
UNIVERSITÄT LINZ
JOHANNES KEPLER

JKU

Technisch-Naturwissenschaftliche

Fakultät

Dependency Schemes and Search-Based QBF
Solving: Theory and Practice

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Dipl.-Ing. Florian Lonsing

Angefertigt am:

Institut für Formale Modelle und Verifikation
Johannes Kepler Universität
Altenbergerstr. 69
4040 Linz
Österreich

Beurteilung:

Univ.-Prof. Dr. Armin Biere (Betreuung)
Ao. Univ.-Prof. Dr. Uwe Egly

Mitwirkung:

Assist.-Prof. Dr. Martina Seidl

Linz, März 2012

ii

Abstract

The logic of quantified Boolean formulae (QBF) extends propositional logic
with universal quantification over propositional variables. The presence of
universal quantifiers in QBF does not add expressiveness, but often allows for
more compact encodings of problems. From a theoretical point of view, the
decision problems of propositional logic (SAT) and QBF are NP-complete
and PSPACE-complete, respectively. Compared to SAT, which successfully
has been used for practical applications in model checking or formal verifi-
cation, for example, empirical studies show that current approaches to QBF
solving do not scale well in practice.

The quantifier prefix of QBFs in prenex conjunctive normal form (PCNF)
imposes a linear ordering on the variables. In general, the ordering of the pre-
fix gives rise to dependencies between variables which are differently quan-
tified. Variable dependencies restrict the freedom of QBF solvers and must
be respected during semantical evaluation to avoid incorrect results.

We consider dependency schemes, which were introduced in related work,
to overcome the drawbacks of quantifier prefixes in PCNFs. A dependency
scheme is a binary relation over the set of variables of a PCNF which ex-
presses independence between variables. If two variables are independent
then a search-based QBF solver can safely assign them in arbitrary order.
Thus independence increases the freedom for QBF solvers.

We analyze theoretical properties of different dependency schemes which
can be computed by analyzing the syntactic structure of a PCNF. We show
that the common approach of mini-scoping is not optimal among syntactic
methods of dependency analysis. As an alternative, we introduce specific
approaches to compute and represent the standard dependency scheme ef-
ficiently. As a byproduct, we obtain compact dependency graphs as a rep-
resentation of arbitrary dependency schemes. A main contribution of this
work is the combination of arbitrary dependency schemes and search-based
QBF solvers relying on the QDPLL algorithm. This way, QDPLL can profit
from independence of variables which otherwise is hidden by the quantifier
prefix. We implemented the solver DepQBF which tightly integrates de-
pendency schemes. Experimental results confirm the potential benefits for
practical QBF solving in contrast to quantifier prefixes. Our results motivate
further research on dependency schemes for applications in QBF solving.

iii

iv

Zusammenfassung

Die Logik quantifizierter Boolescher Formeln (QBF) stellt eine Erweiterung
der klassischen Aussagenlogik dar, bei der die in der Formel auftretenden,
aussagenlogischen Variablen existentiell oder universell quantifiziert sind.
Auch wenn der Einsatz von Quantoren in QBF nicht zu einer höheren
Ausdrucksstärke dieser Sprache führt, so lassen sich dadurch Kodierun-
gen von Problemstellungen meist kompakter darstellen. Hinsichtlich der
Komplexität ist das Entscheidungsproblem der Aussagenlogik (SAT) NP-
vollständig während jenes für QBF PSPACE-vollständig ist. In der Praxis
kommen heute im Bereich der formalen Verifikation oder Modellprüfung
unterschiedliche, auf SAT basierende Verfahren zum Einsatz, deren An-
wendung durch effiziente Entscheidungsverfahren für SAT erst ermöglicht
wurde. Im Gegensatz dazu verhindert die in Fallstudien zu beobachtende
mangelnde Effizienz aktueller Entscheidungsverfahren für QBF eine um-
fassende praktische Anwendung.

Hinsichtlich QBF betrachten wir Formeln in PKNF, also Formeln, die aus
einem quantorenfreien Teil in konjunktiver Normalform (KNF) und einem
separaten Quantorenpräfix bestehen. Die lineare Anordnung der quan-
tifizierten Variablen im Präfix führt zu Abhängigkeiten zwischen Variablen
unterschiedlichen Quantorentyps in einer PKNF. Variablenabhängigkeiten
schränken die Freiheit von suchbasierten Entscheidungsverfahren für QBF
insofern ein, als die Bewertungsreihenfolge der Variablen der Präfixordnung
genügen muss und eine Nichtbeachtung dieser Bedingung falsche Auswer-
tungsergebnisse zur Folge haben kann.

Wir versuchen, die durch das Quantorenpräfix einer PKNF hervorgeruf-
enen Einschränkungen anhand sogenannter Abhängigkeitsschemata (engl.
dependency schemes), welche in verwandten Arbeiten eingeführt wurden,
zu überwinden. Ein Abhängigkeitsschema ist eine binäre Relation über der
Variablenmenge einer gegebenen PKNF, welche Unabhängigkeit von Vari-
ablen ausdrückt. Zwei voneinander unabhängige Variablen können in einer
suchbasierten semantischen Auswertung der PKNF in beliebiger Reihenfolge
bewertet werden. Somit erhöht die Unabhängigkeit von Variablen in einer
PKNF also die Freiheiten von Entscheidungsverfahren.

Wir untersuchen die theoretischen Eigenschaften verschiedener Abhäng-
igkeitsschemata, welche mittels einer Analyse der syntaktischen Struktur

v

vi

einer PKNF berechnet werden können. Wir zeigen, dass bekannte Ver-
fahren zur Antipränexierung (engl. mini-scoping oder anti-prenexing), wenn
diese zur Analyse von Variablenabhängigkeiten eingesetzt werden, nicht
in der Lage sind, jene volle Information über Unabhängigkeit von Vari-
ablen zu ermitteln, welche durch syntaktische Analyse im Grunde gewon-
nen werden kann. Stattdessen schlagen wir vor, das sogenannte Standard-
abhängigkeitsschema (engl. standard dependency scheme) zur Abhängigkeits-
analyse zu verwenden und führen Algorithmen und Datenstrukturen zu
dessen effizienter Berechnung und Repräsentation ein. Damit verbunden
erhalten wir kompakte Abhängigkeitsgraphen, welche als Repräsentation für
beliebige Abhängigkeitsschemata geeignet sind. Als einen zentralen Beitrag
dieser Arbeit kombinieren wir Abhängigkeitsschemata mit Entscheidungsver-
fahren, welche auf dem suchbasierten QDPLL-Algorithmus beruhen. Auf
diese Weise kann QDPLL von der Unabhängigkeit von Variablen profi-
tieren, welche durch das jeweilige Abhängigkeitsschema gegeben ist. Um
die Kombination von Abhängigkeitsschemata und QDPLL experimentell
zu evaluieren, haben wir diesen Ansatz in DepQBF implementiert. Die
Ergebnisse unserer Experimente zeigen die potentiellen Vorteile auf, welche
Entscheidungsverfahren für QBF aus Abhängigkeitsschemata ziehen können
und motivieren gleichzeitig weiterführende Untersuchungen.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen
Stellen als solche kenntlich gemacht habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Text-
dokument identisch.

vii

viii

Acknowledgements

I am grateful for the support of my advisor Armin Biere. In 2008, he offered
me a position as an assistant in his group, the Institute of Formal Models
and Verification (FMV) at Johannes Kepler University in Linz. I highly
appreciate Armin’s informal and cooperative style of working together with
colleagues and students in his group. Sharing his ideas and, in particular, his
practical experience in SAT solving was a great benefit for my work on QBF.
He also encouraged me to attend conferences and workshops. Armin always
granted full independence to me regarding topics and working style which
allowed me to develop my own ideas. Personally, I consider this attitude as
most important for conducting research.

My colleague Martina Seidl helped me a lot during my time at the FMV
and she was always open for valuable discussions. I gratefully took her com-
ments on early versions of this work for improvements. I want to thank Uwe
Egly for proof reading, giving me comprehensive feedback and for the op-
portunity of future collaboration. I had many discussions, mostly by e-mail,
with Allen Van Gelder related to my research which gave me new insights.

I owe very much to the work of Marko Samer. Without his papers where
he prepared the theoretical foundation of dependency schemes, I would not
have been able to work out the practical aspects of dependency schemes and
QBF solving presented in this work.

Many thanks to Reiner Hähnle and his colleagues for hosting me during
my Short Term Scientific Mission (STSM) at Chalmers University of Tech-
nology in Gothenburg, Sweden, in September 2010.1 In particular, I want
to thank Richard Bubel for giving me tutorials on the KeY System.

I am indebted to my parents Irmgard and Wolfgang, my brother Michael
and my dear friends for the unconditional support with the same strong
commitment throughout the years. Thank you so much!

1Funded by COST Action IC0901: http://richmodels.epfl.ch/.

ix

http://richmodels.epfl.ch/

x

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Syntax . 7

2.1.1 Propositional Logic . 7

2.1.2 Conjunctive Normal Form 8

2.1.3 Quantified Boolean Formulae 9

2.1.4 Prenex Conjunctive Normal Form 10

2.2 Semantics . 11

2.2.1 Assignments and Assignment Trees 11

2.2.2 Recursive Semantical Evaluation 13

2.2.3 Complexity . 15

2.3 Decision Procedures: An Overview 16

2.3.1 Backtracking Search 16

2.3.2 Variable Elimination 18

3 Dependency Schemes 23

3.1 Introduction . 23

3.1.1 Variable Orderings by Prefixes in PCNFs 23

3.1.2 The Need for Dependency Analysis 26

3.2 Methods of Dependency Analysis 27

3.2.1 Maximizing Quantifier Scopes: Prenexing 27

3.2.2 Minimizing Quantifier Scopes: Anti-Prenexing 29

3.3 Quantifier Trees are not Optimal 30

3.3.1 Dependency Schemes: An Informal View 31

3.3.2 The Standard Dependency Scheme vs. Quantifier Trees 32

3.3.3 The Benefits of More Powerful Dependency Schemes . 34

3.4 The Theory of Dependency Schemes 37

3.4.1 Variable Independence 37

3.4.2 Dependency Schemes 44

3.4.3 Tractable Dependency Schemes 47

3.4.4 Comparing Dependency Schemes 50

3.4.5 Dependency Schemes in Practice 53

xi

xii CONTENTS

3.5 Summary . 55

4 The Standard Dependency Scheme 57

4.1 Introduction . 57

4.2 General Dependency Graphs 58

4.3 Theoretical Properties . 61

4.4 Towards Efficient Computation 67

4.4.1 A Tree-Shaped Representation of Connections 67

4.4.2 Dependency Computation Using Connection Forests . 68

4.5 Compact Dependency Graphs 70

4.5.1 Approximations . 70

4.5.2 Computing Approximations 74

4.5.3 Graph Example . 78

4.6 Experimental Results . 79

4.7 Summary . 82

5 QDPLL and Dependency Schemes 85

5.1 Introduction . 85

5.2 QDPLL with Constraint Learning 87

5.2.1 Basics . 87

5.2.2 Generation of Assignments 89

5.2.3 Constraint Learning 91

5.2.4 Q-Resolution Proofs 94

5.3 QBCP . 96

5.3.1 Constraint Reduction 96

5.3.2 Unit Literal Detection 101

5.3.3 Pure Literal Detection 102

5.3.4 Putting It All Together 103

5.4 Decision Making . 107

5.4.1 Maintaining Decision Candidates 109

5.5 Dependency Checking . 112

5.6 Constraint Learning . 113

5.6.1 Generation of Learnt Constraints 115

5.6.2 Optimizations . 121

5.7 Experimental Results . 121

5.7.1 QDPLL with Different Dependency Schemes 122

5.7.2 General Performance Analysis 127

5.8 Summary . 130

6 Summary and Outlook 131

CONTENTS xiii

A 135

A.1 Cube Learning . 135
A.1.1 Pivot Selection for Cubes 135

A.2 Brief Biography . 136

xiv CONTENTS

Chapter 1

Introduction

Propositional logic is a formalism which first has been of theoretical interest
only since the 1970s. The satisfiability problem of propositional logic (SAT)
was the first problem to be proved NP-complete [34], a result which entailed
further research on related combinatorial problems [49] in the complexity
class NP. Assuming that P 6= NP, there is no polynomial-time algorithm to
solve the decision problem of propositional logic.

It was not until the 1990s that impressive progress in SAT solving en-
abled practical applications. Despite exponential run time in the worst case,
modern SAT solvers can efficiently tackle encodings of problems from real-
world applications like bounded model checking [19], for example. Successful
applications in practice motivate researchers to get involved in SAT, which
in turn speeds up the overall progress in SAT research. As a result, modern
and robust SAT solvers are widely applied in industry and academia.

Since SAT is NP-complete, it is natural to use SAT for encodings of
problems from that complexity class. However, in practice SAT is also used
to encode problems which are presumed to be in higher complexity classes.
For example, the model checking problem for linear temporal logic (LTL)
is PSPACE-complete [120], whereas its bounded variant is in NP [19]. To
make bounded model checking (BMC) complete, the diameter of a system
has to be computed, a problem which is in PSPACE [19, 92].

The question arises why not to tackle problems from classes like PSPACE
using specific solvers in practice. Just as SAT is the prototypical problem for
NP, the decision problem of quantified Boolean formulae (QBF) is PSPACE-
complete [124]. QBF can be regarded as a generalization of SAT where
propositional variables are existentially (∃) or universally (∀) quantified.
Whereas explicit quantifiers do not add to expressiveness, problems like
BMC can often be encoded more compactly in QBF than in SAT [14, 73].

The success of SAT solving originated from the classical DPLL algo-
rithm [37].1 DPLL is a backtracking algorithm which systematically enu-

1Modern SAT solvers differ substantially from basic DPLL due to several optimizations.

1

2 CHAPTER 1. INTRODUCTION

merates assignments to the variables in a given propositional formula. In the
late 1990ies, DPLL was extended to QBF by handling universal quantifiers
accordingly, which brought up the QDPLL algorithm [30].2

In contrast to SAT, neither QDPLL-based QBF solvers nor alternative
approaches based on variable elimination have been found competitive for
applications. In Section 2.6 of [14], references to a series of negative results
are given, along with the following statement:

Unfortunately, the SAT arena has turned out to be quite unfa-
vorable to QBF. All the experimental comparisons carried out
recently yield (extremely) negative results (. . .)

Solving a QBF seems to be inherently more difficult than solving a for-
mula in propositional logic. It is only universal quantification which makes
the difference between QBF and SAT at the syntactic level. A common
syntactic structure of QBFs is prenex conjunctive normal form (PCNF).
A PCNF consists of a propositional formula with a quantifier prefix. The
quantifier prefix specifies whether variables are existentially or universally
quantified and introduces an ordering on the variables. For example, the
formula

∀x∃y. φ (1.1)

in general expresses something different than

∃y∀x. φ (1.2)

To see the difference, let us consider a high-level example from a first-year
undergraduate course on mathematics which the author of this work at-
tended at JKU Linz.

Variable Dependencies

Assume that we are given a set of locks and keys. Let φ in Formulae 1.1
and 1.2 represent the following proposition:

Key y unlocks lock x.

Formula 1.1 amounts to the proposition:

For all locks x there exists a key y such that y unlocks x,

whereas Formula 1.2 amounts to:

There exists a key y for all locks x such that y unlocks x.

2The (Q)DPLL algorithm is also called (Q)DLL in some publications. We stick to
(Q)DPLL in this work.

3

According to the first proposition, there is a key for every lock but the
keys can be different. For example, key k1 unlocks lock x1, key k2 unlocks
lock x2 but k1 6= k2. That is, key k1 does not unlock lock x2. Hence the
choice of the key might depend on the given lock.

According to the second proposition there exists one particular key k
which unlocks all locks. We can think of k as the master key for all the
locks. If the second proposition is true then so is the first one but not
necessarily vice versa. The fact that for every lock there is a key does not
necessarily imply that there is a master key for all locks.

There is strong indication in QBF research that the hardness of QBF
observed in practice is due to dependencies between variables as pointed
out in our example. If a QBF solver is given Formula 1.1 then in general it
must not assign variable y before x because otherwise y can no longer take
values with respect to the value of x. Hence the value of y might depend
on the value of x. Neglecting dependencies can cause a QBF solver to
return incorrect results. For example, if Formula 1.1 is satisfiable, it might
erroneously be found unsatisfiable if y is assigned before x. In general,
variables have to assigned in the ordering of the quantifier prefix during
semantical evaluation of a QBF using QDPLL. Therefore the prefix ordering
imposes restrictions on the set of assignments that QDPLL can enumerate.

