
 1 Copyright © 2012 by ASME

Proceedings of the ASME 2012 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2012
August 12-15, 2012, Chicago, IL, USA

DETC2012-70272

 DEPENDENCY MODELING AND MODEL MANAGEMENT IN MECHATRONIC
DESIGN

Ahsan Qamar

Department of Machine Design
School of Industrial Engineering & Management

KTH Royal Institute of Technology
Stockholm, Sweden

Christiaan J. J. Paredis
Model-Based Systems Engineering Center

G. W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, Georgia, United States of America

ABSTRACT
Mechatronic design is traditionally supported through

domain-specific design activities throughout the product

development process. The partitioning into domain-specific

problems leads to a situation where product properties

influence each other, hence giving rise to dependencies. These

dependencies play a key role in prediction of properties and as

a result, in the decision making process. The important question

is: how to manage the dependencies for an efficient and

effective decision making? The aim of this paper is threefold.

Firstly, we investigate the nature of dependencies and study

how to model them. The paper proposes appropriate language

constructs taking into account synthesis and analysis nature of

properties and dependencies. The concepts related to the

dependency modeling are then illustrated through a simple

robot design example, where the creation and importance of a

dependency model are explained. Secondly, we study practical

approaches for consistency management and model

management in the presence of dependencies. Six levels-of-

detail in modeling dependencies are presented; emphasizing

that modeling at higher level-of-detail ensures that more

inconsistencies are avoided. Available languages such as OMG

SysML™ are evaluated for a possible creation of the

dependency models leading towards executable dependency

networks. However, at present, SysML does not provide

sufficiently rich language constructs to model dependencies.

Thirdly, we compare our dependency modeling approach to the

other state-of-the-art approaches such as dependency modeling

with a Design Structure Matrix, and highlight the benefits of

the language constructs proposed in this paper. We aim to

convince the reader that there is a substantial value in modeling

dependencies explicitly, especially to avoid inconsistencies,

which is not the current state of the practice. However, an

overall value from dependency modeling can only be obtained

if the cost of creating the dependency model is reasonable.

Issues such as human interaction/effort and model management

through PLM are discussed.

1 INTRODUCTION

Mechatronic design is a multi-disciplinary activity

performed by multi-disciplinary design teams. In managing the

design of such complex products, a model-based approach

promises better complexity management, improved design

quality, better knowledge reuse and improved communication

[1]. These advantages are however also accompanied by

challenges such as model management, interoperability, and

consistency management. The ultimate goal in employing a

model-based approach over a document-based approach is to

make better decisions as early as possible (effectiveness) while

utilizing fewer resources (efficiency).

Using formal models enables use of computational power

in predicting the outcomes. As complexity increases, the

information which is typically part of a design specification

becomes large, and computers can handle such large

specifications much better than humans do through documents.

Typically a model repository enables employment of version

and model management approaches over different sets of

models. A model is only useful if it is consistent with the rules

of the underlying formal system, with the beliefs and

preferences of the designer, and with the laws of nature [2].

Ensuring consistency across models is a challenging issue.

Among inhibitors to consistency management, humans who

create models can be prime suspects, such as not conforming to

the rules of the language, or laws of nature, or introducing

changes in a model [2]. The underlying dependencies between

modeled properties are usually only implicitly known. By

implicit, we mean that engineers in an organization possess

knowledge about dependencies (at coarse-grain level) in their

minds. However, these dependencies are never captured

 2 Copyright © 2012 by ASME

formally or explicitly in a document or a model. Because of

only implicit knowledge of dependencies, it is difficult to

deduce the effects of changes introduced in one model on other

models, resulting in inconsistencies. The focus of this paper is

to investigate to what extent we can capture the dependencies

explicitly.

Herzig et al. [2] discuss fundamental concepts in

consistency management along with deducing which types of

inconsistencies can be rectified. The aim of this paper is to take

a step further and study the nature of dependencies at a

fundamental level. Insufficient management of dependencies is

a key inhibitor against ensuring consistency [3, 4]. Therefore, it

is important to study the nature and role of dependencies

existing both inside a model and in between models. In current

industrial practice, workflow management techniques are

employed to synchronize and streamline the design activities,

with an implicit management of dependencies. A process

describing the activities to be performed is used, and

specifications are used to direct the design process and to set

targets for the predicted outcomes.

The main hypothesis this paper aims to address is that

making dependencies explicit facilitates consistency

management and adds value. In trying to validate this

hypothesis during the course of this research, the following

questions are asked:

 How detailed should the dependency representations be?

 How to manage the dependency models and how will

humans utilize these models?

 How to quantitatively compare the value gained against

the effort required in creating and managing dependency

models?

 What type of support is available in current modeling

languages to model dependencies explicitly?

The remainder of this paper is structured to answer the

above questions. Section 2 discusses the fundamental concepts

for understanding and representing dependencies. An

illustration to the dependency modeling fundamentals is

provided in section 3. Approaches for consistency management

are discussed in section 4. The developed ideas are compared

against the current state of the art in section 5. Section 6

presents a discussion on key issues, followed by concluding

remarks and future work proposal in section 7.

2 FUNDAMENTALS OF DEPENDENCY MODELING

In order to understand the characteristics of dependencies

in engineering design, it is important to form a fundamental

basis for properties (among which dependencies exist), concept

creation, design space exploration and decision making.

Hazelrigg [5] considered the design as a decision-making

process. Models aid in the decision-making process provided

that they are based on rational beliefs and are consistent with

preferences of the designer and observations of nature [2].

Rational Design Theory (RDT) explains the relationship

between properties in design and the decision making process

[6]. This theory introduced a conceptual model for design

where properties are used to define concept specifications,

concept predictions, and decision making criteria. In the

following, a short description on property and property spaces

is provided based on RDT [6]. A property is any descriptor of

an artifact. Mathematically, a property is a function defined

over the artifact set: p: AY, where A  S’: the domain of the

property, and with Y a topological space that is its range (Figure

1). For a given realization s  A  S’, a well-defined property

has a specific, unique value y  Y, that is: p(s)=y. The Cartesian

product of all the property ranges is called the property space P.

