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ABSTRACT 
Mechatronic design is traditionally supported through 

domain-specific design activities throughout the product 

development process. The partitioning into domain-specific 

problems leads to a situation where product properties 

influence each other, hence giving rise to dependencies. These 

dependencies play a key role in prediction of properties and as 

a result, in the decision making process. The important question 

is: how to manage the dependencies for an efficient and 

effective decision making? The aim of this paper is threefold. 

Firstly, we investigate the nature of dependencies and study 

how to model them. The paper proposes appropriate language 

constructs taking into account synthesis and analysis nature of 

properties and dependencies. The concepts related to the 

dependency modeling are then illustrated through a simple 

robot design example, where the creation and importance of a 

dependency model are explained. Secondly, we study practical 

approaches for consistency management and model 

management in the presence of dependencies. Six levels-of-

detail in modeling dependencies are presented; emphasizing 

that modeling at higher level-of-detail ensures that more 

inconsistencies are avoided. Available languages such as OMG 

SysML™ are evaluated for a possible creation of the 

dependency models leading towards executable dependency 

networks. However, at present, SysML does not provide 

sufficiently rich language constructs to model dependencies. 

Thirdly, we compare our dependency modeling approach to the 

other state-of-the-art approaches such as dependency modeling 

with a Design Structure Matrix, and highlight the benefits of 

the language constructs proposed in this paper. We aim to 

convince the reader that there is a substantial value in modeling 

dependencies explicitly, especially to avoid inconsistencies, 

which is not the current state of the practice. However, an 

overall value from dependency modeling can only be obtained 

if the cost of creating the dependency model is reasonable. 

Issues such as human interaction/effort and model management 

through PLM are discussed. 

1 INTRODUCTION 

Mechatronic design is a multi-disciplinary activity 

performed by multi-disciplinary design teams. In managing the 

design of such complex products, a model-based approach 

promises better complexity management, improved design 

quality, better knowledge reuse and improved communication 

[1]. These advantages are however also accompanied by 

challenges such as model management, interoperability, and 

consistency management.  The ultimate goal in employing a 

model-based approach over a document-based approach is to 

make better decisions as early as possible (effectiveness) while 

utilizing fewer resources (efficiency).  

Using formal models enables use of computational power 

in predicting the outcomes. As complexity increases, the 

information which is typically part of a design specification 

becomes large, and computers can handle such large 

specifications much better than humans do through documents. 

Typically a model repository enables employment of version 

and model management approaches over different sets of 

models. A model is only useful if it is consistent with the rules 

of the underlying formal system, with the beliefs and 

preferences of the designer, and with the laws of nature [2]. 

Ensuring consistency across models is a challenging issue. 

Among inhibitors to consistency management, humans who 

create models can be prime suspects, such as not conforming to 

the rules of the language, or laws of nature, or introducing 

changes in a model [2]. The underlying dependencies between 

modeled properties are usually only implicitly known. By 

implicit, we mean that engineers in an organization possess 

knowledge about dependencies (at coarse-grain level) in their 

minds. However, these dependencies are never captured 
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formally or explicitly in a document or a model. Because of 

only implicit knowledge of dependencies, it is difficult to 

deduce the effects of changes introduced in one model on other 

models, resulting in inconsistencies. The focus of this paper is 

to investigate to what extent we can capture the dependencies 

explicitly.  

Herzig et al. [2] discuss fundamental concepts in 

consistency management along with deducing which types of 

inconsistencies can be rectified. The aim of this paper is to take 

a step further and study the nature of dependencies at a 

fundamental level. Insufficient management of dependencies is 

a key inhibitor against ensuring consistency [3, 4]. Therefore, it 

is important to study the nature and role of dependencies 

existing both inside a model and in between models. In current 

industrial practice, workflow management techniques are 

employed to synchronize and streamline the design activities, 

with an implicit management of dependencies. A process 

describing the activities to be performed is used, and 

specifications are used to direct the design process and to set 

targets for the predicted outcomes.  

The main hypothesis this paper aims to address is that 

making dependencies explicit facilitates consistency 

management and adds value. In trying to validate this 

hypothesis during the course of this research, the following 

questions are asked:  

 How detailed should the dependency representations be? 

 How to manage the dependency models and how will 

humans utilize these models? 

 How to quantitatively compare the value gained against 

the effort required in creating and managing dependency 

models? 

 What type of support is available in current modeling 

languages to model dependencies explicitly? 

The remainder of this paper is structured to answer the 

above questions. Section 2 discusses the fundamental concepts 

for understanding and representing dependencies. An 

illustration to the dependency modeling fundamentals is 

provided in section 3. Approaches for consistency management 

are discussed in section 4. The developed ideas are compared 

against the current state of the art in section 5. Section 6 

presents a discussion on key issues, followed by concluding 

remarks and future work proposal in section 7. 

2 FUNDAMENTALS OF DEPENDENCY MODELING 

In order to understand the characteristics of dependencies 

in engineering design, it is important to form a fundamental 

basis for properties (among which dependencies exist), concept 

creation, design space exploration and decision making. 

