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Abstract: This paper considers a theoretical substantiation of the influence of a perturbation of a
moving singular point on the analytical approximate solution to the Van der Pol equation obtained
earlier by the author. A priori estimates of the error of the analytical approximate solution are
obtained, which allows the solving of the inverse problem of the theory of error: what should the
structure of the analytical approximate solution be in order to obtain a result with a given accuracy?
Thanks to a new approach for obtaining a priori evaluations of errors, based on elements of differential
calculus, the domain, used to obtain an analytical approximate solution, was substantially expanded.
A variant of optimizing a priori estimates using a posteriori estimates is illustrated. The results of a
numerical experiment are also presented.

Keywords: Van der Pol equation; perturbation of a moving singular point; a priori estimate; analytical
approximate solution
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1. Introduction

We can see a wide range of applications of the Van der Pol equation to the theory of
nonlinear oscillations [1–6], relaxation oscillations [7], and human movement modeling
and data transmission synchronization in neural networks [8]. It should be noted that pub-
lications on qualitative and asymptotic theories [9–11] do not pay attention to the nonlinear
nature of this equation. This situation is reflected in the works of recent years [12–14], in
which numerical methods are used without substantiation to obtain a solution to the Van
der Pol equation. Only research in the complex domain [15] makes it possible to substan-
tiate the absence of moving singular points [16] in the real domain for a positive value
of the parameter of this equation, which justifies the application of numerical methods
to its solution. At the moment, there are two options for solving nonlinear differential
equations with moving singular points. The first option is related to the solvability in
quadratures, which is allowed only in special cases [17–23]. The second option is associated
with the author’s analytical approximate solution method, successfully tested on a number
of classes of nonlinear differential equations [15,24–28]. Therefore, with the exception of
special cases, the existing method for finding moving singular points [28] allows only
approximate values to be obtained. All of that mentioned above actualizes the presented
results. The presentation of the results confirms the novelty of the article material for the
first time.

Let us consider the Van der Pol equation in the complex domain

w′′(z) = −a(w2 − 1)w′(z)− w(z), (1)

where a is the parameter, a real value.
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In this paper, we present the results of the development of an analytical approximate
method for the considered equation in the complex domain. In [15], the existence of moving
singular points was proved and an analytical approximate solution was built,

wN(z) = (z∗ − z)−1/2
N

∑
n=0

Cn(z∗ − z)n/2, (2)

in the neighborhood of these points:

|z∗ − z| < 1/|a + 1|. (3)

As a consequence, the absence of moving singular points of the algebraic type was
obtained for the case of a ≥ 0 in the real domain. Presently, existing methods allow
obtaining only approximate values of moving singular points [28]. This circumstance
confirms the relevance of the problem of studying the effect of an error of the value of a
moving singular point on the analytical approximate solution (2). In this case, the latter
solution (2) is as follows:

w̃N(z) = (z̃∗ − z)−1/2
N

∑
n=0

Cn(z̃∗ − z)n/2, (4)

where z̃∗ is the approximate value of the moving singular point.
This article has a theoretical substantiation of the effect of perturbation of a moving

singular point on the analytical approximate solution (4). An a priori evaluation of the
error is obtained. The domain of correct results is maximized using elements of differential
calculus. The results of numerical experiments are provided to confirm the theoretical
provisions.

2. Research Method

Theorem 1 formulated below establishes the influence of the error in the value of the
moving singular point z̃∗ on the approximate solution (4) and makes it possible to obtain
an a priori estimate of the error.

Theorem 1. When the conditions are met:

1. z̃∗ is a moving singular point of equation solution (1) with initial conditions

w(z0) = w0, w′(z0) = w1. (5)

2. An estimate of the error of the moving singular point is known

|z̃∗ − z∗| ≤ ∆z̃∗,

then for values z from the region
|z̃∗ − z| < ρ,

the estimate of the analytical approximate solution error (4) is true

∆w̃N(z) ≤ ∆0 + ∆1 + ∆2,

where

∆0 ≤
√

3/(2|a|)
2|z̃∗ − z|3/2 ∆z̃∗,

∆1 ≤ 4
√

3/(2|a|)(|a|+ 1)∆z̃∗
(

1

21/2|z̃∗ − z|1/2 +
(|a|+ 1)23/2|z̃∗ − z|1/2

3(1− (|a|+ 1)2|z̃∗ − z|)

)
,
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∆2 ≤
√

3/(2|a|)(|a|+ 1)(N+1)/2|z̃∗ − z|N/2

N(N − 2)/4
(

1− (|a|+ 1)1/2|z̃∗ − z|1/2
) ,

ρ = min
{

1
|a|+ 1

,
1

2(|a|+ 1)

}
.