P’ is the subset of a property space and is called the property

projection, which appears when designers select a finite number

of properties that make up a system specification. When the

designers select relevant properties for an artifact, it forms the

basis for defining a product concept.

In design, we use properties for describing constraints

(specification), or for communicating designer’s belief

regarding what the value of the property is, given a particular

specification (prediction). Properties can have a logical or

numerical nature. For example a car’s property having an

engine to be true to false, or property horsepower with a value

of 300 hp.

1 2 3'P Y Y Y  

3Y

1 1 1:p A Y

1A

2A

3A

S  P

P

1Y

2Y

1Y
2Y

3Y

2 2 2:p A Y

3 3 3:p A Y

Figure 1. Artifacts and property spaces [6].

We make a fundamental distinction between properties in

terms of synthesis and analysis properties. Synthesis properties

(SPs) are used to define system alternatives. The specification

of a system alternative consists of a set of constraints imposed

on SPs. The values of SPs are typically specified in terms of

property ranges — for instance, tolerance constraints on the

specified geometry. Multiple SPs together represent a

specification of a system alternative considered in a design

decision. Through analysis and optimization, the designer will

ultimately choose one of the specified alternatives as the most

preferred alternative. SPs could be either specified directly or

computed in a scenario where a system alternative is defined

parametrically. Here a system alternative is characterized by

some SPs that are freely chosen and other SPs that are defined

as parametric functions of the freely chosen ones.

Analysis properties (APs) capture the beliefs of the

designer, and constitute predictions rather than specifications of

system alternatives. For instance, given a specified geometry

(using SPs), the designer may predict the cost or the mass of a

 3 Copyright © 2012 by ASME

component — cost and mass are Analysis Properties in this

example. Since APs are predictions about the future, which is

inherently uncertain, they should be expressed in terms of

probabilities or probability density functions (as opposed to

property ranges for SPs). APs are often computed by using

predictive models which mathematically capture the beliefs of

the designer. Although it is not absolutely necessary for the

mathematical relationship between APs and SPs to be modeled

explicitly, the APs must be kept consistent with the SPs that

define the corresponding system alternative. We illustrate the

process of choosing SPs and predicting APs through a robot

example in section 3.

For a property to have an unambiguous meaning, it needs

to be defined in a semantic context. This context is established

through relationships with concepts, giving rise to a network of

properties. For example, consider a system alternative for a car

defined through the following constraints on SPs: 4 wheels, an

engine, engine with 4 cylinders, cylinder bore diameter 0.100

+/- 0.0001m. The SP for the diameter of the cylinder is a value

associated with the concept “Cylinder”. The cylinder in turn is

a part of the engine, which is a part of the car. Through

semantic relationships such as “part of” or “value of”, the SPs

and APs are ultimately all networked to each other. Similarly,

the APs for a system alternative also need to be related to the

network of SPs which provide the semantic context for the APs.

In addition to the semantic relationships, we use the term

dependency to indicate that the value of a property depends

mathematically on values of other properties. For example, a

mathematical equation that expresses how an AP depends on an

SP. As with synthesis and analysis properties, we make a

distinction between synthesis dependencies and analysis

dependencies. The term Synthesis Dependency (SD) is used to

represent the choice made by the designer or the parametric

function (in case SD is a computation). The output of a SD

always leads to a SP (Figure 2). An example of a SD is the use

of controller design heuristics in choosing controller gains. As

a SD reflects only a heuristic, it is possible that while selecting

a SP, a human overrides a value obtained from the heuristic.

The choice could be based on a new experiment or observation,

rendering the heuristic inapplicable. In this case, the choice is

still considered rational and the chosen SP is considered

consistent with the current SD. In order to show that a human

can override a heuristic, a cross is shown on the representation

of SD in Figure 2.

AP

SP

AP

AD SP

SP

AP

SD

Choice/selection

Figure 2. Analysis dependency (left),

Synthesis dependency (right).

On the other hand, an analysis dependency (AD) represents

the mathematical relationship between a set of APs and SPs to

derive a new AP (Figure 2). The prediction of the resulting rise

time due to chosen controller gains is an example of an AD.

Another example of an AD is when a CAD tool provides the

analysis that when performed on the modeled geometry, results

in prediction of mechanical properties. However, as we have

earlier pointed out, it is not necessary, nor always possible to

formulate a mathematical relationship for an AD. The

mathematical relations might be known at later design stage,

and it might be good enough to formulate that an AD simply

exists. A discussion in section 4.1 on level-of-detail in relation

to dependency modeling elaborates this further.

2.1 Nature of properties, relationships and
dependencies

Properties can be part of the same semantic context and

they might not affect each other’s value (Figure 3), e.g.

semantic relationship between a car, an engine, and a pair of

seats. Expressing such relationships semantically is important

in addition to representing dependencies where two properties

depend upon each other’s value.

In relation to abstraction levels, fewer SPs and APs are

identified during the initial design stages (higher abstraction

level), and later - with more knowledge – additional SPs and

APs are known (lower abstraction level). It is also possible that

a property is uncertain initially and certain at the later design

stages. Hence it is necessary to keep a version management

over the property values, to allow for returning to a previous

design stage if required. Model management aims to address

this issue, discussed further in section 6.

The semantic relationship between properties is what

creates a meaningful context. Modeling languages such as

SysML [7] help in representing these semantic relationships

efficiently. However, it has not been thoroughly investigated

whether SysML provides adequate language constructs to

model the dependencies explicitly. A further discussion about

this is presented in section 4.

AP AP

SP SP

AP

AP

AP

AD

ADSemantic
relation

Semantic
relation

Figure 3. Semantic relationships between properties in addition

to dependencies.

So far we have discussed properties, semantic relationships

and dependencies from the perspective of a single domain. In

model-based mechatronic design, design activities are spread

across different domains such as mechanics, electronics, and

software. The modeling activities performed within each

domain lead to the creation of domain-specific models. Within

 4 Copyright © 2012 by ASME

a domain-specific model, there are dependencies (SDs or ADs)

between SPs or APs. For instance, the analysis supported by a

mechanical CAD tool constitutes an AD to predict the inertial

properties of an object. At the same time, there are

dependencies in between domain-specific models. For instance,

an AP in one domain-specific model can become an AP in

another model, or in other words, the two APs in different

domain specific models are bound by an equality dependency.