Quantifier Prefixes vs. Dependency Schemes

In this work, we consider approaches to overcome the restrictions result-
ing from quantifier prefixes in PCNFs. The prefix ordering might be too
strict in the sense that relaxations are possible without affecting the result
determined by QBF solvers. Any relaxation of the prefix ordering grants
additional freedom to a QBF solver. For example, in SAT solving where all
variables are (implicitly) existentially quantified, a solver is free to assign
variables in arbitrary order. By relaxing the prefix ordering of PCNFs, it is
possible to bring QDPLL-based QBF solvers closer to the freedom of SAT
solvers, as far as the selection of variables is concerned.

As a means for relaxing the prefix ordering in PCNFs, we consider the
framework of dependency schemes. Dependency schemes were introduced
by Samer and Szeider, first for QBF [112, 113] and and later for quantified
constraint satisfaction problems (CSPs) [111]. A dependency scheme D is
a binary relation over the set of variables of a given PCNF which expresses
information on independence of variables. If (x, y) 6∈ D then variable y does
not depend on variable x. Otherwise, if (x, y) ∈ D then we conservatively
regard y to depend on x. If y does not depend on x then a QBF solver is free
to assign x before y or vice versa. The relative order of these assignments
does not cause the solver to produce incorrect result. Once D has been
computed for a given PCNF ψ, independence represented by D can be used

4 CHAPTER 1. INTRODUCTION

to relax the ordering of the quantifier prefix of ψ.
Informally, the quality of a dependency scheme D can be expressed in

terms of the amount of independence that is represented by D for a given
PCNF. If (x, y) ∈ D then y either indeed depends on x or it is found
independent with respect to some other, “better” dependency scheme D′.

It is possible to compute precise and optimal information on indepen-
dence in a given PCNF using the framework of dependency schemes. That
is, for every PCNF there exists an optimal dependency scheme. However,
obtaining such optimal information is at least as hard as QBF solving. Hence
in practice we have to trade optimality for efficiency of computation.

We focus on tractable dependency schemes which can be computed in
polynomial time by analyzing the syntactic structure of a given PCNF. The
cost of tractability comes at a reduced amount of independence that can
be identified. It is well known that the dependency scheme given by the
ordering of quantifier prefixes in PCNFs is not the best we can get. For
example, the approach of mini-scoping (also called anti-prenexing), which
is common in first-order theorem proving and QBF solving, allows to shift
quantifiers in a PCNF from the prefix into its quantifier-free part. This way,
the prefix ordering can be relaxed in terms of tree-like quantifier structure.
That is, mini-scoping produces a quantifier tree which corresponds to a
partial ordering of quantifiers. This is in contrast to the linear ordering
given by the quantifier prefix.

We can think of the binary relation D given by a dependency scheme
as a general form of non-linear quantifier structure. Dependency schemes
represent a partial ordering on the variables, just as quantifier trees. How-
ever, it turns out that tree-like quantifier structure given by mini-scoping is
not the best we can get by syntactic analysis. There is the tractable stan-
dard dependency scheme Dstd [113] which improves upon mini-scoping in
the sense that it identifies at least the same (and possibly more) amount of
independence in a given PCNF. In contrast to mini-scoping, the standard
dependency scheme can be computed deterministically.

We attempt to present a uniform view on dependency schemes for QBF
which allows for applications in QBF solvers. Dependency schemes are rel-
evant for QBF solvers based on QDPLL as well as on variable elimination.
Our goal is to combine QDPLL with dependency schemes such that infor-
mation on independence can be exploited during the evaluation of a PCNF.
We describe how to integrate dependency schemes seamlessly into QDPLL.
Actually, dependency schemes are intrinsic to QBF semantics. Our inte-
grated view generalizes the classical QDPLL algorithm [30] from quantifier
prefixes to arbitrary dependency schemes. This generalization directly en-
ables applications of advanced dependency schemes such as the triangle [113]
or quadrangle dependency scheme [51].

We evaluated the performance of QDPLL relying on quantifier pre-
fixes, mini-scoping and the standard dependency scheme Dstd. For ex-

5

periments we implemented the solver DepQBF [84] based on QDPLL with
conflict-directed clause learning (CDCL) and solution-directed cube learn-
ing (SDCL). DepQBF tightly integrates dependency schemes as compact
dependency graphs. We present compact dependency graphs as a repre-
sentation of arbitrary dependency schemes. Similarly, our solver DepQBF

can be combined with arbitrary dependency schemes. Experimental results
in our setting show that QDPLL performs best when combined with the
standard dependency scheme Dstd in terms of solved instances and average
run time. Compared to quantifier trees obtained by mini-scoping and the
standard dependency scheme, we observed larger numbers of backtracks for
classical QDPLL with quantifier prefixes. Hence our experimental results
illustrate the potential improvements that can be drawn from dependency
schemes in QBF solving in general. These observations apply to approaches
alternative to QDPLL like variable elimination as well.

Outline and Contributions

The structure and main contributions of this work are outlined as follows.

• In Chapter 2 we introduce basic terminology and concepts related to
syntax and semantics of QBF. Different from most publications in
QBF literature, our semantical definition relies on assignment trees,
which we adopt from related work. In contrast to common, recursive
definitions of QBF semantics, the concept of assignment trees allows
to describe dependency schemes naturally.

• We introduce the theory of dependency schemes in Chapter 3. The
theoretical framework is due to Samer and Szeider [111, 112, 113]. We
attempt to present a uniform view which allows for applications in
practical QBF solving. As an important result, we prove that quanti-
fier trees obtained by mini-scoping never identify more independence
than the standard dependency scheme. We favour the standard de-
pendency for practical applications because it can be computed deter-
ministically in contrast to quantifier trees.

• Chapter 4 considers efficient representations of dependency schemes.
We introduce directed acyclic dependency graphs (DAGs) in order to
represent the binary relation given by a dependency scheme D. We
point out how to obtain compressed dependency DAGs by defining
equivalence relations over the set of variables of a PCNF. Equivalences
between variables are given with respect to dependency information
in D. Compressed dependency DAGs can be used to represent arbi-
trary dependency schemes in general. Taking the standard dependency

6 CHAPTER 1. INTRODUCTION

scheme Dstd as a concrete example, we present an algorithm to com-
pute a compressed dependency DAG for Dstd. Related experimental
results illustrate the efficiency of our approach in practice.

• In Chapter 5, we consider applications of dependency schemes in search-
based QBF solving. We show how to combine arbitrary dependency
schemes and QDPLL. Compressed dependency graphs introduced in
Chapter 4 are the key to efficient combinations. Further, we present
QDPLL with conflict-directed clause learning (CDCL) and solution-
directed cube learning (SDCL) as implemented in our solver DepQBF.
By analyzing the parts of QDPLL, we point out how to profit from
dependency schemes in practice. Comprehensive empirical results con-
firm the potential benefits compared to classical QDPLL in practice.

Chapter 2

Preliminaries

We introduce syntax and semantics of QBF. Our focus is on specific syntactic
forms and semantic concepts that are relevant in the context of dependency
schemes. This yields definitions related to semantics which can be considered
non-standard compared to variants prevalent in QBF literature. Below we
clearly motivate deviations from the de facto standard by applications of
dependency schemes as illustrated in Chapter 3.

2.1 Syntax

The syntax of some logic specifies how formulae are structured. Formulae
which do not comply with syntactic rules are not part of the language of the
logic. We first introduce syntactic definitions of QBF which are standard
in literature. Then, for the purpose of dependency schemes, we focus on
syntactically restricted formulae. We define the syntax of QBF on top of
propositional logic and hence regard QBF as an extension thereof. For a
general introduction to propositional logic we refer to [28], for example. The
following syntax definitions in this section are common in QBF literature.

2.1.1 Propositional Logic

The basic building blocks of propositional logic are propositional variables,
also called atoms, and truth constants. We write “variables” instead of
“propositional variables”. Such variables represent propositions which can
be either true or false. Truth constants represent propositions which are
always false (⊥) or always true (⊤).

Definition 2.1.1. Given a set of variables V , a formula of propositional
logic is built from variables in V and the propositional operators negation
¬, disjunction ∨ and conjunction ∧ according to the following rules:

1. ⊥ and ⊤ are propositional formulae.

7

8 CHAPTER 2. PRELIMINARIES

2. If x ∈ V then x is a propositional formula.

3. If φ is a propositional formula then ¬(φ) is also a propositional formula.

4. If φ and φ′ are propositional formulae then (φ⊗φ′), where ⊗ ∈ {∧,∨},
is also a propositional formula.

Given formula φ, V (φ) is the set of variables occurring in φ. For brevity,
we write V if φ is clear from the context. Apart from negation, disjunction
and conjunction as introduced above, there are further propositional oper-
ators such as exclusive disjunction ⊕, implication →, or biconditional ↔.
It is well known that the latter operators can be expressed in terms of ¬
combined with either ∨ or ∧ under a potential size increase of a formula.

The set of rules defined above allows to build propositional formulae with
arbitrary structure. There is no restriction on how propositional operators
are nested. For practical applications, it is often convenient to allow only
formulae which have a particular uniform structure, called normal form.

Example 2.1.1. A propositional formula in negation normal form (NNF)
is built from the same rules as in Definition 2.1.1, except that for rule 3 φ
must be a truth constant or a propositional variable.

In the following, we introduce a popular normal form based on NNF
which is widely used in the domain of automated reasoning. We also consider
dependency schemes and QBF solving entirely in the context of that normal
form in the forthcoming chapters.

2.1.2 Conjunctive Normal Form

The following definitions are standard in propositional logic. For a variable
x, a literal is either x or its negation ¬x where v(x) = x and v(¬x) = x
denotes the variable of the literal. A literal l is positive if l = x and negative
if l = ¬x. A clause is a disjunction Ci := (l1 ∨ . . . ∨ lki) over literals. For
clauses Ci, a propositional formula φ := C1∧. . .∧Cn is in conjunctive normal
form (CNF).

Definition 2.1.2. For a CNF φ and a literal l, O(l) := {C | C ∈ φ, l ∈ C}
is the set of literal occurrences of l, that is the set of all clauses in φ which
contain literal l. For a variable x, note that O(x) 6⊆ O(¬x).

Definition 2.1.3. Given a variable x, the set of variable occurrences of a
variable x is O(x) ∪O(¬x).

The empty clause and the empty formula are empty disjunctions and
conjunctions, respectively, and are denoted by the empty set ∅.

2.1. SYNTAX 9

In general, we assume that a clause neither contains multiple nor comple-
mentary literals of one and the same variable. A clause containing comple-
mentary literals is redundant and can be eliminated from the CNF. Further,
we require that a clause does not contain truth constants ⊤ and ⊥.

2.1.3 Quantified Boolean Formulae

It is appropriate to regard the logic of quantified Boolean formulae (QBF) as
an extension of propositional logic. In QBF variables can explicitly be asso-
ciated with universal (∀) or existential (∃) quantifiers. We rely on definitions
from [26].

Definition 2.1.4. A quantified Boolean formula is built from propositional
formulae and quantifiers according to the following rules:

1. Every propositional formula according to Definition 2.1.1 is a QBF.

2. If φ is a QBF then ¬(φ) is also a QBF.

3. If φ and φ′ are QBFs then (φ⊗ φ′), where ⊗ ∈ {∧,∨}, is also a QBF.

4. If φ is a QBF, x ∈ V (φ) and expression Qx does not occur in φ then
Q′x. (φ), where Q,Q′ ∈ {∀, ∃}, is also a QBF.

Like above for CNFs, V (φ) the set of variables occurring in a QBF φ.
Propositional operators and quantifiers can be arbitrarily nested in QBFs
according to the building rules in Definition 2.1.4. We abbreviate sequences
Qx1Qx2 . . . Qxn. (φ) of equally quantified variables by Qx1, x2, . . . , xn. (φ),
where Q ∈ {∀, ∃}. It is common to visualize the syntactic structure of QBFs
by parse trees.

Definition 2.1.5 (taken from [28]). A parse tree T (φ) of a QBF φ is defined
recursively based on the syntactic structure of φ:

1. If φ is a truth constant or a variable then T (φ) consists of only one
node representing φ.

2. If φ = ¬φ′ or φ = φ′ ⊗ φ′′ where ⊗ ∈ {∧,∨}, or φ = Qx. (φ′) where
Q ∈ {∀, ∃}, then parse trees T (φ) look as shown below.

¬

φ′

⊗

φ′ φ′′

Qx

φ′

Given a QBF of the form Qx. (φ) where φ is a QBF, x ∈ V (φ) and Q ∈
{∀, ∃}. The scope of the quantified variable Qx is the QBF φ. The following
definitions were adopted from [26]. For QBF Qx. φ, where Q ∈ {∀, ∃},

10 CHAPTER 2. PRELIMINARIES

the occurrence of x in expression Qx is a quantified occurrence. Any other
occurrence of x is non-quantified. An occurrence of a variable x is bound if
the occurrence is in the scope of Qx. All the non-quantified occurrences of a
variable x which are not in the scope of Qx are free occurrences. A variable
is free in a QBF φ if there is a free occurrence of x in φ. Otherwise, x is
bound in φ. A QBF is closed if it does not contain free variables. In general,
we consider only closed QBFs. We omit parentheses in Qx. (φ) and write
Qx. φ, where Q ∈ {∀, ∃}, if the scope of Qx is clear from the context.

2.1.4 Prenex Conjunctive Normal Form

A quantified Boolean formula (QBF) ψ := Q1B1 . . . QnBn. φ in prenex con-
junctive normal form (PCNF) consists of a propositional formula φ in CNF
over a set of variables V and a quantifier prefix Q1B1 . . . QnBn, where
Qi ∈ {∀, ∃}. The quantifier prefix is a linearly ordered set of quantifier
blocks Bi, where B1 < . . . < Bn, which forms a partition on the set of vari-
ables: V =

⋃
Bi where Bi 6= ∅ and Bi ∩ Bj = ∅ for 1 ≤ i, j ≤ n and i 6= j.

For PCNF ψ, V (ψ) is the set of variables occurring in ψ.

A quantifier block Bi is existential (Qi = ∃) if it is associated with an
existential quantifier and universal (Qi = ∀) otherwise. The set of existential
and universal variables is denoted by V∃ =

⋃
{Bi | Qi = ∃} and V∀ =⋃

{Bi | Qi = ∀}, respectively. For a literal l with v(l) ∈ Bi, b(l) = Bi
is the quantifier block of (the variable of) l and q(l) := q(v(l)) := Qi is
the quantifier type of (the variable of) l. Two adjacent quantifier blocks Bi
and Bi+1 in the prefix are always differently quantified, that is Qi 6= Qi+1

for 1 ≤ i < n. Given a QBF with n quantifier blocks, there are n − 1
quantifier alternations. For a quantifier block Bi and literal l, δ(Bi) = i and
δ(l) = δ(b(v(l))) denote the level of Bi and of l, respectively. Blocks B1 and
Bn are the outermost and innermost quantifier blocks.

For quantifier blocks Bi and Bj , Bj is larger than Bi, written as Bi < Bj ,
if i < j. The linear ordering of quantifier blocks is extended to literals as
follows. For each quantifier block Bi, let ⋖i be an arbitrary but fixed linear
ordering on the variables of Bi. Given literals l and l′, l′ is larger than l,
written as l < l′ if and only if either δ(l) < δ(l′), that is l and l′ are from
different quantifier blocks, or l⋖i l

′, that is v(l) and v(l′) are from the same
block Bi and ⋖i is the corresponding linear ordering on variables in Bi.

For convenience, we only consider PCNFs where, for all clauses Ci :=
(l1 ∨ . . . ∨ lki) , lj < lj′ for 1 ≤ j < j′ ≤ ki and q(v(lki)) = ∃. That is, all
literals are sorted ascendingly and the largest literal is existential. Literals
lki where q(v(lki)) = ∀ can always be eliminated by universal reduction as
described in Section 5.3.1 on page 96.

Additionally, we assume that, for all variables x ∈ V , at least O(x) 6= ∅
or O(¬x) 6= ∅. That is, there occurs at least one literal for each quantified
variable in the formula. Note that V =

⋃
Bi as defined above. Further,

2.2. SEMANTICS 11

if there is a literal l in some clause Ci with v(l) = x, then by definition
of literals, also x ∈ V . Thus all variables which occur in the formula are
quantified and hence all formulae are closed.

