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An experimental study of damping and frequency of vibrating small cantilever beams in their
fowest eigenstate is presented. The cantilever beams are fabricated from monocrystalline silicon
by means of micromachining methods. Their size is a few miilimeters in length, a few 100 gm in
width, and a few 10 um in thickness. Damping and resonance frequency are studied as a function
of the ambient pressure p (1-10° Pa) and the geometry of the beam. The purpose of this research
was to obtain design rules for semsors employing vibrating beams. The analysis of the
experimental results in terms of 4 semiqualitative model reveals that one can distinguish three
mechanisms for the pressure dependence of the damping: viscous, molecular, and intrinsic. For
viscous damping a turbulent boundary layer dominates the damping at high pressures (=~ 10°
Pa), while at smaller pressure laminar flow dominates. In the latter region, this leads to a platean
for the quality factor Q and in the former to Q @ /p. The pressure p, at which the transition from
laminar flow dominated damping to turbulent flow dominated damping occurs depends on the
geometry of thebeams. p_ is independent on the length and decreases with both, the width and the

thickness of the beams.

L INTRODUCTION

Micromachined silicon structures, such as beams and dia-
phragms, currently find their way in sensor research. The
reasons are obvious: silicon is mechanically a strong material
and the structures can be made using anisotropic etching
techniques.! Moreover, the processes of the integrated cir-
cuit (IC) fabrication can be used to build small scale sensors
out of these structures, and the same silicon can be used to
integrate the required electronics as well.

In our research we are interested in resonant silicon mi-
crostructures, used in frequency-output senscrs.” This is a
growing area of interest, thanks to the advantages of this
class of sensors.” The resclution of a frequency-output sen-
sor is mainly determined by the mechanical quality factor;
the higher the quality factor, the sharper the resonance peak,
and thus the higher the resolution of the frequency-cutput
Sensor.

In determining the mechanical quality factor, several
damping mechanisms must be taken into account. Newell*
concludes in his work on miniaturization of vibrating struc-
tures, that damping by air is the most profound one. He
distinguishes different damping mechanisms as the air pres-
sure varies, corresponding to the properties of gases at low
pressures. Therefore, cur research will be concentrated on
the pressure dependence of the guality factor. At the same
time we shall examine how this dependence varies with the
geometry of the resonant beam. The goal aimed at in this
article is to find design rules for the geometry of resonant
silicon beams in order to obtain a quality factor that is as
large as possible at atmospheric conditions. Emission of
sound is negligible for the structures under consideration
here.>®
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Most of the research on the pressure dependence of the
damping of vibrating structures in performed on guartz res-
onators,”® Also theoretical treatments of oscillating vacaum
friction gauges used as pressure sensors are found in litera-
ture.'®!! More recently, research on silicon structures used
for accelerometers has been reported.'*** Mass-beam sys-
tems are made in and from silicon, and their quality factor
and resonance frequency is measured as a function of air
pressure. Although the mechanical description of these sys-
tems is the same as that for our structures, the results of the
pressure dependence differ strongly due to the large mass of
these systems compared to the mass of our beams. The work
most related to that described in this article has been done by
Kokubun ef ¢/, who compare their measurements on guartz
tuning forks with a simple damping theory *>'*'* Although
they find good agreement, they do not find a quantitative
relation between the quality factor and the tuning fork ge-
ometry.

In this study we concentrate ourselves on beams vibrating
perpendicular to the substrate. Surfaces except the one-end
support are very far away and will not influence the damp-
ing. This is very much different from resonators described by
Howe et al., which are very close to the substrate ( a few
micron} and vibrate either perpendicular'® to the substrate
or in plane with the substrate.!” Gbviously the viscous damp-
ing is very much different in those designs. Applications of
perpendicular vibrating silicon beams are, e.g., a resonating
force sensor'® or a resonating microbridge mass flow sen-
sor."”