Hazelrigg [5] considered the design as a decision-making 

process. Models aid in the decision-making process provided 

that they are based on rational beliefs and are consistent with 

preferences of the designer and observations of nature [2].  

Rational Design Theory (RDT) explains the relationship 

between properties in design and the decision making process 

[6]. This theory introduced a conceptual model for design 

where properties are used to define concept specifications, 

concept predictions, and decision making criteria. In the 

following, a short description on property and property spaces 

is provided based on RDT [6]. A property is any descriptor of 

an artifact. Mathematically, a property is a function defined 

over the artifact set: p: AY, where A  S’: the domain of the 

property, and with Y a topological space that is its range (Figure 

1). For a given realization s  A  S’, a well-defined property 

has a specific, unique value y  Y, that is: p(s)=y. The Cartesian 

product of all the property ranges is called the property space P. 

P’ is the subset of a property space and is called the property 

projection, which appears when designers select a finite number 

of properties that make up a system specification. When the 

designers select relevant properties for an artifact, it forms the 

basis for defining a product concept. 

In design, we use properties for describing constraints 

(specification), or for communicating designer’s belief 

regarding what the value of the property is, given a particular 

specification (prediction). Properties can have a logical or 

numerical nature. For example a car’s property having an 

engine to be true to false, or property horsepower with a value 

of 300 hp. 
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Figure 1. Artifacts and property spaces [6]. 

We make a fundamental distinction between properties in 

terms of synthesis and analysis properties. Synthesis properties 

(SPs) are used to define system alternatives.  The specification 

of a system alternative consists of a set of constraints imposed 

on SPs.  The values of SPs are typically specified in terms of 

property ranges — for instance, tolerance constraints on the 

specified geometry.  Multiple SPs together represent a 

specification of a system alternative considered in a design 

decision. Through analysis and optimization, the designer will 

ultimately choose one of the specified alternatives as the most 

preferred alternative. SPs could be either specified directly or 

computed in a scenario where a system alternative is defined 

parametrically. Here a system alternative is characterized by 

some SPs that are freely chosen and other SPs that are defined 

as parametric functions of the freely chosen ones.  

Analysis properties (APs) capture the beliefs of the 

designer, and constitute predictions rather than specifications of 

system alternatives.  For instance, given a specified geometry 

(using SPs), the designer may predict the cost or the mass of a 
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component — cost and mass are Analysis Properties in this 

example.  Since APs are predictions about the future, which is 

inherently uncertain, they should be expressed in terms of 

probabilities or probability density functions (as opposed to 

property ranges for SPs). APs are often computed by using 

predictive models which mathematically capture the beliefs of 

the designer. Although it is not absolutely necessary for the 

mathematical relationship between APs and SPs to be modeled 

explicitly, the APs must be kept consistent with the SPs that 

define the corresponding system alternative. We illustrate the 

process of choosing SPs and predicting APs through a robot 

example in section 3.   

For a property to have an unambiguous meaning, it needs 

to be defined in a semantic context. This context is established 

through relationships with concepts, giving rise to a network of 

properties. For example, consider a system alternative for a car 

defined through the following constraints on SPs: 4 wheels, an 

engine, engine with 4 cylinders, cylinder bore diameter 0.100 

+/- 0.0001m. The SP for the diameter of the cylinder is a value 

associated with the concept “Cylinder”.  The cylinder in turn is 

a part of the engine, which is a part of the car.  Through 

semantic relationships such as “part of” or “value of”, the SPs 

and APs are ultimately all networked to each other.  Similarly, 

the APs for a system alternative also need to be related to the 

network of SPs which provide the semantic context for the APs.  

In addition to the semantic relationships, we use the term 

dependency to indicate that the value of a property depends 

mathematically on values of other properties. For example, a 

mathematical equation that expresses how an AP depends on an 

SP. As with synthesis and analysis properties, we make a 

distinction between synthesis dependencies and analysis 

dependencies. The term Synthesis Dependency (SD) is used to 

represent the choice made by the designer or the parametric 

function (in case SD is a computation). The output of a SD 

always leads to a SP (Figure 2). An example of a SD is the use 

of controller design heuristics in choosing controller gains. As 

a SD reflects only a heuristic, it is possible that while selecting 

a SP, a human overrides a value obtained from the heuristic. 

The choice could be based on a new experiment or observation, 

rendering the heuristic inapplicable. In this case, the choice is 

still considered rational and the chosen SP is considered 

consistent with the current SD. In order to show that a human 

can override a heuristic, a cross is shown on the representation 

of SD in Figure 2. 
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Figure 2. Analysis dependency (left),  

Synthesis dependency (right). 

On the other hand, an analysis dependency (AD) represents 

the mathematical relationship between a set of APs and SPs to 

derive a new AP (Figure 2). The prediction of the resulting rise 

time due to chosen controller gains is an example of an AD. 

Another example of an AD is when a CAD tool provides the 

analysis that when performed on the modeled geometry, results 

in prediction of mechanical properties. However, as we have 

earlier pointed out, it is not necessary, nor always possible to 

formulate a mathematical relationship for an AD. The 

mathematical relations might be known at later design stage, 

and it might be good enough to formulate that an AD simply 

exists. A discussion in section 4.1 on level-of-detail in relation 

to dependency modeling elaborates this further.  