QDIMACS Format

Our syntax definition of PCNF from Section 2.1.4 is close to the QDIMACS
format [106] which is a standardized format of QBFs in PCNF. The format
does not prohibit free variables but treats them in a special way. Let a
PCNF Q1B1, . . . , QnBn. φ be given. If the outermost quantifier block B1 is
existential then any free variable x is quantified in B1. Otherwise, if B1 is
universal then an additional existential quantifier block B0 is added where all
free variables are quantified, thus obtaining ∃B0Q1B1, . . . , QnBn. φ. Given
a CNF φ where all variables are free, this way a PCNF can be obtained for
φ where all variables are existentially quantified.

2.2 Semantics

Now that we have defined the syntactic structure of QBFs and PCNFs
in particular, we address semantical evaluation. Semantics provide a set
of rules to assign meaning to formulae. We are concerned with proposi-
tional logic and a generalization thereof. Therefore, a semantical evaluation
amounts to assign truth values true (⊤) or false (⊥) to variables. For sim-
plicity, we use the symbols ⊤ and ⊥ both for the syntactic truth constants
as in Definition 2.1.1 as well as for truth values in semantics. The truth
value of a formula can be determined based on its syntactic structure.

In the following, we introduce the semantics of PCNFs based on tree-like
representations of truth assignments. Although not being new [111, 114],
this particular semantic definition deviates from recursive semantics which is
established in QBF literature. Our approach has advantages when it comes
to dependency schemes, which is pointed out in Section 2.2.2 below.

2.2.1 Assignments and Assignment Trees

We adopt definitions from [111, 114].

Definition 2.2.1. Given PCNF ψ, an assignment A is a function A : V →
{⊤,⊥} which maps variables V in ψ to truth values true (⊤) and false (⊥).
An assignment A is complete if function A is total and partial otherwise.

We represent an assignment A as a set of literals {l1, . . . , ln} such that,
for a variable x ∈ V , li = x if A(x) = ⊤ and li = ¬x if A(x) = ⊥. Hence
literals in A represent truth assignments to variables.

Given an assignment A and PCNF ψ, ψ[A] is the formula under as-
signment A. Let A := {l} be an assignment with δ(v(l)) = i and ψ :=

12 CHAPTER 2. PRELIMINARIES

Q1B1 . . . Qi(Bi ∪ {v(l)}) . . . QnBn. φ. The formula ψ[{l}] is obtained from
ψ by substituting the occurrences of v(l) by truth constants and by delet-
ing v(l) from the prefix. That is ψ[{l}] := Q1B1 . . . QiBi . . . QnBn. (φ[{l}])
where φ[{l}] is obtained from φ as follows. Given the assignment {l}, for
each variable occurrence l′ of v(l) by Definition 2.1.3, where l′ = v(l) or
l′ = ¬v(l), v(l) in l′ is replaced by ⊤ if l = v(l) and by ⊥ if l = ¬v(l).

Further, φ[{l}] is simplified by applying the following well-known equiv-
alences of Boolean algebra as rewrite rules until saturation:

¬⊤ ❀ ⊥ ¬⊥ ❀ ⊤ ⊤ ∧ φ❀ φ

⊥ ∨ φ❀ φ ⊤ ∨ φ❀ ⊤ ⊥ ∧ φ❀ ⊥

Additionally, quantifiers of variables which do no longer occur in ψ[A]
are removed from the prefix of ψ[A]. Note that notation ψ[A] is applica-
ble to CNFs as well. The result of simplifying a formula under a complete
assignment is always either ⊤ or ⊥. We define ψ[∅] := ψ for the empty
assignment ∅ and ψ[{l1, l2, . . . , ln}] := (ψ[l1])[{l2, . . . , ln}] for compound as-
signments. For simplicity, we omit parentheses in ψ[{l1, . . . , ln}] and write
ψ[l1, . . . , ln].

Example 2.2.1. Given the PCNF ψ := ∀x∃y. (x∨¬y)∧ (¬x∨ y). We have
ψ[∅] = ψ, ψ[y] = ∀x. (x), ψ[¬x] = ∃y. (¬y), ψ[x, y] = ⊤ and ψ[x,¬y] = ⊥.

Definition 2.2.2. A (complete or partial) assignment m is a CNF-model
of a CNF φ, written as m |= φ, if φ[m] = ⊤.

Definition 2.2.3. Given a PCNF ψ := Q1B1 . . . QnBn. φ. An assignment
tree T is a tree of complete assignments according to the following restric-
tions. Every node N in T except the root r represents a truth assignment
to a variable v in V . Node N assigns literal v (¬v) if variable v is assigned
to ⊤ (⊥). A node has exactly one sibling if and only if it assigns a truth
value to a universal variable. Nodes which assign existential variables do
not have siblings. Two siblings altogether denote assignments ⊤ and ⊥ to
universal variables. In this case the left (right) sibling assigns ⊥ (⊤) to the
respective variable. Every path P from the root to a leaf of T corresponds
to a complete assignment A for variables in ψ. A node N for variable v is an
ancestor of another node N ′ for variable v′ in P if and only if v < v′. That
is, assignments along every path P respect the variable ordering as defined
in Section 2.1.4.

Example 2.2.2. Figure 2.1 shows three assignment trees for the PCNF
ψ := ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y). Note that the assignments along the paths
are ordered with respect to the quantifier prefix. Further, the left sibling of
universal nodes assigns always ⊥ to x.

2.2. SEMANTICS 13

r

¬x

¬y

x

y

r

¬x

y

x

y

r

¬x

¬y

x

¬y

Figure 2.1: Three assignment trees for the PCNF ψ := ∀x∃y. (x ∨ ¬y) ∧
(¬x∨y) from Examples 2.2.2 and 2.2.3. The leftmost tree is a PCNF-model
of ψ whereas the other two are not.

Definition 2.2.4. An assignment tree m is a PCNF-model of the PCNF
ψ := Q1B1 . . . QnBn. φ, written as m |= ψ, if every path P in m is a CNF-
model of φ. A PCNF-model is also called a satisfying assignment tree.

A CNF is satisfiable if it has a CNF-model. Two CNFs φ and φ′ are
model-equivalent, written as φ ≡m φ′, if and only if for all assignments m,
m |= φ if and only ifm |= φ′. Two CNFs φ and φ′ are satisfiability-equivalent,
written as φ ≡s φ

′, if and only if φ is satisfiable then φ′ is satisfiable and vice
versa. Satisfiability, model-equivalence and satisfiability-equivalence with
respect to PCNFs are defined accordingly with respect to PCNF-models.

Example 2.2.3. Given the PCNF ψ := ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) from
Example 2.2.1 and the three assignment trees shown in Figure 2.1. The
leftmost assignment tree is a PCNF-model of ψ because the assignments
{¬x,¬y} and {x, y} along the two paths from the root r to the leaves are
CNF-models of the CNF-part of ψ: ψ[¬x,¬y] = ⊤ and ψ[x, y] = ⊤. This is
not the case for the other two assignment trees on the right since the assign-
ments {¬x, y} and {x,¬y}, respectively, are no CNF-models: ψ[¬x, y] = ⊥
and ψ[x,¬y] = ⊥.

An alternative definition of models for QBFs in PCNF was used in [26].
Given a PCNF ψ, each existential variable xi is replaced by a Boolean
function fxi(y1, . . . , yji) which depends on exactly those universal variables
yk where yk < xi for 1 ≤ k ≤ ji. The possibility that xi takes different values
in different paths in an assignment tree of ψ is reflected by fxi which depends
on universal variables smaller than xi. Replacing existential variables by
functions corresponds to skolemization [121].

2.2.2 Recursive Semantical Evaluation

Our semantical definition based on assignment trees and tree-like models
deviates from what can be considered “standard semantics” of QBFs. For
the vast majority of QBF-related publications, semantics are defined recur-
sively with respect to the syntactic structure of a formula. Semantically
evaluating a formula breaks down to evaluating subformulae in its parse
tree and combining the results in order to finally obtain the truth value of

14 CHAPTER 2. PRELIMINARIES

the formula. We call this kind of semantics “standard” because it prevails
in QBF literature.

In the following we introduce the well-known alternative semantical defi-
nition of QBF based on recursive evaluation. The purpose is to show that our
original definition relying on assignment trees and tree-like models is more
suitable to act as a framework for the theory of dependency schemes. We
argue that in the context of standard recursive semantics like [26, 28], it is
not possible in a straightforward way to distinguish multiple QBF models.
We are concerned with situations where existential variables are assigned
differently with respect to the values of universal variables.

In order to apply the following definition to PCNFs, we temporarily
assume that quantifier blocks contain exactly one variable and that adjacent
blocks are not necessarily differently quantified. For example ∀x,y∃a,b. φ is
treated as ∀x∀y∃a∃b. φ.

Definition 2.2.5. Given a closed QBF ψ, satisfiability is determined recur-
sively based on the syntactic structure of ψ as follows:

1. If ψ := ⊥ then ψ is unsatisfiable.

2. If ψ := ⊤ then ψ is satisfiable.

3. If ψ := φ ∨ φ′ then ψ is satisfiable if and only if φ or φ′ is satisfiable.
Otherwise ψ is unsatisfiable.

4. If ψ := φ ∧ φ′ then ψ is satisfiable if and only if both φ and φ′ are
satisfiable. Otherwise ψ is unsatisfiable.

5. If ψ := ∃x. φ then ψ is satisfiable if and only if φ[x] or φ[¬x] is
satisfiable. Otherwise ψ is unsatisfiable.

6. If ψ := ∀x. φ then ψ is satisfiable if and only if both φ[x] and φ[¬x]
are satisfiable. Otherwise ψ is unsatisfiable.

Note that in Definition 2.2.5 there is no case for ψ := x where x is a
variable. Since we consider only closed QBFs ψ, this case cannot occur. All
variables are assigned in the subcases of ψ := ∃x. φ and ψ := ∀x. φ, which
amounts to evaluating ψ := ⊥ and ψ := ⊤ in the end. Further, semantics
based on assignment trees and recursive evaluation from Definitions 2.2.3
and 2.2.5, respectively, are compatible. That is, a PCNF has a PCNF-model
if and only if it is satisfiable by Definition 2.2.5. The ordering of assignments
along paths in assignment trees corresponds to recursive applications by
rules 5 and 6 in Definition 2.2.5.

Example 2.2.4. Given the PCNF ψ := ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) from
Example 2.2.1. Due to ∀x we have to check if both ψ[x] = ∃y. (φ[x]) and
ψ[¬x] = ∃y. (φ[¬x]) are satisfiable. For ψ[x] = ∃y. (φ[x]), φ[x, y] or φ[x,¬y]

2.2. SEMANTICS 15

must be satisfiable. Similarly for ψ[¬x] = ∃y. (φ[¬x]), φ[¬x, y] or φ[¬x,¬y]
must be satisfiable. As pointed out in Example 2.2.3, we have ψ[x, y] = ⊤
and ψ[¬x,¬y] = ⊤.

For the PCNF ψ from Example 2.2.4, we find out that φ[x, y] and
φ[¬x,¬y] are satisfiable but neither φ[x,¬y] nor φ[¬x, y] are. This is suffi-
cient to justify satisfiability of ψ. In fact we could come to that conclusion
without evaluating all four base cases but just the two satisfiable ones. As-
sume we are given ψ[x]. Once we know that φ[x, y] is satisfiable, there is no
need to consider φ[x,¬y], and similarly for ψ[¬x]. This is due to the rule
for evaluating ∃y in ψ[x] and ψ[¬x]. There is no predefined ordering for
considering subcases, hence the choice is arbitrary and non-deterministic.

The construction of dependency schemes, which is part of Chapter 3,
requires to analyze dependencies between variables in a PCNF. From a the-
oretical point of view, dependency analysis in a PCNF ψ reduces to checking
whether a variable takes different values in different subtrees of a satisfying
assignment tree ψ. Referring to Example 2.2.4, we need to know if changing
the value of x forces the value of y to change as well. That is, are both φ[x, y]
and φ[¬x, y] or both φ[x,¬y] and φ[¬x,¬y] satisfiable? If one of these is true
then x and y are independent because changing the value of x does not force
a change of the value of y to satisfy the formula. However, regarding PCNF
ψ from Example 2.2.4, x and y are not independent because none of the
two possible assignment trees (see the two trees on the right in Figure 2.1)
where the value of y is the same in the two subtrees is a PCNF-model of ψ.
Hence changing the value of x forces a change of the value of y to satisfy ψ.

From that perspective, recursive semantics as defined above seems to be
too coarse. The relation of values between different variables is not reflected
explicitly as in assignment trees. This is the reason why we prefer assignment
trees and tree-like models in the context of dependency schemes.

2.2.3 Complexity

SAT, the satisfiability problem of propositional logic, is the classical NP-
complete problem [34]. Unrestricted occurrences of different quantifiers in
QBFs render the corresponding decision problem PSPACE-complete [49,
124]. The number of quantifier alternations of a PCNF is related to the
polynomial-time hierarchy [90, 123] as follows.

Definition 2.2.6. (copied from Definition 23.3.1 in [26]) The prefix type of
a QBF1 is defined as follows. Every propositional formula by Definition 2.1.1
has prefix type Σ0 = Π0. Given a PCNF ψ with prefix type Σn (Πn), the
PCNF ∀x1, . . . , xm. ψ (∃x1, . . . , xm. ψ) has prefix type Πn+1 (Σn+1).

1We consider only PCNFs, but Definition 2.2.6 can be adapted to non-CNF formulae
with quantifier prefixes as well.

16 CHAPTER 2. PRELIMINARIES

Definition 2.2.7. (copied from Section 23.3 in [26]) The polynomial-time
hierarchy is defined as follows for k ≥ 0:

∆P
0 := ΣP0 := ΠP0 := P ,

ΣPk+1 := NPΣP

k , ΠPk+1 := coΣPk+1, ∆
P
k+1 := PΣP

k

where ∆P
k+1 (ΣPk+1) is the class of all problems which can be decided deter-

ministically (non-deterministically) in polynomial-time with the help of an
oracle for a problem in ΣPk . An oracle for a problem in ΣPk is a subroutine
which solves a problem in ΣPk in constant time. The class ΠPk+1 contains ev-

ery problem whose complement is in ΣPk+1. We have ΣP1 = NP , ΠP1 = coNP ,

∆P
1 = P and, for k ≥ 1, ∆P

k ⊆ (ΣPk ∩ΠPk).

Theorem 2.2.1 (copied from Theorem 23.3.2 in [26], respectively [123,
129]). For k ≥ 1, the satisfiability problem for QBFs with prefix type Σk
(Πk) is ΣPk -complete (ΠPk -complete).

It is unknown how the complexity classes P, NP and PSPACE are exactly
related to each other. So far no polynomial time algorithms are known for
SAT or QBF. There are subclasses of QBF based on syntactic restrictions
which can be decided in polynomial time, for example a specific form of
quantified Horn formulae or QBFs with at most two literals per clause [2].
We refer to [24, 26, 28] for further details.

2.3 Decision Procedures: An Overview

We briefly give an overview of the two main approaches for checking sat-
isfiability of a QBF, that is variable elimination and backtracking search.
There is an abundance of literature on SAT and QBF solving, and a com-
prehensive treatment is out of scope of this work. In Chapter 5 we deal with
the practice of backtracking search in detail. This section provides only an
overview sufficient to understand the motivation of dependency schemes in
the context of QBF solving in Chapter 3.

2.3.1 Backtracking Search

Semantics by Definitions 2.2.4 and 2.2.5 naturally form a framework for
search-based decision procedures for QBF. Definition 2.2.5 can be turned
into a recursive algorithm in a straightforward way. Rules for evaluating
ψ := ∀x. φ and ψ := ∃x. φ correspond to case splits into subgoals φ[x] and
φ[¬x], respectively. Splitting the proof into subgoals is also called branch-
ing or decision making. Depending on the result of checking subgoals, the
algorithm backtracks to the most recent unsolved subgoal and continues. In
the following, we focus on solving PCNFs.

2.3. DECISION PROCEDURES: AN OVERVIEW 17

Definition 2.2.4 gives rise to a simple yet infeasible algorithm. Given
PCNF ψ, we can try to construct a PCNF-model m by generating assign-
ments A iteratively. If A satisfies the CNF-part of a PCNF then A can be
turned into a path in m. Paths have to be added for siblings of universal
nodes in m. If ψ is satisfiable then finally a complete PCNF-model m is
obtained. Otherwise, there is at least one universal node for which no satis-
fying path starting at its sibling can be found, and so ψ is unsatisfiable. In
the worst case the explicit representation of assignment trees requires space
which is exponential in the number of variables of the QBF.

