this formulation, and
of the formulation of the eccentric part of the force–velocity
relationship, which played a negligible role in the present
study, the reader is referred to van Soest and Bobbert (van
Soest and Bobbert, 1993).

The parameters of the model were not tuned to represent
individual subjects, but only to represent a group of subjects
(Bobbert et al., 1996; van Soest and Bobbert, 1993; van Soest
et al., 1993). The values of variables derived for the soleus and
gastrocnemius MTCs are presented in Table 1. For the present
study, it is relevant to mention a few of the conceptual steps
made in deriving these values. First, an MTC was regarded as
a collection of identical units, each composed of a muscle fibre
made up of identical sarcomeres in series, and a ‘tendon fibre’
bridging the gap between the muscle fibre and the centroids of
origin and insertion (Bobbert et al., 1986a; Bobbert et al.,
1990). Second, it was assumed that the muscle fibres were
responsible for the properties of the CE and PEE, and the
‘tendon fibres’ for those of the SEE. Thus, the series elasticity
residing in the muscle fibres themselves was neglected relative
to that of the tendinous tissue (for the MTC as a whole this
seems reasonable, because the length of the muscle fibres is
small compared with that of the tendinous tissue in series with
them). Given the properties of each sarcomere and the stiffness
properties of tendinous tissue, making the assumptions
mentioned above allowed us to derive values for the variables
describing the behaviour of the MTC from (i) the number of
sarcomeres in series in each muscle fibre, (ii) the origin-to-
insertion distance at which the MTC attains its optimal length
(i.e. the length at which it produces its maximum isometric
force) and, in theory but not in practice (see below), (iii) the
number of sarcomeres in parallel in the whole MTC.

The relationship between fisomand the length of a sarcomere
was modelled as an inverted parabola with zero values below
0.44 and above 1.56 times sarcomere optimum length (Bobbert
et al., 1986a). The force of a ‘tendon fibre’ was assumed to be
zero below slack length and to increase quadratically to

GLU
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SOL

ϕHAT
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Fig. 1. Schematic drawing of the model of the musculoskeletal
system used in forward dynamic simulations. The model consists of
four interconnected rigid segments (feet, F; shanks, S; thighs, T; and
a HAT segment representing the head, arms and trunk) and six
muscle–tendon complexes of the lower extremity (hamstrings HAM,
gluteus maximus GLU, rectus femoris REC, vasti VAS,
gastrocnemius GAS and soleus SOL), all represented by Hill-type
muscle models. Segment angles ϕHAT, ϕT, ϕS and ϕF are all
expressed relative to the right-hand horizontal.

Table 1.Values for selected variables for the soleus (SOL) and gastrocnemius (GAS) muscles used in the model

lCE,opt VCE,max lSE,0 Fmax PCE,max dankle dknee

(m) (m s−1) (m) (N) (W) (m) (m)

SOL 0.055 0.70 0.235 8000 685 0.046 0
GAS 0.061 0.77 0.364 4000 380 0.046 0.017

Force and power values are for two legs together.
lCE,opt, optimum length of muscle fibres (contractile elements, CE); VCE,max, maximal shortening velocity of contractile elements at

maximum active state and lCE,opt; lSE,0, greatest length of series elastic element at which force is still zero; Fmax, maximum isometric force (at
lCE,opt); PCE,max, maximum power output of contractile elements at maximum active state and lCE,opt; dankle, average moment arm at ankle
during simulations; dknee, average moment arm at knee during simulations.
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isometric muscle force at a strain ε0, which was 4 % in the
reference model. To describe the relationship between the
force and concentric velocity of a sarcomere, a/Fmax and
b/lCE,opt were set to 0.41 and 5.2 s−1, respectively (Bobbert et
al., 1986b). The numbers of sarcomeres observed in series for
the soleus and gastrocnemius in human cadavers, 16 270 and
17 825, respectively (P. A. Huijing, personal communication),
were adjusted for shank length.