2.1 Nature of properties, relationships and 
dependencies 

Properties can be part of the same semantic context and 

they might not affect each other’s value (Figure 3), e.g. 

semantic relationship between a car, an engine, and a pair of 

seats. Expressing such relationships semantically is important 

in addition to representing dependencies where two properties 

depend upon each other’s value.  

In relation to abstraction levels, fewer SPs and APs are 

identified during the initial design stages (higher abstraction 

level), and later - with more knowledge – additional SPs and 

APs are known (lower abstraction level). It is also possible that 

a property is uncertain initially and certain at the later design 

stages. Hence it is necessary to keep a version management 

over the property values, to allow for returning to a previous 

design stage if required. Model management aims to address 

this issue, discussed further in section 6. 

The semantic relationship between properties is what 

creates a meaningful context. Modeling languages such as 

SysML [7] help in representing these semantic relationships 

efficiently. However, it has not been thoroughly investigated 

whether SysML provides adequate language constructs to 

model the dependencies explicitly. A further discussion about 

this is presented in section 4.  
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Figure 3. Semantic relationships between properties in addition 

to dependencies. 

So far we have discussed properties, semantic relationships 

and dependencies from the perspective of a single domain. In 

model-based mechatronic design, design activities are spread 

across different domains such as mechanics, electronics, and 

software. The modeling activities performed within each 

domain lead to the creation of domain-specific models.  Within 
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a domain-specific model, there are dependencies (SDs or ADs) 

between SPs or APs. For instance, the analysis supported by a 

mechanical CAD tool constitutes an AD to predict the inertial 

properties of an object. At the same time, there are 

dependencies in between domain-specific models. For instance, 

an AP in one domain-specific model can become an AP in 

another model, or in other words, the two APs in different 

domain specific models are bound by an equality dependency. 

Figure 4 illustrates this situation where two domain-specific 

models: Model A and Model B are shown. Based on chosen 

SPs, Model A provides a prediction of an AP, which is bound to 

an AP in Model B (Figure 4). A similar situation can happen in 

case of SPs. Furthermore, the cross-domain dependencies could 

be numerous, leading to a multitude of properties being shared 

between two or more models. In this case, instead of a property, 

it is a property file (APF) containing a list of properties shared 

between two domain-specific models. The cross-domain 

dependencies exist between specific properties of domain-

specific models, whereas other properties may not be affected 

by them. Figure 4 illustrates this situation where two portions 

of Model B are shown separately. One portion has 

dependencies with Model A (shared AP), and the other portion 

does not. 
Model A Model B
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SP AP SP SP
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Figure 4. Visualization of a dependency network within and 

across two domain-specific models.  

Both the SD and the AD could either have explicit formal 

representation through a mathematical function or an analytical 

model; however, this is usually not the case in current industrial 

practice. It is common that the dependencies are only implicitly 

known, e.g. in the mind of a designer. 

Through a multitude of properties with dependencies in 

between them, a network of dependencies comes into existence. 

This network could be formally captured provided that the 

dependencies are modeled explicitly. Doing so will provide an 

option of propagating dependencies while moving in between 

abstraction levels. Section 4 further highlights the advantages 

of modeling the dependency networks.  

3 ILLUSTRATION 

This section aims to illustrate the dependency modeling 

concepts (presented in section 2) through a concrete design 

example. The design is based on the problem description, 

where it is required to pick and place an object in a three-

dimensional environment with known obstacle locations. For 

the sake of simplicity, we have only considered a two-

dimensional movement, ignoring the motion in the third 

dimension. A fairly simple two-degree-of-freedom robot is one 

of the alternative concepts selected to solve this problem.  

The robot design process begins by synthesizing the basic 

structures [8], one of which is chosen as a quantified structure.  

Figure 5 shows the basic structure of a robot, the workspace 

environment, the pick and place point, and the known obstacle 

location. It is required to control the position of the robot with 

certain accuracy referred to as Controlled Position Accuracy 

(CPA), and avoid the obstacle. Some design variables that are 

considered part of the specification for the robot design are: 

link length (LA, LB), link width (WA, WB), material density (ϱ), 

range of joint motion (ƟA, ƟB), origin point (O), torque of 

motor (MA, MB), resolution of sensor (SA, SB), maximum 

distance between pick and place point (PE). We assume the 

ability to grab an object of any size, hence no gripper is 

considered for this example. 
Robot Workspace

LA

LB
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ƟB

PE

MA

SA

MB

SB

Place point

Pickup pointO

 
Figure 5. A design concept for the robot.  

The robot design activities are partitioned into two 

domains: mechanical design and controller design. Mechanical 

design is performed to satisfy the workspace requirement and 

predict mechanical properties such as inertia. Using the 

mechanical properties of the robot, it is possible to perform a 

kinematic analysis that defines the end position (EP) of the 

robot. Knowing the characteristics of the robot design concept 

and the requirement CPA, controller gains (CG) will be 

selected.   

