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ABSTRACT

Recent works investigated the generalization properties in deep neural networks
(DNNs) by studying the Information Bottleneck in DNNs. However, the mea-
surement of the mutual information (MI) is often inaccurate due to the density
estimation. To address this issue, we propose to measure the dependency instead
of MI between layers in DNNs. Specifically, we propose to use Hilbert-Schmidt
Independence Criterion (HSIC) as the dependency measure, which can measure
the dependence of two random variables without estimating probability densities.
Moreover, HSIC is a special case of the Squared-loss Mutual Information (SMI).
In the experiment, we empirically evaluate the generalization property using HSIC
in both the reconstruction and prediction auto-encoding (AE) architectures.

1 INTRODUCTION

Due to the success of Deep Neural Networks (DNNs), unveiling the generalization properties of
DNNs has attracted lots of attention. Recently, Shwartz-Ziv & Tishby (2017) applied mutual infor-
mation (MI) (Cover & Thomas, 2012) for modeling the training dynamics in DNNs, and two distinct
phases are reported. In the first phase, MI between the latent and the output space increases, which
correlates with the decrease in the training error. Whereas in the second phase, MI between the in-
put and the latent space decreases, which forces the latent representations to “forget” the input while
maintaining the information for the output. It has been suggested that this second phase, known as
the “compression” or the “bottleneck”, contributes to the generalization performance of the learned
latent representation. However, measuring MI between two layers in DNNs is often not easy and
can be computationally inefficient. Note that the layers in DNNs refer to high dimensional data, and
thus adopting a proper estimator for MI is crucial.

A standard estimation of MI (Cover & Thomas, 2012) requires density estimation of p(x,y) and
its marginals p(x) and p(y), and the final estimator is obtained by taking the ratio of the estimated
probability densities. However, the approximations may be inaccurate and can lead to a poor MI
estimation for high dimensional distributions. Considering this issue, Andrew Michael Saxe (2018)
argued that the “compression” in sigmoid neural networks is a result of the binning approximation
and the saturation of nonlinearity.

In the paper, instead of measuring MI, we measure the dependency between two layers in DNNs.
Specifically, we propose to use Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al.,
2005a) as a dependency estimator, which can measure the independenceness between two ran-
dom variables without density estimations. Moreover, HSIC can be seen as a special case of the
squared-loss mutual information (SMI) (Sugiyama & Yamada, 2012). In the experiment, we empir-
ically evaluate the generalization property of the learned latent representations in reconstruction and
prediction auto-encoding (AE) architectures. Specifically, we investigate the dependency between
different layers for modeling the training dynamics of AEs, examine whether similar “compression”
can be observed, and quantitatively compare the latent representations on the recognition task.
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2 RELATED WORKS

2.1 INFORMATION BOTTLENECK

Suppose we have a Markov chain X → Z → Y , where x ∈ X is the input, z ∈ Z is the latent
representations, and y ∈ Y is the output, the information bottleneck (IB) (Tishby et al., 2000) can
be written as the following optimization problem:

min
p(z|x),p(y|z)

I(X,Z)− βI(Z, Y ) (1)

with I(·, ·) representing the mutual information (MI) (Cover & Thomas, 2012). It has been argued
that minimizing Eq. (1) corresponds to the “compression” of the input in the latent space and relates
to the generalization performance of the model Shwartz-Ziv & Tishby (2017).

2.2 AUTO-ENCODING STRUCTURES FOR RECONSTRUCTION AND PREDICTION

An Auto-Encoder (AE) (Bengio & LeCun, 2007) consists of an encoder network f(·) and a decoder
network f ′(·). The encoder transforms the input into a low dimensional representation, and the
decoder recovers the input signal from the latent representation. The training objective can be written
as:

min
f ,f ′

1

n

n∑
i=1

L(xi,f
′(f(xi))) + βφ(f ,f ′), (2)

where L(·, ·) represents the reconstruction loss, and φ represents additional regularization.

It is worth noting that the formation of information bottleneck may not apply in the original AE
setting, since the difference between input X and output Y are trained to be minimized. However,
if a video stream is used as input, then an AE can be trained to reconstruct xi (current frame), or to
predict xi+n with n ≥ 1 (future frames). It has been shown that the latent representation of LSTMs
trained for both reconstruction and prediction in sequence data yields higher higher classification ac-
curacy than that for reconstruction only; yet the properties of the latent code has not been interpreted
in the context of the IB (Srivastava et al., 2015).