Values for absolute muscle forces and tendon fibre slack
lengths were estimated as follows. The physiological cross-
sectional areas of muscles (a measure of the number of
sarcomeres in parallel), defined as muscle volume divided by
muscle fibre optimal length, were determined in human
cadavers (P. A. Huijing, personal communication). The ratio
of maximal isometric forces of the muscles crossing a joint was
set equal to the ratio of physiological cross-sectional areas.
The ratio SOL:GAS was determined to be 2:1. Using an
optimization procedure, the tendon fibre slack lengths of the
muscles crossing a joint were subsequently adjusted in such a
way that the best fit was obtained between the maximum
isometric moment-angle relationship of the model and
relationships measured in maximum isometric contractions of
subjects on a dynamometer (Out et al., 1996).

At the start of each simulation, the model was put in the
starting position selected by the subject, and the initial STIM
levels of the mono-articular glutei, vasti and soleus were set such
that static equilibrium was achieved. Subsequently, STIM was
allowed to switch only once from this initial value to the
maximal value of 1.0 and thereafter had to remain maximal until
take-off. Under this restriction, the motion of the body segments,
and therewith the performance of the model, depended on six
variables: the instants at which the STIM of each of the six
MTCs switched from the initial value to the maximal value.
Thus, an optimization problem could be formulated: what
combination of six switching times produced the maximum
value of the height achieved by the centre of mass (CM)?
This problem was solved with the help of a genetic algorithm
(L. J. R. Casius and A. J. van Soest, in preparation). For
each condition, the optimization ran for 500 generations of a
population of 100 chromosomes, each of which was a bit-string
coding one combination of the six stimulation onset times.

The dynamic optimization problem was solved for different
values of ε0: 1%, 4%, 10%, 15% and 20%, with 4% being the
reference value used in our previous simulation studies. When
ε0 was adjusted, the slack length of the SEE was not adjusted.
Thus, in the static equilibrium position, the amount of elastic
energy stored in the SEE of the soleus increased with ε0, but the
extra energy was essentially produced by the CE. In trying to
explain the effects of changing SEE compliance on jump height,
we shall focus on the differences between ε0=4% and ε0=10%.

Results and discussion
Comparison of experimental and simulation results

Fig. 2A shows experimental data for the maximum-height
squat jump of the subject. Fig. 2B shows the results from the

M. F. BOBBERT

Subject performing squat jump
Vertical velocity at take-off 2.89 m s-1

Jump height 0.50 m

t=−0.76 t=−0.25 t=−0.20 t=−0.15 t=−0.10 t=−0.05 t=0 s

t=−0.34 t=−0.25 t=−0.20 t=−0.15 t=−0.10 t=−0.05 t=0 s

t=−0.35 t=−0.25 t=−0.20 t=−0.15 t=−0.10 t=−0.05 t=0 s

A

Simulation model, optimal solution for ε0 = 4%
Vertical velocity at take-off 2.65 m s-1

Jump height 0.41 m

B

Simulation model, optimal solution for ε0 = 10%
Vertical velocity at take-off 2.78 m s-1

Jump height 0.45 m

C

Fig. 2. Stick diagrams for the push-off in maximum-height squat
jumping for a subject (A) and for the optimal solutions of the
simulation model with the strain at maximum isometric force ε0 of
the series elastic elements of the triceps surae set to 4 % (B) or 10 %
(C). In each panel, the leftmost stick diagram depicts the position at
the start of upward motion of the centre of mass, the rightmost
one the configuration at the last frame before take-off, and the
intermediate diagrams are spaced 50 ms apart, counting backwards
from the instant of take-off (t=0 s). In each stick diagram, the ground
reaction force vector (lower arrow) is represented with its origin at
the centre of pressure, and the velocity vector of the centre of mass
(upper arrow) is shown with its origin at the location of the centre of
mass. The broken vertical line represents the stationary environment
and is added for easy reference.
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maximum-height squat jump of the reference model (ε0=4 %)
obtained by optimization of stimulation onset times. In
Fig. 2C, results are shown for the maximum-height squat jump
of the model with increased SEE compliance of the triceps
surae (ε0=10 %). Fig. 3 presents, for both the subject and the
model, time histories of segment angles (see definitions in
Fig. 1), and Fig. 4 presents time histories for power production
at the joints.