Based on the design concept and specifications of the robot 

in Figure 5, it is now possible to represent the dependencies 

between robot properties through the concepts developed in 

section 2. The robot properties are differentiated as synthesis 

and analysis properties with synthesis and analysis 

dependencies in between them. Figure 6 shows the dependency 

network showing analysis and synthesis dependencies (in 

orange) between analysis properties (in green) and synthesis 
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properties (in blue). The network spreads across the two 

domains- mechanical design, and controller design. As an 

example for SD, consider the SD1 between WS and PE which 

leads to LA and LB. This shows that both link lengths are chosen 

based on workspace requirement (WS) and the distance PE. On 

the other hand, the analysis dependency (AD1) between LA, 

WA, and ϱ represents an analysis performed through a 

mechanical CAD tool which predicts the inertia property IA 

based on the chosen geometry (LA, WA) and material, 
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Figure 6. Dependency network for the robot example.  

There could be a possibility for an existence of a loop in 

the dependency network, where a property could both be 

chosen and predicted. This situation is illustrated in Figure 7, 

where the property “controlled position accuracy” (CPA) is 

shown twice. One of the CPAs (in blue) is a SP which is 

constrained by the specification. The other CPA (in green) is an 

AP, which is predicted by selecting sensor resolution SA and SB 

(based on the selected CPA), and propagating the mechanical 

properties through a kinematic model (AD4) to predict the end 

position EP (Figure 7). The CPA could then be predicted by 

finding the error between predicted position and the reference 

position (AD5). Until the predicted CPA is within the bounds of 

specified CPA, this loop is repeated. Therefore, this process is 

similar to an optimization process in which some SPs are 

chosen to optimize the objective, CPA. 

In certain situations, solving algebraic loops, such as the 

one shown in Figure 7, requires simultaneous solving of a 

system of equations. In such cases, the solution algorithm could 

break the loop using a technique called “tearing.” A tearing 

algorithm can be employed, which performs iteration on 

reduced number of unknowns to find a solution [9]. Since SDs 

represent a choice made by the designer, it is most desirable to 

tear the loop at a SP. For instance, tearing the loop shown in 

Figure 7 after SD6. The crosses shown between the SPs and the 

SD represent tearing or an override by the designer. 

CPA SD6
SB

SA

AD4 EP

LB LA

AD5

CPA
O

 
Figure 7. An illustration of a causal loop within the dependency 

network of the robot example. 

It must be noted that illustration of the network shown in 

Figure 6 only serves the purpose of improving the 

understanding of the reader of this paper. In reality, such a 

network will most commonly be created through a modeling 

language such as SysML. Using SysML, it will also be possible 

relate the SPs and APs semantically, such as declaring LA and 

WA to be value properties of link A. Representing semantic 

relationships is important to gain sufficient understanding of the 

problem and will add further value to a dependency network as 

in Figure 6. 

4 APPROACHES FOR CONSISTENCY 

MANAGEMENT 

4.1 Modeling dependencies at different levels of 
detail 

In the context of modeling, dependencies can be formally 

represented at different levels of detail. Which level of detail 

should be included in the dependency model depends on the 

context.  For small design problems in which the number of 

tools, models, and stakeholders is relatively small, it may be too 

costly to maintain all the dependencies in great detail.  Instead, 

one could rely on maintaining the dependencies manually.  For 

larger efforts, manual updating becomes too labor-intensive and 

error-prone, so that detailed dependency modeling is most 

valuable.  To guide the choice of which level of detail should be 

used, consider the following levels. 

 Level 0: Dependencies are not modeled explicitly; not all 

dependencies may be known, or they may only be captured 

implicitly in the mind of one of the stakeholders.  

Level 1: The existence of dependencies is modeled, but 

without specifying what the dependencies are, for example, 

formally stating that properties of an analysis model depend 

upon a CAD model. Typically, PLM/PDM systems capture 

logical relationships between modeled properties at level 1, 

where they provide information about which model elements 

are related to each other. By expressing level 1 dependency, it is 

possible to maintain some traceability, where a human is 

reminded of which other objects to investigate/update in a 

change management scenario. It also aids in analysis of a 

dependency network, e.g., to determine the optimum workflow 

for the activities.  For instance, based on the structure of the 

dependency network, one could decompose the network into 

parallel work flows for concurrent engineering. However, in 

many cases, it is not enough to know only that a dependency 
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exists, since managing that dependency requires information 

about what is the actual dependency (level 2).  

Level 2: Dependencies are formally captured through a 

model showing both the existence of the dependency and what 

the dependencies are. Modeling correspondence relationships 

between a system model and an analysis model is an example 

of modeling dependencies explicitly. The analysis model could 

be executed to find the property values, and automatically 

update these values between system model and analysis model, 

resulting in fewer inconsistencies. The challenge is that models 

exist in different tools, i.e., there is a tool-integration problem.  

Level 3: The applicability of dependencies is modeled. A 

model is only valid under certain conditions. A cantilever beam 

bends under a load, and the bending can be explained through a 

linear model assuming a small load. A larger load causes higher 

bending which is better explained through a non-linear model, 

and the linear model is no longer valid. Therefore, apart from 

modeling dependencies, it is also required to mention when the 

dependency is applicable. The applicability conditions could be 

described through constraints, meta-data, or validation data set. 