3 HILBERT-SCHMIDT INDEPENDENCE CRITERION

The Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2008) is a kernel-based inde-
pendence measure defined as the squared HS-norm of the cross-covariance operator between two
Reproducing Kernel Hilbert Spaces (RKHS). In this paper, we use a normalized empirical estimate
of HSIC:

HSICnorm(X,Y) =
tr (KHLH)

‖HKH‖F ‖HLH‖F
, (3)

whereH = I− 1
n11

>,K ∈ Rn×n is the Gram matrix ofX withKij = k(xi,xj), andL ∈ Rn×n

is the Gram matrix of Y with Lij = l(yi,yj). It is clear that HSICnorm = [0 1]. This estimator can
be computed in O(n2) which is computationally efficient whereas the kernel mutual information
(KMI) has complexity of O(n3)(Gretton et al., 2005b).

3.1 SQUARED MUTUAL INFORMATION AND HSIC

The squared mutual information (SMI) (Suzuki et al., 2009) between two random variables can be
written as

SMI(X,Y ) =

∫∫ (
p(x,y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy. (4)

This is equivalent to changing the KL-divergence in the original MI to the Pearson divergence.
In this expression, the quantity r(x, y) = p(x,y)

p(x)p(y) can be approximated via kernel density ratio
estimation (Sugiyama & Yamada, 2012), rθ(x,y) =

∑n
i=1 θik(x,xi)l(y, yi), where parameters of
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(a) Reconstruction HSIC.
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(b) Prediction HSIC.

Figure 1: (a)(b): HSIC between the input frame and its latent representation in AE for reconstruction
and prediction. A decrease in HSIC is observed in the training of the reconstructive AE, whereas for
the predictive model no obvious decrease in HSIC is observed prior to overfitting.

Table 1: Action Recognition Accuracy Based on one Random Frame

Latent Representation Accuracy

Reconstructive 0.14
Predictive 0.29

θ̂ can be learned to minimize the squared-error. In the case of SMI, the optimal θ̂ can be calculated
in closed form, but the solution requires a matrix inverse. The estimator of SMI is given by

ŜMI(X,Y ) =
1

n

n∑
i,j=1

θ̂ik(xi,xj)L(yi,yj)− 1. (5)

Note that if k(x,x′) is a centralized kernel matrix and entries in θ̂ are approximated by 1/n, then
we have ŜMI(X,Y ) = ĤSIC(X,Y )− 1. Moreover, we have ŜMI(X,Y ) = ĤSICnorm(X,Y )− 1

with θ̂ = 1/(n‖HKH‖F ‖HLH‖F ). Therefore, HSIC can be interpreted as a special case of
SMI (without the optimization of θ̂ for density-ratio estimation). In experiments on vanilla AEs we
indeed found that the trend in HSIC and SMI are similar.

4 EXPERIMENTS

AEs for reconstructive and predictive tasks are trained on the UCF-50 dataset (Reddy & Shah, 2013).
In both cases a convolution-deconvolution-type architecture is trained. The encoder consists of an
encoder and decoder with three convolution layers, and the latent space has 512 hidden units. To
speed up training, 12500 frames are chosen from the UCF-50 dataset and each frame is downscaled
to 64x64. In the prediction task, the network is trained to predict the next frame after 0.2s. We
trained both AEs with Adam (Kingma & Ba, 2014) until the model overfits on the training set.

Contrary to our expectation, a decrease in HSIC is observed in the AE trained for reconstruction, but
no significant drop in HSIC is observed in the prediction model before early-stopping (see Fig. 4).
To verify the possible connection between this observed drop in dependency and the usefulness of
the learned representation, a simple multilayer perceptron (MLP) is trained on the latent represen-
tation to perform recognition based on one given frame. We found that the accuracy achieved from
the predictive representation is higher than that from the reconstructive representation (see Tbl. 1).
We therefore speculate that the drop in HSIC between the input frame and the latent representation
might indicate a less useful representation (in classification), even though the reconstruction loss
continued to decrease. However, the cause of this drop in dependency, and its apparent absence in
the training of AEs for prediction, remains unknown, and the universality of this trend would be
interesting future work.
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