Overall, a good correspondence was obtained between the
kinematics of the jumps of the model and those of the subject
(Figs 2, 3), as in other simulation studies (Anderson and Pandy,
1993; Pandy et al., 1990; van Soest et al., 1993). The subject’s
jump height was, however, greater than the maximal jump height
of the model. This is a general finding, which is primarily
explained by the fact that, in contrast to the model, subjects do
not have a rigid trunk and can use the muscles of the back to
contribute work (van Soest et al., 1993). The kinematics of the
subject was modelled more accurately by the simulated jump
with ε0=10% than with ε0=4% (Figs 2, 3). For example,
rotations of the feet and shanks occurred later in the subject and
in the model with ε0=10% than in the model with ε0=4%.
Moreover, peak power output at the ankle joints (Fig. 4) and the
jump height of the subject (Fig. 2) were more similar using the
model with ε0=10% than with ε0=4%. Note that, with ε0=10%,
peak power output at the ankle was 1800W, almost twice the
theoretical maximum power output of the muscle fibres of the
triceps surae (Table 1). Note also that, in the simulated jumps,
power production at the knee and hip joint did not drop to
negative values shortly before take-off, as was the case for the
subject. This may well be because no anatomical constraints
were included in the model, while the subject, of course, will try
to prevent damage to the passive structures that limit the joint
range of motion (van Ingen Schenau et al., 1987). The subject
can do this by deactivating hip and knee extensor muscles
and activating mono-articular hip and knee flexor muscles to
dissipate rotational energy just before take-off. Including
anatomical constraints in the model would involve adding such
muscles and changing the optimization criterion. This was not
attempted; considering the overall correspondence between the
experimental and simulation results (Figs 2–4), it was felt that
the present model sufficiently captured the salient features of the
real system and adequately simulated vertical jumping.

The effects of changing the SEE compliance of the triceps
surae on performance

Table 2 presents information on a few selected variables
related to energy, work and their constituents for a number of
simulated jumps with different values for ε0. It is clear that ε0 has
a considerable effect on squat jumping performance: variations
in maximum jump height of approximately 9cm were achieved
by changing triceps surae SEE compliance. Surprisingly, the
changes in jump height were not only due to changes in the work
output of the MTCs. For example, the increase of 4cm realized
when ε0 was increased from 4 to 10% corresponds to an extra
amount of effective energy of 29.7J, whereas the extra amount
of work produced during the push-off was only 20.8J.

Apparently, there was also an increase in the efficacy ratio,
defined as the ratio of effective energy output (energy
contributing to jump height) to work done. Below, I shall attempt
first to identify the source of the extra work produced and
subsequently to explain why the efficacy was increased.

Why does a change in the SEE compliance of the triceps surae
affect the amount of work produced?

Table 3 presents information on stimulation onset times of the
MTCs, work produced by the MTCs and work contributions of
the CE and SEE for simulated jumps with ε0=4 % and ε0=10 %.
The increase in the amount of work produced at ε0=10 % was
due primarily to an increase in the work output of the soleus,
whose SEE compliance was changed, but also to changes in
the work output of other MTCs.
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Fig. 3. Time histories of segment angles (ϕ) for the push-off in
maximum-height squat jumping for a subject (solid lines) and for the
optimal solution of the simulation model with the strain at maximum
isometric force ε0 of the series elastic elements of the triceps surae
(broken lines) set to 4 % (A) or 10 % (B). ϕF, ϕS, ϕT and ϕHAT

represent, respectively, the angles relative to the right horizontal of
the feet F, shanks S, thighs T and the head, arms and trunk segment
(HAT) (see definitions in Fig. 1). Take-off is at t=0 s.



538

The increase in work output of the soleus MTC when ε0 of
the triceps surae SEE was increased from 4 to 10 % was due
to a reduction in soleus CE shortening velocity VCE, which in
turn was due to a higher contribution of the SEE to the MTC
shortening velocity. Fig. 5A shows the force produced by the
soleus as a function of soleus MTC length for these two
conditions. In both cases, a slight stretch of the MTC occurred
initially. This was due to a slight clockwise rotation of the
shanks (Figs 2, 3) caused by the later stimulation onsets of the
plantar flexors and the vasti than of the glutei and hamstrings
(Table 3). With ε0=10 %, the amplitude of the stretch was a
little larger because the plantar flexors were activated later
(Table 3). Fig. 5B shows the force produced by the soleus as
a function of soleus CE length. It can be seen that the initial
length of the CE was less in the simulation with ε0=10 %
because the SEE was extended 7.5 mm more than in the
simulation with ε0=4 %, giving an extra 5.6 J of stored elastic
energy (remember that this energy originates from the CE).