Given a QBF, the previously described algorithm searches for assign-
ments which satisfy the CNF-part and checks whether these CNF-models
can be combined to form a PCNF-model. The problem of exponential space
is avoided in algorithms relying on the classical DPLL approach [37]. Origi-
nating from [38], DPLL2 generates assignments recursively like in Definition
2.2.5. Assignments are represented implicitly by the structure of recursive
applications of the semantical rules. Hence classical DPLL requires only
space which is linear in the number of variables.

A first description of a DPLL-based algorithm for QBF was given in [30,
31]. We refer to this QBF-specific variant as QDPLL3 and present a de-
tailed description in Chapter 5. Modern implementations of SAT and QBF
solvers highly differ from the original formulation of DPLL. The algorithm
is typically not implemented recursively but iteratively. Splitting the proof
into subcases is deferred as much as possible by applying rules like boolean
constraint propagation (BCP). We consider a QBF-specific variant of BCP
in Chapter 5. Parallel variants of QDPLL like [48, 79, 80], for example,
might benefit from modern multicore architectures and distributed comput-
ing environments.

Clause Learning

The method of clause learning, also called conflict-directed clause learn-
ing (CDCL) [117, 118], aims at guiding the search process out of regions
of the search space which do not contain solutions. The theoretical foun-
dation of clause learning for SAT and QBF is resolution and Q-resolution,
respectively [27, 108], which we consider in Chapter 5. Using (Q-)resolution,
clauses derived from the original formula and can be added thereto. Such
learnt clauses are logically implied by the formula and hence are also satis-
fied by all CNF-models. Learnt clauses rule out certain assignments which
are not satisfying anyway. Thus the solver does not have to consider such
assignments. Learning methods for QBF were developed independently in
[58, 78, 133, 134] under the terms lemma and model caching, or clause and

2Although Hilary Putnam is not co-author of [37], it is common to refer to the algorithm
as DPLL, DLL or CDCL [118], if clause learning is applied (see next section).

3We also find other names such as QSAT and Q-DLL in literature.

18 CHAPTER 2. PRELIMINARIES

cube learning. A cube is a conjunction of literals. Different from clauses,
cubes are used to rule out assignments which satisfy the CNF-part of a CNF.
We introduce clause and cube learning for QBF in Chapter 5.

Adding learnt clauses increases both the space and time requirements
of a solver. The latter is due to rules like BCP which involve inspection of
learnt clauses as well. Clause learning might increase the space complexity
of DPLL from linear to exponential, because in the worst case exponentially
many learnt clauses can be derived. To prevent this behaviour, learnt clauses
are periodically discarded according to some heuristic strategy. The goal
is to keep those learnt clauses where the solver effectively benefits from.
Related approaches from SAT solving like [3, 5, 42] could also be adapted
to QBF. We describe a trivial variant in Section 5.6.2 on page 121.

Branching Heuristics

The ordering in which variables are assigned might substantially influence
the overall performance of a QBF solver (see also Example 3.3.6 on page 34).
Branching heuristics determine the selection and ordering of variables which
are used for case splits in the proof. Dynamic variants allow the solver to
adapt the search with respect to those parts of the search space that have
been visited recently. As with clause learning, work from the SAT domain
related to branching heuristics [40, 42, 64, 93, 116, 118] might be applied to
QBF as well but, to the best of our knowledge, there is no comprehensive
empirical study in the context of QBF.

Non-Normal Form Solving

In the description of QDPLL, we focused on QBFs in PCNF. Definition 2.2.5
provides rules to evaluate arbitrary QBFs, and a corresponding recursive al-
gorithm can be obtained in a straightforward way. Although original DPLL
operates on CNF only, it is common to use the term QDPLL for generaliza-
tions to arbitrary QBFs as well. This approach has been implemented along
with extensions like learning in [45, 46, 66, 67, 68], for example.

2.3.2 Variable Elimination

Backtracking search as described above in Section 2.3.1 is closely related to
semantical definitions. In either of Definitions 2.2.4 and 2.2.5 variables are
assigned in the ordering given by the quantifier prefix or parse tree. For
assignment trees we explicitly require that assignments along paths fulfill
this requirement. In recursive semantics, such ordering is implicitly given
by nested evaluation. Due to this property, we call backtracking search
a top-down approach, since variables are assigned from left (top) to right
(bottom) in the prefix or parse tree, respectively. Example 3.1.1 on page 24
shows that this condition cannot be relaxed in general.

2.3. DECISION PROCEDURES: AN OVERVIEW 19

Variable elimination, the second major approach to solve QBFs, does
not fit into that top-down framework. Differently from backtracking search,
variable elimination does not explicitly try to generate a PCNF-model. In-
stead, the goal is to successively get rid of quantified variables until finally
the formula reduces to⊤ or⊥. Our focus is on PCNF but the approaches can
be generalized to arbitrary QBFs. We briefly outline common approaches
below and list related work at the end of this chapter with respect to data
structures used in practice. Eliminating a variable typically increases the
size of the formula. Practical applicability of variable elimination is deter-
mined by the amount of that size increase. In the worst case, the size of the
formula doubles each time and hence induces an exponential growth over a
sequence of elimination steps.

Shannon Expansion

In the following, we introduce Shannon expansion [38, 41, 115] for variable
elimination. We first consider QBFs in PCNF where all variables are exis-
tentially quantified and then address expansion for general QBFs below.

Lemma 2.3.1. The PCNF

ψ := ∃x1, . . . , xi−1, xi, xi+1, . . . , xn. (φ)

is satisfiability-equivalent to

∃x1, . . . , xi−1, xi+1, . . . , xn. (φ[xi] ∨ φ[¬xi]).

Note that φ[xi] and φ[¬xi] is the formula obtained from φ by assigning
xi as defined in Section 2.2.1. Variable xi is permanently assigned to true
in one, and to false in another copy of CNF φ, respectively. The effects of
assigning x to either truth value are simultaneously and directly encoded
into the two copies of φ. This is different from backtracking search where
variable assignments are made tentatively and retracted if no solution was
found. Expansion by Lemma 2.3.1 eliminates one variable at the cost of
doubling the size of the formula. In practice the variable to be expanded
often occurs only in a small part of φ, which is different from the general
pattern. In this case, expansion is much cheaper in terms of size increase
because only the relevant parts of φ have to be copied. The approach of
mini-scoping, which we consider in Section 3.2.2, can be used to find out
parts which are relevant for expansion.

Elimination Ordering

We consider expansion for arbitrary PCNFs. The presence of both univer-
sal and existential variables in PCNFs complicates variable elimination in
general. This is in contrast to the following straightforward adaption of
Lemma 2.3.1 to arbitrary PCNFs.

20 CHAPTER 2. PRELIMINARIES

Lemma 2.3.2. The PCNF

ψ := Q1B1, . . . , Qn(Bn ∪ {x}). φ

is satisfiability-equivalent to

Q1B1, . . . , QnBn. (φ[x]⊗ φ[¬x])

where ⊗ := ∧ if Qn = ∀ and ⊗ := ∨ if Qn = ∃.

The two copies of φ are conjoined by conjunction or disjunction with
respect to the quantifier type of x. Note that the expanded variable x in
Lemma 2.3.2 is from the innermost quantifier block. Variables must be elim-
inated from right to left in general, which differs from backtracking search.
Therefore, we call methods of variable elimination bottom-up approaches. In
Chapter 3, we show by Examples 3.1.1 and 3.1.2 that respecting the ordering
is crucial both for backtracking search and variable elimination.

Universal Expansion

Different from Lemma 2.3.2, universal variables from the innermost quan-
tifier block of a PCNF do not have to be expanded but can be eliminated
right away by universal reduction (see also Section 5.3.1 on page 96) with-
out incurring any size increase. This approach works only on PCNF and it
is not clear, to the best of our knowledge, how to extend it to arbitrarily
structured QBFs.

It is possible to extend Lemma 2.3.2 to expansion of universal variables
from arbitrary quantifier blocks. This was done in [25] which built upon
ideas from [16]. The potential drawback of this approach is a larger size
increase. We introduce expansion of universal variables from the first non-
innermost quantifier block Bn−1 and refer to Lemma 3.4.4 on page 53.

Lemma 2.3.3. The PCNF

ψ := Q1B1, . . . , ∀(Bn−1 ∪ {x})∃Bn. φ

is satisfiability-equivalent to

ψ := Q1B1, . . . , ∀Bn−1∃(Bn ∪B
′
n). (φ[x] ∧ φ

′[¬x]).

Set B′
n consists of fresh variables obtained from duplicating Bn, and in φ′

occurrences of variables in Bn are replaced by duplicated ones in B′
n.

In all preceding definitions of expansion we copied the entire formula φ
which is conservative but usually pessimistic. In practice, it suffices to copy
only those parts of φ where the expanded variable occurs. Additionally
when applying Lemma 2.3.3, parts with occurrences of duplicated variables
must be copied. Therefore, the number of duplicated variables in the set B′

n

usually has an impact on the size of that part of φ that must be copied.

2.3. DECISION PROCEDURES: AN OVERVIEW 21

Example 2.3.1. Given the satisfiable PCNF ψ := ∀x∃y. (x∨¬y)∧(¬x∨y).
By Lemma 2.3.3 formula ψ is satisfiability-equivalent to

∀x∃y,y′. ((x ∨ ¬y) ∧ (¬x ∨ y))[x] ∧ ((x ∨ ¬y′) ∧ (¬x ∨ y′))[¬x],

which further reduces to the satisfiable formula ∃y,y′. (y) ∧ (¬y′).

We point out by Example 3.1.2 on page 24 that the requirement of
duplicating variables cannot be relaxed in general. However, as we point
out in Chapter 3, dependency schemes might be able to reduce the number
of duplicated variables in B′

n in practice and hence limit the cost of variable
elimination (see also Example 3.3.7 on page 36).

Data Structures and Formula Representation

The rules for expansion of variables work for arbitrary QBFs although in
definitions above we considered only PCNFs. This gives rise to non-normal
form solvers relying on variable elimination and either prenex non-CNF or
non-prenex non-CNF formulae. For the latter, in general the elimination
ordering has to follow the sequence of quantified occurrences ∀x and ∃x in the
parse tree in bottom-up fashion. In contrast to PCNF, data structures like
and-inverter graphs (AIGs) often allow for a more compact representation of
a QBF [101, 102, 107]. Negation normal form (NNF) is close to the original
parse tree of a QBF and was used in [6, 81].

The classical Davis-Putnam (DP) algorithm [38] can be used to elimi-
nate existential variables in PCNFs by resolution. The resolution operation
was originally introduced for first-order logic [108]. Variable elimination
by resolution typically generates many redundant clauses. Sophisticated
approaches like subsumption removal [16, 131] or methods of preprocess-
ing [21, 41, 55] can be applied to reduce the size of the formula.

Binary decision diagrams (BDDs) [23] were used for QBF solving in
several ways. Search-based approaches were coupled with representations
of CNF-models by BDDs [4]. The implementation of standard Boolean
operators enables the use of BDDs for variable elimination by expansion [75,
97, 99]. BDDs can also be used to encode sets [91] of clauses in combination
with the Davis-Putnam algorithm [32, 33, 99].

Skolemization [121] is relevant for theoretical concepts of QBF mod-
els [26], but was also applied in practice to eliminate existential variables
from QBFs [13, 74]. The QBF solver presented in [13] integrates skolemiza-
tion with BDDs and SAT solving techniques and can therefore be considered
a hybrid approach.

22 CHAPTER 2. PRELIMINARIES

Chapter 3

Dependency Schemes

3.1 Introduction

In Section 2.3, we briefly introduced the two approaches of variable elimina-
tion and backtracking search for SAT and QBF solving. Backtracking search
by means of DPLL [37] and QDPLL [30, 31]1 is the core of many state-of-
the-art SAT and QBF solvers, respectively. There have been continuous
improvements of the basic algorithm since the early 1990ies. Apart from
technical issues such as efficient data structures and implementation details,
DPLL was enhanced, for example, with clause learning and activity-based
decision heuristics.

The latter approach is a strategy to dynamically change the assignment
ordering of variables in paths of the decision tree constructed by DPLL-based
algorithms. The SAT solver keeps track of how important a particular vari-
able was during the search by maintaining a heuristic per-variable activity
score. This way the solver can adapt the search process on the current
branch with respect to information that was learnt from previous branches
in the decision tree. The goal is to steer the solver out of parts of the search
space which seem to be irrelevant to the solution of the problem. The use
of activity scores for dynamic assignment orderings in SAT solvers is jus-
tified by semantics since, in contrast to general PCNFs, DPLL can assign
variables in arbitrary order to decide the formula.

3.1.1 Variable Orderings by Prefixes in PCNFs

When it comes to QBF solving using QDPLL, variables must not be assigned
in arbitrary order in general. This is due to the quantifier prefix. Occur-
rences of universal quantifiers which are interleaved with existential ones in
the quantifier prefix might introduce dependencies between differently quan-

1We write DPLL to denote the algorithm for propositional logic and QDPLL for the
QBF-specific variant of DPLL.

23

24 CHAPTER 3. DEPENDENCY SCHEMES

r

¬y

¬x x

r

y

¬x x

Figure 3.1: Two possible assignment trees of the PCNF ψ := ∀x∃y. (x ∨
¬y)∧ (¬x∨ y) from Example 3.1.1 where y is erroneously assigned before x.

tified variables. We address variable dependencies formally in Section 3.4
below. Actually, it is more important to know which variables do not depend
on each other. For now, we confine our presentation to illustrative examples
and to a informal notion of the term “dependency”. Informally, dependen-
cies require to choose the value of variables with respect to the value of some
other variables when a PCNF is semantically evaluated. Some variable y
may only be assigned by QDPLL as soon as all variables x where y depends
on have been assigned already. Although activity scores for variables could
be applied in QDPLL for QBF as well like in DPLL for SAT, dependencies
in QBFs limit their potential positive effects. Given the quantifier prefix of
a PCNF, dependencies are respected if variables are assigned “from left to
right“. Neglecting this condition might yield unsound results.

Example 3.1.1. Given the satisfiable PCNF ψ := ∀x∃y. (x∨¬y)∧(¬x∨y).
We assign variables from left to right using recursive semantics from Section
2.2.2. Formula ψ is satisfiable if and only if both ψ[x] and ψ[¬x] are satisfi-
able, which is the case: both ψ[x, y] and ψ[¬x,¬y] are satisfiable. The left
assignment tree in Figure 2.1 on page 13 is the corresponding PCNF-model.
The value of y depends on the value of x: y must take the same value as x.
Thus neither ψ[x,¬y] nor ψ[¬x, y] is satisfiable. On the contrary, assume we
assign y before x, thus breaking the prefix ordering and also the dependency
between x and y. Then neither ψ[y] nor ψ[¬y] is satisfiable because y does
not take values with respect to x since it was assigned before x. Figure 3.1
shows the two corresponding assignment trees which are no PCNF-models.
Consequently we cannot conclude that ψ is satisfiable.

Example 3.1.1 points out that the prefix ordering matters if QBFs are
solved using QDPLL. We now show a similar result for QBF solving by vari-
able elimination. Expanding universal variables by Lemma 2.3.3 on page 20
without duplicating larger existential variables might be unsound.

Example 3.1.2. Given the satisfiable PCNF ψ := ∀x∃y. (x∨¬y)∧ (¬x∨y)
from Example 3.1.1 and Example 2.3.1 on page 21. Expanding x, which
is not from the innermost quantifier block, by Lemma 2.3.3 is unsound.
Formula ψ is not satisfiability-equivalent to

∀x∃y. ((x ∨ ¬y) ∧ (¬x ∨ y))[x] ∧ ((x ∨ ¬y) ∧ (¬x ∨ y))[¬x],

3.1. INTRODUCTION 25

r

¬y

¬x x

Figure 3.2: PCNF-model for the PCNF ψ′ := ∃y∀x. (x∨¬y)∧(¬x∨¬y) from
Example 3.1.3 which was obtained from the original PCNF ψ by shifting y
to the front of the quantifier prefix.

because this formula further reduces to ∃y. (y)∧ (¬y) which is unsatisfiable.
This is due to the same reason as in Example 3.1.1. Variable y must take
values with respect to values of x but this is not possible because we did not
duplicate y. Note the difference to Example 2.3.1 on page 21.