Modeling dependencies at this detail provides an added 

advantage of alerting the human (user) if the applicability 

conditions are violated.  

Level 4: Modeling what is the dependency pattern. An 

important question that comes to mind while considering 

dependency models is: what happens when structure of the 

model changes? For example, adding a third link to the robot. 

In this case, the structure of the dependency network changes. 

For the robot case, it is possible to deduce the change in 

dependency network by knowing what object were created for 

the previous two links, called as a dependency pattern. An 

example pattern is to define an inertia property (IC) for the third 

link (LC) automatically, and creating a synthesis dependency 

between IC and MC. Similar dependency patterns exist across 

different tools e.g. between system hierarchy and CAD 

assemblies, between system structure and analysis model 

structure. Again, tool interoperability is a challenge here which 

can be addressed through model transformations. The 

transformation also plays a key role in automating the 

generation of dependency patterns, in providing consistency 

checking, and in propagating dependencies in a change 

management scenario.  

Level 5: The applicability of a dependency pattern is 

modeled, e.g., modeling the applicability condition for a model 

transformation supporting a dependency pattern.  

In order to avoid as many inconsistencies as possible, it is 

important to maintain level-5 dependency management as the 

design process proceeds. However, as we have stated earlier, 

choosing which level of detail should be included in the 

dependency model depends upon the nature of design problems 

and organizations. Never the less, the aim is to avoid the 

situation where modeling becomes too expensive. Although 

having some level of dependency management is imperative, 

further research is needed to find methods for reducing the cost. 

There is a strong need for a capability in the form of a tool that 

aids in management of dependencies. Such a tool should 

support modeling dependencies between disparate models, 

apply model transformations (using the dependency patterns), 

aid in evaluating consistency checks, and support in managing 

product variants.  

4.2 Modeling dependencies in SysML 
A key question to modeling dependencies is whether there 

should be one language where the all the dependencies are 

captured or whether the dependencies should be represented in 

a distributed fashion across several modeling languages. In 

relation to the six levels-of-detail for dependency management, 

using a single language will be restrictive in the sense that only 

a certain level-of-detail would be possible to manage. Handling 

broader levels-of-detail will require the use of different 

modeling languages. This is also clear from Figure 4, provided 

that each language contains suitable language constructs to 

create the required dependency models.  

For the purpose of defining vocabularies and their 

relationships, catering to the processing of information by 

computers, the Web Ontology Language (OWL) [10] has been 

proposed. In Computer Aided Design (CAD), ISO 10303 

commonly known as STEP standard [11] aims to describe the 

product data throughout its life cycle, for sharing of 

information between different CAD systems in a neutral file 

format. Together, OWL and STEP can be used to address the 

model interoperability issues.  

In model-based design, several dependencies may appear 

in-between disparate models. Therefore, the required language 

to model the dependencies should support modeling across 

different languages and tools (schema). The dependency model 

can be created in generic languages such as OWL, STEP, or 

UML [12]. Reference [13] explains how to use a generic 

modeling language as UML to support multi-domain modeling 

and data-integration. In order to support modeling across 

different languages, it is required that one can access and refer 

to model elements defined in disparate languages. For this 

reason, languages such as UML and SysML are most suitable. 

Both of these languages are also supported in the Eclipse 

Modeling Framework (EMF) [14], hence providing an effective 

combination to capture the dependencies.  

SysML is a language for formally capturing the system 

specifications and the design concepts (meeting the 

specifications) in a descriptive fashion and could therefore 

serve as a modeling language to create dependency models. The 

advantage of using SysML is the capability to represent the 

semantic relationships between properties. Figure 8 shows a 

SysML view of the robot mechanical assembly, describing the 

semantic relationships between a value property Link Length 

and the block Arm.   

Creating a dependency network as in Figure 6 in SysML is 

currently best represented using a parametric diagram. In this 

case, synthesis and analysis dependencies are represented 

through constraints. However, SysML does not provide 

sufficiently rich language constructs to model choice or 

selection for a synthesis property, nor does it support 

differentiating between synthesis dependencies and analysis 
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dependencies, and between synthesis properties and analysis 

properties. Such differentiations play a key role in 

understanding the effect of dependencies in a change 

management scenario, and making it clearly visible to the 

modeler which properties are chosen and which ones are 

predicted.  

 
Figure 8. Robot mechanical structure modeled in SysML. 

The reason that SysML is not sufficiently expressive is due 

to the current practice where it is not required to model 

dependencies explicitly. Provided that the future SysML 

revisions provide such semantics, it will lead towards a creation 

of a common product model containing a dependency network, 

along with individual dependency networks existing among 

domain-specific models (Figure 9). The advantage of such a 

configuration is again to represent semantic relationships 

between properties alongside the dependencies between them. 

