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ABSTRACT

We present N-body simulation calculations of the dependence of the power spectrum of non-

linear cosmological mass density fluctuations on the equation of state of the dark energy, w =
p/ρ. At fixed linear theory power, increasing w leads to an increase in non-linear power, with

the effect increasing with k. By k = 10 h Mpc−1, a model with w =−0.75 has ∼12 per cent more

power than a standard cosmological constant model (w =−1), while a model withw =−0.5 has

∼33 per cent extra power (at z = 0). The size of the effect increases with increasing dark energy

fraction, and to a lesser extent increasing power spectrum normalization, but is insensitive to

the power spectrum shape (the numbers above are for �m = 0.281 and σ 8 = 0.897). A code

quantifying the non-linear effect of varying w, as a function of k, z and other cosmological

parameters, which should be accurate to a few per cent for k � 10 h Mpc−1 for models that

fit the current observations, is available at http://www.cita.utoronto.ca/∼pmcdonal/code.html.

This paper also serves as an example of a detailed exploration of the numerical convergence

properties of ratios of power spectra for different models, which can be useful because some

kinds of numerical error cancel in a ratio. When precision calculations based on numerical

simulations are needed for many different models, efficiency may be gained by breaking the

problem into a calculation of the absolute prediction at a central point, and calculations of the

relative change in the prediction with model parameters.

Key words: equation of state – methods: N-body simulations – cosmological parameters –

cosmology: theory – dark matter – large-scale structure of Universe.

1 I N T RO D U C T I O N

Dark energy is the most important focus of study in cosmology

today. Its basic existence is well established, both by observations

of Type Ia supernovae (Knop et al. 2003; Riess et al. 2004) and by

combinations of other observables (Seljak et al. 2005). The focus

now is on probing the properties of the dark energy (or whatever new

physics causes the Universe to look like, it contains dark energy). A

simple first parametrization of its properties is to specify the ratio

of pressure to density (equation of state) w = p/ρ, with w = −1

for a cosmological constant.

The large amount of observational effort focused on measuring

w to high precision must be matched by sufficiently accurate pre-

dictions of the dependence of observables on w. Theory calcula-

tions will need to be done more carefully than they have been in the

past. In particular, probes of w based on cosmological structure [e.g.

weak lensing, galaxy clusters and even large-scale galaxy clustering,

�E-mail: pmcdonal@cita.utoronto.ca

where the linear power assumption is no longer exclusively relied

on (Abazajian et al. 2005; Tegmark et al. 2004; Eisenstein et al.

2005)] will generally require non-linear numerical simulations as

the fundamental method of calculating theory predictions. This pa-

per tackles a small part of the problem: computing the dependence

of the non-linear mass power spectrum, P NL(k, z), on w.

The most direct use of calculations of the non-linear power spec-

trum is for weak gravitational lensing (cosmic shear) studies (e.g.

Benabed & van Waerbeke 2004; Simpson & Bridle 2005; Huterer &

Takada 2005; Jarvis et al. 2005; Knox, Song & Tyson 2005). Direct

use of the mass power for weak lensing (as opposed to ray tracing) is

of course only as good as the Born and Limber approximations. Vale

& White (2003) found the Born approximation agreed well with ray

tracing, although this is less clear in White & Vale (2004). In a pilot

project, White & Vale (2004) performed a small grid of simula-

tions of weak lensing with full ray tracing, including w = −0.8, for

parameter combinations designed to leave the cosmic microwave

background (CMB) fluctuations invariant. When performing a full

grid of models for precision parameter fitting, this CMB-guided

method is probably the best way to go. Here, we concentrate on
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isolating the effect of w by running simulations where only w and

possibly one other parameter is varied at a time (although the fitting

formula we present does include joint variations of w, σ 8 and �m).

Even if ray tracing is ultimately required for high precision, it should

still be useful to have an accurate mass power spectrum calculation,

so we leave ray tracing for future work.

The fitting formulae most commonly used to predict the non-

linear power spectrum given by a set of cosmological parameters

were not calibrated with w �= −1 simulations (Peacock & Dodds

1996; Smith et al. 2003), although Benabed & Bernardeau (2001)

present an untested prescription for using Peacock & Dodds (1996).

Often these formulae are used for w �= −1 by making the untested

assumption that models with equal linear theory power, and other

parameters (most importantly �m) at the redshift of interest will

have equal non-linear power, independent of w. Ma et al. (1999) did

simulate the mass power spectrum for w = −2/3, −1/2 and −1/3,

and combined these with the Lambda cold dark matter (�CDM)

simulations in Ma (1998) to produce a fitting formula. There is no

obvious reason not to trust this formula to the 10 per cent level

of accuracy advertised; however, the grid of simulations used to

calibrate it was sparse (e.g. the w > −1 simulations all had �m �
0.4), and numerical convergence was not rigorously demonstrated.

We will find that this formula does not work well in the region

of parameter space where we find ourselves. Klypin et al. (2003)

simulated models with different values of w, but did not present the

power spectrum in detail. The one case they did show, a Ratra &

Peebles (1988) model with time varying w ∼ −0.5, appears to be

roughly consistent with our results.