Proof. Based on the classical approach, we have

∆w̃N(z) = |w(z)− w̃N(z)| ≤ |w(z)− w̃(z)|+ |w̃(z)− w̃N(z)| =∣∣∣∣∣ ∞

∑
n=0

Cn(z∗ − z)(n−1)/2−
∞

∑
n=0

Cn(z̃∗ − z)(n−1)/2

∣∣∣∣∣+∣∣∣∣∣ ∞

∑
n=0

Cn(z̃∗ − z)(n−1)/2−
N

∑
n=0

Cn(z̃∗ − z)(n−1)/2

∣∣∣∣∣ ≤
∣∣∣C0

(
(z∗ − z)−1/2 − (z̃∗ − z)−1/2

)∣∣∣+ ∣∣∣∣∣ ∞

∑
n=1

Cn

(
(z∗ − z)(n−1)/2 − (z̃∗ − z)(n−1)/2

)∣∣∣∣∣+∣∣∣∣∣ ∞

∑
N+1

Cn(z̃∗ − z)(n−1)/2

∣∣∣∣∣ = ∆0 + ∆1 + ∆2.

Let us consider ∆0:

∆0 =
∣∣∣C0

(
(z∗ − z)−1/2 − (z̃∗ − z)−1/2

)∣∣∣ = |C0| ×
∣∣∣(z̃∗ − z + ∆z̃∗)−1/2 − (z̃∗ − z)−1/2

∣∣∣.
From the latter, after performing a series of transformations, we obtain

∆0 ≤ |C0|
∆z̃∗

(|z̃∗ − z|+ ∆z̃∗)1/2|z̃∗ − z|1/2
(
|z̃∗ − z|1/2 + (|z̃∗ − z|+ ∆z̃∗)1/2

) .

Or, taking into account the value of the coefficient C0 [15], it follows

∆0 ≤
√

3/(2|a|)∆z̃∗

2|z̃∗ − z|3/2 .

Let us estimate ∆1. It was previously established [15] that all odd coefficients Cn are
equal to zero, and for even values k ≥ 2, the following estimates hold:

|C2k| ≤
√

3/(2|a|)(|a|+ 1)k

|(2k− 1)/2(2k− 3)/2| . (6)

Therefore, for ∆1, we obtain

∆1 ≤
∣∣∣∣∣ ∞

∑
n=1

Cn

(
(z∗ − z)(n−1)/2 − (z̃∗ − z)(n−1)/2

)∣∣∣∣∣ ≤∣∣∣∣∣ ∞

∑
k=1

C2k

(
(z∗ − z)(2k−1)/2 − (z̃∗ − z)(2k−1)/2

)∣∣∣∣∣ ≤
|C2|∆z̃∗

|z̃∗ − z|1/221/2
+ |C4|∆z̃∗23/2|z̃∗ − z|1/2 + |C6|25/2∆z̃∗|z̃∗ − z|3/2+

|C8|27/2∆z̃∗|z̃∗ − z|5/2 + ... + |C2k|2(2k−1)/2∆z̃∗|z̃∗ − z|(2k−3)/2 + ...
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Or, taking into account (6), after a series of transformations we obtain

∆1 ≤
√

3/(2|a|)(|a|+ 1)∆z̃∗

1/4

(
1

21/2|z̃∗ − z|1/2 +
(|a|+ 1)23/2|z̃∗ − z|1/2

3(1− (|a|+ 1)2|z̃∗ − z|)

)
.

The expression for ∆1 is obtained in the area

|z̃∗ − z| < 1
2(|a|+ 1)

.