In the theoretical section of this article, expressions are
derived for the damped resonance frequency and the quality
factor of a slightily damped vibrating beam, and for the pres-
sure dependence of both parameters. The considered pres-
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sure range (10 ~2-10° Pa) is divided into three regions, an
intrinsic, a molecular, and a viscous region, according to
Newell* and Drawin.!' Each region has its own dominant
damping mechanism. In order to derive analytical expres-
sions in the viscous region, the beam will be approximated by
a sphere. As will be seen later, this rather crude approxima-
tion serves for a good qualitative and an even reasonable
quantitative understanding of the experimental results. In
the next sections, the experiments, their results, and a discus-
sion will be given.

iil. THEORY

A. The quality factor and resonance frequencies of a
damped resonant beam

1. Definition of the quality factor

The following definition for the quality factor of a damped
system is used®

27U,
. (1)

__ 2qr(stored vibration energy)

dmsxpated energy per perioa U,

In case of weak damping it can be shown that Q can be mea-
sured by determining the logarithmic decrement of the vi-
bration, from the amplitude of vibration at resonance with
respect to the static amplitude, or from the bandwidth at
resonance. The last one will be used in our case to measure
the quality factor of our resonant beams.

2. Drag force

The drag force Pis the force exerted on the vibrating beam
by the surrounding medium (i.e., air}. Writing the velocity
of the vibrating beam in the complex form u = uge ™', we
obtain a complex drag force proportional to the velocity®

= (B, +JjB,)u, with B, and 3, (real) constants. For har-
monic motion this expression can be written as the sam of
two terms with real coefficients

P= (B +jB)u=Pu— Bu/o. (2)

The part of the drag proportional to the velocity u is called
the dissipative part, because it leads to energy dissipation;
the other part, proportional to the acceleration #, is called
the inertial part.

3. The resonance frequency of a damped vibrating
beam

Consider a cantilever beam of length /, width b, and thick-
ness d vibrating in a flexural motion in a fluid medium,
which exercises the previously described drag force upon the
beam (see Fig. 1). If we neglect the influence of shear defor-
mation and if no distributed. loads are present, the free mo-
tion of this prismatic, homogeneous beam is described by
(using standard mechanics®')

.
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F1G. 1. Drawing of the micromachined silicon cantilever beam.

where 7 = x/I: the normalized length parameter; E: the
Young modulus; I: the moment of inertia (i.e., bd>/12); f;:
the dissipative drag parameter per unit length (f, = £,/1);
Jf>: the inertial drag parameter per unit length (f, = 3,/wl};
p.: the density of the beam material (i.e., silicon); 4: the
cross-sectional area of the beam (i.e., bd).

Since the drag force is only defined ¢f. Eq. (2) for harmon-
ic motion, Eq. (3) is only valid for harmonic solutions of the
vibration. It is seen from Eq. (3) that the inertial part of the
drag force has apparently the effect of increasing the mass of
the vibrating beam. Solving Eq. (3) under the condition of
resonance yields the eigenvalues for the damped angular res-
onance frequencies @,

[ E Ik 4 1 ( f~1 ) 2] 1/2 (4 )

(pA+L5)I* pA+ 1o ’

where &, is the constant for the nth order mode of resonance.
The damping parameter £, is small for vibrations in gases,

thus the second term under the square root may be neglect-

ed. Moreover, since p,4 is much larger than f,, the damped

resonance frequency of a vibrating beam is approximated by

EIk4 172
%z(__"._) zwn(l__i__fz_), (5)
(pA+ 1), 2 pA

where @, is the nth order undamped angular resonance fre-
quency, given by:

®, =27f, =ki%

. (6
12p, )
For the first-order resonance k,= 1.875 for a cantilever
beam.?’

4. The mechanical quality factor of a damped
vibrating beam

Using Eq. (1) the quality factor Q of a slightly damped
vibrating beam can be determined. The stored vibration en-
ergy is equal to the maximum value of the kinetic energy.
Using separation of the variables  and 7 and considering
only harmonic motion, thus

y(m,t) = w(n) Y(2) = w(n)e™, (7)
we obtain for U,
Uri = (Ukin)max
Y ity \?
[ Lrpasn|(2@2)]
Lz A+ N = ) L
’ 1
:-;—l(pSA +f2)w2f w () dy. (8)
(¢]
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The dissipated energy per period U/, or the damping energy,
is given by the produci of the dissipative part of the drag
force P and the velocity u

T 1 T 2
Udzf Pudtzj-f m(fﬂl”l)dmﬁ (9)
o o Jo gt

with T = 27/w, the period time.
Substituting Egs. (8) and (9) into Eq. (1) and using Eq.
(73, we get for the quality factor ¢

H
2741 (p,A +f2)w2f w(n) dyg
g= 1 - : (10)
lf}mzf wz(n)j cos® wt dt dy
(4] 2

The time integral gives 7/ and so @ can be calculated with-
out knowing the exact mode shape function w{#} to arrive
at, with £, €p 4

0 = p,Aa/f, (11)
Here o is the damped angular resonance frequency o,, of
Eg. (5).