Figure 4 illustrates this situation where two domain-specific

models: Model A and Model B are shown. Based on chosen

SPs, Model A provides a prediction of an AP, which is bound to

an AP in Model B (Figure 4). A similar situation can happen in

case of SPs. Furthermore, the cross-domain dependencies could

be numerous, leading to a multitude of properties being shared

between two or more models. In this case, instead of a property,

it is a property file (APF) containing a list of properties shared

between two domain-specific models. The cross-domain

dependencies exist between specific properties of domain-

specific models, whereas other properties may not be affected

by them. Figure 4 illustrates this situation where two portions

of Model B are shown separately. One portion has

dependencies with Model A (shared AP), and the other portion

does not.
Model A Model B

AD
AD

SP SP AP

AP
AP/APF

SP AP SP SP

SP

SD

AP

AP = AP

Figure 4. Visualization of a dependency network within and

across two domain-specific models.

Both the SD and the AD could either have explicit formal

representation through a mathematical function or an analytical

model; however, this is usually not the case in current industrial

practice. It is common that the dependencies are only implicitly

known, e.g. in the mind of a designer.

Through a multitude of properties with dependencies in

between them, a network of dependencies comes into existence.

This network could be formally captured provided that the

dependencies are modeled explicitly. Doing so will provide an

option of propagating dependencies while moving in between

abstraction levels. Section 4 further highlights the advantages

of modeling the dependency networks.

3 ILLUSTRATION

This section aims to illustrate the dependency modeling

concepts (presented in section 2) through a concrete design

example. The design is based on the problem description,

where it is required to pick and place an object in a three-

dimensional environment with known obstacle locations. For

the sake of simplicity, we have only considered a two-

dimensional movement, ignoring the motion in the third

dimension. A fairly simple two-degree-of-freedom robot is one

of the alternative concepts selected to solve this problem.

The robot design process begins by synthesizing the basic

structures [8], one of which is chosen as a quantified structure.

Figure 5 shows the basic structure of a robot, the workspace

environment, the pick and place point, and the known obstacle

location. It is required to control the position of the robot with

certain accuracy referred to as Controlled Position Accuracy

(CPA), and avoid the obstacle. Some design variables that are

considered part of the specification for the robot design are:

link length (LA, LB), link width (WA, WB), material density (ϱ),

range of joint motion (ƟA, ƟB), origin point (O), torque of

motor (MA, MB), resolution of sensor (SA, SB), maximum

distance between pick and place point (PE). We assume the

ability to grab an object of any size, hence no gripper is

considered for this example.
Robot Workspace

LA

LB

WA

WB

ƟA

ƟB

PE

MA

SA

MB

SB

Place point

Pickup pointO

Figure 5. A design concept for the robot.

The robot design activities are partitioned into two

domains: mechanical design and controller design. Mechanical

design is performed to satisfy the workspace requirement and

predict mechanical properties such as inertia. Using the

mechanical properties of the robot, it is possible to perform a

kinematic analysis that defines the end position (EP) of the

robot. Knowing the characteristics of the robot design concept

and the requirement CPA, controller gains (CG) will be

selected.

Based on the design concept and specifications of the robot

in Figure 5, it is now possible to represent the dependencies

between robot properties through the concepts developed in

section 2. The robot properties are differentiated as synthesis

and analysis properties with synthesis and analysis

dependencies in between them. Figure 6 shows the dependency

network showing analysis and synthesis dependencies (in

orange) between analysis properties (in green) and synthesis

 5 Copyright © 2012 by ASME

properties (in blue). The network spreads across the two

domains- mechanical design, and controller design. As an

example for SD, consider the SD1 between WS and PE which

leads to LA and LB. This shows that both link lengths are chosen

based on workspace requirement (WS) and the distance PE. On

the other hand, the analysis dependency (AD1) between LA,

WA, and ϱ represents an analysis performed through a

mechanical CAD tool which predicts the inertia property IA

based on the chosen geometry (LA, WA) and material,

LB

WS

PE

SD1

LAWA WBƍ

AD2

IA IB

SD5

MA MB

WA WB

O

SD2

CPA

EP

AD3

SD7

CG

SBSA

SD6

M
ec

h
an

ic
al

 D
es

ig
n

C
o

n
tr

o
lle

r
D

es
ig

n

SD3

AD1

SD4

Figure 6. Dependency network for the robot example.

There could be a possibility for an existence of a loop in

the dependency network, where a property could both be

chosen and predicted. This situation is illustrated in Figure 7,

where the property “controlled position accuracy” (CPA) is

shown twice. One of the CPAs (in blue) is a SP which is

constrained by the specification. The other CPA (in green) is an

AP, which is predicted by selecting sensor resolution SA and SB

(based on the selected CPA), and propagating the mechanical

properties through a kinematic model (AD4) to predict the end

position EP (Figure 7). The CPA could then be predicted by

finding the error between predicted position and the reference

position (AD5). Until the predicted CPA is within the bounds of

specified CPA, this loop is repeated. Therefore, this process is

similar to an optimization process in which some SPs are

chosen to optimize the objective, CPA.

In certain situations, solving algebraic loops, such as the

one shown in Figure 7, requires simultaneous solving of a

system of equations. In such cases, the solution algorithm could

break the loop using a technique called “tearing.” A tearing

algorithm can be employed, which performs iteration on

reduced number of unknowns to find a solution [9]. Since SDs

represent a choice made by the designer, it is most desirable to

tear the loop at a SP. For instance, tearing the loop shown in

Figure 7 after SD6. The crosses shown between the SPs and the

SD represent tearing or an override by the designer.

CPA SD6
SB

SA

AD4 EP

LB LA

AD5

CPA
O

Figure 7. An illustration of a causal loop within the dependency

network of the robot example.

It must be noted that illustration of the network shown in

Figure 6 only serves the purpose of improving the

understanding of the reader of this paper. In reality, such a

network will most commonly be created through a modeling

language such as SysML. Using SysML, it will also be possible

relate the SPs and APs semantically, such as declaring LA and

WA to be value properties of link A. Representing semantic

relationships is important to gain sufficient understanding of the

problem and will add further value to a dependency network as

in Figure 6.