Let us move on to the estimate ∆2. Taking into account the estimates for the coefficients
Cn (6), we obtain in the case of N > 2

∆2 ≤
∞

∑
n=N+1

|Cn||z̃∗ − z|(n−1)/2 ≤
√

3/(2|a|)(|a|+ 1)(N+1)/2|z̃∗ − z|N/2

N(N − 2)/4
+

√
3/(2|a|)(|a|+ 1)(N+2)/2|z̃∗ − z|(N+1)/2

(N + 1)(N)/4
+

√
3/(2|a|)(|a|+ 1)(N+3)/2|z̃∗ − z|(N+2)/2

(N + 1)(N + 2)/4
+

√
3/(2|a|)(|a|+ 1)(N+4)/2|z̃∗ − z|(N+3)/2

(N + 2)(N + 3)/4
+ .... ≤

√
3/(2|a|)(|a|+ 1)(N+1)/2|z̃∗ − z|N/2

N(N − 2)/4
(

1− (|a|+ 1)1/2|z̃∗ − z|1/2
) .

The estimate expression for ∆2 is valid in the domain

|z̃∗ − z| < 1
|a|+ 1

.

Therefore, the theorem is fair in the domain

|z̃∗ − z| < ρ,

where

ρ = min
{

1
|a|+ 1

,
1

2(|a|+ 1)

}
. (7)

The comparison of the domains, made using Formulas (3) and (7), shows that the
domain obtained by applying Formula (7) is substantially smaller than the one obtained
using Formula (3). If the classical approach is applied in Theorem 1 in the course of
obtaining the a priori estimate of the approximate solution (4), the following Theorem 2,
whose proof is based on the elements of differential calculus [29], allows expanding the
domain to a substantial extent (7).

Theorem 2.

1. Let us assume that z̃∗ is a moving singular point in the solution to the Cauchy problem (1), (5);
2. The value of the perturbation of a moving singular point z̃∗ is available

|z̃∗ − z∗| ≤ ∆z̃∗,

then the a priori estimate of the error is correct

∆w̃N(z) ≤ ∆0 + ∆1 + ∆2 + ∆3
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for the analytical approximate solution (4) in the domain

|z̃∗ − z| < ρ,

where

∆0 ≤
√

3/(2|a|)
2
∣∣z̃∗1 − z

∣∣3/2 ∗ ∆z̃∗, ∆1 ≤ 2
√

3/(2|a|)|a|∆z̃∗
1

7
∣∣z̃∗1 − z

∣∣1/2 ,

∆2 ≤
2
√

3/(2|a|)(|a|+ 1)2|z̃∗2 − z|1/2

3
(
1− (|a|+ 1)

∣∣z̃∗2 − z
∣∣) ,

∆3 ≤
√

3/(2|a|)(|a|+ 1)(N+1)/2|z̃∗ − z|(N−2)/2

N(N − 2)/4
(

1− (|a|+ 1)1/2|z̃∗ − z|1/2
) ,

ρ = F1 ∩ F2 ∩ F3, F1 =

{
z : |z̃∗1 − z| < 1

|a|+ 1

}
,

F2 =

{
z : |z̃∗2 − z| < 1

|a|+ 1

}
, F3 =

{
z : |z̃∗ − z| < 1

|a|+ 1

}
,

|z̃∗1 | = |z̃∗| − ∆z̃∗, |z̃∗2 | = |z̃∗|+ ∆z̃∗, arg z̃∗1 = arg z̃∗2 = arg z̃∗.

Proof. Proof is obtained according to the definition

∆w̃N(z) = |w(z)− w̃N(z)| ≤ |w(z)− w̃(z)|+ |w̃(z)− w̃N(z)|.

Given that this approach, consisting of applying elements of differential calculus to
the estimate of the first summand of the above expression [29], was successfully used to
solve a number of non-linear differential equations [27], we obtain

|w(z)− w̃(z)| ≤ sup
G

∣∣∣∣ dw̃
dz̃∗

∣∣∣∣∆z̃∗ ≤

sup
G

∣∣∣∣∣ ∞

∑
0

Cn

(
n− 1

2

)
(z̃∗ − z)(n−3)/2

∣∣∣∣∣∆z̃∗ ≤

∞

∑
0

sup
G
|z̃∗ − z|(n−3)/2|Cn|

∣∣∣∣n− 1
2

∣∣∣∣∆z̃∗,

where
G = {z : |z̃∗ − z| ≤ ∆z̃∗ }.

Furthermore,

sup
G
|z̃∗ − z|(n−3)/2 =

{ ∣∣z̃∗1 − z
∣∣(n−3)/2

, n = 0, 1, 2,

|z̃∗2 − z|
(n−3)/2

, n = 3, 4, .... .