We do not aim in this paper to replace the existing fitting formulae

for the non-linear power – only to provide an accurate correction for

w �=− 1. We generally consider flat models with parameters σ 8 (the

rms linear mass density fluctuations in 8 h−1 Mpc radius spheres at

z = 0), �m, �b (the mass and baryon densities relative to the critical

density), h (the Hubble parameter), n (the logarithmic slope of the

primordial power spectrum) and w. The dark energy equation of

state parameter w does not affect the shape of the transfer function on

non-linear scales [e.g. <0.5 per cent difference at k > 0.007 h Mpc−1

between the transfer function for w = −1 and −1/2, from CMBFAST

(Seljak & Zaldarriaga 1996), for a typical model normalized at high

k], so the z = 0 linear theory power is not changed at all by changing

w, when our other parameters are fixed. There can be, however, a

change in the non-linear power with w because the growth history

changes – increasing w means the Universe had relatively more

linear theory power at earlier times. This effect is not included in

an estimate of the non-linear power made using something like the

Smith et al. (2003) fitting function.

We will frequently refer to the change in observables with w at

fixed z = 0 values of other parameters as ‘the effect of w’. We

are not implying that there is anything uniquely correct about this.

From some points of view, it would make more sense to fix the

other parameters at early times, before the dark energy has become

significant. We focus on the former definition of the effect of w sim-

ply because it is generally not included in weak-lensing calculations

(Simpson & Bridle 2005; Huterer & Takada 2005; Jarvis et al. 2005;

Knox et al. 2005), and cannot be reproduced in any obvious way

using the existing codes. While it is mostly a matter of arbitrary def-

inition, there is a real sense in which our choice is ‘the’ non-linear

effect of w at z = 0: our effect goes to zero in the limit of small

perturbations.

The range of k and z we consider, and the accuracy goal, is guided

by the weak-lensing application (k ≡ 2π/λ, where λ is the wave-

length of a Fourier mode). We limit ourselves to the range 0 < z < 1.5

because this range is most directly sensitive to the presence of dark

energy and most relevant to galaxy weak-lensing surveys, and be-

cause the power at increasing redshift should probably be simulated

using decreasing box size, since limited particle density becomes an

increasingly serious problem (the true small-scale power is smaller

relative to the spurious particle discreteness-related power) while

limited box size becomes less problematic (smaller scale modes are

still linear). Huterer & Takada (2005) investigated the requirements

on the P NL(k, z) calculation for future large weak-lensing surveys,

finding that 1–2 per cent accuracy should be sufficient, or 0.5 per

cent in the worst possible case. They found that the relevant scales

are 0.1 � k � 10 h Mpc−1. Zhan & Knox (2004) studied the effect

of hot baryons on the weak-lensing shear power spectrum in halo

models. They found an effect of roughly 5–10 per cent on the power

at k = 10 h Mpc−1 (reading from their fig. 1), so trying to achieve

better than a few per cent precision at this k using simulations with-

out gas dynamics is probably pointless (it is always good to aim

for errors somewhat smaller than the other known sources). Zhan

(2004) found roughly similar results in smoothed particle hydrody-

namics (SPH) simulations (reading from fig. 5.7), and White (2004)

found a comparable scale for the effect of baryonic cooling. We will

not actually achieve 1–2 per cent level accuracy in the dependence

of power on w, but we think we show a clear path to it. The accuracy

we do achieve is substantially better than anything else available, so

it should be useful until a larger project can improve it.

Throughout the paper, we use the trick of cancelling numerical

errors by taking ratios of power spectra for different models, rather

than looking at the absolute power in each model directly. This

should in no way be considered a swindle or an added approxi-

mation. It is completely reasonable and expected that many types

of error are insensitive to the model, so that ratios (or differences)

between the models can genuinely be computed more accurately

than either model individually. One example of this is the effec-

tive smoothing involved in mapping particles to a grid so that you

can fast Fourier transform (FFT) the periodic density field for the

purpose of measuring the power. This suppresses the power sub-

stantially, but by precisely the same factor in all models. This factor

cancels exactly when we take a ratio, up to some high k where the

power may be corrupted by aliasing, or the suppression is simply

too large to invert accurately. The key to believe these results is that

the convergence of the ratios of power with numerical parameters

of the simulations must be tested carefully in the same way a direct

measurement of the power would be. For example, taking ratios

would not cancel an additive Poisson noise term due to the limited

number of particles, but this would become completely obvious in

a convergence test where the number of particles is varied.

We use a particle-multi-mesh (PMM) code, based on an improved

particle-mesh (PM) algorithm, for our grid of N-body simulations.

In principle, PM codes can achieve high spatial resolution but at

a great cost in memory and to a lesser extent in work. In prac-

tice, they are normally limited to a mean interparticle spacing-to-

mesh cell spacing ratio of 2:1, where the storage requirements for

particles and grids are approximately balanced. PMM utilizes a

domain-decomposed, FFT-based gravity solver (Trac & Pen 2004;

Merz, Pen & Trac 2005) to achieve higher spatial resolution while

maintaining memory costs. We will find that a ratio of 4:1 be-

tween the particle grid spacing and mesh grid spacing is roughly

optimal, in the sense that at a given k (the most relevant k where

the errors are a few per cent) the error from limited particle den-

sity and limited force resolution are similar, for ratios of power

spectra from simulations with different w. We note that Heitmann

et al. (2005) compared several N-body codes (not including
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ours), looking at absolute power, and found good general agree-

ment.

It can be useful to consider numerical errors rather carefully,

focusing on the initial small breakdown of accuracy because, for

example, a factor of 2 change in resolved scale or required box

size can easily change the require computer time or memory by a

factor of at least 8. At least five things must be investigated in every

simulation program: sensitivity to starting redshift, box size, mass

resolution (i.e. number of particles), force resolution and time-step

size. We also test our method of power spectrum calculation. Even

though not everything we find will be completely generalizable to

other types of simulations, we think it is useful to lay out an attempt

to push them all to a per cent level of control.