Given Examples 3.1.1 and 3.1.2, we observe that respecting the quantifier
ordering is crucial for both backtracking search and variable elimination.
However, there might be situations in practice where the ordering can safely
be relaxed. This would allow to take into account variables other than
just the leftmost ones in the prefix for activity-based decision heuristics
in QDPLL. Thus QDPLL could profit from dynamic assignment orderings
in the same way as DPLL. Finally, we might be able to decide a QBF
more quickly than if we had relied strictly on the ordering imposed by the
quantifier prefix. For expansion, similar observations were made [16]. We
point out this situation in Example 3.3.6 on page 34 below. First we need
to elaborate more on the notion of dependencies.

In Example 3.1.1, breaking the prefix ordering of PCNF ψ := ∀x∃y. (x∨
¬y)∧ (¬x∨ y) during semantical evaluation by assigning y before x actually
corresponds to modifications of the quantifier prefix. We shift variable y
to obtain PCNF ψ′ := ∃y∀x. (x ∨ ¬y) ∧ (¬x ∨ y) and then assign variables
according to the new prefix. We will see in Section 3.4 below that shifting
variables plays a central role for a precise formal definition of dependence
and independence. For now, we observe that breaking the prefix ordering
in a PCNF (like ψ above) might change satisfiability (like ψ′ above) due to
violations of variable dependencies. However, such change of satisfiability
need not happen necessarily, as the following examples show.

Example 3.1.3. Given PCNF ψ := ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ ¬y) which is
satisfiable since both ψ[x] and ψ[¬x] are satisfiable. Breaking the prefix
ordering corresponds to shifting variable y to the front: ψ′ := ∃y∀x. (x ∨
¬y) ∧ (¬x ∨ ¬y). Formula ψ′ is satisfiable as well since ψ′[¬y] is satisfiable.
Figure 3.2 shows the corresponding PCNF-model of ψ′. In fact, the value
of y in ψ does not depend on the value of x. For both of ψ[x] and ψ[¬x],

26 CHAPTER 3. DEPENDENCY SCHEMES

assigning y to false satisfies the formula.2

Example 3.1.4. Given PCNF ψ := ∀x∃y. (x∨¬y)∧(¬x∨¬y) from Example
3.1.3. When expanding universal variable x without duplicating y like in
Example 3.1.2 then expansion is sound in this case. The expanded formula
∀x∃y. ((x ∨ ¬y) ∧ (¬x ∨ ¬y))[x] ∧ ((x ∨ ¬y) ∧ (¬x ∨ ¬y))[¬x] reduces to
∃y. (¬y) ∧ (¬y) which is satisfiable.

3.1.2 The Need for Dependency Analysis

Examples 3.1.1 to 3.1.4 point out two different situations in the context
of backtracking search and variable elimination. First, breaking the prefix
ordering, that is not assigning variables from left-to-right, could violate vari-
able dependencies and change satisfiability. This must be avoided in prac-
tice when evaluating PCNFs and QBFs in general. However, as in Examples
3.1.3 and 3.1.4, we could benefit from situations where shifting variables in
the prefix does not change satisfiability. Formula ψ from Example 3.1.3 can
be decided by showing that either the original PCNF ψ or the modified ψ′ is
satisfiable. Here we can first assign x and then y or vice versa, and the result
is sound in any case. This corresponds to increased freedom during seman-
tical evaluation. Given ψ from Example 3.1.3, first we may only assign x
unless we know that shifting y to front as in ψ′ does not change satisfiability.
This property of ψ′ allows us to assign y before x. In order to decide ψ we
actually have two possible choices of assigning variables although there is
only one choice with respect to the original quantifier prefix of ψ.

Increased freedom during semantical evaluation as pointed out above
allows to overcome the effects of restricted assignment orderings that fol-
low from the quantifier prefix. The effects of such restricted orderings can
be negative for QDPLL-based QBF solvers just as was reported for DPLL-
based SAT solvers [72]. Assigning variables in restricted order might cause
the QBF solver to spend overly much time in parts of the search space of a
formula which are irrelevant to its truth value. We consider an example re-
lated to these observations in Section 3.3.3 below. Altogether, the quantifier
prefix of PCNFs and the resulting kind of dependencies severely limit the
freedom of QBF solvers. This does not only apply to search-based QBF solv-
ing using QDPLL but also to variable elimination. Therefore, it is crucial
from a practical perspective to analyze whether variables are independent in
a given PCNF since this increases the freedom for QBF solvers. For variable
elimination, independence amounts to situations where the size of the set of
duplicated variables B′

n by Lemma 2.3.3 on page 20 can be reduced. This in
turn might reduce the size of the expanded formula (see also Example 3.3.7
on page 36). We now focus on QDPLL.

2See also Example 3.4.3 on page 41 for the dual case of unsatisfiable formulae.

3.2. METHODS OF DEPENDENCY ANALYSIS 27

3.2 Methods of Dependency Analysis

In the previous section we observed that the quantifier prefix of PCNFs
might introduce a left-to-right ordering of variables which could be too strict.
In practice it might often be possible to relax such ordering, thereby obtain-
ing more freedom for QBF solving. For that purpose, it is crucial to know
precisely which variables do not depend on other ones. In terms of prefix
patterns like . . . ∀x . . . ∃y . . . or . . . ∃y . . . ∀x . . ., this amounts to situations
where x and y are independent and hence can be assigned independently by
QDPLL. We refer to the act of finding out whether x is independent from
y, for all variables x and y in a given PCNF, as dependency analysis.

In the following section, we review a well-known approach of depen-
dency analysis for PCNFs based on scope minimization of quantifiers, called
mini-scoping. We focus on QBFs in PCNF because it is a common format
which is widely used. We also rely on PCNF when we introduce a for-
mal framework of variable dependencies and dependency analysis in Section
3.4, called dependency schemes. Dependency schemes are relations over
variables which represent independence. We point out severe drawbacks of
mini-scoping which can be overcome by dependency schemes. Further, de-
pendency schemes allow to assess the quality of dependency analysis. At this
point, by quality we informally refer to the amount of independence identi-
fied by some approach (see also Definition 3.4.18 on page 50). Dependency
analysis in PCNFs actually involves a tradeoff between quality and compu-
tational effort. Although optimal dependency analysis is infeasible, certain
dependency schemes can be computed efficiently. At the same time they
provide considerable information about independence between variables.

3.2.1 Maximizing Quantifier Scopes: Prenexing

PCNF is a widely used input format for QBF solvers just as CNF for SAT
solving. QBF encodings of problems are typically not in PCNF right from
the beginning but in arbitrary syntactic form. Given a QBF ρ with non-
prenex non-CNF syntactic structure, the conversion of ρ into PCNF consists
of two steps:

1. Converting ρ into a QBF ρ′ which is in prenex normal form, that is
all quantifiers occur in the quantifier prefix.

2. Converting ρ′ into PCNF ψ.

The first step is commonly referred to as prenexing. Given QBF ρ,
quantifiers are successively shifted towards the top of the parse-tree of ρ (see
Definition 2.1.5 on page 9), starting at topmost quantifiers, until finally ρ′ in
prenex normal form is obtained. This maximizes the scopes of quantifiers,
hence this approach is also calledmaxi-scoping [6]. The following well-known

28 CHAPTER 3. DEPENDENCY SCHEMES

schema of shifting rules is used for prenexing [43, 44, 47, 96]:3

(Qx. φ)⊗ φ′ ≡ Qx. (φ⊗ φ′) where Q ∈ {∀, ∃},⊗ ∈ {∧,∨} and x 6∈ V (φ′).

After generating ρ′ in prenex normal form in the first step, its quantifier-
free part is converted into CNF. In principle, this can be done by applying
laws of distributivity of Boolean operators ∧ and ∨. However, this simple
approach might yield a CNF which is exponentially larger than the original
formula ρ′. There are alternative approaches to obtain a CNF which is linear
with respect to ρ′ [39, 87, 104, 127]. The idea is to encode the output function
of Boolean operators in ρ′ by clauses involving fresh existential variables.
These variables can then be put into the innermost quantifier block Bn, or
if Bn is not existential, into a new innermost existential block [53].

Prenexing is Non-Deterministic

Quantifier shifting for QBF is a well-known and established technique for
prenexing, although it has a severe drawback. There are formulae where, at
a certain step during prenexing, more than one shifting rule is applicable.

Example 3.2.1 (taken from [62]). Given non-prenex non-CNF formula ρ :=
(∃x. φ) ∧ (∀y. φ′). When prenexing ρ, there is a non-deterministic choice
of whether first shifting ∃x and then ∀y to the prefix or vice versa. The
resulting formulae are ρ′ := ∃x∀y. φ∧φ′ and ρ′′ := ∀y∃x. φ∧φ′, respectively.

Prenexing by non-deterministic applications of quantifier shifting rules
might produce quantifier prefixes with different shape. This applies to the
number quantifier alternations as well as to the final position of variables in
the prefix. Overall, the possibility of having multiple different prefixes for
one and the same formula can be a serious problem in practice.

First, it is unnatural to have multiple PCNFs with different prefixes,
and thus potentially different dependencies, for one and the same non-prenex
non-CNF formula ρ. By the term “dependencies” we refer to informal prefix-
induced dependencies as in Examples 3.1.1 and 3.1.3 above. It is unknown
in advance which prefix might be suited for one particular solver to show
best performance. By Theorem 2.2.1 on page 16, the number of quantifier
alternations in a PCNF has an impact on the theoretical complexity of the
decision problem with respect to the polynomial-time hierarchy by Defini-
tion 2.2.7. As argued in [47], the position of variables in the prefix could
also have an influence on solver performance in practice.

Second, different prefixes might not only introduce different dependen-
cies, but dependencies might also be spurious. The following situation was
reported in [47, 62] as well. In the original formula ρ from Example 3.2.1,
neither y depends on x nor vice versa. The two variables are unrelated since

3For simplicity, we assume that all variables in a QBF are named differently.

3.2. METHODS OF DEPENDENCY ANALYSIS 29

none of them occurs in the quantifier scope of the other. In contrast to that,
y depends on x in ρ′ and x depends on y in ρ′′ when taking dependencies
by prefixes. Following the quantifier ordering, a QDPLL-based solver can
start with assigning x (but not y) in ρ′ and with assigning y (but not x)
in ρ′′. However, dependencies in these prenex formulae are spurious in the
sense that they were introduced only by prenexing but are not inherent to
the original non-prenex non-CNF formula ρ.

3.2.2 Minimizing Quantifier Scopes: Anti-Prenexing

There has been research on how to alleviate the drawbacks of prenexing. The
approach of anti-prenexing or mini-scoping aims at reversing the effects of
prenexing for a given PCNF. Mini-scoping is common in first-order logic
and QBF solving [6, 12, 43, 96, 101]. The idea is to apply the same set
of quantifier shifting rules as used for prenexing. Quantifiers are shifted
from the prefix back into the CNF-part of the PCNF, starting at innermost
quantifiers. This way, the linear quantifier structure of the prefix is converted
into a tree-like one, and so are dependencies derived therefrom. By “tree-
like” we refer to information on quantifier structure which is present in the
parse-tree of a formula (see Definition 2.1.5 on page 9). If Qx is a predecessor
of Q′y in the parse-tree, where Q,Q′ ∈ {∀, ∃} and Q 6= Q′, that is x and
y are differently quantified, then we consider y to depend on x. Otherwise,
like in formula ρ from Example 3.2.1, x and y are independent. Note that
this notion of dependence is still informal. We call such tree-like quantifier
structure a quantifier tree [12] and consider examples below.

Anti-Prenexing is Non-Deterministic

Anti-prenexing converts a PCNF into a QBF in non-prenex CNF. The re-
sulting quantifier structure is tree-like and we can extract dependency in-
formation from the quantifier tree of the formula as described above. Since
this approach applies the same set of quantifier shifting rules as prenexing,
it suffers from the same drawback of non-determinism.

Example 3.2.2 (taken from [85]). Consider the PCNF

∃a,b∀x,y∃c,d. (a ∨ b) ∧ (a ∨ x ∨ c) ∧ (b ∨ c) ∧ (b ∨ y ∨ d).

Minimizing the scopes of ∃c, ∃d, ∀x and ∀y is deterministic and yields

∃a,b. (a ∨ b) ∧ (∀x∃c. (a ∨ x ∨ c) ∧ (b ∨ c)) ∧ (∀y∃d. (b ∨ y ∨ d)).

Now there is the non-deterministic choice of whether to first minimize ∃a
and then ∃b (right tree in Figure 3.3) or vice versa (left tree in Figure 3.3).
Note that the left tree induces a dependency between a and y which is not
the case in the right tree. Further, the left tree can be transformed into the

30 CHAPTER 3. DEPENDENCY SCHEMES

∃a,b

∀x

∃c

∀y

∃d

∃b

∃a

∀x

∃c

∀y

∃d

Figure 3.3: Quantifier trees for the PCNF ∃a,b∀x,y∃c,d. (a∨b)∧ (a∨x∨c)∧
(b ∨ c) ∧ (b ∨ y ∨ d) from Example 3.2.2. Directed edges indicate successor-
predecessor relationship of quantifiers in the parse tree of the mini-scoped
formula. Mini-scoping of ∃a in the left tree yields the tree on the right.

tree on the right by first swapping ∃a and ∃b, since ∃a∃b.φ is equivalent to
∃b∃a.φ, and then minimizing ∃a.

Anti-prenexing as in Example 3.2.2 produces two different quantifier
trees for one and the same formula. From a practical perspective, we pre-
fer the tree on the right in Figure 3.3 because it allows more freedom. A
QDPLL-based solver can assign y as soon as b was assigned, since y does
not depend on a according to tree-like quantifier structure of that tree. This
is not possible with the tree on the left where both a and b have to be as-
signed before y. In this example, the worse quantifier tree on the left can be
transformed into the better one on the right by another anti-prenexing step.
However, in general there are formulae where none of the possible trees is
best with respect to resulting dependencies. We point out that situation in
Example 3.3.4 below.

3.3 Quantifier Trees are not Optimal

Summarizing our observations related to quantifier prefixes, quantifier trees,
generation of PCNFs by prenexing and recovering tree-like dependencies by
anti-prenexing, there seems to be a waste of work. We first convert a non-
prenex non-CNF formula to PCNF which possibly involves non-deterministic
applications of quantifier shifting rules. Then we undo prenexing afterwards
to get back tree-like dependency information. Due to non-determinism in
anti-prenexing there is no guarantee that we get back the tree-like quantifier
structure that was present in the original formula.

So why not just take tree-like quantifier structure present before prenex-
ing and use it directly for QBF solving? This approach was combined with
QDPLL already [62], and it is implicitly applied in the context of search-
based non-PCNF solving, where prenexing is omitted [45, 46, 66, 67, 68].
Although taking present quantifier structure allows to avoid the effects of
non-determinism during prenexing and anti-prenexing, quantifier trees in
general are not optimal among syntactic methods for dependency analysis.

3.3. QUANTIFIER TREES ARE NOT OPTIMAL 31

In the following, we point out that there are more sophisticated meth-
ods for dependency analysis in PCNFs than quantifier trees. In particular,
these methods have the potential to improve upon both quantifier structure
present in non-PCNFs and quantifier trees by anti-prenexing. The methods
we consider can all be described in the framework of dependency schemes.
We introduce the theory of dependency schemes in Section 3.4 below. For
now we focus on an informal notion of the so called standard dependency
scheme (see also Definition 3.4.17 on page 49). We consider the standard
dependency scheme to be more sophisticated than quantifier trees because it
can be computed deterministically. Further, it might prove certain tree-like
dependencies spurious. We will see that the standard dependency scheme is
never worse than quantifier trees with respect to dependencies. It is often
able to grant more freedom to a QBF solver than quantifier trees. These
observations motivate the use of dependency schemes instead of quantifier
trees for dependency analysis in the context of QBF solving.

3.3.1 Dependency Schemes: An Informal View

Dependency schemes provide a formal framework to express the notion of
variable dependencies [111, 113]. Given some PCNF ψ, a dependency scheme
for ψ is a binary relation D on the set of variables V of ψ where (x, y) ∈
D if y is assumed to depend on x. We point out in Section 3.4 that a
dependency schemeD must be constructed such that no actual dependencies
are missed. However, D might contain spurious ones. If (x, y) 6∈ D then it is
guaranteed that y is independent from x, and there is no actual dependency
between x and y. Note that, as above, we use the term “dependencies” rather
informally in this section. Independence can be exploited by a QBF solver.

