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ABSTRACT 

 The dependence of the preexponential factor on the temperature has been 

examined and the errors involved in the activation energy calculated from isothermal 

and non-isothermal methods without considering such a dependence have been 

estimated. It has been shown that the error in the determination of the activation energy 

calculated ignoring the dependence of A on T can be rather large and it is dependant on 

x = E/RT , but independent of the experimental method used, It has been also shown that 

the error introduced by omitting the dependence of the preexponential factor on the 

temperature is considerably larger than the error due to the Arrhenius integral approach 

used for carrying out the kinetic analysis of TG data.  
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 INTRODUCTION 

Thermally stimulated solid-state reactions, such as decompositions, solid-solid 

reactions, crystallizations, desorption of gases adsorbed on solid surface and sintering 

are heterogeneous processes.  It has been generally assumed that the reaction rate of 

such processes can be kinetically described by the following expression [1]:  
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where k is the constant rate, A is the preexponential factor, E is the activation energy, R 

is the gas constant, T is the temperature, t is the time and α is the extent of reaction 

ranging from 0 before the process starts to 1 when it is over. In the case of desorption of 

gases adsorbed on solid surfaces [2] the extent of the reaction is defined  as a function 



of the coverage, θ, and when sintering processes are concerned, the reaction extent is 

defined by the ratio between the shrinkage, ΔL, and the starting length of the probe, L0 

[3, 4].  Additionally, f (α) (or alternatively, f (ΔL/L0) or f (θ)) is a term that describes the 

dependence of the reaction rate on the reaction mechanism.  

 Many of the experimental methods used to perform kinetic analysis of solid-state 

reactions are based in the measurement of the evolution of an integral magnitude, i.e. 

proportional to the extent of reaction, such as weight loss, released gas, amount of 

contraction, as a function of temperature. To perform the evaluation of such 

experimental data, it is necessary to integrate eq. (1). If the reaction is conducted at a 

constant temperature, the integration of eq. (1) leads to 
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The most common heating profile used for studying solid-state reaction is the 

linear heating program. Under these experimental conditions, T changes in a wide range 

of values and an entire α-T curve is recorded in a single experiment. For linear heating 

rate conditions eq. (1) can be written 
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β being the heating rate. 

The integration of eq. (3), after rearranging, leads to     
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where x=E/RT.       

Under linear heating rate program, eq. 3 does not have an exact analytical solution to 

p(x) and, therefore, the solution cannot be expressed in a closed form [5]. Thus, a 

number of approximated equations have been proposed for p(x) under linear heating 

program. The number of publications where these integral methods have been used for 

determining activation energies is vast.  Thus, according to ISI Web of Science data 

base, about 4000 citations can be found in the literature for the most popular approaches 

(Coats and Redfern [6,7], Horowitz and Metzger [8] and Doyle [9, 10].  More than 1200 

of these citations have been found in the last 5 years, many of them in this Journal [11-

28]. Despite the popularity of these approximations, their accuracies for the estimation 



of the kinetic parameters are still in doubt, thus some authors have claimed that these 

methods are not proper for determining accurate kinetic parameters [29-32]. Some 

studies have estimated the errors in the approximated p(x) functions by comparing the 

resulting values with those calculated by numerical integration, concluding that the 

errors are quite large. These findings have been used as an argument for invalidating 

these approximated equations in the estimation of the kinetic parameters. Nevertheless, 

the aim of the aforementioned approximations is the determination of the activation 

energy and not the accurate computation of p(x).We have shown in recent papers [33, 

34]  that the error in the determination of the activation energy from the Coats and 

Redfern approach is lower than 1.3 % even for x =10.  According to the Coats and 

Redfern approach p(x) ≈ e-x/x and eq. (3) becomes 
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where the subscript a refers to the apparent values of the kinetic parameters obtained 

from the above approach. 

It is noteworthy to point out that all the methods of kinetic analysis generally 

used have been developed by assuming that the preexponential factor can be considered 

as a constant all over the temperature range investigated. However, several authors [35-

37] after extending the theory of the activated complex to the thermal decomposition of 

single solid state reactions proposed that the preexponential factor is connected with the 

temperature through the following relationship 

                A = A0 . T
n        (6), 

where A0 is a constant and the exponent n is equal either to 1 in the case of the thermal 

decomposition of a single solid reactive or to 1/2 for reactions between a gas and the 

surface of a solid. Varhegyi [38], Dollimore [39] and Segal [40] have considered other 

positive values for this exponent. On the other hand, values of n ranging from 0 to 2.5 

have been proposed for the case of reactions of desorption of gases from the surface of 

solids [41-43].  Moreover, values of n from -3/2 to 0 have been proposed for shrinkage 

processes depending on the sintering mechanism [4].  