B. Pressure dependence
1. Superposition of damping mechanisms

The parameters which are pressure dependent in the basic
equation of cur resonant system, Eq. (3), are the damping
parameters f; and /. In order to analyze how Q and @, vary
with air pressure, the pressure range from vacuum to atmo-
spheric pressure can be divided into several regions. These
can be named after the dominant damping mechanism in
each region:*!! the intrinsic, the molecular, and the viscous
region.

If all the damping mechanisms acting on the vibrating
system are proportional to the velocity of the vibration, the
total drag force consists of contributions of the separate
mechanisms. Accordingly, the damping parameters /3, and
£, can be written as the sum of the several parameters.

P :Pa +Pb NEEER
= (Bo +IB2)u+ (Bor +JBs2)u+ "
= (B +JjB)u. (12)

In the derivation of the quality factor of such a composed
system, we are only interested in the dissipative part of the
drag force. Combining Eqgs. (1), (9), and (12), the quality
factor can be written as:

111 1
B N L (13)
g G & Z o

From this equation it is obvious that the value of Q cannot
exceed the value of the smallest specific ;. Instead of actual-
ly calculating the total damping parameters in every region,
they may be approximated by the damping parameters that
are dominant in that region.

2. The intrinsic region

In the intrinsic region air pressure is so low that air damp-
ing is negligible compared to the intrinsic damping of the
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vibrating beam itself. Then both f; and the corresponding @
are independent of air pressure and beam geometry, and O
reaches 2 maximum value. Furthermore, £, equals zero and
thus @y, = @,,-

3. The molecular region

In the second region, the molecular or Knudsen region,
the damping is caused by independent collisions of noninter-
acting air molecules with the moving surface of the vibrating
beam. In this case the drag force can be determined by means
of the kinetic theory of gases. It follows that the damping
parameter f, is proportional to the air pressure p and the
width of the beam 6!

fi=k,bp (14)
with
k, = (32M /97RT ', (1%

where M, R, and T are the mass of the gas molecules, the gas
constant and the absolute temperature, respectively. For air
molecules M equals 28.964 gr/mol, so at room temperature
(=300K) k%, =3.6x10"7s/m.

In this region also £, = G and thus, using Eq. (6) for @,,
we derive for @

k? ( d y( pEN

=1 \7/\ 0

(16)

4. The viscous region

The third or viscous region leads up to atmospheric pres-
sure or further. Iu this region the air acts as a viscous finid
and the drag force must be calcuiated using fluid mechanics.
Since the velocity of the vibrating beam is always much
smatler than the speed of sound in the medium, we may
consider the medium as being incompressible.

For the velocity field u(x,p,z,7) of an incompressible vis-
cous medium the Navier-Stokes equation and the continuity
equation are applicable’

—(?5“¥+ (u grad)u = ~==—1—gradp+iu=Au, (17)
Jt Po Po
dive =0, (18)

with g and p,, the dynamic viscosity and the density of the
medium, respectively. In the pressure region under consider-
ation we may assume g to be a constant (N.B. we assume
ideal gases, sop, = M /RT"p).

It is rather difficult to determine the exact veiocity field
arcund the vibrating beam. Only for simple bodies an analy-
tical expression for u can be derived from these two equa-
tions. However, Kokubun er al.®'> have proposed an ap-
proximation for the damping problem of a vibrating quartz
tuning fork. They considered the tines of the fork with an
almost quadratic cross section as a string of spheres. If these
spheres vibrate independently of each other, with infinite
separation, the resulting drag force is the sum of the drag
forces of the single spheres. Their measurements agreed well
with the theoretical predictions. For our case it could be




22 Blom et a/.: Quality factor of micromachined silicon beam resonators 22

more appropriate to model the beams by discs rather than
spheres, however, according to Lamb,?” the drag force on a
disc moving perpendicular to its surface is very close to that
of a moving sphere. We shall comment on this matter below
and use the sphere model. ,