Example 3.3.1. Given PCNF ψ := ∀x∃y. (x∨¬y)∧(¬x∨y) from Example
3.1.1 and relations D := {(x, y)} and D′ := ∅. Relation D is a correct
dependency scheme for ψ since, as pointed out in Example 3.1.1, y depends
on x. A QDPLL-based solver relying on D will have to assign x before y. In
contrast to that, D′ is no dependency scheme since (x, y) 6∈ D′ but there is
an actual dependency between x and y. Assigning y before x as suggested
by D′ is unsound.

Example 3.3.2. Given PCNF ψ := ∀x∃y. (x∨¬y)∧(¬x∨¬y) from Example
3.1.3 and relations D := {(x, y)} and D′ := ∅. Both relations D and D′ are
correct dependency schemes. Variables x and y are independent as argued
in Example 3.1.3 and so y can be assigned before x as suggested by D′.
A QDPLL-based solver relying on D would not be able to do so due to
dependency (x, y) ∈ D, which is actually spurious.

In practice, a dependency scheme D must be computed according to
some strategy which influences the quality of D in terms of spurious depen-
dencies. For example, we could analyze the syntactic structure of a PCNF

32 CHAPTER 3. DEPENDENCY SCHEMES

to figure out dependencies. Trivially, D could be defined to correspond to
the quantifier prefix: (x, y) ∈ D if y occurs to the right of x in the prefix
and is quantified differently. Such trivial dependency scheme is usually too
restrictive and contains spurious dependencies. The goal is to minimize the
size of a dependency scheme to allow more freedom during QBF solving.

Example 3.3.3. Given formula ρ := (∃x. φ)∧ (∀y. φ′) from Example 3.2.1.
We construct a dependency schemeDtree for ρ from tree-like quantifier struc-
ture by adding pair (x, y) to Dtree if x and y are differently quantified and
Qx is a predecessor Q′y in the parse tree, where Q,Q′ ∈ {∀, ∃} and Q 6= Q′.
However, in this case Dtree = ∅ since x and y are unrelated. If we take the
prenex formulae ρ′ := ∃x∀y. φ∧φ′ or ρ′′ := ∀y∃x. φ∧φ′ from Example 3.2.1,
then the trivial dependency scheme Dtriv based on the prefix contains either
(x, y) or (y, x), respectively. In this case we consider Dtree better than either
of Dtriv because it allows more freedom due to fewer dependencies.

In Example 3.3.3 we constructed dependency schemes Dtree and Dtriv

from tree-like quantifier structure and quantifier prefixes, respectively. Hence
these two approaches for dependency analysis fit into the general framework
of dependency schemes. We observed that Dtree was better than Dtriv in
the sense of fewer dependencies. Actually, as shown in Section 3.4.4 below,
we can compare dependency schemes in that respect.

In the following, we show by examples that Dtree is not optimal among
syntactic approaches for dependency analysis in PCNFs. There are more
sophisticated dependency schemes which can be computed from the syntac-
tic structure. We point out that the so called standard dependency scheme
Dstd has advantages over Dtree. Construction is entirely deterministic and
thus Dstd is unique for every PCNF. It is superior to Dtree in the sense that
it will never identify more dependencies than Dtree. We elaborate more on
Dtriv, Dtree and Dstd in Section 3.4.3 below. Now we consider a concrete
example illustrating the advantages of Dstd on a given PCNF.

3.3.2 The Standard Dependency Scheme vs. Quantifier Trees

Example 3.3.4. Given PCNF

∃a,b∀x,y∃c,d. (a ∨ x ∨ c) ∧ (a ∨ b) ∧ (b ∨ y ∨ d).

Minimizing the scopes of ∃c, ∃d, ∀x and ∀y yields

∃a,b. (∀x∃c. (a ∨ x ∨ c)) ∧ (a ∨ b) ∧ (∀y∃d. (b ∨ y ∨ d)).

Now there is the non-deterministic choice whether to first minimize ∃b and
then ∃a or vice versa. Figure 3.4 shows the quantifier trees (left and middle)
for the two alternatives. Dependency schemes resulting from the trees are

D := {(a, x), (x, c), (a, y), (b, y), (y, d)}

3.3. QUANTIFIER TREES ARE NOT OPTIMAL 33

∃a

∀x

∃c

∃b

∀y

∃d

∃b

∃a

∀x

∃c

∀y

∃d

∃a

∀x

∃c

∃b

∀y

∃d

Figure 3.4: Two possible quantifier trees for the PCNF ∃a,b∀x,y∃c,d. (a ∨
x ∨ c) ∧ (a ∨ b) ∧ (b ∨ y ∨ d) from Example 3.3.4 obtained by anti-prenexing
(left and middle) and dependencies by the standard dependency schemeDstd

from Example 3.3.5 (right).

and

D′ := {(b, x), (a, x), (x, c), (b, y), (y, d)}

for the tree on the left and in the middle of Figure 3.4, respectively.

The standard dependency scheme Dstd was introduced in [113] and is
based on ideas from expansion-based solvers [16, 25]. Dependencies are
identified by analyzing connections between variables in a PCNF over se-
quences of clauses. We present an algorithm for constructing Dstd and re-
lated theoretical properties in Chapter 4. The following example illustrates
the construction informally (see also Definition 3.4.17 on page 49).

Example 3.3.5. Given the PCNF ∃a,b∀x,y∃c,d. (a∨x∨c)∧(a∨b)∧(b∨y∨d)
from Example 3.3.4. There is a connection between a, x and c because they
occur in the common clause (a ∨ x ∨ c). Similarly there is a connection
between b, y and d by clause (b∨y∨d). However, there is a connection neither
between a and y nor between b and x. We could establish a connection
between a and y, for example, by clause (a∨ b) and then continue with b in
clause (b ∨ y ∨ d) but this is ruled out by definition of Dstd. When starting
from a or b, clause (a∨b) is no connection point because the two variables are
in the same quantifier block. Dependencies follow from connections between
differently quantified variables: Dstd := {(a, x), (x, c), (b, y), (y, d)}.

Note that in Example 3.3.5 (a, y) 6∈ Dstd and (b, x) 6∈ Dstd, hence y does
not depend on a and x not on b by Dstd. Comparing dependencies in Dtree

from Examples 3.3.4 and 3.3.5 shows a crucial difference between tree-like
quantifier structure and Dstd. Dependencies by Dstd can be strictly less
restrictive. No matter which of the two non-deterministically constructed
quantifier trees in Figure 3.4 is taken for dependency computation, either
(a, y) or (b, x) is included in the resulting dependency scheme but neither in
Dstd. For the PCNF from Example 3.3.4, Dstd is clearly superior than Dtriv

and Dtree. Different sets of dependencies in dependency schemes might have
severe impacts on the performance of QBF solvers.

34 CHAPTER 3. DEPENDENCY SCHEMES

3.3.3 The Benefits of More Powerful Dependency Schemes

Above we pointed out that the standard dependency scheme Dstd for a given
PCNF might be superior to dependency analysis based on tree-like quantifier
structure. Now we consider a more realistic, practical example related to
QBF solving. In the following, we introduce a family of PCNFs containing
specific subformulae which are provably hard to decide for QDPLL-based
solvers. On these PCNFs, QDPLL relying on Dstd can avoid to tackle the
hard subformulae. Instead, solving other, easier parts of the formula yield
a quick answer for the entire PCNF. As we are going to show, such quick
answer cannot be obtained using QDPLL with Dtree in general.

Similar observations were made with respect to Dtree and the prefix-
based trivial dependency scheme Dtriv we computed in Example 3.3.3 [62].
Different from that we do not restrict ourselves to Dtree. We argue that
QBF solvers in general can benefit from more powerful dependency analy-
sis relying on dependency schemes. This also applies to schemes that have
not yet been applied in practical QBF solving, like the triangle dependency
scheme [111, 113], or the quadrangle dependency scheme and resolution path
dependencies [51]. Although our example points out that Dstd is favourable
compared to Dtree, this also holds with respect to Dtriv since Dtree is never
worse than Dtriv (see also Example 3.3.3 and Section 3.4.4 below). In ad-
dition to search-based QBF solving, we argue that QBF solvers based on
variable elimination can benefit from dependency schemes as well.

Search-Based QBF Solving

Example 3.3.6. Given the unsatisfiable PCNF

ψ := ∃a,b,b1, . . . , bn∀x,y∃c,d. (a∨x∨c)∧(a∨b∨b1∨. . .∨bn)∧(b∨y∨d)∧φ
′∧φ′′,

where φ′ := (x ∨ c) ∧ (x ∨ ¬c) is a CNF which is unsatisfiable under the
quantifier prefix of ψ. Let φ′′ be a pigeon hole formula [35, 69] in CNF
over n variables {b1, . . . , bn}, which is unsatisfiable as well. Figure 3.5 shows
quantifier trees for ψ obtained by anti-prenexing like in Figure 3.4. Again
there is the non-deterministic choice whether to first minimize a and then b
and all bi or vice versa like in Example 3.3.4. The right part of Figure 3.5
shows dependencies in ψ by the standard dependency scheme Dstd similar
to Figure 3.4.

The pigeon hole formula φ′′ of ψ from Example 3.3.6 is propositional since
it does not contain universal variables. This class of unsatisfiable formulae
is hard for DPLL-based solvers [69].4 For a sufficiently large number of

4It was proved in [69] that any resolution refutation of a pigeon hole formula involves
an exponential number of resolvents. Due to related results [9, 10, 22], general resolution is
exponentially stronger than classical DPLL [37], which corresponds to tree-like resolution.
Therefore, DPLL-based algorithms including QDPLL require exponential time to solve a
pigeon hole formula as in Example 3.3.6.

3.3. QUANTIFIER TREES ARE NOT OPTIMAL 35

∃a

∀x

∃c

∃b, b1, . . . , bn

∀y

∃d

∃b, b1, . . . , bn

∃a

∀x

∃c

∀y

∃d

∃a

∀x

∃c

∃b, b1, . . . , bn

∀y

∃d

Figure 3.5: Two possible quantifier trees for the PCNF ψ from Example 3.3.6
shown above on the left have similar shape as the ones in Figure 3.4. The
graph on the right shows dependencies by the standard dependency scheme.

variables b1, . . . , bn, any such solver will spend exponential time to decide
that the pigeon hole formula is unsatisfiable.

Although formula ψ contains the hard subfomula φ′′, it can be decided
quickly using a QDPLL-based solver that relies on Dstd and clause learning
that we briefly addressed in Section 2.3.1. Once variable a is assigned,
subformula φ′ can be found unsatisfiable by assigning x and c. Note that x
is universally quantified under the prefix of ψ and that x does not depend on
variables b and b1, . . . , bn as shown on the right in Figure 3.5. Starting from
the particular clause of φ′ which is falsified under the current assignment,
that is either (x ∨ c) or (x ∨ ¬c), the clause learning mechanism derives
the empty clause from clauses (x ∨ c) and (x ∨ ¬c) by Q-resolution. This
immediately shows unsatisfiability of the entire PCNF ψ. We deal with
Q-resolution and the practice of clause learning in detail in Chapter 5.

The quick answer by QDPLL based on Dstd outlined above in general
cannot be obtained when usingDtree from the quantifier tree in the middle of
Figure 3.5. Apart from a, variable b and all of b1, . . . , bn have to be assigned
before x and c due to dependencies by the quantifier tree, which are spurious
in contrast to Dstd. This causes the solver to tackle the hard pigeon hole
formula φ′′ where it spends an exponential amount of time. Clauses in φ′

cannot be falsified by assigning b, b1, . . . , bn because those variables do not
occur in φ′. Hence the clause learning heuristics will not be able to infer the
empty clause from φ′ as before when Dstd was used.

It is important to note that general Q-resolution without QDPLL is of
course able to derive the empty clause from clauses in φ′ independently from
dependency schemes. In contrast to that, here we focus on a combination of
QDPLL and heuristic clause learning which is common in search-based QBF
solving [58, 78, 133, 134]. Example 3.3.6 shows that more powerful depen-
dency schemes might uncover additional heuristic Q-resolution derivations,
which could yield exponential gaps in solving times as shown above.

However, Example 3.3.6 does not show that more powerful dependency
schemes always guarantee better performance of QDPLL-based solvers. In-
stead, such schemes might grant solvers the freedom to enter promising parts

36 CHAPTER 3. DEPENDENCY SCHEMES

of the search space, but they do not prevent worst-case behaviour. After
variable a was assigned in the example above, according to Dstd QDPLL
is free to assign x or b, b1, . . . , bn. In the latter case, the solver just as well
attempts to solve the pigeon hole formula, thus running into exponential
time behaviour. However, it could have assigned x according to Dstd, which
is impossible if Dtree is used. Consequently, decision heuristics also influence
the benefits resulting from more powerful dependency schemes in practice.

It is straightforward to adapt the formula from Example 3.3.6 such that
QDPLL with Dtree from the first quantifier tree in Figure 3.5 exhibits ex-
ponential behaviour as well. Hence this example shows that QDPLL with
Dtree obtained by mini-scoping might be strictly worse than QDPLL with
Dstd. In Section 3.4.4 below we argue that Dstd never contains more spu-
rious dependencies than Dtree. If we combine QDPLL with Dstd then we
will have at least the same, and possibly more, amount of freedom for as-
signing variables than with Dtree. Together with observations related to
non-determinism of mini-scoping in Section 3.2.2, this property clearly mo-
tivates to use of dependency schemes like Dstd which are superior to Dtree

by mini-scoping.

Variable Elimination

Apart from search-based QBF solvers, more powerful dependency schemes
have the potential to improve QBF solving by variable elimination as well.
According to Lemma 2.3.3 on page 20, expansion of universal variables in-
volves duplication of existential variables which are larger by the prefix or-
dering. The prefix ordering actually corresponds to the trivial dependency
scheme Dtriv. The number of duplicated variables influences the size of the
subformula that has to be copied. Consequently, our goal is to minimize
that size, which can be achieved by dependency schemes other than Dtriv.

Example 3.3.7 (taken from [113]). Given PCNF

ψ := ∀x, y∃a1, . . . , an. (x∨¬a1)∧ (a1 ∨¬a2)∧ . . .∧ (an−1 ∨¬an)∧ (y ∨ an).

Expansion of x by Lemma 2.3.3 and Dtriv has to duplicate a1, . . . , an and
hence copy all clauses of the formula although x itself occurs only in the
first clause. This doubles the size of the formula. Neither Dstd nor any non-
deterministically constructed Dtree can improve this situation since Dtriv =
Dtree = Dstd in this case. On the contrary, the triangle dependency scheme
and generalizations thereof [51, 111, 113] find out that none of a1, . . . , an
depends on x. The triangle dependency scheme is similar to Dstd, but it
is based on a more refined notion of connections between variables. We do
not introduce it formally and only argue that it is superior to Dstd. Thus
the prefix of ψ can be modified to ∀y∃a1, . . . , an∀x by shifting x to the right
over all ai. Now x is innermost and can be expanded by Lemma 2.3.2 on

3.4. THE THEORY OF DEPENDENCY SCHEMES 37

page 20 where duplication of variables is not required. Actually, x can also
be eliminated by universal reduction (see Section 5.3.1 on page 96). The
result is similar to expansion by Lemma 2.3.2 and does not increase the size
of the formula at all. This was observed in [113] already.

3.4 The Theory of Dependency Schemes

In the previous sections, we introduced the notion of variable dependencies
and dependency schemes for PCNFs informally. We observed that inde-
pendence between variables can be exploited by QBF solvers to relax the
linear ordering in the quantifier prefix of PCNFs. This might enable solvers
to tackle subproblems which can be decided quickly, which in turn could
have positive effects on the overall solving process. Related observations
were made in Examples 3.3.6 and 3.3.7 above. In the best case, exponential
improvements with respect to solving time and space requirements can be
achieved. At the same time, it is crucial to be aware of which variables
depend on each other. Neglecting such dependencies in QBF solving can
yield unsound results. This was pointed out in Examples 3.1.1 and 3.1.2 for
solvers based on search and on variable elimination, respectively.

In this section we introduce the theoretical framework of dependency
schemes, which was first presented in the context of QBF [112, 113]. Later
this concept was extended to quantified constraint satisfaction problems
(CSP) [111]. QBFs can be regarded as a special type of quantified CSPs
where variables have Boolean domain with only two values true and false.
Therefore, dependency schemes related to CSPs can also be applied to QBF.
One of our goals is to apply the theoretical concept of dependency schemes in
practical QBF solving. In Chapter 5 we point out that dependency schemes
in general are inherent to QBF semantics. This is true even for work from
the early days of QBF solving when dependency schemes were still unknown,
like for the original QDPLL algorithm [30], for example.