Throughout this paper, we use the philosophy of suppressing our

urge to be general (e.g. increase the redshift range and parame-

ter space coverage and study weak lensing directly) in favour of

patiently investigating a restricted problem. In other words, rather

than trying to entirely solve the problem of calculating the power

spectrum over all parameter space, which at this point would require

approximations and cutting corners, we select a small subproblem

and explore it carefully, in hopes of learning better how to do the

full problem accurately and efficiently.

Recently, Kuhlen et al. (2005) performed a set of simulations

of models with different w values, although they focused on dark

matter halo density profiles. We mention them because they also

represent a good source for some pedagogical figures, e.g. of the

linear transfer function and growth factor as a function of w.

The rest of the paper is laid out as follows. First, in Section 2,

we qualitatively demonstrate the effect of changing the equation

of state of the dark energy on the non-linear mass power spectrum.

Then, in Section 3, we describe detailed tests of our simulations (this

section is not intended for the casual reader). Finally, in Section 4,

we describe the code we provide to quantify the results.

We often describe simulations using the notation (L , P , M),

where L is the box size in comoving h−1 Mpc, P3 is the number

of particles and M3 is the number of mesh cells.

2 T H E E F F E C T O F C H A N G I N G w

Fig. 1 shows the basic effect of w on the non-linear power at z = 0. To

minimize the statistical fluctuations, we have used the same initial

conditions for simulations with different w, except that we adjust

the initial amplitude of the perturbations by the factor necessary to

produce an identical linear theory density field at z = 0 (and as a

result identical σ 8). All of the figures in this section show results

from (110,192,768) simulations. In the next section, we investigate

the accuracy of the results in detail, finding statistical and numerical

convergence to a few per cent. Inevitably, the effect of w increases

with decreasing �m, i.e. increasing dark energy fraction, as shown in

the figure. To be clear, in our many figures like this, we are plotting

the ratio of power in a model with w �= −1 to a model with w = −1,

with all the other parameters the same at z = 0 in both. For example,

when we show the result for a different value of �m, �m has been

changed for both the model in the numerator and the model in the

denominator. For notational compactness, we will sometimes refer

to this type of ratio as fw(k) ≡ Pw(k)/Pw=−1(k).

To put the 12 per cent (33 per cent) effect of w = −0.75 (w =
−0.5) at k = 10 h Mpc−1 in perspective, we note that the ratio of

linear growth of power from early times to z = 0 between the w =−1

and w =−0.75 (−0.5) models is D2(w)/D2(w =−1) = 0.83 (0.57).

Note that weak-lensing measurements tend to be most sensitive to

somewhat smaller k (Huterer & Takada 2005). On the other hand,

Figure 1. Fractional effect of w on the non-linear mass power spectrum,

at fixed linear theory power. The thick lines of a given colour/type show,

from top to bottom, w = −0.5, −0.75, −1.5, all relative to w = −1. The

black, solid line is for �m = 0.281, with red, dashed (green, dotted) showing

�m = 0.211 (0.351). Thin black lines show rms statistical error bands (in

Figs 1–4, the statistical errors are all similar to these examples).

Hagan, Ma & Kravtsov (2005) recently showed that a modification

of the power similar in form to ours has a substantial effect on the

convergence power over a wide range in �. Considering the non-

trivial k and z dependence, a full parameter forecast calculation

(e.g. Simpson & Bridle 2005) will be needed to see if this effect can

change the projections for future weak-lensing measurements of w

significantly.

We have compared this result to the formula of Ma et al. (1999),

and the agreement is not good. The Ma et al. (1999) formula pre-

dicts a much larger effect of w, with f w=−0.5(k) passing 1.5 at k =
0.4 h Mpc−1, before plateauing at a value of ∼2. This disagreement

is not too surprising since Ma et al. (1999) did not use simulations in

which w was varied at fixed values of the other parameters. Without

a very comprehensive grid of simulations, the simple dependence

of the non-linear power on the linear power (and �m) could easily

be mixed with the type of w dependence that we are studying here.

We remind the reader that no rigorous analytic prediction for the

non-linear power spectrum exists. The Ma et al. (1999) or Smith

et al. (2003) formulae are not derived from first principles – they

are physically motivated fitting functions that are used to interpo-

late/extrapolate simulation results. Even if their basic motivation

is perfectly valid, they contain completely free parameters that are

only determinable through fits to simulations, so their predictions

are only as good as the simulations used to calibrate them. Ma et al.

(1999) used only five models, with (w, σ 8, �m, h) = (−1, 1.29, 0.3,

0.75), (−1, 1.53, 0.5, 0.7), (−2/3, ?, 0.4, 0.65), (−1/2, ?, 0.4, 0.65)

and (−1/3, ?, 0.45, 0.65). The value of σ 8 was not given for the

w > −1 simulations, but they were COBE normalized (Bunn &

White 1997), meaning that they all have different σ 8. One might

hope that this was enough to calibrate the fitting formula every-

where, but this is not at all obvious. It would be very difficult using

this set of simulations to disentangle the effects of the different
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Figure 2. Similar to Fig. 1, except thick red, dashed (green, dotted) lines

show σ 8 = 0.800 (0.994). (Our central model has σ 8 = 0.897.) Thin lines

for variations �b = 0.0462 ± 0.0052, h = 0.710 ± 0.066 and n = 0.980 ±
0.065 are also plotted, to show that they are usually indistinguishable from

the central model.

parameters well enough to accurately extrapolate to a point in pa-

rameter space not bounded by the set. In particular, a parameter that

has a relatively small direct effect will be most difficult to control.