Note that, initially, soleus MTC length increases, while soleus
CE length does not. This means that other muscles are doing
work on the SEE of the soleus, which is stored as elastic
energy. When the soleus becomes activated, the CE starts to
shorten. Initially, energy is put into the tendon by the CE
(force increases); later, energy is released from the tendon
(force decreases). In the simulation with ε0=10 %, the
shortening velocity of the soleus CE at any given CE length
is lower than with ε0=4 % (Fig. 5C), and this allows the CE
to do more work (i.e. the area under the CE length/force curve)
despite its smaller shortening range. The lower shortening
velocity of the CE is due to the larger contribution of the SEE
to MTC shortening. Take-off occurs when the soleus force has
fallen to zero, indicating that all elastic energy stored in the
SEE is released, including the extra energy stored initially at
ε0=10 %.

In addition to the increase in work output of the soleus of
12.5 J, the work output of the vasti, rectus femoris and gluteus

M. F. BOBBERT

Table 2.Values for selected variables related to energy, work and their constituents for a number of simulated jumps with
different values for the strain at maximum isometric force ε0 of the series elastic elements of the triceps surae

∆zCM,start ∆zCM,to ∆zCM,max ∆Epot,to żCM,to Ez
kin,to ∑4

i=1E
z
rot,to,i ∆Eeff,to Wtot

(m) (m) (m) (J) (m s−1) (J) (J) (J) (J)

ε0=1 % 0 0 −0.04 +0.5 −0.14 −29.0 +6.9 −28.5 −20.3
ε0=4 % −0.33 0.05 0.41 307.3 2.65 288.1 66.1 595.4 685.7
ε0=10 % 0 0 +0.04 −0.2 +0.13 +29.9 −8.1 +29.7 +20.8
ε0=15 % 0 0 +0.05 +0.7 +0.19 +42.8 −3.8 +43.5 +33.3
ε0=20 % 0 +0.01 +0.02 +4.2 +0.05 +11.7 −8.6 +15.9 −1.5

Absolute values are presented for ε0=4 % (in bold type), and values obtained with other values ε0 are expressed relative to those at ε0=4 %.
∆zCM,start, initial height of centre of mass (CM) relative to height of CM in upright standing; ∆zCM,to, height of CM at take-off relative to

height of CM in upright standing; ∆zCM,max, jump height, i.e. maximum height of CM relative to height of CM in upright standing, ∆Epot,to,
potential energy at take-off relative to potential energy in starting position; żCM,to, vertical velocity of CM at take-off; Ez

kin,to, kinetic energy due
to vertical velocity of CM at take-off; ∑4

i=1E
z
rot,to,i, sum of rotational energies of segments at take-off; ∆Eeff,to, increase in effective energy during

push-off (sum of ∆Epot,toand Ez
kin,to); Wtot, total work output of muscle–tendon complexes during push-off.

Table 3.Values for optimal stimulation onset times of the muscle–tendon complexes of the model, work produced by the
muscle–tendon complexes and the contributions to this work by contractile element and series elastic element 

SOL GAS VAS REC GLU HAM Total

ε0=4 % tonset(s) 0.036 0.017 0.047 0.162 0.010 0
WCE (J) 83.4 50.5 168.6 15.2 241.6 124.4 683.7
WSEE(J) 3.7 −0.7 2.8 −5.0 2.0 −0.8 2.0
Wtot (J) 87.1 49.8 171.4 10.2 243.6 123.6 685.7

ε0=10 % tonset(s) +0.023 +0.105 +0.004 −0.013 +0.010 0
WCE (J) +6.4 +2.2 +2.0 +1.0 +5.4 −0.4 +16.6
WSEE(J) +6.1 −3.0 +0.1 +0.6 +0.1 +0.4 +4.2
Wtot (J) +12.5 −0.8 +2.1 +1.5 +5.5 0 +20.8

Absolute values are presented for the model with the strain at maximum isometric force ε0 of the series elastic elements of the triceps surae
set to 4 %. 