4 APPROACHES FOR CONSISTENCY

MANAGEMENT

4.1 Modeling dependencies at different levels of
detail

In the context of modeling, dependencies can be formally

represented at different levels of detail. Which level of detail

should be included in the dependency model depends on the

context. For small design problems in which the number of

tools, models, and stakeholders is relatively small, it may be too

costly to maintain all the dependencies in great detail. Instead,

one could rely on maintaining the dependencies manually. For

larger efforts, manual updating becomes too labor-intensive and

error-prone, so that detailed dependency modeling is most

valuable. To guide the choice of which level of detail should be

used, consider the following levels.

 Level 0: Dependencies are not modeled explicitly; not all

dependencies may be known, or they may only be captured

implicitly in the mind of one of the stakeholders.

Level 1: The existence of dependencies is modeled, but

without specifying what the dependencies are, for example,

formally stating that properties of an analysis model depend

upon a CAD model. Typically, PLM/PDM systems capture

logical relationships between modeled properties at level 1,

where they provide information about which model elements

are related to each other. By expressing level 1 dependency, it is

possible to maintain some traceability, where a human is

reminded of which other objects to investigate/update in a

change management scenario. It also aids in analysis of a

dependency network, e.g., to determine the optimum workflow

for the activities. For instance, based on the structure of the

dependency network, one could decompose the network into

parallel work flows for concurrent engineering. However, in

many cases, it is not enough to know only that a dependency

 6 Copyright © 2012 by ASME

exists, since managing that dependency requires information

about what is the actual dependency (level 2).

Level 2: Dependencies are formally captured through a

model showing both the existence of the dependency and what

the dependencies are. Modeling correspondence relationships

between a system model and an analysis model is an example

of modeling dependencies explicitly. The analysis model could

be executed to find the property values, and automatically

update these values between system model and analysis model,

resulting in fewer inconsistencies. The challenge is that models

exist in different tools, i.e., there is a tool-integration problem.

Level 3: The applicability of dependencies is modeled. A

model is only valid under certain conditions. A cantilever beam

bends under a load, and the bending can be explained through a

linear model assuming a small load. A larger load causes higher

bending which is better explained through a non-linear model,

and the linear model is no longer valid. Therefore, apart from

modeling dependencies, it is also required to mention when the

dependency is applicable. The applicability conditions could be

described through constraints, meta-data, or validation data set.

Modeling dependencies at this detail provides an added

advantage of alerting the human (user) if the applicability

conditions are violated.

Level 4: Modeling what is the dependency pattern. An

important question that comes to mind while considering

dependency models is: what happens when structure of the

model changes? For example, adding a third link to the robot.

In this case, the structure of the dependency network changes.

For the robot case, it is possible to deduce the change in

dependency network by knowing what object were created for

the previous two links, called as a dependency pattern. An

example pattern is to define an inertia property (IC) for the third

link (LC) automatically, and creating a synthesis dependency

between IC and MC. Similar dependency patterns exist across

different tools e.g. between system hierarchy and CAD

assemblies, between system structure and analysis model

structure. Again, tool interoperability is a challenge here which

can be addressed through model transformations. The

transformation also plays a key role in automating the

generation of dependency patterns, in providing consistency

checking, and in propagating dependencies in a change

management scenario.

Level 5: The applicability of a dependency pattern is

modeled, e.g., modeling the applicability condition for a model

transformation supporting a dependency pattern.

In order to avoid as many inconsistencies as possible, it is

important to maintain level-5 dependency management as the

design process proceeds. However, as we have stated earlier,

choosing which level of detail should be included in the

dependency model depends upon the nature of design problems

and organizations. Never the less, the aim is to avoid the

situation where modeling becomes too expensive. Although

having some level of dependency management is imperative,

further research is needed to find methods for reducing the cost.

There is a strong need for a capability in the form of a tool that

aids in management of dependencies. Such a tool should

support modeling dependencies between disparate models,

apply model transformations (using the dependency patterns),

aid in evaluating consistency checks, and support in managing

product variants.

4.2 Modeling dependencies in SysML
A key question to modeling dependencies is whether there

should be one language where the all the dependencies are

captured or whether the dependencies should be represented in

a distributed fashion across several modeling languages. In

relation to the six levels-of-detail for dependency management,

using a single language will be restrictive in the sense that only

a certain level-of-detail would be possible to manage. Handling

broader levels-of-detail will require the use of different

modeling languages. This is also clear from Figure 4, provided

that each language contains suitable language constructs to

create the required dependency models.

For the purpose of defining vocabularies and their

relationships, catering to the processing of information by

computers, the Web Ontology Language (OWL) [10] has been

proposed. In Computer Aided Design (CAD), ISO 10303

commonly known as STEP standard [11] aims to describe the

product data throughout its life cycle, for sharing of

information between different CAD systems in a neutral file

format. Together, OWL and STEP can be used to address the

model interoperability issues.

In model-based design, several dependencies may appear

in-between disparate models. Therefore, the required language

to model the dependencies should support modeling across

different languages and tools (schema). The dependency model

can be created in generic languages such as OWL, STEP, or

UML [12]. Reference [13] explains how to use a generic

modeling language as UML to support multi-domain modeling

and data-integration. In order to support modeling across

different languages, it is required that one can access and refer

to model elements defined in disparate languages. For this

reason, languages such as UML and SysML are most suitable.

Both of these languages are also supported in the Eclipse

Modeling Framework (EMF) [14], hence providing an effective

combination to capture the dependencies.

SysML is a language for formally capturing the system

specifications and the design concepts (meeting the

specifications) in a descriptive fashion and could therefore

serve as a modeling language to create dependency models. The

advantage of using SysML is the capability to represent the

semantic relationships between properties. Figure 8 shows a

SysML view of the robot mechanical assembly, describing the

semantic relationships between a value property Link Length

and the block Arm.

Creating a dependency network as in Figure 6 in SysML is

currently best represented using a parametric diagram. In this

case, synthesis and analysis dependencies are represented

through constraints. However, SysML does not provide

sufficiently rich language constructs to model choice or

selection for a synthesis property, nor does it support

differentiating between synthesis dependencies and analysis

 7 Copyright © 2012 by ASME

dependencies, and between synthesis properties and analysis

properties. Such differentiations play a key role in

understanding the effect of dependencies in a change

management scenario, and making it clearly visible to the

modeler which properties are chosen and which ones are

predicted.