We adopt the theoretical framework of dependency schemes introduced
in this section from related work [111, 113], particularly from the field of
quantified CSPs. As observed in [111], dependency schemes for quantified
CSPs are based on a more precise notion of independence compared to the
original definitions made in the context of QBF [113]. This is the reason
why we rely on definitions related to quantified CSPs. Additionally, in
Section 3.4.5 we attempt to summarize and extend observations made in
[111, 113] with respect to practical applications of dependency schemes.

3.4.1 Variable Independence

We define independence between variables in a given PCNF ψ with respect
to PCNF-models of ψ [111]. Variable independence is the foundation of de-
pendency schemes which are formally introduced in Section 3.4.2 below. We

38 CHAPTER 3. DEPENDENCY SCHEMES

already considered dependency schemes informally in Section 3.3.1. Exam-
ples 3.1.1 and 3.1.3 point out that changing the quantifier ordering of the
prefix by shifting variables might change satisfiability of a PCNF. If shifting
preserves satisfiability, then this is due to independence between variables
the relative order of which was changed by shifting. This idea led to the first
theoretical framework of independence and dependency schemes [112, 113].
However, it turned out that quantifier shifting is not adequate. There are
formulae where changing the relative ordering of two variables by shifting
changes satisfiability [111], although these variables are independent accord-
ing to the model-based definition we focus on (see also Example 3.4.5 below).

Independence of Existential Variables

Differently from the original definition [111], we present independence be-
tween variables separately with respect to quantifier types. That is, we
are interested whether two variables x and y in PCNFs with prefix pat-
terns . . . ∀x . . . ∃y . . . or . . . ∃y . . . ∀x . . . are independent. Variables with same
quantifier types are always independent. We refer to Sections 1 and 3 of the
original work [111]. Example 3.4.1 below illustrates the following definitions.

Definition 3.4.1. Given an assignment tree T and a node N in T , the depth
of N is d(N) := 0 if N is the root of T , and d(N) := d(p(N)) + 1 otherwise,
where p(N) is the unique parent node N ′ such that N is a child of N ′.

Definition 3.4.2 (adapted from [111]). Given an assignment tree T and a
variable x, T [x] is the sequence of all literals l1, . . . , lm with v(li) = x which
are assigned by nodes N1, . . . , Nm in T .

Note that all nodes Ni in Definition 3.4.2 have the same depth since
assignments along paths in assignment trees are complete. Further, sequence
T [x] is uniquely determined for universal variables because siblings of nodes
which assign universal variables are ordered by Definition 2.2.3 on page 12.

Definition 3.4.3. Given a PCNF ψ := Q1({x} ∪ B1) . . . QnBn. φ and an
assignment tree T with root node r. Then Tx (T¬x) with root r′ denotes
the immediate assignment subtree of T such that r′ assigns x to true (false)
and r is parent of r′.

Example 3.4.1. Let T be the left assignment tree in Figure 3.6 on page 40.
Nodes which assign variable y1 all have depth two. Given variables x2 and
y2, T [x2] = ¬x2, x2,¬x2, x2 and T [y2] = ¬y2,¬y2, y2, y2 are the sequences of
literals assigned by nodes in T , respectively. For the two siblings of universal
nodes in T , always the left (right) sibling assigns ⊥ (⊤) to a variable. The
left (right) child of the root r of T is the immediate subtree T¬x1 (Tx1) of
T . Note that notation Tx2 , for example, is undefined.

3.4. THE THEORY OF DEPENDENCY SCHEMES 39

In the following, we formally define the independence of existential vari-
ables from smaller universal ones in the quantifier prefix of a PCNF. Exam-
ple 3.4.2 and Figure 3.4.2 below illustrate the definition.

Definition 3.4.4 (adapted from [111]). Given the PCNF

ψ := Q1B1 . . . ∃Bi−1∀({x} ∪Bi) . . . ∃({y} ∪Bj) . . . QnBn. φ,

where x is universal, y is existential and x < y. Let

ψ′ := ∀{x}Q1B1 . . . ∃Bi−1∀Bi . . . ∃({y} ∪Bj) . . . QnBn. φ

be the PCNF obtained from ψ by shifting x to the front of the prefix. Then
x and y are independent in ψ if the following condition holds:

If the original PCNF ψ has a PCNF-model T then ψ′ has a PCNF-
model T ′ where T ′

¬x[z] = T ′
x[z] for all z ∈ ({y} ∪B1 ∪ . . . ∪Bi−1).

Variable x in Definition 3.4.4 is shifted to the front of the prefix of ψ
to allow for applications of Definition 3.4.2 and 3.4.3. The intuition behind
independence by Definition 3.4.4 is based on observations made in Exam-
ple 3.1.3 on page 25. Since x is smaller than y in the original PCNF ψ by
prefix ordering, x is assigned before y along all paths in a PCNF-model of
ψ. Thus y might take different values in different subtrees with respect to
x. If it is possible to construct a specific PCNF-model T for ψ where the
values of y are the same in all subtrees with respect to x then apparently
the choice of values for y does not depend on the current values of x. In this
case, changing the value of the universal variable x does not force changing
the value of y to obtain the PCNF-model T for ψ.

We express the existence of the specific PCNF-model T of ψ indirectly by
the modified PCNF ψ′, where x is outermost, and its PCNF-model T ′ with
T ′
¬x[y] = T ′

x[y] as required in Definition 3.4.4 above. The idea of using PCNF
ψ′ is to explicitly compare the values of y with respect to current values of
x. Variable x was shifted to the front of the prefix in ψ′ to allow for such
comparison relying on immediate assignment subtrees by Definition 3.4.3.
The sequences of values assigned to y in different subtrees of T ′ with respect
to x must be equal, that is T ′

¬x[y] = T ′
x[y]. Note that y still can take different

values as pointed out in Example 3.4.2 below. The same condition must hold
in T ′ for variables which are smaller than x in the prefix of the original PCNF
ψ, that is T ′

¬x[z] = T ′
x[z] for all z ∈ (B1 ∪ . . . ∪ Bi−1). This requirement is

necessary, since x was shifted to obtain ψ′. Otherwise, the variables which
are smaller than x in ψ could take different values with respect to x in T ′,
which is not possible in the original PCNF ψ. Note that T ′ is a PCNF-model
of ψ′, which was obtained from ψ by shifting x. However, due to the specific
properties of T ′ ensured by the conditions in Definition 3.4.4, we conclude
that the original PCNF ψ has some other PCNF-model T where the values
of y are chosen independently from the current values of x. Consequently,
x and y are independent in the original PCNF ψ.

40 CHAPTER 3. DEPENDENCY SCHEMES

r

¬x1

y1

¬x2

¬y2

x2

¬y2

x1

y1

¬x2

y2

x2

y2

r

¬x2

¬x1

y1

¬y2

x1

y1

y2

x2

¬x1

y1

¬y2

x1

y1

y2

Figure 3.6: Given a satisfiable PCNF ψ := ∀x1∃y1∀x2∃y2. φ. Variable y2
is independent of x2 by Definition 3.4.4. Assume that the assignment tree
T on the left is a PCNF-model of ψ. Based on the PCNF-model T ′ of
ψ′ := ∀x2,x1∃y1,y2. φ shown on the right, sequences of values of y2 can be
compared. See also Example 3.4.2.

Example 3.4.2. Figure 3.6 illustrates independence by Definition 3.4.4.
Given the satisfiable PCNF ψ := ∀x1∃y1∀x2∃y2. φ. Assume that the assign-
ment tree T on the left in Figure 3.6 is a PCNF-model of the original PCNF
ψ. Variable y2 is independent of x2 in ψ. This is due to PCNF-model T ′ of
ψ′ := ∀x2,x1∃y1,y2. φ on the right in Figure 3.6 where x2 was shifted to the
front of the prefix. The sequence T ′

¬x2 [y2] = ¬y2, y2 in subtree T ′
¬x2 is equal

to the sequence T ′
x2
[y2] = ¬y2, y2 in subtree T ′

x2
. Additionally, as required

by Definition 3.4.4, we have T ′
¬x2 [y1] = T ′

x2
[y1] and T ′

¬x2 [x1] = T ′
x2
[x1] for

variables y1 and x1 which are smaller than x2 with respect to ψ.

Related to Example 3.4.2, it is important to note that the value of the
existential variable y in Definition 3.4.4 does not have to be either only ⊤ or
only ⊥ in both immediate assignment subtrees. The value of y can change
but it is crucial whether such change is due to x or some other universal
variable. In Example 3.4.2, the universal variable x1 forces the change of the
value of y2 but not x2, as can be seen from the PCNF-models in Figure 3.6.

Further, note that by Definition 3.4.4 any existential variable y larger
than x in the original PCNF ψ is trivially independent from x if ψ is unsatis-
fiable. In this case, ψ does not have a PCNF-model and hence the condition
of independence is vacuously true.

The additional criterion for restricting the value of variables (B1 ∪ . . . ∪
Bi−1) which are smaller than x in ψ takes into account universal variables
as well. Actually, this requirement is crucial for existential variables only.
Nodes assigning universal variables always have exactly one sibling. By
Definition 2.2.3 on page 12, the siblings of universal nodes in assignment
trees are ordered. Therefore, the sequences of values of universal variables
by Definition 3.4.2 are always unique.

3.4. THE THEORY OF DEPENDENCY SCHEMES 41

Independence of Universal Variables

Now we consider PCNFs with prefix pattern . . . ∃y . . . ∀x . . . and check if
x is independent from y. This situation is dual to the one pointed out in
Definition 3.4.4 and is illustrated by the following example.

Example 3.4.3. Given the unsatisfiable PCNF ψ := ∃y∀x. (y∨x)∧(¬y∨x).
We swap the variables in the prefix to obtain ψ′ := ∀x∃y. (y ∨x)∧ (¬y ∨x).
The prefix order of ψ′ allows different values of y with respect to x in assign-
ment trees of ψ′. As ψ′ is also unsatisfiable, we conclude that x is indepen-
dent from y in ψ since the formula remains unsatisfiable under additional
freedom to select different values for y according to the prefix of ψ′.5

Given Example 3.4.3, interesting cases of independence arise from un-
satisfiable PCNFs with prefix pattern . . . ∃y . . . ∀x . . . only. For satisfiable
ones, independence of x and y is trivial, which is explained informally as
follows. If a PCNFs ψ with prefix pattern . . . ∃y . . . ∀x . . . is satisfiable, then
y is assigned before x in every path of every PCNF-model of ψ which fixes
the value of y for all values of x. We could assign the same, fixed value to
y after swapping x and y in the prefix of ψ. Hence x and y are independent
if ψ is satisfiable.

If a PCNF ψ with prefix pattern . . . ∃y . . . ∀x . . . is unsatisfiable then we
want to know whether the formula remains unsatisfiable even if we allow
different values for the existential variable y with respect to universal vari-
able x. If so, then we regard x and y as independent. However, since y < x
in the prefix ordering we cannot express the choice of different values for
y based on assignment trees of ψ as we did in Definition 3.4.4. Along the
paths of an assignment tree of ψ, y is always assigned before x and hence
the values of y are fixed for all values of x.

Different from Definition 3.4.4, we argue indirectly as follows. Given an
unsatisfiable PCNF ψ with prefix pattern . . . ∃y . . . ∀x We want to check
whether x and y are independent. Instead of the original statement

“If PCNF ψ, where the value of y is assigned before x in every
assignment tree, is unsatisfiable, then ψ, where we allow different
values for y with respect to x, is unsatisfiable.”

we consider the contrapositive statement

“If PCNF ψ, where we allow different values for y with respect
to x, is satisfiable, then PCNF ψ, where the value of y is assigned
before x in every assignment tree, is satisfiable.”

To express the contrapositive statement above in terms of assignment
trees like in Definition 3.4.4, we obtain the PCNF ψ′ from ψ by shifting

5Compare to Example 3.1.3 on page 25.

42 CHAPTER 3. DEPENDENCY SCHEMES

x to the front of the quantifier prefix of ψ. That is, ψ′ has prefix pattern
∀x . . . ∃y In PCNF ψ′ we have x < y by prefix ordering.

We use ψ′ to express the antecedent

”If PCNF ψ, where we allow different values for y with respect
to x, is satisfiable,. . . ”

of the contrapositive statement by searching for a PCNF-model T ′ of
ψ′ such that variables z 6= y where z < x in the original PCNF ψ are
assigned the same values with respect to x in T ′. The restriction on the
values of variables z is necessary because we want to allow only variable
y to get different values with respect to x in the PCNF-model T ′ of ψ′.
Actually, we can think of that restriction as a “simulation” of the original
prefix ordering of PCNF ψ where we had z < x. Thus, every variable z is
assigned before x in a PCNF-model of the original PCNF ψ. We enforce
that original assignment ordering indirectly by imposing the restriction on
variables z in the PCNF-model T ′ of the modified PCNF ψ′, where x is
outermost in the prefix and therefore is assigned before z.

In order to express the consequent

”. . . , then PCNF ψ, where the value of y is assigned before x in
every assignment tree, is satisfiable.”

of the contrapositive statement, we search for another PCNF-model T ′′ of
ψ′ where, in addition to the above restriction of values for variables z with
z < x in the original PCNF ψ, we require that y is assigned the same value
with respect to x.

Given the contrapositive statement from above and the modified PCNF
ψ′ where x is outermost in the prefix, we formally define independence of x
and y as follows.

Definition 3.4.5 (adapted from [111]). Given a PCNF

ψ := Q1B1 . . . ∀Bi−1∃({y} ∪Bi) . . . ∀({x} ∪Bj) . . . QnBn. φ,

where y is existential, x is universal and y < x. Let

ψ′ := ∀{x}Q1B1 . . . ∀Bi−1∃({y} ∪Bi) . . . ∀(Bj) . . . QnBn. φ

be the PCNF obtained from ψ by shifting x to the front of the prefix. Then
x and y are independent in ψ if the following condition holds:

If ψ′ has a PCNF-model T ′ such that

T ′
¬x[z] = T ′

x[z] for all z ∈ ((B1 ∪ . . . ∪Bj−1) \ {y})

then ψ′ has a PCNF-model T ′′ such that

T ′′
¬x[z] = T ′′

x [z] for all z ∈ (B1 ∪ . . . ∪Bj−1 ∪ {y}).

3.4. THE THEORY OF DEPENDENCY SCHEMES 43

r

u

¬v

y

¬x x

v

y

¬x x

r

¬x

u

¬v

¬y

v

¬y

x

u

¬v

y

v

y

r

¬x

u

¬v

y

v

¬y

x

u

¬v

y

v

¬y

Figure 3.7: Given the PCNF ψ := ∃u∀v∃y∀x. φ from Example 3.4.4. An
assignment tree of ψ (no PCNF-model) is shown on the left. The other two
trees are PCNF-models T ′ and T ′′ of the modified PCNF ψ′ := ∀x∃u∀v∃y. φ
as used in Definition 3.4.5 to explain independence of x and y.

Example 3.4.4 (from [111]). Assume that the PCNF ψ := ∃u∀v∃y∀x. φ is
unsatisfiable. We argue that x and y are independent by Definition 3.4.5. An
arbitrary assignment tree of ψ is shown on the left of Figure 3.7. Note that
y is assigned before x in that tree. We obtain the PCNF ψ′ := ∀x∃u∀v∃y. φ
from ψ by shifting x to the front of the prefix. The PCNF-model T ′ of ψ′ is
shown in the middle of Figure 3.7. Note that T ′

¬x[u] = T ′
x[u] = u as required

for T ′ by Definition 3.4.5 because u < x in the prefix of the original PCNF
ψ. Further, T ′

¬x[y] 6= T ′
x[y] hence y takes different values in T ′. Finally, the

PCNF-model T ′′ of ψ′ is shown in the right of Figure 3.7. Like with T ′, we
have T ′′

¬x[u] = T ′′
x [u] = u and additionally T ′′

¬x[y] = T ′′
x [y] = y,¬y.

The two cases of independence of two differently quantified variables by
Definitions 3.4.4 and 3.4.5 are sufficient. Two equally quantified variables
x and y are always considered to be independent [111]. The question of
whether x and y in a PCNF with prefix pattern . . . ∃x . . . ∀z . . . ∃y . . . are
independent, for example, can be dealt with either by Definition 3.4.4 or
3.4.5 with respect to x and z or z and y, respectively.