Values obtained at ε0=10 % are expressed relative to those obtained at ε0=4 % (in bold type). 
Work values are for two legs together.
SOL, soleus; GAS, gastrocnemius; VAS, vasti; REC, rectus femoris; GLU, gluteus maximus; HAM, hamstrings; tonset, instant at which

stimulation switched from the initial value to the maximum value; WCE, WSEE, Wtot, net work output of contractile element, series elastic
element and total muscle–tendon complex, respectively.
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maximus together also increased by 9.1 J when the ε0 of the
triceps surae SEE was increased from 4 to 10 %. In the case of
the vasti and gluteus maximus, this was partly due to a lower
CE shortening velocity and partly to a slightly greater CE
shortening distance, which arose from differences in the state
of the system at take-off (Table 4, see below).

Why does a change in SEE compliance of the triceps surae
affect efficacy?

As described above, a higher vertical velocity at take-off
occurs in the optimal jump with ε0=10 % than in that with
ε0=4 % (Fig. 2). The vertical velocity of the CM is produced
by rotations of the segments. Thus, at first glance, one would
expect the angular velocity of the segments, and therewith the

rotational energy (Table 2), to be higher at take-off when
ε0=10 %; in fact, the opposite was true, it was 8 J lower. The
same was true for the horizontal kinetic energy of the segments
relative to the CM, which was 4 J lower with ε0=10 % (results
not shown). This means that a larger fraction of the work
produced at ε0=10 % is converted into effective energy, i.e.
energy contributing to jump height. How is this possible? The
answer must lie in the contribution of rotations of the
individual segments to the vertical velocity of the CM. In a
given configuration of the system, the same linear velocity of
the CM can by achieved by different combinations of angular
velocities of the segments. To minimize rotational energy, the
angular velocities of segments with a small moment of inertia,
such as the feet, should be as large as possible, and those of
segments with larger moments of inertia, such as the HAT,
should be minimised. Thus, generally speaking, for a given
amount of input energy, a greater amount of effective energy
can be achieved if the contribution of the distal segments to
the vertical velocity of the CM can be increased and that of the
proximal segments decreased. A shift in these contributions
could explain why increasing the ε0 of the triceps surae SEE
from 4 to 10 % results in a higher efficacy, as shown by the
following analysis.

As argued previously (Bobbert and van Ingen Schenau,
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Fig. 4. Time histories of net joint power production (P) for the push-
off in maximum-height squat jumping for a subject (solid lines) and
for the optimal solution of the simulation model (broken lines) with
the strain at isometric force ε0 of the series elastic elements of the
triceps surae set to 4 % (A) or 10 % (B). Take-off is at t=0 s.

Fig. 5. Force production (F) by the soleus plotted as function of the
length of the muscle–tendon complex (MTC) (A), and force (B) and
shortening velocity of contractile elements (VCE) (C) plotted as a
function of length of the contractile element (CE), for the optimal
solution of the model with the strain at isometric force ε0 of the
series elastic elements of the triceps surae set to 4 % (solid lines) or
10 % (broken lines). Take-off is at t=0 s. The dotted parabola in B
represents the maximal isometric force that can be produced at
maximum active state and zero VCE. The arrows indicate the progress
of time.
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1988), the contribution of segment i (where i=1 is the feet, i=2
is the shanks, i=3 is the thighs and i=4 is the HAT) may be
written as:

where z
.
CM,contr,i is the contribution of rotation of segment i to

the vertical velocity of CM, mi is the mass of segment i, mj is
the mass of segment j, mtot is the total mass of the system, di

is the distance between the centre of mass of the segment and
the caudal end of this segment, l i is the length of the segment,
ϕi is the angle of the segment with the right-hand horizontal
(see definition in Fig. 1) and ϕ. i is the angular velocity of the
segment. Note that the rotation of each segment contributes in
two ways to the vertical velocity of the CM: first because it
affects the linear motion of the CM of the segment itself (first
term on the right-hand side of equation 2) and second because
it affects the linear motion of all the segments above its cranial
end (second term on the right-hand side of equation 2).