Figure 8. Robot mechanical structure modeled in SysML.

The reason that SysML is not sufficiently expressive is due

to the current practice where it is not required to model

dependencies explicitly. Provided that the future SysML

revisions provide such semantics, it will lead towards a creation

of a common product model containing a dependency network,

along with individual dependency networks existing among

domain-specific models (Figure 9). The advantage of such a

configuration is again to represent semantic relationships

between properties alongside the dependencies between them.

With the dependency patterns (level 4) discussed earlier, it

will be possible to model dependencies between properties of

domain-specific models by utilizing patterns, such as between

the structure hierarchy (in the system model) and the

corresponding CAD assembly models. Figure 10 shows an

actual example pattern where the robot CAD assembly is

transformed to provide a system hierarchy in SysML (Figure

10, pattern A). The other pattern (pattern B) is a conceptual

representation of a pattern between system design and

controller design for the robot example in Figure 6. By utilizing

such patterns, it will be possible to model APs (and SPs) which

become APs (and SPs) in another model. For example:

Link1_length to LA, Origin to O (Figure 10). Many of such

patterns are recurring, hence providing benefits of pattern

reuse, and reducing the human effort. Model transformations

are essential for the application of such dependency patterns,

and modeling of dependencies.

Model A

Model C

Model B

Model D

P

C

P

C

P

C

P

C

SP AP

SD

SP AP

SD

SP AP

AD

SP AP

AD

AP AP

Figure 9. Topological configuration with SysML as a common

product model among domain-specific models. P stands for a

Producer and C stands for a Consumer of a property.

properties
Link2_Length

<<cadPart>>
link2.par:1

properties
Link1_Length

<<cadPart>>
link1.par:1

references
ground.par:1
link1.par:1
link2.par:2

<<cadAssembly>>
RobotAssembly_Asm

properties
Origin

<<cadPart>>
ground.par:1

bdd [Package] SolidEdge Robot [Robot Solid Edge model]

LA LB

EP

CAD
Model

Dependency Pattern A Dependency Pattern B

AD3

O

Model B
Controller Design

Figure 10. A visualization of dependency patterns. Pattern-A:

CAD-SysML. Pattern B: Controller Design-SysML. Properties

shared between two domain-specific models are also shown.

4.3 Executing dependencies
After building the dependency network, the next step is to

execute it to find the property values. As discussed in section

4.1, it is required to verify that all the dependency patterns and

dependencies are still valid. Based on validation, the network

execution requires that each individual dependency to be

executed to perform property analysis. For the robot example,

this means that the CAD model and the kinematic model to be

executed after a selection of relevant synthesis properties have

been made. It has to be determined which dependencies to be

executed before the others. It is possible that values to some of

the properties or certain dependencies are not known at the time

of execution. In this case, assumptions can be made about the

valid range of property values without waiting for a particular

dependency to be executed (providing these values). The steps

for executing each dependency in the network have to be

Mechanical AssemblyRobot Structure[Package] bdd []

«block»

Mechanical Assembly

PositionB : Usage_of_Measure

DriveA : Drive_Impl

DriveB : Drive_Impl

PositionA : Usage_of_Measure

PowerIn

values

LinkLength : m{unit = metre}

LinkWeight : kg{unit = kilogram}

«block»

Arm

values

Resolution : rad{unit = radian}

«block»

PositionEncoder

 : Usage_of_Measure

values

JointType : String

Range : rad{unit = radian}

«block»

Joint DriveIn

values

Power : W{unit = watt}

Type : String

«block»

Motor
Power DriveOut

 : Drive_Impl

2

 8 Copyright © 2012 by ASME

determined, requiring a supervisor that takes control of this

process.

Among the set of known dependencies between domain-

specific models, it is not sufficient to model dependencies only

between two domain-specific models (leaving out the rest). The

global effect of all the dependencies is a key element for

understanding the influence of various properties and

dependencies (after a network execution). Therefore

completeness and validity of the network are important in order

to gain value form it.

The information gained from executing the network might

also lead towards suggestions for change in network (both

dependency structure and properties). Model transformations

should support in automation of such changes. Therefore, the

creation of dependency network and its execution can be seen

as a three-layered architecture. Figure 11 shows the three-

layered architecture with dependencies modeled at level 2,

model transformations at level 3, and execution of

dependencies at level 1.

Level 1

Level 2

Level 3

 What are the properties / Dependencies

 Change in dependency network / Dependency
patterns / Tool integration

 Execution of dependency network / Analysis of
properties

Model Transformations

Dependency Network

Instance Level

Figure 11. Meta-levels in relation to modeling/executing

dependencies.

In terms of propagating the dependencies in a change

management scenario (e.g., change in specifications), the

structure of dependency network needs to be updated by the

stakeholder having the authoring control over relevant

dependencies. If the dependencies are still valid, an execution

of dependencies provides new property values. It must be

remembered that when the value of property changes,

consistency can only be checked if the dependencies remain the

same.

4.4 Human effort
A few important questions were asked in section 1 about

how humans will utilize the dependency network, and how to

maximize the value gained compared to the effort required to

build and manage dependency models. Since the dependencies

are spread all across different models built by various

stakeholders, building the dependency model requires efforts

from each stakeholder. Dependency patterns are especially

helpful in reducing human effort towards the creation of

dependency models; however, these patterns themselves also

have to be created. On top of that, each stakeholder needs to

validate and execute the dependencies under his or her control

in order to gain value from the network. There can be situations

demanding change in dependency structure, e.g., adding a third

link to the robot. In such cases, dependency patterns will

support automation of propagating the change to the

dependency network. However, without a dependency pattern,

the change has to be done manually by each stakeholder who is

affected by it.

The role of a human decision maker within the network is

inevitable as there are decision nodes (SDs) requiring a

selection or decision by a human. A situation can occur where a

SP is determined by multiple SDs, i.e., by making multiple

selections (Figure 12). For instance, the geometry for link A of

the robot is initially chosen while performing CAD modeling,

and later a different geometry is chosen after the FEM analysis

has been performed. In this case, a different value of the same

synthesis property (LA or WA) is selected between initial and

detailed analysis, representing multiple selections.