In case of small Reynolds numbers, the drag force for an
oscillatory motion of a sphere with radius R can be calculat-
ed straightforwardly from the Navier—Stokes Eq. (17} and
the continuity Eq. (18). Thus, the parameters 3, and 3, of
Eq. (2) are determined®

B, = 67uR(1 + R /5), (19)

965
[)’2/602 (2/3)7TR3P()<1 +E—§-) N

Here & is the width of a boundary layer perpendicular to the
direction of the motion and is a measure for the depth of
penetration of a lateral wave. In this region there is a nonvan-
ishing curl of the velocity field which means that this region
is turbulent; the air flow is rotaticnal instead of potential.
The width & is dependent on the pressure and given by

5 = (2u/po) . 1)

The first expression on the right-hand side of Eq. (19)
equals Stokes’ equation for static flow passing a sphere (or
for a sphere in uniform motion through a viscous fluid); the
second expression is the result of the harmonic motion of the
sphere and is dependent on both the resonance frequency of
the sphere, as well as the density of the medium [cf. Eq.
(2hH ).

Assuming @, =@,,, i.€., ignoring the contribution of the
additive mass to the quality factor, we can combine Egs. (6),
(11), and (19), and finally obtain for the quality factor of a
vibrating beam in the viscous region, approximated by an
oscillating sphere with radius R

(20)

k3 bd*(p,E/12)'

(22)
6muRI(1 + R /8)

For the relative frequency shift of the first-order resonance
frequency we derive, combining Egs. (5), {6), and (20)

3
Aw/w, = —M(l—ki—é—)‘

(23)
3p,lbd 2 R

Equation (23) [or more often Eq. (5)] is used in litera-
ture to describe the frequency dependence of resonant pres-
sure sensors.’ It can be seen from Eqgs. (22) and (23) that for
both @ and Aw/w, two regions are recognized, depending on
the ratio R /6

for R/6<1:
for R/6>1:  Q is proportional to 1/yp,
for R/6>9/2 Aw/w, proportional to p,
for R/6<9/2 Aw/w, proportional to \p.

At this stage we define the critical pressure p, as the pres-
sure at which R equals &. As stated in the Introduction, we
will put emphasis on making Q as large as possible at atmo-
spheric conditions. This means that the dependence of this
p. on the beam dimensions must be determined in order to
shift p, as far as possible above 10° Pa. In that case O will

Q is independent of p,
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TABLE 1. Dimensions of the beams used (length /, width b, and thickness
d), their first-order resonance frequency f; and calculated results of the
curve fitting for the radius R of a sphere and the critical pressure p,.

d A R A
) b (pem) (Hz} (ger) (Pa) -
Sample {mm) (min) (+1) (1) (440 (440}
7-3 1.5 0.5 9 5259 165 35
7-4 3.0 0.5 10 1491 310 55
7-5 2.0 0.5 10 3163 255 25
85-1 4.0 0.5 15 1310 370 30
85-3 4.0 0.5 15 1242 390 25
85-4 4.0 0.4 14 1193 355 35
85-6 4.0 0.4 14 1223 360 30
85-9 4.0 0.3 12 1005 230 100
85-10 4.0 0.2 11 915 160 210
85-12 4.0 0.2 i2 1017 155 200
89 B2 1.4 0.2 5 3751 80 195
89 BS 1.4 0.4 6 3995 120 o0
89 B6 1.4 0.4 6 3978 140 63
89 B8 1.4 0.6 6 3832 160 50
90 FS 2.0 0.4 i3 4537 175 35
91 C3 2.8 0.4 34 5952 300 10

have the maximum value for the viscous region, which is
independent of pressure.

Kokubun e al."’ refined the model by introducing Miili-
kan’s slip theory*>** (see also Ref. 10) which accounts for
the fact that at low pressure the velocity of the moving sur-
face does not equal the velocity of the fluid at the surface.
This effect is important if the linear dimensions of the mov-
ing object becomes comparable to the mean free path of the
molecules in the fluid. The effect describes the pressure de-
pendence of @ at the transition from the molecular region to
the viscous region. Here we ignore this effect because the
experimental uncertainty is too large to make the slip effect
visible.

k. EXPERIMENTS
A. Samples and experimental setup

Several batches of silicon cantilever beams were made us-
ing anisotropic etching of silicon in a KOH solution and
photolithographic techniques. The beams of the different
batches have varying geometries. The beams used are listed
in Table I, together with their dimensions and resonance
frequencies. Figure 2 shows a microphotograph of a realized
silicon cantilever beam (sample 7-4).