In this case,

|z̃∗1 | = |z̃∗| − ∆z̃∗, |z̃∗2 | = |z̃∗|+ ∆z̃∗, arg z̃∗1 = arg z̃∗2 = arg z̃∗.

As a consequence,

|w(z)− w̃(z)| ≤ |C0|∆z̃∗
1

2
∣∣z̃∗1 − z

∣∣3/2 + |C2|
∆z̃∗

2
∣∣z̃∗1 − z

∣∣1/2 +

∆z̃∗
∞

∑
3
|Cn|

∣∣∣∣n− 3
2

∣∣∣∣|z̃∗2 − z|(n−3)/2.



Axioms 2023, 12, 465 6 of 9

Therefore,

∆w̃N(z) = |w(z)− w̃N(z)| ≤ |C0|∆z̃∗
1

2
∣∣z̃∗1 − z

∣∣3/2 + |C2|
∆z̃∗

2
∣∣z̃∗1 − z

∣∣1/2 +

∆z̃∗
∞

∑
3
|Cn|

∣∣∣∣n− 3
2

∣∣∣∣|z̃∗2 − z|(n−3)/2 +
∞

∑
N+1
|Cn||z̃∗ − z|(n−3)/2 =

∆0 + ∆1 + ∆2 + ∆3.

For ∆0 and ∆1, respectively, we obtain

∆0 ≤
√

3/(2|a|)
2
∣∣z̃∗1 − z

∣∣3/2 ∗ ∆z̃∗, ∆1 ≤ 2
√

3/(2|a|)|a|∆z̃∗
1

7
∣∣z̃∗1 − z

∣∣1/2

in the domain

F1 =

{
z : |z̃∗1 − z| < 1

|a|+ 1

}
.

Let us estimate ∆2, given that C2n+1 = 0 [15]:

∆2 ≤ ∆z̃∗
∞
∑
3
|Cn|

∣∣ n−3
2

∣∣|z̃∗2 − z|(n−3)/2 ≤ ∆z̃∗
∞
∑
2
|C2n|

∣∣ 2n−3
2

∣∣|z̃∗2 − z|(2n−3)/2 ≤

∆z̃∗
∞
∑
2

√
3/(2|a|)(|a|+1)n

( 2n−1
2 )

|z̃∗2 − z|(2n−3)/2 ≤

∆z̃∗
√

3/(2|a|)(|a|+1)2

( 3
2 )

|z̃∗2 − z|1/2 1
(1−(|a|+1)|z̃∗2−z|) .

The estimate of ∆2 is correct in the domain

F2 =

{
z : |z̃∗2 − z| < 1

|a|+ 1

}
.

It is also correct for ∆3. In compliance with the findings of [15], we have

∆3 ≤
∞

∑
N+1
|Cn||z̃∗ − z|(n−3)/2 ≤

√
3/(2|a|)(|a|+ 1)(N+1)/2|z̃∗ − z|(N−2)/2

N(N − 2)/4
(

1− (|a|+ 1)1/2|z̃∗ − z|1/2
)

in the domain

F3 =

{
z : |z̃∗ − z| < 1

|a|+ 1

}
.

Consequently, the theorem will be correct in the domain

|z̃∗ − z| < ρ,

where
ρ = F1 ∩ F2 ∩ F3.

3. Results Discussion

For numerical experiment 1, let us consider the Cauchy problem (1), (5):

a = 2; w(0) = i; w′(0) = −i; z̃∗ = 0.85717; ∆z̃∗ ≤ 0.74 ∗ 10−5; z1 = 0.83157.

According to Theorem 1, ρ = 0.166667.
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For the structure of the analytical approximate solution (4) w̃6(z1), we have the follow-
ing expressions for the coefficients Cn:

C0 = i

√
3
2a

, C2 = −a · 1
4

C0, C4 = −C0

(
1

160
a2 − 1

)
,

C6 =
1

15

(
a
(

10C0C2C4 −
5
4

C4 +
5
2

C3
2

)
− C2

)
.

The calculations were carried out in Matlab. The calculation results are presented in
Tables 1 and 2.

Notations: w̃6(z1) is the analytical approximate solution (4); ∆w̃6(z1) is an a priori
estimate of the error obtained by the theorem; and ∆4 is an a posteriori error estimate.