SP

SP

AP

SD

SP AP

SD

SP AP

SD

Figure 12. Multiple SDs leading to a single SP, requiring

multiple selections.

In order for a human to gain value from the network,

network representation should be simple and precise for better

understandability, which is a challenging problem due to the

large number of properties and dependencies typically part of

the dependency network. Views for exposing only the relevant

dependencies are vital for reducing the complexity. For

instance, when having alternative concepts, only the

dependencies related to the current alternative should be

exposed. The steps for executing the dependency network are

also decided and managed by humans. Network analysis

techniques could be used to streamline the execution of

dependencies, however the final decision is made by a human.

The important thing to remember is to make design decisions

effectively and efficiently. Hence the focus should always be on

the value gained as compared to effort. Finding methods that

help reduce human effort requires further research.

4.5 Consistency checking
Consistency can never be fully ensured [2]. The best that

can be done is to avoid as many inconsistencies as possible. As

the level-of-detail of the dependency models increases, more

inconsistencies can be avoided. Consistency also requires that

each stake holder has built his or her model conforming to the

rules of the language, conforming to the laws of nature, and

according to rational preferences [2]. The same applies to

modeling dependencies. The validity of a dependency and a

 9 Copyright © 2012 by ASME

dependency pattern must always be checked in order to be

consistent (internal consistency). As the design process moves

on, the structure of the dependency network and the property

values change. Ensuring consistency through a dependency

network means that the results obtained are in accordance with

the current knowledge of dependencies. The network should

support in highlighting inconsistencies in situations where a

value of a property changes, through the addition or deletion of

model elements, or during a change in specifications. There can

be situations where there are multiple producers for the same

SP or an AP. Human intervention is required in such cases in

order to ensure consistency.

5 STATE OF THE ART

In the area of mechatronic design, many research efforts

have focused on the development of methods and tools to

support the design activity. These efforts include research on

managing the complexity of mechatronics systems [15] and the

communication between product development groups [16].

Braun and Lindemann [17] described how to consider cross-

domain product and process interfaces during cost estimation of

mechatronic products. Buremester et al. [18] proposed the

Hybrid UML modeling language so that both the structure and

the hybrid dynamic behavior of mechatronic design concepts

can be investigated together. A similar approach was presented

by Cao et al. [19] extending SysML to model and analyze

hybrid dynamic behavior of mechatronic systems, in order to

aid in the decision making process. Gausemeier et al. [20]

proposed a language called Semi Formal Specification

Language to specify a mechatronic system from different

domain viewpoints, supported by analyses and simulations

within each domain. To the best of knowledge of the authors,

the issue of dependency modeling has not been discussed in the

current state of the art in mechatronic design.

For the topic of consistency management, most of the work

originates from the area of software engineering. Egyed [21]

described methods for detection and tracking of inconsistencies

in software design. Mens et al. [4] described how to avoid

inconsistencies using dependency analysis, and also how to

manage consistency of UML models [3]. These research efforts

are mostly based on rule-based consistency checking methods.

Here, the changes in a model are observed, and corresponding

to a particular change, a consistency rule is evaluated. The rules

are pre-defined, based on the knowledge of consistent patterns.

For systems with physical nature, Adourian and Vangheluwe

[22] discussed how to maintain consistency between a

geometric model and a dynamic analysis model. Gausemeier et

al. [23] also studied consistency checking between a system

model and domain-specific models based on Triple Graph

Grammars (TGG). Hehenberger et al. [24] discussed an

approach to detect changes in a model to trigger a consistency

checker, which then evaluates a relevant consistency rule for

the performed changes.

Among the state of the art in dependency modeling

approaches, the Design Structure Matrix (DSM) has gained

wide popularity with many documented applications such as in

product development [25] and software design [26]. In order to

highlight the differences between the dependency modeling

approach presented in this paper and the DSM, a DSM is

constructed for the robot example (presented in section 3).

Figure 13 highlights the dependencies between properties of the

robot represented through parameter-based DSM.

Figure 13. DSM for the robot example built in CAM [27].

Each box inside a cell of a DSM (in Figure 13) indicates a

dependency between the corresponding properties. The left

diagonal of the DSM is highlighted. All the dependencies for

the robot example are shown below the diagonal, meaning that

the dependencies can be solved for to find a solution. To solve

for mathematical dependencies represented in a DSM, a

mathematical solver is needed. However, any dependency

marked above the diagonal represents a dependency loop,

where solving requires values of properties that are still to be

determined. In such cases, reorganization of the DSM is needed

in order to avoid loops and achieve a lower-triangular DSM,

e.g. through clustering, tearing or sequencing algorithms. If the

loops cannot be avoided, then mathematical root finding is

required. The DSM in Figure 13 represents the same

dependencies as shown in Figure 6. The loop shown in Figure 7

is not represented in the DSM; hence no dependencies appear

above the diagonal.

It is clear that a DSM does not differentiate between

synthesis and analysis nature of properties and dependencies.

Not having this differentiation may lead to confusion among

stakeholders where a property could both be a synthesis

property and an analysis property (as shown in Figure 7).

Moreover, considering a small change in specification e.g.

workspace (WS) of the robot, it is possible to deduce from

Figure 6 that since there is a synthesis dependency with WS, a

 10 Copyright © 2012 by ASME

small change in workspace does not require propagating this

change through all the dependencies and update the analysis

properties. This is due to the fact that a small change in WS

may still be catered for by the current value of LA and LB

(selected). On the other hand, deducing such a result from a

DSM is not possible since no distinction is made between

properties, and a small change in workspace will require

corresponding changes in LA and LB, along with propagating all

the dependencies to make sure the new properties conform to

specifications. Furthermore, a DSM does not show semantic

relationships between properties which play an important role

in understanding the design problem and the nature of

dependencies. As stated earlier, the semantic relationship can be

made part of the dependency network modeled in SysML.