The experimental setup consists of a sample holder with a
mechanical exciter, placed in a vacuum chamber, a Michel-
son interferometer, a Photodyne, and a HP4194A impe-
dance/gain-phase analyzer, as is schematically drawn in
Fig. 3. The whole setup is placed on a heavily damped table.

Together with its frame, the exciter, a loudspeaker, is
mounted on a microcontrolled xyz table in order to position
the appropriate beam in the spot of the laser beam. The xyz
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F16. 2. Microphotograph of a realized silicon cantilever beam with
fength = 3.0 mm, width = 0.5 mm, and thickness =— 7 pm (sample 7-4).

table is firmly attached to the mechanical table. The sample
is mounted on the membrane of the loudspeaker by means of
mechanical clamps. Using the gain-phase analyzer an ac vol-
tage is applied to the loudspeaker, whick will result in vibra-
tions of the beams due to inertial forces. The vibration is
contactlessly detected by the interferometer, resulting in a
modulation of the light intensity, The photodyne transforms
this optical signal into an electrical signal, which is fed into
the input of the gain-phase analyzer.

The vacuum chamber can be pumped down to a pressure
of about 10~ Pa by means of an oil diffusion pump backed
by a rotary pump. The pressure inside the chamber is mea-
sured with & Pirani gauge and a Bourdon tube. Air is used as
fluid medium. The cylindrical chamber has a radius of 15 cm
and a height of 40 cm.

B. Measurement method

The resonance frequency is found by sweeping the excita-
tion frequency with the gain-phase analyzer. The vibration
amplitude of the samples is kept small, usually below 80 nm,
in order to avoid nonlinear damping mechanisms (i.e., tur-
bulency). Furthermore, in this case the Michelson interfer-
ometer operates in an almost linear regime.

In order to determine the frequency characteristic of the
whole setup, the transfer function was measured using a rig-

reference mirror ‘g;‘/
]
t

beam-splitter :

acyg-table
E ————— o . mechanical
laser ¢ excitor
photodyne :
}
in
network & pump
analyser

F16. 3. Sketch of the experimental setup.
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id silicon wafer as sample. These measurements revealed the
resonances of the measurement setup. Although some peaks
appeared in the kilohertz region, most of the distortion is
located below 1 kHz. In the case of ambiguity in determining
which peak belongs to the beam to be measured and which
one to the setup, a reference measurement can be performed.
This difference measurement can also be performed auto-
matically. It turned out that within the range of the reso-
nance frequencies of the beams the transfer of the setup can
be considered frequency independent within the smali band-
width used (i.e., 20 Hz).

The quality factor is found from the transfer plots of the
gain-phase analyzer by measuring the bandwidth between
the two -3 dB points in this characteristic. Most points were
determined from the phase transfer (i.e., + and — 45°
phase shift}, rather than the ampfitude transfer, because
these appeared to be less sensitive to distortions. Q is calcu-
lated from this bandwidth and the resonance frequency.

IV. RESULTS AND DISCUSSION
A. Measurements of the resonance frequency

From the Egs. (5) and (6) it can be seen that the damped
resonance frequency is proportional to d /1% In Fig. 4 the
results are shown for f,,, the first-order damped resonance
frequency, versus & /1°, measured at atmospheric pressure.
Also the theoretical line is shown and we see a good agree-
ment between measuremenis and theory. The (sometimes)
large error results from the uncertainty in the thickness of
the beams of + 1 um. As will be seen later, the difference
between the damped and undamped resonance frequency is
much smaller than this error.

In Fig. 5 the results for Aw/w, versus p are depicted, to-
gether with the theoretical linear relation according to Eq.
(5). The slope of the curves of Aw/w, versus p somewhat
smaller than 1. Furthermore, for our geometries Aw/w, has
a maximum value of approximately 1% at 10° Pa. This
means that indeed £, <p A.