With the dependency patterns (level 4) discussed earlier, it 

will be possible to model dependencies between properties of 

domain-specific models by utilizing patterns, such as between 

the structure hierarchy (in the system model) and the 

corresponding CAD assembly models. Figure 10 shows an 

actual example pattern where the robot CAD assembly is 

transformed to provide a system hierarchy in SysML (Figure 

10, pattern A). The other pattern (pattern B) is a conceptual 

representation of a pattern between system design and 

controller design for the robot example in Figure 6. By utilizing 

such patterns, it will be possible to model APs (and SPs) which 

become APs (and SPs) in another model. For example: 

Link1_length to LA, Origin to O (Figure 10). Many of such 

patterns are recurring, hence providing benefits of pattern 

reuse, and reducing the human effort. Model transformations 

are essential for the application of such dependency patterns, 

and modeling of dependencies. 
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Figure 9. Topological configuration with SysML as a common 

product model among domain-specific models. P stands for a 

Producer and C stands for a Consumer of a property.  
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Figure 10. A visualization of dependency patterns. Pattern-A: 

CAD-SysML. Pattern B: Controller Design-SysML. Properties 

shared between two domain-specific models are also shown.   

4.3 Executing dependencies 
After building the dependency network, the next step is to 

execute it to find the property values. As discussed in section 

4.1, it is required to verify that all the dependency patterns and 

dependencies are still valid. Based on validation, the network 

execution requires that each individual dependency to be 

executed to perform property analysis. For the robot example, 

this means that the CAD model and the kinematic model to be 

executed after a selection of relevant synthesis properties have 

been made. It has to be determined which dependencies to be 

executed before the others. It is possible that values to some of 

the properties or certain dependencies are not known at the time 

of execution. In this case, assumptions can be made about the 

valid range of property values without waiting for a particular 

dependency to be executed (providing these values). The steps 

for executing each dependency in the network have to be 

Mechanical AssemblyRobot Structure[Package] bdd [  ]

«block»

Mechanical Assembly

PositionB : Usage_of_Measure

DriveA : Drive_Impl

DriveB : Drive_Impl

PositionA : Usage_of_Measure

PowerIn

values

LinkLength : m{unit = metre}

LinkWeight : kg{unit = kilogram}

«block»

Arm

values

Resolution : rad{unit = radian}

«block»

PositionEncoder

 : Usage_of_Measure

values

JointType : String

Range : rad{unit = radian}

«block»

Joint DriveIn

values

Power : W{unit = watt}

Type : String

«block»

Motor
Power DriveOut

 : Drive_Impl

2
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determined, requiring a supervisor that takes control of this 

process. 

Among the set of known dependencies between domain-

specific models, it is not sufficient to model dependencies only 

between two domain-specific models (leaving out the rest). The 

global effect of all the dependencies is a key element for 

understanding the influence of various properties and 

dependencies (after a network execution). Therefore 

completeness and validity of the network are important in order 

to gain value form it.  

The information gained from executing the network might 

also lead towards suggestions for change in network (both 

dependency structure and properties). Model transformations 

should support in automation of such changes. Therefore, the 

creation of dependency network and its execution can be seen 

as a three-layered architecture. Figure 11 shows the three-

layered architecture with dependencies modeled at level 2, 

model transformations at level 3, and execution of 

dependencies at level 1. 

Level 1

Level 2

Level 3

 What are the properties / Dependencies

 Change in dependency network / Dependency 
patterns / Tool integration

 Execution of dependency network / Analysis of 
properties

Model Transformations

Dependency Network

Instance Level

 
Figure 11. Meta-levels in relation to modeling/executing 

dependencies. 

In terms of propagating the dependencies in a change 

management scenario (e.g., change in specifications), the 

structure of dependency network needs to be updated by the 

stakeholder having the authoring control over relevant 

dependencies. If the dependencies are still valid, an execution 

of dependencies provides new property values. It must be 

remembered that when the value of property changes, 

consistency can only be checked if the dependencies remain the 

same. 

4.4 Human effort 
A few important questions were asked in section 1 about 

how humans will utilize the dependency network, and how to 

maximize the value gained compared to the effort required to 

build and manage dependency models. Since the dependencies 

are spread all across different models built by various 

stakeholders, building the dependency model requires efforts 

from each stakeholder. Dependency patterns are especially 

helpful in reducing human effort towards the creation of 

dependency models; however, these patterns themselves also 

have to be created. On top of that, each stakeholder needs to 

validate and execute the dependencies under his or her control 

in order to gain value from the network. There can be situations 

demanding change in dependency structure, e.g., adding a third 

link to the robot. In such cases, dependency patterns will 

support automation of propagating the change to the 

dependency network. However, without a dependency pattern, 

the change has to be done manually by each stakeholder who is 

affected by it.  

The role of a human decision maker within the network is 

inevitable as there are decision nodes (SDs) requiring a 

selection or decision by a human. A situation can occur where a 

SP is determined by multiple SDs, i.e., by making multiple 

selections (Figure 12). For instance, the geometry for link A of 

the robot is initially chosen while performing CAD modeling, 

and later a different geometry is chosen after the FEM analysis 

has been performed. In this case, a different value of the same 

synthesis property (LA or WA) is selected between initial and 

detailed analysis, representing multiple selections. 

SP

SP

AP

SD

SP AP

SD

SP AP

SD

 
Figure 12. Multiple SDs leading to a single SP, requiring 

multiple selections. 