Among other dependency modeling approaches, Process

Integration Design Optimization (PIDO) approaches are

commonly used. ModelCenter [28], modeFRONTIER [29],

Isight [30], Comet Workbench [31] are well known tools in this

area. These tools are helpful in integrating disparate models

into a workflow process and perform design optimization and

trade-off studies. Therefore, they can be considered as potential

candidates for modeling and executing the dependency

network. For instance, it is possible to model the dependency

network of Figure 6 in ModelCenter, keeping the differentiation

between synthesis and analysis properties and dependencies.

However, ModelCenter only shows the dependencies between

properties, and not the semantic relationships between them.

Furthermore, as the dependency network grows, the view in

ModelCenter becomes too cluttered, and the issue of human

understanding comes into play.

6 DISCUSSION

In terms of implementation, dependency modeling and

model management are correlated areas. For some time now,

PDM and PLM systems have been employed for model

management. Without an explicit model of dependencies, PDM

systems only provide information about logical relations

between model elements, e.g., maintaining correspondence

between SysML Robot and CAD Robot (level 1 dependency

management). The influence of a network of properties is not

addressed by PDM/PLM systems. However, as we have

presented in this paper, modeling and managing both the

properties and the dependencies is important for model

management.

The efforts in the SysML community so far have been

towards integrating SysML within the model based

development process, leading towards integration of domain-

specific models with SysML. This has led towards a hub-spoke

topological structure with SysML as the logical hub and

domain-specific models as spokes. It is important to understand

that SysML’s purpose is not to provide model management

capabilities, these capabilities should rather be a part of the

PDM/PLM system. Therefore, in terms of implementation, the

PDM/PLM system would be a hub for all other models

(including SysML) as shown in Figure 14. There are

dependencies within and across domain-specific models, and

these dependencies can be modeled in SysML leading towards

a dependency network (Figure 14). The dependency models

discussed in this paper and the corresponding model

management through PDM/PLM should provide a sound

foundation for consistency management leading towards

effective decision making. In order to address the tool

integration problem, a tool integration framework enabling

information transfer between design and analysis tools to

perform model transformations is essential. The iFEST project

[32] aims for the provision of such a framework.

Software

Analysis

CAD

Manufacturing
SysML

Project Management

SD SD

ADAD

SPAP

APSP APSP

AP AP

AP
SP

AP
AD

Consistency

Version management

Tool integration

Transformation

PLM

SP
SP

AP
SD

AD

AP

SP AP

AD

AP

SP AP

SP
SP

AP
SD

SPAP

Figure 14. PLM as a core for model management, dependency

network represented in SysML with other dependencies spread

cross domains. Figure adapted from [33].

7 CONCLUSION

In this paper, an approach for modeling dependencies is

presented, based on the hypothesis that modeling dependencies

explicitly adds value by increasing the efficiency and

effectiveness of the decision making process in engineering

design. We establish the relationship between properties and

decision making, and build fundamental concepts for modeling

dependencies. A fundamental distinction is made between

properties that are chosen and the ones that are predicted. We

present semantics for modeling properties and dependencies.

Provided that SysML will support the necessary language

constructs, it is possible to model and manage the dependency

networks through a SysML model. The dependency network for

the robot example provides an illustration of how to construct

the network, and how the network supports decision making. A

direct comparison to the DSM is provided in order to highlight

the vital differences and the advantages of differentiating

between synthesis and analysis nature of properties and

dependencies. Six levels of detail for modeling dependencies

are discussed, and it is argued that avoiding inconsistencies

requires dependency modeling and management at all these

levels. However, a user should verify whether the cost of

implementation (for avoiding inconsistencies) is small

compared to the expected benefits. Although the role of a

 11 Copyright © 2012 by ASME

human decision maker in dependency modeling and

management is inevitable, a considerable effort may be

required in order to build and manage dependency models.

Dependency patterns and model transformations should aid in

reducing the human effort, however further efforts are required

to improve the human interaction with the network. Therefore,

at the present moment, the hypothesis that modeling

dependencies explicitly adds value is not verified. Never the

less, dependency modeling at one of the levels (1-5) is

necessary in order to manage consistency problems, and

improve the design process workflow. By utilizing network

analysis techniques, the resulting dependency network can

support streamlining the design activities, which is beneficial in

approaches such as concurrent engineering. Future work aims

to incorporate the developed semantics in SysML, and perform

case studies to analyze the usability of the approach. The role of

PDM/PLM tools in relation to dependency networks is also a

future research area.

ACKNOWLEDGMENTS
We wish to thank Axel Reichwein and Sebastian Herzig

from MBSE center for valuable discussions during the

development of dependency concepts. The lead author is

thankful to the Signeuls Foundation and KTH-Royal Institute

of Technology for providing travel grant to carry out this

research.

REFERENCES
1. Sanford Friedenthal, Alan Moore, and Rick Steiner, A

practical guide to SysML, the systems modelling language.

2008: Morgan Kaufmann. ISBN 978-0-12-374379-4

2. Sebastian J. I. Herzig, Ahsan Qamar, Axel Reichwein, and

Christiaan J. J. Paredis. A conceptual framework for

consistency management in model-based systems

engineering. in 2011 ASME International Design

Engineering Technical Conferences & Computers and

Information in Engineering Conference IDETC/CIE 2011.

2011.

3. Tom Mens, Ragnhild Van Der Straeten, and Jocelyn

Simmonds, A framework for managing consistency in

evolving UML models. Software Evolution with UML and

XML, 2005. Vol.: p. 1-31.

4. Tom Mens, Ragnhild Van Der Straeten, and Maja D'Hondt,

Detecting and resolving model inconsistencies using

transformation dependency analysis. Lecture Notes in

Computer Science, 2006. Vol. 4199/2006: p. 200-214.

5. George A. Hazelrigg, A framework for decision based

engineering design. Journal of Mechanical Design, 1998.

Vol. 120: p. 653-658.

6. Stephanie C. Thompson, Rational design theory: a

decision-based foundation for studying design methods,

PhD. Thesis, GW. Woodruff School of Mechanical

Engieering, Georgia Institute of Technology, Atlanta,

Georgia, USA, 2011, Available from:

http://smartech.gatech.edu/jspui/bitstream/1853/39490/1/th

ompson_stephanie_c_201105_phd.pdf

7. Object Management Group. OMG system modeling

language specification V1.2. 2010; Available from:

http://www.omg.org/spec/SysML/1.2/PDF/.