 The scope of this work is to carry out a systematic analysis of the error involved 

in the activation energy determined from conventional methods when the 

preexponential factor is dependant on the temperature. 

 



THEORETICAL 

Differential method 

 If eq. (6) is fulfilled, eq. (1) becomes 
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It is a constitutive equation that must be accomplished whatever would be the 

thermal pathway followed for reaching a particular α-T-t point [44, 45]. Thus, 

independently if isothermal or non-isothermal methods are used, the slope of the plot of 

ln [(dα/dt)/f (α)] versus 1/T is connected with the real activation energy, E, through the 

following expression 
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However, if it were omitted the dependence of A on T and were considered that 

the prexponential factor remains constant all over the temperature range (i.e.; A = A0), 

according with eq. (1), we get 
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where Ea represents the apparent activation energy. 

The relative error, ε, of the activation energy (Ea) can be defined by the 

following equation: 
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Thus, from eqs. (8), (9) and (10), we get the following expression for the relative error: 
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The relative error percentages computed from eq. (11) for different values of x = E/RT 

and the exponent n are shown in table 1. 

 

Integral methods 



 If the rate constants at different temperatures were determined by the isothermal 

method and the preexponential factor were changing with the temperature as shown by 

eq. (6), eq. (2) would become  

     ktteTAg RTEn   /
0)(      (12). 

The rate constant k at a given temperature could be obtained from the slope of 

g(α) versus t. According to eq. (12), the slope of the plot of the rate constant determined 

at different temperatures versus 1/T (i.e. dlnk/d(1/T)) would be connected to the 

activation energy through a relationship identical to that expressed by eq. (8).  

Moreover, an expression identical to eq.(9) would be obtained for the relationship 

between dlnk/d(1/T) and Ea by assuming that A remains constant all over the 

temperature range following eq. (2). This means that the relative errors in the activation 

energy calculated from isothermal data by the integral method are identical to those 

calculated in table 1 for differential methods if it is not taken into account the real 

correlation between A and T. 

Eq. (7) cannot be directly integrated if the conversion as a function of the 

temperature is recorded under a linear rising temperature. In such a case, under a 

heating rate dα/dT  = β, eq. (7) would be rearranged in the following form: 
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Integration of eq. (12) leads to 
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which, after doing the variable change  x = E/RT, would be rearranged in the following 

way 

          )()(
1

0
2

1

0 xp
R

EA
dx

x

e

R

EA
g n

n

x
n

xn 


















  

        (15). 

Integrating by part the )(xpn  function results: 
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)(xhn  being the series between brackets. 

 If the preexponential factor were considered as constant and the Coats and 

Redfern method were used for performing the kinetic analysis, the apparent activation 

energy, Ea, would be obtained from the slope of the plot of ln[g(α)/T2] versus 1/T: 
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The real value of the left hand side of eq. (17) as a function of the true activation energy 

can be easily determined from eqs. (15) and (16): 
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The relative error in the activation energy would be estimated from eqs. (17) and (18) 

after taking into account the error definition introduced by eq. (10): 

          100.
)](ln[

% 





 

dx

xhd

x

n n           (19). 

The error percentages determined as a function of x = E/RT from eq. (19), after 

computing the function )(xhn  using a tolerance of 10-5, are shown in table 2. 

 The results obtained show that in the case that the preexponential factor were 

independent of the temperature (i.e; n = 0), the error in the activation energy determined 

from the Coats and Redfern method is very low for x > 5. If we bear in mind that values 

of E/RT lower than 5 have not physical meaning, we can conclude that the Coats and 

Redfern method is quite accurate for determining the activation energy of 

heterogeneous processes in spite that the standard deviation of the p(x) function 

determined from this approach with regards to the true value are rather large [46]. 

However, table 2 shows that the errors in the activation energy are considerably larger if 

it is determined by assuming that A is independent of T when it is really dependant on T, 

according to eq. (6). These results are quite similar to those included in table 1. The 

slightly larger values of the error shown in table 2 with the regards to the corresponding 

values shown in table 1 are due to the small additional error introduced by the integral 

approach of the Arrhenius equation under non-isothermal conditions. 

 

RESULTS 

 It would be of interest to check the above conclusions by analysing a set of DTG 

and TG curves simulated by assuming a dependence of A on T according with eq. (6). 