In order for a human to gain value from the network, 

network representation should be simple and precise for better 

understandability, which is a challenging problem due to the 

large number of properties and dependencies typically part of 

the dependency network. Views for exposing only the relevant 

dependencies are vital for reducing the complexity.  For 

instance, when having alternative concepts, only the 

dependencies related to the current alternative should be 

exposed. The steps for executing the dependency network are 

also decided and managed by humans. Network analysis 

techniques could be used to streamline the execution of 

dependencies, however the final decision is made by a human. 

The important thing to remember is to make design decisions 

effectively and efficiently. Hence the focus should always be on 

the value gained as compared to effort. Finding methods that 

help reduce human effort requires further research.   

4.5 Consistency checking 
Consistency can never be fully ensured [2]. The best that 

can be done is to avoid as many inconsistencies as possible. As 

the level-of-detail of the dependency models increases, more 

inconsistencies can be avoided. Consistency also requires that 

each stake holder has built his or her model conforming to the 

rules of the language, conforming to the laws of nature, and 

according to rational preferences [2]. The same applies to 

modeling dependencies. The validity of a dependency and a 
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dependency pattern must always be checked in order to be 

consistent (internal consistency).  As the design process moves 

on, the structure of the dependency network and the property 

values change. Ensuring consistency through a dependency 

network means that the results obtained are in accordance with 

the current knowledge of dependencies. The network should 

support in highlighting inconsistencies in situations where a 

value of a property changes, through the addition or deletion of 

model elements, or during a change in specifications. There can 

be situations where there are multiple producers for the same 

SP or an AP. Human intervention is required in such cases in 

order to ensure consistency. 

5 STATE OF THE ART 

In the area of mechatronic design, many research efforts 

have focused on the development of methods and tools to 

support the design activity. These efforts include research on 

managing the complexity of mechatronics systems [15] and the 

communication between product development groups [16].  

Braun and Lindemann [17] described how to consider cross-

domain product and process interfaces during cost estimation of 

mechatronic products. Buremester et al. [18] proposed the 

Hybrid UML modeling language so that both the structure and 

the hybrid dynamic behavior of mechatronic design concepts 

can be investigated together. A similar approach was presented 

by Cao et al. [19] extending SysML to model and analyze 

hybrid dynamic behavior of mechatronic systems, in order to 

aid in the decision making process. Gausemeier et al. [20] 

proposed a language called Semi Formal Specification 

Language to specify a mechatronic system from different 

domain viewpoints, supported by analyses and simulations 

within each domain. To the best of knowledge of the authors, 

the issue of dependency modeling has not been discussed in the 

current state of the art in mechatronic design. 

For the topic of consistency management, most of the work 

originates from the area of software engineering. Egyed [21] 

described methods for detection and tracking of inconsistencies 

in software design. Mens et al. [4] described how to avoid 

inconsistencies using dependency analysis, and also how to 

manage consistency of UML models [3]. These research efforts 

are mostly based on rule-based consistency checking methods. 

Here, the changes in a model are observed, and corresponding 

to a particular change, a consistency rule is evaluated. The rules 

are pre-defined, based on the knowledge of consistent patterns. 

For systems with physical nature, Adourian and Vangheluwe 

[22] discussed how to maintain consistency between a 

geometric model and a dynamic analysis model. Gausemeier et 

al. [23] also studied consistency checking between a system 

model and domain-specific models based on Triple Graph 

Grammars (TGG). Hehenberger et al. [24] discussed an 

approach to detect changes in a model to trigger a consistency 

checker, which then evaluates a relevant consistency rule for 

the performed changes.   

Among the state of the art in dependency modeling 

approaches, the Design Structure Matrix (DSM) has gained 

wide popularity with many documented applications such as in 

product development [25] and software design [26]. In order to 

highlight the differences between the dependency modeling 

approach presented in this paper and the DSM, a DSM is 

constructed for the robot example (presented in section 3). 

Figure 13 highlights the dependencies between properties of the 

robot represented through parameter-based DSM.  

 

 
Figure 13. DSM for the robot example built in CAM [27]. 

Each box inside a cell of a DSM (in Figure 13) indicates a 

dependency between the corresponding properties. The left 

diagonal of the DSM is highlighted. All the dependencies for 

the robot example are shown below the diagonal, meaning that 

the dependencies can be solved for to find a solution. To solve 

for mathematical dependencies represented in a DSM, a 

mathematical solver is needed. However, any dependency 

marked above the diagonal represents a dependency loop, 

where solving requires values of properties that are still to be 

determined. In such cases, reorganization of the DSM is needed 

in order to avoid loops and achieve a lower-triangular DSM, 

e.g. through clustering, tearing or sequencing algorithms. If the 

loops cannot be avoided, then mathematical root finding is 

required. The DSM in Figure 13 represents the same 

dependencies as shown in Figure 6. The loop shown in Figure 7 

is not represented in the DSM; hence no dependencies appear 

above the diagonal.  

It is clear that a DSM does not differentiate between 

synthesis and analysis nature of properties and dependencies. 

Not having this differentiation may lead to confusion among 

stakeholders where a property could both be a synthesis 

property and an analysis property (as shown in Figure 7). 