8. Eskild Tjalve, Systematic design of industrial products.

2003: Institute of Product Development, The Technical

University of Denmark.

9. Hilding Elmqvist and Martin Otter. Methods for tearing

systems of equations in object-oriented modeling. in

European Simulation Multiconference. 1994.

10. W3C OWL Working Group. OWL web ontology language

overview. 2002; Available from:

http://www.w3.org/TR/2004/REC-owl-features-

20040210/#s1.2.

11. Michael J. Pratt, Introduction to ISO 10303 - the STEP

standard for product data exchange. Journal of Computing

and Information Science in Engineering, 2001. Vol. 1(1).

12. Object Management Group. OMG Unified Modeling

Language (UML) specification V2.4.1. 2011; Available

from: http://www.omg.org/spec/UML/2.4.1/.

13. Axel Reichwein, Application-specific UML profiles for

multidisciplinary product data integration, PhD. thesis,

Univeristy of Stuttgart, Germany, 2011, Available from:

http://elib.uni-

stuttgart.de/opus/volltexte/2012/6949/pdf/Axel_Reichwein

_PhD_Thesis_2011.pdf

14. Eclipse Foundation. Eclipse Modeling Framework (EMF).

2011; Available from:

http://www.eclipse.org/modeling/emf/.

15. Tetsuo Tomiyama, Valentina D'Amelio, Jill Urbanic, and

Waguih ElMaraghy, Complexity of multi-disciplinary

design. Annals of the CIRP, 2007. Vol. 56(1): p. 185-188.

16. Niklas Adamsson. Model-based development of

mechatronic systems - reducing the gap between

competencies? in Tools and Methods of Competitive

Engineering. 2004.

17. Stefanie C. Braun and Udo Lindemann. A multilayer

approach for early cost estimation of mechatronical

products. in International Conference on Engineering

Design (ICED07). 2007.

18. Sven Buremester, Holger Giese, and Oliver Oberschelp,

Hybrid UML components for the design of complex self-

optimizing mechatronic systems. Information in Control,

Automation and Robotics I, 2006. Vol. 4: p. 281-288.

19. Yue Cao, Yusheng Liu, and Christiaan J. J. Paredis, System-

level integration of design and simulation for mechatronic

systems based on SysML. Mechatronics, 2011. Vol. 21(6):

p. 1063-1075.

20. Jurgen Gausemeier, Ursula Frank, Jorg Donoth, and Sascha

Kahl, Specification technique for the description of self-

optimizing mechatronic systems. Research in Engineering

Design, 2009. Vol. 20: p. 201–223.

21. Alexander Egyed, Automatically detecting and tracking

inconsistencies in software design models. IEEE

Transactions on Software Engineering, 2011. Vol. 37(2): p.

188-204.

http://smartech.gatech.edu/jspui/bitstream/1853/39490/1/thompson_stephanie_c_201105_phd.pdf
http://smartech.gatech.edu/jspui/bitstream/1853/39490/1/thompson_stephanie_c_201105_phd.pdf
http://www.omg.org/spec/SysML/1.2/PDF/
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2
http://www.omg.org/spec/UML/2.4.1/
http://elib.uni-stuttgart.de/opus/volltexte/2012/6949/pdf/Axel_Reichwein_PhD_Thesis_2011.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2012/6949/pdf/Axel_Reichwein_PhD_Thesis_2011.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2012/6949/pdf/Axel_Reichwein_PhD_Thesis_2011.pdf
http://www.eclipse.org/modeling/emf/

 12 Copyright © 2012 by ASME

22. Chahe Adourian and Hans Vangheluwe. Consistency

between geometric and dynamic views of a mechanical

system. in Proceedings of the 2007 Summer Computer

Simulation Conference. 2007. San Diego, CA, USA.

23. Jurgen Gausemeier, Wilhelm Schafer, Joel Greenyer,

Sascha Kahl, Sebastain Pook, et al. Management of cross

domain model consistency during the development of

advanced mechatronic systems. in International Conference

on Engineering Design (ICED09). 2009.

24. Peter Hehenberger, Alexander Egyed, and Klaus Zeman.

Consistency checking of mechatronic design models. in

Proceedings of the 2010 ASME International Design

Engineering Technical Conferences & Computers and

Information in Engineering Conference IDETC/CIE 2010.

2010. Montreal, Quebec, Canada.

25. Mike Danilovic and Tyson R. Browning, Managing

complex product development projects with design

structure matrices and domain mapping matrices.

International Journal of Project Management, 2007. Vol.

25(3): p. 300-314.

26. Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel

Jackson. Using dependency models to manage complex

software architecture. in Object Oriented Programming,

Systems, Languages & Applications (OOPSLA). 2005.

ACM Press.

27. David C Wynn, Seena M. T. Nair, and P. John Clarkson.

The P3 platform: an approach and software for developing

diagrammatic model-based methods in design research. in

International Conference on Engineering Design

(ICED09). 2009. Stanford, USA.

28. Phoenix Integration. ModelCenter. 2012; Available from:

http://www.phoenix-

int.com/software/phx_modelcenter_10.php.

29. ESTECO. modeFRONTIER. 2012; Available from:

http://www.esteco.com/home/mode_frontier/mode_frontier

.html.

30. Dassault Systems. Isight. Available from:

http://www.simulia.com/products/isight2.html.

31. Comet Solutions. Comet Workspace. 2012; Available from:

http://cometsolutions.com/products/workspace/.

32. Martin Törngren, Hans Petter Dahle, Dagfin Brodtkorb,

Jad El-khoury, Ray Chaplin, et al. Towards an industrial

framework for emebdded systems tools. in HOPES

Workshop at ECMFA. 2010.

33. Harald Eisenmann and Joachim Fuchs. Mutlidisciplinary

approach for industrial phases in space projects. in MBSE

Workshop at Incose IW2012. 2012.

http://www.phoenix-int.com/software/phx_modelcenter_10.php
http://www.phoenix-int.com/software/phx_modelcenter_10.php
http://www.esteco.com/home/mode_frontier/mode_frontier.html
http://www.esteco.com/home/mode_frontier/mode_frontier.html
http://www.simulia.com/products/isight2.html
http://cometsolutions.com/products/workspace/