The normalization of the power spectrum, σ 8, also affects the

result in a small, qualitatively reasonable way, with increasing w

dependence for increasing σ 8, as shown in Fig. 2 (the non-linear

effect must disappear as σ 8 → 0). Fig. 2 also shows that the changes

in the shape of the power spectrum that arise from changes in �b,

h and n do not change the w dependence significantly.

To explore the origin of the w effect, in Fig. 3, we show a similar

calculation of the effect of changing �m ≡ 1 − �� while holding

the z = 0 linear power fixed (along with all the other parameters,

including w = −1). Reducing �m to 0.192 (from 0.281) produces

a model with the same power at z = 24 (our starting redshift) as the

model with w = −0.75 and �m = 0.281. We see that the non-linear

power in these two models is quite similar. When we match the

linear power at z = 1.9, using �m = 0.213, the non-linear power

is even more similar. It seems likely that Fig. 3, and the effect of

w in general, could be interpreted in a halo model by accounting

for the difference in formation redshift, and thus density profile,

of the typical haloes dominating the power on the scale of interest

(Bartelmann, Perrotta & Baccigalupi 2002, 2003; Huffenberger &

Seljak 2003; Dolag et al. 2004; Bartelmann et al. 2005; Kuhlen

et al. 2005).

The code of Smith et al. (2003) should be able to reproduce this

�m dependence. As we see in Fig. 3, the agreement is excellent

(we cannot say for sure that our simulations are accurate enough to

believe the ∼5 per cent disagreement at k = 10 h Mpc−1, although

they probably are). Note that to make this comparison, we have

modified the Smith et al. (2003) code to accept an input linear theory

power spectrum in place of its usual calculation based on Bond &

Efstathiou (1984). The formula of Ma (1998) and Ma et al. (1999)

does poorly in this test, probably because its �m dependence was

essentially calibrated by two simulations with �m = 0.3, σ 8 = 1.29

Figure 3. Comparison of the effect of changing w to the effect of changing

�m, at fixed z = 0 linear theory power. Black, solid line: our standard ratio

of simulated PNL(k) with w = −0.75 to −1. Blue, long-dashed line: ratio

of power with �m = 0.192 to our standard �m = 0.281 (both with w =
−1). These two alternative models have identical linear theory power at both

z = 24 and 0. Red, short-dashed line: ratio of power with �m = 0.213 to

standard (this case has linear power equal to the w = −0.75 case at z = 1.9).

Green, dotted line: same as blue, but based on Smith et al. (2003) (for both

numerator and denominator). Magenta, dot–dashed line: same as blue, but

based on Ma et al. (1999).

and �m = 0.5, σ 8 = 1.53, i.e. far from the combination of parameters

we are testing.

Finally, in Fig. 4 we show the effect of w on the non-linear power

at z = 1.5, at fixed values of our other parameters. Note that, in

Fig. 4, we are comparing models with different linear theory power

at the observed redshift and different �m (z). The difference between

P NL (z = 1.5, w = −0.5) and P NL (z = 1.5, w = −1) at fixed z =
1.5 linear theory power and �m (z = 1.5) is small, so it is not very

interesting to plot this, but we show one case, comparing w = −1.0

with our usual linear theory power spectrum at z = 0, but �m =
0.150, to w = −0.5 with σ 8 increased to 1.004, and �m = 0.411

[these two models have exactly matching linear power and �m(z)

at z = 1.5].

3 N U M E R I C A L D E TA I L S

In this section, we investigate the dependence of our calculations

on the numerical parameters of the simulations. Beyond testing the

specific results we present, we hope to contribute to the collec-

tive wisdom of the research community about how to do precision

cosmology based on numerical simulations by exploring the idea

of looking at the ratio of power in different models in simulations

using identical random numbers for the initial conditions.

For our grid of N-body simulations, we used the PMM code, an

improved version of the PM algorithm. It is based on a two-level

mesh Poisson solver, where the gravitational forces are separated

into long- and short-range components, as described in detail in

Trac & Pen (2004) and Merz et al. (2005). The long-range force is

computed on the root level, global mesh, much like in a PM code.
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Figure 4. Non-linear power for varying w at z = 1.5. Thick black (solid)

lines are for models with identical linear power and �m at z = 0 (from top

to bottom w = −0.5, −0.75 and −1.5, all relative to w = −1). Thin black

lines show the rms statistical error bands. Note that much of the change here

is accounted for by simple differences in linear growth. The red (dotted)

line shows w = −0.5 relative to w = −1 when the two models have been

constructed to have identical linear power and �m(z) at z = 1.5.

To achieve higher spatial resolution, the domain is decomposed into

cubical regions, and the short-range force is computed on a refine-

ment level, local mesh. In the current version, PMM can achieve a

spatial resolution of four times better than a standard PM code at

the same cost in memory.

Simulations with P = 192 and M = 768 fit conveniently into a

single node on the 528-CPU Beowulf cluster at the Canadian Insti-

tute for Theoretical Astrophysics (CITA), and run in less than a day.

The importance when doing this kind of study of complete freedom

to run an arbitrarily large number of exploratory simulations, with

relatively quick turn-around, cannot be underestimated, so we fo-

cus on this configuration. Future precision simulation grids will of

course use larger simulations. Our initial guess was that (220, 192,

768) simulations would be most useful, so this section will focus

first on the convergence properties of these, including comparisons

of (110, 96, 384) to (110, 192, 384), to test the effect of finite par-

ticle density at the same force resolution as the (220, 192, 768)

simulations, and comparisons of (110, 96, 384) to (110, 96, 768) to

test the effect of force resolution. Ultimately, we will conclude that

we were overly worried about limited box size and insufficiently

worried about limited resolution, so subject to the constraint P =
192, M = 768, somewhat smaller box size is optimal (the code we

release is based on (110, 192, 768) simulations). Throughout this

section, our plots use a standard vertical axis range 0.94–1.06, to

allow easier comparison of the size of different errors.