8 o fdo

[kHz]
T

k theory
2 o
— /F [n]
v v T T v ¥ v 7 v

o 1 2 3 4 5

Fi1a. 4. Results of the damped resonance frequency £, as function of the
dimensional parameter d /I? for the cantilever beams. The drawn line is
according to theory, cf. Eg. (6).
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F1G. 5. Relative frequency shift Aw/ew, as a function of the pressure. The
drawn line is according to theory, cf. Eq. (5).

B. Pressure dependence of the quality factor

In order to make it possible to compare the results of
beams with different lengths and thicknesses the value of the
measured @is normalized with the aid of Egs. (6) and (11),
setting R = b. Soin Fig. 6, Q(/ /)" is shown as a function of
air pressure p in the pressure range from 10 ? to 10° Pa for
beams having the same width. In this graph the theoretical
lines for the molecular and viscous region are drawn as well,
according to Eq. (16) and the pressure independent part of
Egq. (22}, respectively.

Below p = 1 Pa there is the intrinsic region. For beam 7.3
for instance, we find an intrinsic @ of approximately 2 X 10°,
which is comparable with the quality factor of quartz reso-
nators in high vacuum. Between p = 1 and p = 100 Pa we
find the molecular region, where Q is proportional to 1/p, cf.

10‘“}

o a 7-3
o 7T-4
Ftheory A 7-5
10° =
et \n
D theory = %
Q- (vd)?
107 < 8
pressure p [Pa] ——P
10® ! " -
107 167! 1 10 102 16° 10 10

F1G. 6. Normalized quality factor Q[ = Q(//d)?] vs the pressure p in the
pressure range from 1077-10"° Pa for several beams with different
lengths. The theoretical prediction of the dependence of Q on p when the
damping by air dominates is drawn [Eq. (16) and pressure independent
part of Eq. (22), setting R = &].
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F1G. 7. Normalized Q vs p in the viscous region for beams with different
dimensions. Drawn lines are fits.

Eq. (16). Above p = 100 Pa there is the viscous region: first
Q is independent of pressure, but at atmospheric pressure Q
is almost proportional to p, cf. Eq. (22). Here the graphs
deviate from each other due to the different geometries,
which result in different resonance frequencies, and thus, in
different values for the boundary layer thickness &.

In Fig. 7 other results of Q(/ /d)?* versus p are shown for

* the pressure range between 10 and 10° Pa, i.e., the viscous

region. In this graph other dimensions are varied than those
in Fig. 6. In comparison with the results of other researchers
in this field,” * we observe a relatively wide region, where Qs
independent of p. This phenomenon is related to the dimen-
sions of the beams. The upper limit of this region is governed
by the critical pressure p,, i.e., the pressure where R = 4.
This pressure is dependent on the resonance freqguency of the
beam, as can be seen from Eq. (21). In the next subsection
we shall discuss the dependence of p. on the dimensions of
the beam more thoroughly.

C. Determination of the critical pressure
1. Curve fitting

As stated in the Introduction of this article our goal is to
obtain an as large as possible value for the quality factor at
atmospheric conditions. As explained in the former subsec-
tions this Q0 is dependent on the critical pressure p,. If we can
make p_ > 10° Pa, only Stokes’ damping will remain and Q
will have a maximum value, which is independent of pres-
sure.

In order to investigate the dependence of p,. on the dimen-
sions of the beam, the measurements of several batches are
combined and curve fitting is performed. In this case Eq.
(22) is used, following the description of Kokubun.® For the
curve fitting a least squares method is used.

2. Results

The results of these calculations for the beams of the dif-
ferent batches are listed in Table I. Here, apart from the
dimensions and damped resonance frequencies of the beams
used, the best fit value for the radius of the sphere R and the
corresponding critical pressure p, are given. In Fig. 8, these
data are plotted as a function of the dimensions of the beams.
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FiG. 8. Results of the curve fitting from measurements of the quality factor. Shown is the best fit radius R of a sphere and the critical pressure p. vs (a) the
length / of the beam; (b) the width b of the beam; {c¢) the thickness & of the beam (extrapolated).

Generally the fit was better for ratios of / /b close to unity.
This is guite understandable, since in this case a sphere fits
physically better as well.