The DTG and a TG curves have been calculated from eqs. (7) and (14), integrating this 

last equation by numerical methods with a tolerance of 10-5 by means of the MathCad 

software. Fig. 1 shows the TG and DTG curves simulated by assuming a heating rate β 

= 10 K. min-1, a first order kinetic (i.e.; f (α) = (1-α) and g (α) = - ln (1-α)) and the 



following kinetic parameters: A = 1.395 T2 and E = 74 kJ. mol-1. Then, the kinetic 

parameters of the DTG curve have been determined from the plot of the (dα/dt)/f(α) 

values calculated from the α values taken from Fig. 1 as a function of the corresponding 

values of 1/T, according with eq. (1). The apparent activation energy and the apparent 

preexponential factor obtained from the slope and the intercept of this plot are shown in 

table 3 together with the error given by eq. (10). The apparent kinetic parameters 

obtained from the TG curve after plotting the values of ln [g(α)/T2] calculated from the 

α values taken from this curve  versus 1/T, according to the Coats and Redfern approach 

given by eq. (5), are also shown in table 3 together with the error in the activation 

energy determined from eq. (10).  

 If we take into account that x =E/RT ≈ 15 for the TG and DTG simulated curves, 

we can conclude that the errors in the activation energy reported in table 3 are in 

excellent agreement with those forecasted in tables 1 and 2, respectively. It is 

noteworthy to point out that a very good agreement between the errors estimated in 

table 1 and those calculated from α-t and dα/dt- t isothermal plots has been also found, 

but the analysis of the simulated data  has not been included for the sake of the brevity. 

 The above results point out the error percentages in the calculation of the 

activation energy would be rather large if the preexponential factor is dependant on the 

temperature and the kinetic analysis is performed by assuming that A is a constant. 

Moreover, this error only depends on the value of E/RT and not on the method used for 

recording the experimental data; in other words, for a given mean value of x, isothermal 

and non-isothermal methods lead to the same error in the estimation of the activation 

energy. Moreover, the errors introduced for the most popular approach of the Arrhenius 

integral (Coats and Redfern) for the kinetic analyses of rising temperature experiments 

are insignificant when compared with the errors introduced by ignoring the dependence 

of the preexponential factor on the temperature.     
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CAPTION OF FIGURES 

 

Fig. 1. TG and DTG curves simulated by assuming a first order kinetic model, a heating 

rate =10 K min-1 and the following kinetic parameters: A = 1.395 T2 min-1 and E = 74 

kJ mol-1 

 

 



Table 1. Relative error for the activation energy obtained from isothermal and 

differential non-isothermal data when the preexponential factor depends on the 

temperature (A=A0T
n). 

 

 n 

x -1.5 -1 0 0.5 1 1.5 2 2.5 

5 -30.00 -20.00 0 10.00 20.00 30.00 40.00 50.00 

10 -15.00 -10.00 0 5.00 10 15.00 20.00 25.00 

15 -10.00 -6.67 0 3.33 6.67 10.00 13.33 16.67 

20 -7.50 -5.00 0 2.50 5.00 7.50 10.00 12.50 

30 -5.00 -3.33 0 1.67 3.33 5.00 6.67 8.33 

50 -3.00 -2.00 0 1.00 2.00 3.00 4.00 5.00 

100 -1.50 -1.00 0 0.50 1.00 1.50 2.00 2.50 

 



Table 2. Relative errors for the activation energies obtained from the Coats and Redfern 

approach for the Arrhenius integral and the preexponential factor depends on the 

temperature (A=A0T
n). 

 

 

 n 

x -1.5 -1 0 0.5 1 1.5 2 2.5 

5 -30.93 -20.7 6.48 24.54 45.08 66.64 87.63 107.01 

10 -15.40 -10.75 -1.23 3.7 8.79 14.1 19.69 25.59 

15 -10.19 -7.04 -0.69 2.51 5.73 8.98 12.26 15.58 

20 -7.61 -5.22 -0.42 1.99 4.41 6.83 9.26 11.7 

30 -5.05 -3.43 -0.2 1.42 3.05 4.67 6.3 7.93 

50 -3.02 -2.04 -0.07 0.91 1.89 2.87 3.86 4.84 

100 -1.50 -1.01 -0.02 0.48 0.97 1.47 1.96 2.46 

 



Table 3 Results of the analysis of the TG-DTG simulated curves by differential and 

integral procedures. 

 A (min-1) E (kJ mol-1) Relative error 

in E (%) 

Differential 3.66 106 83.9 13.4 

Integral 2.69 106 82.9 12.07 
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