3.1 Initial conditions

Our transfer functions are computed using the ‘LINGERS’ code asso-

ciated with GRAFIC2-1.01 (Bertschinger 2001). GRAFIC2 is then used

to generate the initial conditions. We turn off the GRAFIC2 Hanning

window, which isotropizes the small-scale structure at the expense

of suppressing the small-scale power.

To determine the linear growth factor (used to convert initial con-

ditions generated for w = −1 models into w �= −1 models), we

numerically solve

D′′ + 3

2

[
1 − w(a)

1 + X (a)

]
D′

a
− 3

2

X (a)

1 + X (a)

D

a2
= 0 (1)

(Linder & Jenkins 2003), with

X (a) = �m

1 − �m

e
−3

∫ 1

a
d ln a′w(a′)

. (2)

When we compare simulations with the same box size but dif-

ferent particle density, the initial conditions of the box with fewer

particles are set by a sharp k-space filter applied to the initial con-

ditions of the higher resolution box. This is equivalent to simply

regenerating the initial conditions with the same random numbers

for the large-scale modes (for our method of generating initial con-

ditions), but not equivalent to re-binning the density and momentum

fields in real space (the latter method introduces a suppression of

high-k power that increases the level of disagreement between the

results for the two particle densities).

3.2 Starting redshift

It is important for precision calculations to test the effect of changing

the starting redshift in the simulations. This can identify, for exam-

ple, transients due to the imperfection of the Zel’Dovich (1970)

approximation (Scoccimarro 1998). Fig. 5 shows the change in the

effect of w as we increase the starting redshift, zi, from our standard

z i = 24. Note that it is not automatically the case that higher zi

is better, because numerical errors (most obviously suppression of

power by limited force resolution) have more time to accumulate

in that case. The agreement is good but not perfect, with errors as

Figure 5. Change in the effect of w, f w=−0.5(k) ≡ Pw=−0.5 (k)/Pw=−1,

with starting redshift in the simulations. Thick (thin) lines are power at

z = 0 (z = 1.5). The denominator is for starting z i = 799, with black/solid

showing the difference for z i = 24, blue/dotted for z i = 49, green/short-

dashed for z i = 99, magenta/long-dashed for z i = 199 and red/dot–dashed for

z i = 399. The two black lines of each type show different realizations of the

initial conditions.
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large as 2 per cent at z = 0 and ∼3 per cent at z = 1.5. Subsequent

to our runs for this paper, we found a small problem in the PMM

force kernel which leads to this disagreement – it is not serious, so

we leave the more accurate calculation for the future.

3.3 Mass resolution

Fig. 6(a) shows the effect of varying the number of particles, for a

fixed force resolution, by comparing the average of two (110, 96,

384) simulations to the average of two (110, 192, 384) simulations

(the pairs have different random initial conditions). Note that this is

a test of the effect of adding high-k power in the initial conditions in

addition to the effect of simply subdividing the mass. We have done

the same comparison with a factor of 2 better force resolution and

the results are similar. We see that for a (110, 96, 384) simulation at

z = 0, limited particle density becomes a �2 per cent problem only

at k � 8 h Mpc−1. At z = 1.5 it is a more serious problem, surpassing

3 per cent at k � 4 h Mpc−1 and quickly diverging (although note

the expanded axis scale – the error is actually only 15 per cent at

k = 10 h Mpc−1).

A potential solution to this problem is to subtract, after correct-

ing for the mass assignment smoothing, Poisson shot-noise power

Pnoise(k) = n̄−1, where n̄ = (P/L)3 is the mean particle density

(Baugh & Efstathiou 1994; Baugh, Gaztanaga & Efstathiou 1995);

however, as others have noted (Baugh et al. 1995; Smith et al. 2003;

Sirko 2005), the idea that the effect of finite particle density is to

add this white noise component is only a guess, not something that

can be assumed to hold, and in fact it is known not to hold at early

times for a uniform grid start. Fig. 6 calls into question the idea

that subtracting white shot noise is ever useful for high-precision

calculations. [See fig. 11 of Sirko (2005) for an enlightening plot

of the evolution of the particle discreteness power starting from a

fixed grid – we produced a similar figure, but that of Sirko (2005)

is similar enough that it is not worth including ours in this paper.]

Note that when we say that subtracting Poisson noise is not useful

for high-precision calculations, this does not mean it never leads to

an improvement in accuracy – it sometimes does – the problem is

that there is no clearly identifiable regime where the correction is

both significant and accurate enough for high-precision work. This

should probably be regarded as a well-known fact (e.g. Baugh et al.

1995 conclude that the discreteness corrections they discuss cannot

be applied consistently, and simply resort to using enough parti-

cles to make them negligible), but it is worth reiterating. It seems

unlikely that a glass start (Smith et al. 2003) will lead to perfectly

stable, non-interacting, discreteness power either. Ultimately, direct

tests of the convergence of observable statistics with increasing par-

ticle density for different methods of setting up the initial conditions

(Smith et al. 2003; Joyce, Levesque & Marcos 2005; Sirko 2005),

and possibly different methods for correcting for discreteness, are

the only way to determine which method works best.