3. Discussion

It can be concluded from Fig. 8 that the length of the beam
{ has no influence on p,, whereas p, decreases strongly with
the width of the beam b. The results of Fig. 8(c) are extrapo-
lated from these conclusions. Here results are shown for
beams with varying lengths, but the same width. We see that
P. also strongly decreases with increasing thickness d of the
beam. As for the dependence of the fit on R, no direct conclu-
sions can be drawn; R tendstoincrease with each parameter.

In order to get more insight intc this dependence, we take
a closer look at the physical origin of the parameter R in the
drag force parameter 5, of Eq. (19). As previously stated,
the first expression describes the static damping and the first
R can therefore be related to the surface area perpendicular
to the direction of the motion. Lamb shows in his work on
hydrodynamics that the damping of a disc with radius R,
moving perpendicularly to this surface equals the damping
of a sphere having a radius of 0.85R.** The second expres-
sionin Eq. (19) is related to a laterally moving wave. Hence,
the second R has some relation with the surface area of the
sides of the beam. From this we conclude that a fit function
with two individual fit parameters could be more appropri-
ate. However, performing such a fit did not seem to give
reasonable new insight, due to the proximity of the transition
between the molecular and viscous region.

Hirata ef al.” also investigate the size effect of quartz tun-
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ing-fork oscillators on their electrical impedance and found
the inverse dependence of the impedance on the width of the
tines. However, they only examine the dependence on di-
mensions at two different pressures, one in the molecular
region and the other at 10° Pa, which makes it difficult to
correlate their results with our own. Moreover, their tines
have an almost square cross section, whereas our beams have
b /d ratios of ten and more.

From the foregoing discussion we arrive at the design
rules for beams with an optimum quality factor at atmo-
spheric pressure. The thickness and the width should be cho-
sen as simall as possible in order to obtain a large critical
pressure p.. In that case ¢ reaches a maximum pressure-
independent value in the viscous region. The length of the
beam seems to have no effect on p.. On the other hand, since
Qis proportional to the square of g /1, a thick and short beam
seems to be more appropriate to obtain a large Q.

V. CONCLUSIONS

In this article we have given a theoretical description for
the damped vibrations of cantilever beams. Assuming that
the damping is relatively small, the damped resonance fre-
quency was calculated. These calculations were verified by
measurements, which also revealed that the relative frequen-
cy shift between damped and undamped resonance frequen-
cy was 1% at the most. This shift is affected by an apparent
increase of the mass of the vibrating beam and it is (almost)
proportional to the pressure p.

In our theory we assume the damping by the medium to be
the dominant mechanism, and hence it is based on fiuid dy-
namics and the kinematic theory of gases. This is confirmed
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by measurements, which showed that the pressure range can
be divided into four regions, each with its own dominant
damping mechanism.

Below 1 Pa the damping is intrinsic of origin and so Q is
independent of p. For our beams very high @ values in the
order of 2 X 10° were measured in this region. Between 1 and
100 Pa, the molecular region, the damping is determined by
the independent collisions of molecules with the vibrating
beam surface. In this region, Q is proportional to 1/p.

The third and fourth region are both viscous from origin,
but the former is governed by the static Stokes’ damping,
whereas in the latter the harmonic damping in a boundary
layer is dominant. In these regions, @ is independent of p and

proportional to \Jp, respectively. The transition between the
last two mentioned regions is at the critical pressure p,.

All the beams considered so far had a mechanical quality
factor larger than 100 at atmospheric pressure. Assuming a
resonance frequency of several kilohertz, the frequency reso-
lution is in the order of several tens of hertz. This is rather
large when a high resolution frequency-output sensor is re-
quired. A quality factor in the order of several thousands
would be more desirable in this case.

By approximating the cantilever beam by a sphere, an ana-
lytical expression for Qis derived, which was used in a curve-
fitting program. In this manner the dependence of p, on the
beam dimensions was investigated. Generally, the fit was
better for ratios of / /b close to unity. The fit relation used
actually contains two fit parameters, the first related to the
surface area perpendicular to the direction of vibration and
the second to the surface area of the sides of the beam. There-
fore, a fit function with two individual fit parameters would
be more appropriate.

Finally, the design rules for a large mechanical quality
factor at atmospheric pressure are obtained; a wider and
thinner beam increases the critical pressure p,. and a thicker
and shorter beam increases Q.
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