Moreover, considering a small change in specification e.g. 

workspace (WS) of the robot, it is possible to deduce from 

Figure 6 that since there is a synthesis dependency with WS, a 
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small change in workspace does not require propagating this 

change through all the dependencies and update the analysis 

properties. This is due to the fact that a small change in WS 

may still be catered for by the current value of LA and LB 

(selected). On the other hand, deducing such a result from a 

DSM is not possible since no distinction is made between 

properties, and a small change in workspace will require 

corresponding changes in LA and LB, along with propagating all 

the dependencies to make sure the new properties conform to 

specifications. Furthermore, a DSM does not show semantic 

relationships between properties which play an important role 

in understanding the design problem and the nature of 

dependencies. As stated earlier, the semantic relationship can be 

made part of the dependency network modeled in SysML. 

Among other dependency modeling approaches, Process 

Integration Design Optimization (PIDO) approaches are 

commonly used. ModelCenter [28], modeFRONTIER [29], 

Isight [30], Comet Workbench [31] are well known tools in this 

area. These tools are helpful in integrating disparate models 

into a workflow process and perform design optimization and 

trade-off studies. Therefore, they can be considered as potential 

candidates for modeling and executing the dependency 

network. For instance, it is possible to model the dependency 

network of Figure 6 in ModelCenter, keeping the differentiation 

between synthesis and analysis properties and dependencies. 

However, ModelCenter only shows the dependencies between 

properties, and not the semantic relationships between them. 

Furthermore, as the dependency network grows, the view in 

ModelCenter becomes too cluttered, and the issue of human 

understanding comes into play.  

6 DISCUSSION 

In terms of implementation, dependency modeling and 

model management are correlated areas. For some time now, 

PDM and PLM systems have been employed for model 

management. Without an explicit model of dependencies, PDM 

systems only provide information about logical relations 

between model elements, e.g., maintaining correspondence 

between SysML Robot and CAD Robot (level 1 dependency 

management). The influence of a network of properties is not 

addressed by PDM/PLM systems. However, as we have 

presented in this paper, modeling and managing both the 

properties and the dependencies is important for model 

management.  

The efforts in the SysML community so far have been 

towards integrating SysML within the model based 

development process, leading towards integration of domain-

specific models with SysML. This has led towards a hub-spoke 

topological structure with SysML as the logical hub and 

domain-specific models as spokes. It is important to understand 

that SysML’s purpose is not to provide model management 

capabilities, these capabilities should rather be a part of the 

PDM/PLM system. Therefore, in terms of implementation, the 

PDM/PLM system would be a hub for all other models 

(including SysML) as shown in Figure 14. There are 

dependencies within and across domain-specific models, and 

these dependencies can be modeled in SysML leading towards 

a dependency network (Figure 14). The dependency models 

discussed in this paper and the corresponding model 

management through PDM/PLM should provide a sound 

foundation for consistency management leading towards 

effective decision making. In order to address the tool 

integration problem, a tool integration framework enabling 

information transfer between design and analysis tools to 

perform model transformations is essential.  The iFEST project 

[32] aims for the provision of such a framework. 
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Figure 14. PLM as a core for model management, dependency 

network represented in SysML with other dependencies spread 

cross domains. Figure adapted from [33]. 

7 CONCLUSION 

In this paper, an approach for modeling dependencies is 

presented, based on the hypothesis that modeling dependencies 

explicitly adds value by increasing the efficiency and 

effectiveness of the decision making process in engineering 

design. We establish the relationship between properties and 

decision making, and build fundamental concepts for modeling 

dependencies. A fundamental distinction is made between 

properties that are chosen and the ones that are predicted. We 

present semantics for modeling properties and dependencies. 

Provided that SysML will support the necessary language 

constructs, it is possible to model and manage the dependency 

networks through a SysML model. The dependency network for 

the robot example provides an illustration of how to construct 

the network, and how the network supports decision making. A 

direct comparison to the DSM is provided in order to highlight 

the vital differences and the advantages of differentiating 

between synthesis and analysis nature of properties and 

dependencies. Six levels of detail for modeling dependencies 

are discussed, and it is argued that avoiding inconsistencies 

requires dependency modeling and management at all these 

levels. However, a user should verify whether the cost of 

implementation (for avoiding inconsistencies) is small 

compared to the expected benefits. Although the role of a 
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human decision maker in dependency modeling and 

management is inevitable, a considerable effort may be 

required in order to build and manage dependency models. 

Dependency patterns and model transformations should aid in 

reducing the human effort, however further efforts are required 

to improve the human interaction with the network. Therefore, 

at the present moment, the hypothesis that modeling 

dependencies explicitly adds value is not verified. Never the 

less, dependency modeling at one of the levels (1-5) is 

necessary in order to manage consistency problems, and 

improve the design process workflow. By utilizing network 

analysis techniques, the resulting dependency network can 

support streamlining the design activities, which is beneficial in 

approaches such as concurrent engineering. Future work aims 

to incorporate the developed semantics in SysML, and perform 

case studies to analyze the usability of the approach. The role of 

PDM/PLM tools in relation to dependency networks is also a 

future research area.  
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