Fig. 6(b) shows the same comparison as Fig. 6(b), reduced in

scale by a factor of 2, i.e. (55, 96, 384) is compared to (55, 192,

384), to estimate the accuracy of a (110, 192, 768) simulation (there

is some noise in this comparison, so we have averaged two real-

izations of each size simulation). The results are much better, with

accuracy better than 2 per cent at z = 0, and better than 4 per cent

for z = 1.5 (better than 2 per cent for k � 6 h Mpc−1). Note that

the apparent helpfulness of Poisson noise subtraction at z = 1.5 is

probably coincidental, as it quickly becomes an over-correction at

k > 10 h Mpc−1.

Our default in this paper is not to subtract shot noise.

Figure 6. Change in the effect of w, f w=−0.5 (k) ≡ Pw=−0.5(k)/Pw=−1,

with number of particles. Thick (thin) lines are power at z = 0 (z = 1.5), with

L = 110 h−1 Mpc (a) or L = 55 h−1 Mpc (b) and force mesh M = 384. The

numerator is simulations with (P = 96)3 particles, and the denominator is

P = 192. Red (dashed) lines include subtraction of Poisson noise P noise(k) =
(L/P)3, whereas black (solid) lines do not. For reference, the green (dotted)

lines show 1 + P noise(k)/P measured (k), where P measured(k) is the measured

power for the w = −1 model (after deconvolution of the power spectrum

measurement mesh, but without noise subtraction). The two green lines of

each thickness represent the two particle densities. The vertical cyan (dotted)

lines mark k = (96, 192)π/110 h−1 Mpc.

3.4 Force resolution

Fig. 7 shows the effect of increasing the force mesh resolution, for a

fixed number of particles. Comparing L = 110 h−1 Mpc simulations

with (M = 384)3 force mesh cells to M = 768, we see that the error

on the former is as large as 4 per cent at z = 0 and 7 per cent at

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 366, 547–556

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/366/2/547/1215822 by guest on 16 August 2022



January 24, 2006 17:15 Monthly Notices of the Royal Astronomical Society mnr9881

Non-linear power spectrum with dark energy 553

Figure 7. Change in the effect of w, f w=−0.5 (k) ≡ Pw=−0.5 (k)/Pw=−1,

with force resolution. Black/solid (red/dotted) lines are power at z = 0 (z =
1.5) in L = 110 h−1 Mpc simulations with (P = 96)3 particles (thick lines) or

P = 192 (thin lines). The denominator is for mesh M = 768, with numerator

M = 384. The blue/long-dashed (green/short-dashed) lines show the same

comparisons for L = 55 h−1 Mpc simulations (the effect appears to change

sign, i.e. the curves are not mislabelled). For reference, magenta/dot–dashed

lines show the ratio of power spectra [i.e. simply P(k), not fw(k)] for w =
−1, comparing M = 384 to 768, for an L = 55 h−1 Mpc box with P = 96

(thick) or 192 (thin) (the poorer agreement in each case is z = 0, better is z
= 1.5). The vertical cyan/dotted lines show k = (96, 192)π/110 h−1 Mpc.

z = 1.5. The errors fall to <3 per cent for a similar comparison using

L = 55 h−1 Mpc boxes. In Fig. 7, we break from our general policy

of plotting only ratios of different models to show the lack of con-

vergence of the absolute power spectrum, P M=384 (k)/P M=768(k).

This shows the value of computing ratios – the better than 3 per

cent agreement in f w=−0.5(k) for the two meshes occurs in spite of

a suppression of the absolute power by as much as 36 per cent.

3.5 Box size

Insufficient box size can cause two problems: simple random fluc-

tuations around the mean of a statistic due to limited volume, i.e.

sample variance, and systematic errors in the mean of a statistic

due to missing couplings to large-scale modes (or even small-scale

modes missing due to limited k-resolution). The first of these can

be eliminated by averaging over sufficient realizations of the ini-

tial conditions, while the second cannot (although various methods

have been proposed to improve the results, e.g. Sirko 2005). Bagla

& Ray (2005) discuss requirements on simulation box size, but not

for the power spectrum – note that the requirements on numerical

parameters will generally be different for different statistics (one

advantage of the power spectrum is that it is not directly sensitive

to structure on scales larger than the box).

Fig. 8 shows that a single L =220 h−1 Mpc simulation is sufficient

to compute the fractional difference in power between w = −0.5

and −1 to better than 1 per cent rms statistical error. A single L =
110 h−1 Mpc simulation would achieve about 2 per cent precision

at z = 0 and 3 per cent at z = 1.5. In principle, this figure can be

Figure 8. Level of random fluctuations in the fractional effect of w on the

non-linear power. Black, thin lines show f w=−0.5 (k) from L = 220 h−1 Mpc

simulations with nine different random seeds, each divided by the average of

f w=−0.5(k) over all nine, at z = 0. The inner thick red/solid (green/dotted)

lines show bin-by-bin the standard deviation of the nine around their mean

(i.e. the error when using a single realization) at z = 0 (z = 1.5). The outer

thick lines are the same but for L = 110 h−1 Mpc simulations.

sensitive to the binning in k, but in practice it is not because the

errors in nearby bins are strongly correlated.

Fig. 9 addresses the systematic error possibility by comparing

L = 440, 220 and 110 h−1 Mpc boxes, with the power in each

case averaged over 9 realizations with different seeds. Remarkably,

there is no significant sign of systematic error, even in the L =
110 h−1 Mpc calculation (the error in the absolute power is larger).