Fig. 6 shows the time histories of the segmental contributions
to the vertical velocity of the CM for the two simulated jumps
at ε0=4 % and ε0=10 %. The contributions sum up to give the
CM vertical velocities presented in Table 2. Note that the feet
start to contribute later in the condition ε0=10 %. This is only
partly due to the later stimulation onset of the plantar flexors.
The major reason is that, because of the increased compliance,
the plantar flexion moment builds up more slowly, so that it
takes longer before the centre of pressure arrives at the ball of
the foot, and hence it takes longer before foot rotation starts.
After initially lagging behind, the z

.
CM contributions of the feet

and lower legs rapidly increase to reach higher values at take-
off for ε0=10 % than for ε0=4 %. The reverse is true for the
contributions of rotation of the thighs and HAT. Obviously, the
contribution of segment i is proportional to cosϕi ·ϕ

.
i.

Table 4 presents information on the state of the segments at
take-off for the simulated jumps with ε0=4 % and ε0=10 %. By
virtue of the higher z

.
CM contributions of the feet and shanks at

take-off, the vertical velocity of the CM at take-off can be

higher for ε0=10 % despite a lower (less negative) angular
velocity of the thighs and, more importantly, a smaller angular
velocity of the HAT segment (Table 4). Because these latter
segments have larger moments of inertia than the feet and
shanks, less energy is present in the form of rotational energy
at take-off (Table 2). This redistribution of z

.
CM contributions,

which occurs when the ε0 of the triceps surae SEE is increased
from 4 to 10 %, explains the surprising combination of a lower
rotational energy with a higher vertical velocity of the CM at
take-off, and thus the increased efficacy at ε0=10 %.

Above, it is deduced that the vertical velocity of CM at take-
off is higher at ε0=10 % because of higher angular velocities
of the feet and shanks, which together produce a higher angular
velocity of the ankle at take-off. It follows that, in the phase

(2)żCM,contr,i= di ·cosϕi ·ϕ̇i + l i ·cosϕi ·ϕ̇i ,
mi

mtot

mj

mtot^
4

j=i+1

M. F. BOBBERT

Table 4.Values for variables representing the state of the body segments at take-off in the optimal jumps of the model with the
strain at maximum isometric force ε0 of series elastic elements of the triceps surae set to 4 %

Feet Shanks Thighs HAT żCM,to

ε0=4 % ϕto (rad) 1.98 1.38 1.81 1.35
ϕ̇to (rad s−1) −11.8 10.4 −9.2 4.5
żCM,contr (m s−1) 0.77 0.84 0.83 0.20 2.65

ε0=10 % ϕto (rad) +0.05 −0.02 −0.08 −0.02
ϕ̇to (rad s−1) −2.4 +0.6 +0.1 −0.6
żCM,contr (m s−1) +0.26 +0.16 −0.27 −0.01 +0.13

Values obtained with ε0=10 % are expressed relative to those obtained at ε0=4 % (in bold type). 
Note that, because the definitions of segment angles are with respect to the right horizontal (see Fig. 1), negative angular velocities of the feet

and thighs correspond to ‘extension’.
HAT, head, arms and trunk; ϕto, angle of segment with right horizontal (see Fig. 1B) at take-off; ϕ̇to, angular velocity of segment at take-off;

żCM,contr, contribution of rotation of segment to the vertical velocity of the centre of mass żCM,to.

Fig. 6. Time histories of the contributions of segmental rotations to
the vertical velocity of the centre of mass (z

.
CM,contr) for the optimal

solution of the model with the strain at isometric force ε0 of the
series elastic elements of the triceps surae set to 4 % (solid lines) or
10 % (broken lines). HAT is the head, arms and trunk. Take-off is at
t=0 s.
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preceding take-off, the system is able to achieve the same
acceleration of the CM at a higher angular velocity of plantar
flexion, indicating a higher power output at the ankle (Bobbert
et al., 1986b). Time histories of power output at the ankle and
the contributions of the CE and SEE of the triceps surae are
shown in Fig. 7; Table 5 presents contributions to the peak
power output at the ankle. It can be concluded from Fig. 7 that,
during the last 120 ms before take-off, power output at the
ankle is higher for ε0=10 %, not because the power output of
the CE is higher but primarily because energy release by the
SEE is greater (see also Table 5). Energy released by the SEE
during this phase was stored earlier in the push-off. Fig. 7
clearly shows how the SEE acts as a temporary energy buffer
and also how the increased capacity of the buffer when
ε0=10 % helps to delay plantar flexion and increase the energy
released during the last 120 ms of the push-off.