Table 1. Characteristics of the calculations of the first stage.

z1 w̃6(z1) ∆w̃6(z1) ∆4

0.83157 5.346829i 0.001329 0.00005

Algorithm for solving the inverse problem of the theory of error:

1. We start with the analysis of the a priori error value ∆w̃6(z1), and check the condition
∆w̃6(z1) < ∆4. If it is satisfied, we go to step 7. Otherwise, we go to the next step of
the algorithm.

2. We check the condition ∆0 + ∆1 + ∆2 < ∆3. If it is accomplished, we go to the next
step. Otherwise, we go to step 6.

3. By the value for ∆3, we determine the minimum value of N, for which the condition
∆3 < ∆4 will be fulfilled. Let us go to the next point.

4. We check the condition ∆0 + ∆1 + ∆2 < ∆3. If it is satisfied, then we go to step 7.
Otherwise, we go to the next step.

5. We correct the value ∆3 according to the formula ∆3 = ∆3 + ∆0 + ∆1 + ∆2 and we go
to step 3.

6. We increase the accuracy of the approximate value of the moving singular point z̃∗,
decrease the value of ∆z̃∗, and go to step 2 of the algorithm.

7. Completion of the algorithm. An approximate solution w̃6(z1) with a given accuracy
is obtained.

Applying this algorithm to the input data of the example at the second step, we find
that in order to solve the problem, it is required to reduce the magnitude of the perturbation
of the moving singular point. We correct the approximate value of the moving singular
point and the value of its accuracy:

z̃∗ = 0.857177; ∆z̃∗ ≤ 0.4 ∗ 10−6.

The calculations of the second stage are presented in Table 2.

Table 2. Characteristics of the calculations of the second stage.

z1 w̃6(z1) ∆w̃6(z1) ∆4

0.83157 5.346829i 0.0001634 0.00005

For the value z1, for a posteriori estimation ∆3 in the structure of the analytical
approximate solution (4), the value N = 12 is required. The sum of the components from 8
to 12 does not exceed the required accuracy. Therefore, the analytical approximate solution
w̃6(z1) has an accuracy of ε = 0.00005.
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For numerical experiment 2, let us consider the Cauchy problem (1), (5):

a = 2; w(0) = i; w′(0) = −i; z̃∗ = 0.85717; ∆z̃∗ = 0.74 ∗ 10−5.

In the first case, the point z1 = 0.83157 is within the domains of Theorems 1 and 2.
Calculation results are provided in Table 3. In the second case, z2 = 0.67821 is within the
domain of Theorem 2. According to Theorem 2, the value is ρ = 0.333333. Calculations are
provided in Table 4.

Table 3. Comparative characteristics of calculations.

z1 w̃6(z1) ∆5 ∆6

0.83157 5.346829i 0.001329 0.000861
where w̃6(z1) is the value of the analytical approximate solution (4); ∆5 is the a priori estimate of the error
according to Theorem 1; and ∆6 is the a priori estimate of the error according to Theorem 2. Values of a priori
estimates confirm the convergence of results obtained using Theorems 1 and 2.

Table 4. Characteristics of calculations made for the second case.

z2 w̃6(z2) ∆7 ∆8

0.67821 1.927126i 0.22893 0.005
where w̃6(z2) is the value of the analytical approximate solution (4) and ∆7 is the a priori estimate of the error
according to Theorem 2.

For the value z2, for a posteriori estimation ∆8 = 0.005 in the structure of the analytical
approximate solution (4), the value N = 12 is required. The sum of the components from 8
to 12 does not exceed the required accuracy. Therefore, the analytical approximate solution
w̃6(z2) has an accuracy of ε = 0.005.

4. Conclusions

The presented results conclude the studies published in [15]. The dependence of
the structure of the analytical approximate solution for the Van der Pol equation in the
neighborhood of a moving singular point on the magnitude of the perturbation of the
moving singular point itself is established. The proven theorems make it possible to solve
the inverse problem of the theory of error, as well as to determine the magnitude of the
perturbation of a moving singular point in order to obtain an analytical approximate solu-
tion with a given accuracy. Theoretical positions are confirmed by numerical experiment.
A variant of the algorithm for optimizing a priori estimates using a posteriori estimates
is presented.
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