The maximum disagreement in Fig. 9, <2 per cent between the

L = 440 and 220 h−1 Mpc simulations at z = 1.5, appears not to

be strictly a box size effect at all, but rather a coupling between

box size and limited particle density (the particle noise appears to

whiten more quickly in the larger box). For these comparisons, we

have matched the particle density and force resolution between the

two box sizes, i.e. we compare (440, 192, 768) to (220, 96, 384) and

(220, 192, 768) to (110, 96, 384).

3.6 Time-steps

For our main grid, we used ∼210 time-steps to evolve the simula-

tions (∼120 for 0.0 < z < 1.5). Reducing this to ∼80 (∼30) leads

to the <1 per cent change shown in Fig. 10. It appears that we could

accelerate our grid calculation by a factor of a few by relaxing our

standard time-step restrictions.

3.7 Power spectrum computation

We generally use an (N = 1024)3 grid for the power spectrum

computation, with a simple correction for the cloud-in-cell (CIC)

smoothing, which we see in Fig. 11 is essentially exact (better than

0.5 per cent as tested using measurements with different N) out to

∼0.7 kNyq, where kNyq ≡ πN/L [see Jing (2005) for a discussion of

aliasing]. Note that if we are looking at a simple ratio of raw power
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Figure 9. Effect of box size on the fractional effect of w on the non-

linear power. The black/solid (blue/short-dashed) line shows at z = 0

(z = 1.5) the ratio of f w=−0.5 (k) computed by averaging over nine L =
110 h−1 Mpc simulations to the result from L = 220 h−1 Mpc simulations

similarly averaged. The red/long-dashed (green/dotted) line shows at z = 0

(z = 1.5) similar ratios for L = 220 h−1 Mpc compared to L = 440 h−1 Mpc.

Note that different sized simulations do not have matching grids in k, so these

comparisons involve some interpolation.

in two simulations of the same size, the CIC smoothing correction

we apply has no effect, because it is multiplicative (assuming we are

not subtracting shot noise). Fig. 11 shows that a grid spacing 	x ∼
0.2 h−1 Mpc is sufficient to introduce essentially no error into our

computation at k < 10 h Mpc−1, independent of the particle density.

4 S I M U L AT I O N G R I D A N D F I T T I N G

F O R M U L A

Our limited quantitative goal in this paper is to provide a module

that can be grafted on to Smith et al. (2003) to account for varying

w.

We found in Section 3 that to reduce finite particle density and

force resolution errors to 2–3 per cent, we need resolution equiv-

alent to (110, 192, 768). An L = 110 h−1 Mpc box is sufficient to

achieve per cent level systematic accuracy, and ∼3 per cent sta-

tistical precision, i.e. (110, 192, 768) simulations are sufficient to

essentially solve the problem of computing the effect of w to a few

per cent, especially if we average over a few different realizations

of the initial conditions, and considering that the maximum errors

are generally near 10 h Mpc−1, where baryons probably limit our

precision anyway. The code we describe in this section is based on a

grid of (110, 192, 768) simulations, averaged over four realizations

of the initial conditions for each grid point. At this point, it would be

straightforward to perform a grid of larger simulations to meet the

numerical requirements more comfortably, but given the generally

limited scope of this paper, we have deferred this to future work.

Our grid of models is motivated by the idea of Taylor expanding

the dependence of P NL (w)/P NL (w = −1) on the other param-

eters around a central model. The central model and positive and

Figure 10. Effect of time-step size on the fractional effect of w on the

non-linear power. The black/solid (blue/short-dashed) line shows at z = 0

(z = 1.5) the ratio of f w=−0.5 (k) computed from (220, 192, 768) simulations

with ∼80 (∼30 for 0.0 < z < 1.5) to ∼210 (∼120) time-steps. The red/long-

dashed (green/dotted) line shows the same comparison for (110, 192, 768)

simulations.

Figure 11. Change in effect of w, f w=−0.5(k) ≡ Pw=−0.5(k)/Pw=−1, when

we change the resolution of the grid that we use to compute the power

spectrum for L = 110 h−1 Mpc simulations. The denominator is always

power computed using (N = 1024)3 cells. For P = 192 and M = 768, black

(solid) lines show the change for N = 512 and red (dotted) lines for N =
256, while for P = 96 and M = 384 we use blue (long-dashed) and green

(short-dashed) lines to show the same two Ns, respectively. The thick lines

show z = 0, whereas thin lines show z = 1.5. The vertical cyan (dotted) lines

mark (128, 256)π/L .
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negative variations are σ 8 = 0.897 ± 0.097, �m = 0.281 ± 0.070,

�b = 0.0462 ± 0.0052, h = 0.710 ± 0.066 and n = 0.980 ± 0.065

(motivated by the best fit and 3 σ errors from Seljak et al. 2005). To

be clear, we are only varying these parameters individually, not in

combinations, i.e. the grid does not have 3N points. For the two most

important parameters, �m and σ 8, we add the four possible joint

variations to the grid. For each variation of the non-w parameters,

we run models with w = −0.5, −0.75, −1.0 and −1.5. We extract

the power spectrum at z = 1.5, 1.0, 0.5, 0.25 and 0.0. We do not

advocate this kind of grid for a more general simulation project,

where a set of simulations guided by CMB constraints should be

most efficient (White & Vale 2004).