Why does an optimal SEE compliance exist?

Similar analyses to that presented above could be performed
for the effects of increasing ε0 from 1 to 4 %, or from 10 to
15 %, with more-or-less similar results (see Table 2). However,
it is more interesting to analyse why performance is reduced
when ε0 is increased from 15 to 20 %. At these high values for
SEE compliance, the CE is already below its optimum length
at the start of the contraction and operates only on the
ascending limb of its force/length relationship, below optimum
length. Hence, it produces smaller peak forces and is unable to
offset the disadvantage of a smaller shortening range. The
optimal compliance of the SEE represents a trade-off between

storing as much energy as possible in the SEE while preserving
the shortening range of the CE as much as possible.

Concluding remarks

The present study shows that the SEE compliance of the
triceps surae has a considerable effect on the maximum height
achieved in a squat jump. The effect was of the same
magnitude as that presented previously (Pandy, 1990). It is
mediated by changes in work output of both the triceps surae
and other muscles and by changes in the efficacy of converting
the work produced to energy that contributes to jump height.
These changes are possible by virtue of the fact that increasing
the capacity of the SEEs to store energy allows the system to
achieve a higher power output at the ankles during the last part
of the push-off. These findings support the hypotheses put
forward in previous studies, in which kinematic measurements
made during human jumping and muscle stimulation time
histories were used as a starting point (Bobbert et al., 1986a;
Bobbert et al., 1986b). Compliances of the magnitude
measured by Hof (Hof, 1998), which correspond to an ε0 of
approximately 10 %, are necessary to explain the high power
and work output about the ankle observed in human subjects
performing vertical jumps (Fig. 4). Thus, long compliant
tendons in the plantar flexors may have evolved as a solution
to the problem of maximizing performance in tasks that
involve explosive leg extension.

The advantage of SEE compliance in squat jumping arises
from the temporary storage of energy in the SEE and its
subsequent release at a high rate. In cyclic locomotor tasks
involving stretch–shortening cycles, such as running and
hopping, this buffering capacity allows for energy saving:
during the stretch phase, superfluous kinetic and potential
energy may partly be stored in the SEE and later re-utilized
during the shortening phase (Cavagna, 1977). This mechanism

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0
0

1000

2000

-500
0

500

1500

0

1000

2000

Ankles

SEE of the triceps surae

CE of the triceps surae

P
 (

W
)

A

B

C

ε0 = 4%
ε0 = 10%
Subject

Time (s)

Fig. 7. Time histories of power output (P) at the ankles (A) and for
the power contributions of the triceps surae series elastic element
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of the simulation model with the strain at isometric force ε0 of the
series elastic elements of the triceps surae set to 4 % (solid lines) or
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subject during maximum-height squat jumping is also plotted.
Values are for two legs together. Take-off is at t=0 s.

Table 5.Contributions to the peak power output at the ankles
during the simulated jumps 

Soleus Gastrocnemius

PA,peak PCE PSEE PCE PSEE Ptrans

(W) (W) (W) (W) (W) (W)

ε0=4 % 1400 659 105 335 75 226
ε0=10 % +400 −31 +284 −4 +119 +66

Absolute values are presented for the model with the strain at
maximum isometric force ε0 of the series elastic elements of the
triceps surae set to 4 %. 

Values obtained at ε0=10 % are expressed relative to those
obtained at ε0=4 % (in bold type). 

All values are for two legs together.
PA,peak, peak power output about the ankles; PCE, power output of

contractile elements at the instant thatPA,peak occurs; PSEE, power
output of series elastic elements at the instant thatPA,peak occurs;
Ptrans, power transported (see Bobbert et al., 1986b) by the
gastrocnemius from the knee to the ankle at the instant that PA,peak

occurs.
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allows hopping animals to uncouple aerobic metabolic energy
costs from locomotion speed (Biewener et al., 1998; Dawson
and Taylor, 1973). Interestingly, the beneficial effect of SEE
compliance of the triceps surae on the efficacy ratio in squat
jumping, as described in the present study, also helps to save
energy in cyclic locomotor tasks. It is then possible to achieve
a given velocity of the CM at lower angular velocities of the
proximal segments with large moments of inertia and, thereby,
to achieve a given amount of effective energy with less wasted
rotational energy.
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