It would probably be straightforward to extend Smith et al. (2003)

by modifying their fitting functions fi(�m) to depend on w, but we

take the less sophisticated approach of describing the change in

power relative to w = −1 by a multipolynomial function of the cos-

mological parameters. If p is the vector of cosmological parameters,

which we take to include z, the formula for the correction factor is

ln

[
PNL(w)/D2(w)

PNL(w = −1)/D2(w = −1)

]
(k, p)

=
(

Np∏
i=1

Ni∑
νi =0

pνi
i

)
Aν1ν2ν3 ...νNp

(k), (3)

where N p is the number of cosmological parameters, Ni is the or-

der of polynomial to use for each of them and Aν1ν2ν3 ...νNp
(k) are

coefficients to be determined by a least-squares fit to simulations.

D(w) is the linear growth factor, normalized to 1 at z = 0 [we

divide out the growth factor in equation (4) to remove the rela-

tively trivial linear evolution with redshift]. Note that this formula

includes many cross-terms for which we do not have simulations

in our grid – their coefficients are set to zero when the fit is per-

formed using singular value decomposition [we use equation (4)

because it is easy to write down and implement in code, and extends

automatically when additional simulations become available]. We

measure P NL (k) from the simulations in bands spaced by 	log10k
= 0.1, and determine a separate set of As for each band. Once

the As are determined, PNL for any model is computed by sim-

ply plugging the desired parameters into equation (4) and mul-

tiplying the result by the non-linear power in the corresponding

w = −1 model, and the appropriate linear growth factors. Our code

quantifying the results, with an example showing how to use it,

can be found at http://www.cita.utoronto.ca/∼pmcdonal/code.html,

under the name ‘WCORRECTOR’. This code is only tested for k <

10 h Mpc−1. The user who needs to integrate to higher k should ab-

sorb the uncertainty in the extrapolation into the uncertainty they

are assuming from baryon effects.

Note that we have not separated the dependence of the non-linear

power on �m through its effect on past non-linear growth from its

effect through the transfer function (except in Fig. 3). Separating

these would probably be useful in the future, so that formulae can

be used with arbitrary linear power spectrum without fear that spu-

rious effects of �m will be generated. However, because we have

used fully accurate transfer functions from ‘LINGERS’ (Bertschinger

2001), the coupling between the two influences of �m can have

no effect on calculations within the standard �CDM model. Addi-

tionally, we showed that the effect of changing the power spectrum

shape on f w at fixed σ 8 is negligible, so it can probably be safely

assumed that the effect of �m that we see is coming through the

past growth.

The reader may ask whether a more thoughtful, theoretically mo-

tivated fitting formula could be more general and efficient. This is

possible. On the other hand, a drawback of such formulae is that they

trap the user into a limited functional form for the various depen-

dences. When a carefully constructed fitting formula is found not

to fit to the required level of precision, it is not generally straight-

forward to extend it. It is simple to extend equation (4) to fit any

set of simulations. Furthermore, as we saw in the case of the Ma

et al. (1999) formula, it is easy in these cases to be deceived into

thinking that they are more generally applicable than they really are,

i.e. to think of them as having genuine predictive power rather than

simply being a method of interpolation between simulation results.

Equation (4) makes the interpolatory nature of these fitting formulae

explicit. Ultimately, a hybrid approach may be optimal. A physically

motivated fitting formula could be used to remove much of the gross

parameter dependence, with a general formula like equation (4) used

to make corrections for the imperfections in the fitting formula. The

hope would be that this would allow a sparser calibration grid than

would otherwise be needed.

5 C O N C L U S I O N S

We have isolated the effect of changing w on the non-linear power

spectrum of mass density fluctuations by comparing simulations

with identical linear theory density fields at the observed redshift.

We focused on this definition of the effect of w (i.e. fixed linear

theory power and other parameters at z = 0) simply because it has

not been carefully considered in the past, and this complements

predictive formulae calibrated only for w = −1 (e.g. Smith et al.

2003). The change in power relative to w = −1 is �10 per cent for

k < 1 h Mpc−1 (for −0.5 < w < −1.5), but rises to 12 per cent by

k = 10 h Mpc−1 in a model with w = −0.75, and ∼33 per cent for

w = −0.5 (at z = 0). Among the other cosmological parameters, the

size of the effect is primarily sensitive to the dark energy fraction,

i.e. �m in flat models. The power spectrum normalization (i.e. σ 8)

also has a small effect, but the slope/shape of the power spectrum

is irrelevant (as represented by varying n, �b and h at fixed σ 8).

Fig. 3 confirms the accuracy of the formula of Smith et al. (2003)

for the dependence on �m in �CDM models, at least once it has

been modified to use high-accuracy transfer functions.

We provide a simple code (http://www.cita.utoronto.ca/

∼pmcdonal/code.html) quantifying the effect of w as a function

of k, z, w, �m, σ 8, n, h and �b to be used as a correction to P NL (k)

calculations accurate at w = −1. The dependence of the power spec-

trum on w should be accurate to a few per cent for k � 10 h Mpc−1.

Our quantitative results may be useful for making more realistic

projections of the future potential to measure w by methods sen-

sitive to the non-linear power (primarily weak lensing). Our code

will be appropriate for forecasts of parameter measurements from

future large data sets, or parameter determinations using data sets

that at least include the Wilkinson Microwave Anisotropy Probe
(WMAP). It should be used cautiously for fits to limited amounts of

weak-lensing data alone because we do not cover extreme parameter

values (however, by construction the code will only be unreliable in

regions of parameter space that are ruled out by other observations).

Our ambitions have been quite limited in this paper. We have not

tried to determine the absolute power in the central model because

that is much more difficult to simulate precisely than the fractional

changes we studied here, requiring both larger box sizes and higher

resolution. Much of the error caused by limitations in the simulations

cancels when we take ratios of power spectra, a fact that should make

future construction of high-precision grids of simulation predictions

easier.
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