Expressing Independence by Shifting Variables

Our informal notion of independence used in earlier parts of this chapter
relies on modifications of the quantifier prefix by shifting variables like in
Examples 3.1.1, 3.1.3 and 3.4.3. If swapping two variables x and y in the
prefix of a PCNF preserves (un)satisfiability then we consider them as in-
dependent. Independence was explained by shifting in the first systematic
approach of dependency schemes [112, 113]. However, independence based
on assignment trees by Definitions 3.4.4 and 3.4.5 is strictly more refined,
as observed in [111, 113]. Problems occur if variables x and y are not from
quantifier blocks which are adjacent to each other in the prefix. Swapping
them also changes the relative order of x, y and other variables between x

44 CHAPTER 3. DEPENDENCY SCHEMES

and y. If swapping changes (un)satisfiability then this might also be due to
changes of that relative order. Although the notion of independence based
on assignment trees applies shifting as well to generate PCNFs ψ′ as in
Definitions 3.4.4 and 3.4.5, it is more fine-grain. It explicitly rules out the
effects of changes of the relative order of x, y and other variables. This is
achieved by restricting the values of variables smaller than the shifted one
in assignment trees of ψ′ as done in Definitions 3.4.4 and 3.4.5.

Example 3.4.5 (taken from [111]). Given a PCNF ψ := ∀x∃u∀y∃v. φ. By
applying Definitions 3.4.4 and 3.4.5, assume that we find out that x and
u, u and y, y and v are not independent, respectively. However, we still
could have that x and v are independent by Definition 3.4.4. In this case,
variables x and v cannot be swapped without changing the (un)satisfiability
of ψ. Doing so would also change the relative order of y and v, which are
not independent.

It is important to note that independence by Definitions 3.4.4 and 3.4.5
is precise. If variables are not independent then swapping them in the prefix
will change (un)satisfiability of the PCNF. Further, the other direction of the
situation illustrated in Example 3.4.5 holds: if two variables can be swapped
in the prefix of a PCNF then they are also independent by Definitions 3.4.4
and 3.4.5. This correlation was pointed out in [111].

3.4.2 Dependency Schemes

Given the precise notion of independence from the previous section, we now
introduce dependency schemes that we already considered informally in Sec-
tion 3.3.1 on page 31. We argued that QBF solvers can profit from indepen-
dence identified by some dependency scheme D. Dependencies according to
D given by (x, y) ∈ D must be respected in QBF solving to guarantee sound
results. However, we observed that dependencies can also be spurious in the
sense that they do not correspond to actual dependencies in a PCNF. This
was pointed out in Examples 3.3.1 and 3.3.2.

We first define dependency schemes relying on Definitions 3.4.4 and 3.4.5.
This gives rise to optimal dependency schemes where full and exact infor-
mation of independence is represented. That is, such optimal dependency
schemes do not contain any spurious dependencies. Unfortunately, this op-
timal approach is infeasible as pointed out by Proposition 3.4.3 on page 47.
Therefore, we introduce dependency schemes which can be computed effi-
ciently at the cost of optimality and comment on related properties. The
goal is to apply dependency schemes to relax the linear ordering of the vari-
ables as given by the quantifier prefix of PCNFs. Chapters 4 and 5 present
related applications of dependency schemes in search-based QBF solving.

Definition 3.4.6. Given a PCNF ψ over a set of variables V , V× :=
{(x, y) ∈ ((V∀ × V∃) ∪ (V∃ × V∀)) | x < y} is the set of all pairs (x, y) of

3.4. THE THEORY OF DEPENDENCY SCHEMES 45

differently quantified variables such that x is smaller than y in the quanti-
fier prefix of ψ.

Definition 3.4.7 (adapted from [111]). Given a PCNF ψ over variables
V . A binary relation D ⊆ V× is a dependency scheme for ψ if for all pairs
(x, y) ∈ V× the following holds: if (x, y) 6∈ D then x and y are independent
in ψ. We write x ≺D y if (x, y) ∈ D, or simply x ≺ y if D is arbitrary or
clear from the context.

Definition 3.4.8. Given a PCNF ψ and a dependency scheme D for ψ. A
pair (x, y) ∈ D is a dependency with respect to D. The set of dependencies of
some variable x with respect to D is D(x) := {y | (x, y) ∈ D}. Variables in
D(x) depend on x with respect to D. A dependency (x, y) ∈ D is spurious
if x and y are independent in ψ.

We say that “variable x depends on y” in a PCNF if the dependency
scheme D with (x, y) ∈ D is arbitrary or clear from the context.

Definition 3.4.9. Given a PCNF ψ over variables V and a dependency
scheme D for ψ. The transitive closure D∗ of D is defined as follows:

• D0 := D.

• For i ≥ 0, Di+1 := Di ∪ {(a, y) ∈ V× | ∃x, b ∈ V : (a, x) ∈ Di, (x, b) ∈
Di and (b, y) ∈ Di}.

• D∗ := Di where i is the smallest natural number such that Di = Di+1.

Definition 3.4.10. Given a PCNF ψ, a dependency scheme D for ψ is
transitive if and only if D = D∗.

Due to set V× by Definition 3.4.6, dependency schemes never contain
pairs of equally quantified variables. Similarly, such pairs are excluded from
sets Di in Definition 3.4.9. Given variables x and y, if q(x) = q(y) then, as
noted above, such variables are always regarded as independent and hence
(x, y) 6∈ D. Similarly, by Definition 3.4.6 pairs (x, y) where x > y are
excluded from any dependency scheme D. This is no limitation because the
symmetric pair (y, x) can be added to D if necessary.

Given a PCNF ψ and a dependency scheme D for ψ. If (x, y) 6∈ D
then search-based QBF solvers are free to assign x and y in arbitrary order,
provided that other dependencies in D are respected. For example, if ψ is
satisfiable, q(x) = ∀ and q(y) = ∃, then by Definition 3.4.4 there are PCNF-
models similar to T and T ′ of ψ where the value of y either might change
with respect to the value of x or where that value is fixed for all values of x.
This two possibilities cover the cases when the solver assigns x before y and
y before x, respectively. Satisfiability of ψ is not affected by the different
assignment orderings of x and y. Dependency schemes allow to generalize
semantics based on assignment trees by Definition 2.2.3.

46 CHAPTER 3. DEPENDENCY SCHEMES

Proposition 3.4.1. Given a PCNF ψ and a dependency scheme D for ψ,
ψ is satisfiable if and only if it has a PCNF-model T such that if (x, y) ∈ D
then x is predecessor of y on every path in T .

Proof. Due to Proposition 3.4.5 on page 51 below, the trivial dependency
scheme Dtriv given by the prefix of ψ is the largest possible dependency
scheme for ψ. Therefore, we have D ⊆ Dtriv. If (x, y) 6∈ D then x and y can
be assigned in arbitrary order along the paths in an assignment tree. In this
case, independence by Definitions 3.4.4 and 3.4.5 guarantees that a PCNF-
model can (not) be constructed. Thus (un)satisfiability is preserved.

Satisfiability of PCNFs by Proposition 3.4.1 in general imposes weaker
constraints on PCNF-models with respect to the ordering of assignments
along paths. The prefix-based linear ordering of paths in assignment trees
by Definition 2.2.3 can be relaxed by any arbitrary dependency scheme D
(see also Example 3.4.8 and Figure 3.9 on page 51). Spurious dependencies
in a dependency scheme restrict the freedom of QBF solvers as pointed out
in Example 3.3.2. If the dependency (x, y) ∈ D is spurious then the solver
never assigns y before x although the two variables are independent.

Intractability of Optimal Dependency Schemes

Definition 3.4.7 does not prevent spurious dependencies. The fewer depen-
dencies in D are spurious, the more freedom is granted by D to QBF solvers.
Based on that, we define a criterion of optimality of dependency schemes.

Definition 3.4.11. A dependency scheme Dopt for PCNF ψ is optimal if
and only if the following condition holds for all pairs (x, y) ∈ V×:

(x, y) 6∈ Dopt if and only if x and y are independent in ψ.

Proposition 3.4.2. The optimal dependency scheme Dopt for a PCNF ψ
is unique.

Proof. Given PCNF ψ, assume that dependency schemes D and D′ for ψ
are both optimal and that D 6= D′ due to, for example, (x, y) 6∈ D but
(x, y) ∈ D′. Since D is optimal and (x, y) 6∈ D, x and y are independent by
Definition 3.4.11. As (x, y) ∈ D′ and D′ is optimal, x and y are not inde-
pendent by Definition 3.4.11, which is a contradiction. Hence D = D′.

Definition 3.4.11 improves upon Definition 3.4.7 by including the other
direction of the implication: if x and y are independent then (x, y) 6∈ D.
This way, spurious dependencies are avoided at all. Consequently, there
is no dependency scheme D with D ⊂ Dopt. If any pair (x, y) ∈ Dopt is
removed, then Dopt is no longer a dependency scheme. Given a PCNF ψ,
we can compute the optimal dependency scheme Dopt by checking if x and
y are independent for all pairs (x, y) ∈ V×. While Dopt grants full freedom
to QBF solvers, it typically cannot be applied in practice.

3.4. THE THEORY OF DEPENDENCY SCHEMES 47

Proposition 3.4.3 (related to Proposition 2 in [113]). Computing the opti-
mal dependency scheme Dopt for a PCNF ψ is at least as hard as solving ψ.

Proof. The conditions in Definitions 3.4.4 and 3.4.5 involve searching for
PCNF-models. Thus the satisfiability of the PCNFs ψ and ψ′ must be
decided, a problem which is PSPACE-complete. To compute Dopt, this
must be carried out O(|V×|) times in the worst case.

3.4.3 Tractable Dependency Schemes

Following from Proposition 3.4.3, optimal dependency schemes cannot be
applied for QBF solving in practice. Therefore, we have to trade optimality
for efficiency. Different from optimal dependency schemes, we want to allow
spurious dependencies in dependency schemes. Under that relaxation, it
turns out that there are several dependency schemes which can be computed
efficiently. At the same time, these schemes are able to grant considerable
freedom to QBF solvers to improve their performance in practice. We show
related experimental results in Chapter 5. In this section, we introduce
dependency schemes that we considered informally in Section 3.3.1 on page
31. All of these schemes can be computed in polynomial-time with respect
to the size of a PCNF ψ. For convenience, we also use the term “dependency
scheme” to denote an approach to construct a relation D which then has the
properties of a dependency scheme for some PCNF ψ by Definition 3.4.7.

Definition 3.4.12 ([113]). A dependency scheme D is tractable if, for all
PCNFs ψ and for all pairs (x, y) ∈ V×, it can be decided in polynomial-time
whether (x, y) ∈ D or (x, y) 6∈ D.

Tractability of dependency schemes is a rather theoretical concept. In the
worst case, O(|V |2) pairs have to be considered to computeD which yields at
least a quadratic overhead in the end. Although being polynomial-time, this
could be too expensive for practical applications if the number of variables
is large. In Chapter 4 we present an algorithm to compute the standard
dependency scheme Dstd which was briefly illustrated in Example 3.3.5. It
turns out that Dstd can be computed and represented efficiently in practice.

Tractable dependency schemes by Definition 3.4.12 do not prevent spu-
rious dependencies. Depending on the concrete algorithm that is used to
compute D, a dependency (x, y) ∈ D might be spurious. If (x, y) 6∈ D
then variables x and y must be independent because otherwise D is not a
dependency scheme by Definition 3.4.7.

In the following, we define tractable dependency schemes which can be
computed by analyzing the syntactic structure of a PCNF. In Section 3.4.4
below, we compare these schemes by the number of spurious dependencies,
which gives rise to a hierarchy of dependency schemes.

48 CHAPTER 3. DEPENDENCY SCHEMES

y

C3 Ck−2

C2 Ck−1 Ck

v1 v2 vk−1vk−2

C1

.x

Figure 3.8: Variables x and y are connected to each other by an X-path with
clauses C1, . . . , Ck where X := {v1, . . . , vk−1}. See also Definition 3.4.15 and
Example 3.4.6.

Definition 3.4.13 (taken from [113]). Given a PCNF ψ over variables V ,
Dtriv := V× is the trivial dependency scheme for ψ.

Dependencies in the trivial dependency scheme Dtriv for a PCNF ψ cor-
respond exactly to the linear ordering of the quantifier prefix of ψ. This
causes variables to be assigned “from left to right” in classical QDPLL [30],
for example. In Chapter 5 we point out the benefits of applying dependency
schemes other than Dtriv in QDPLL. Due to Proposition 3.4.5 below, Dtriv

is the largest possible dependency scheme for a PCNF as it is equal to V×.

Definition 3.4.14. Given a PCNF ψ, let ψ′ be a non-deterministically con-
structed non-prenex CNF formula obtained from mini-scoping by quantifier
shifting rules from Section 3.2.1 on page 27. The parse tree of ψ′ induces
the dependency scheme Dtree ⊆ V× for ψ: (x, y) ∈ Dtree if x is predecessor
of y in the parse tree of ψ′ and q(x) 6= q(y).

Dependency analysis by quantifier trees [12] is closely related to Def-
inition 3.4.14, but different from the former we do not take into account
duplication of universal variables by distributivity: ∀x. (φ ∧ φ′) ≡ (∀x. φ) ∧
(∀x′. φ′). We illustrated the construction ofDtree in Examples 3.3.3 and 3.3.4.

Next, we introduce the standard dependency scheme Dstd we informally
discussed in Sections 3.3.1 and 3.3.2 already. Construction of Dstd is based
on checking if variables are connected to each other by particular sequences
of clauses, which was illustrated in Example 3.3.5 on page 33.

Definition 3.4.15 ([82, 113]). Given PCNF ψ over variables V , set X ⊆ V
and variables x, y ∈ V . An X-path between x and y is a sequence C1, . . . , Ck
of clauses in ψ such that x ∈ C1, y ∈ Ck and Ci∩Ci+1∩X 6= ∅ for 1 ≤ i < k.

An X-path by Definition 3.4.15 represents a connection between two
variables by a sequence of clauses such that adjacent clauses have variables
in X in common (see also Figure 3.8).

Example 3.4.6. For the PCNF from Example 3.3.4, there are X-paths
between b and y for X = ∅ and clause (b ∨ y ∨ d) and between a and y for
X = {b} and clauses (a ∨ b) and (b ∨ y ∨ d).

3.4. THE THEORY OF DEPENDENCY SCHEMES 49

Definition 3.4.16. Given PCNF over variables V and q ∈ {∃, ∀}, Vq,i :=
{x ∈ Vq | i ≤ δ(x)} is the set of all variable whose quantifier type equals q
and which are from quantifier block Bi or any larger block.

Definition 3.4.17 ([82, 113]). Given PCNF ψ over variables V , the stan-
dard dependency scheme for ψ is Dstd := {(x, y) ∈ V× | there is an X-path
between x and y for X := V∃,i where i := δ(x) + 1}.

There is a dependency x ≺ y by the standard dependency scheme if x
is connected to y by existential variables larger than x. This requirement is
expressed by setting i := δ(x) + 1 and X := V∃,i. Alternatively, Dstd can
be computed with i := δ(x) [113] but the variant from Definition 3.4.17 is
more refined because it allows fewer variables to be used for X-paths.

Example 3.4.7. For the PCNF ∃a,b∀x,y∃c,d. (a∨x∨c)∧(a∨b)∧(b∨y∨d)
from Example 3.3.4 on page 32, we have Dtriv := {(a, x), (a, y), (b, x), (b, y),
(x, c), (x, d), (y, c), (y, d)}. For Dstd and Dtree, we refer to Examples 3.3.4
and 3.3.5.

Lemma 3.4.1. Dtriv, Dtree and Dstd are dependency schemes for a PCNF
ψ by Definition 3.4.7.

Proof. Our definition of independence is based on assignment trees [111]
whereas the one in [113] relies on shifting variables in the quantifier prefix of
a PCNF. As argued in Example 3.4.5 above, our definition is strictly more
refined. Therefore, the proof in [113] that Dstd is a dependency scheme
applies to our context as well. Both Dtriv and Dtree are dependency schemes
since Dstd ⊆ Dtree ⊆ Dtriv by Proposition 3.4.5 below.

Lemma 3.4.2. Dtriv, Dtree and Dstd are transitive for all PCNFs ψ.

Proof. Let ψ be an arbitrary but fixed PCNF and Dtriv, Dtree and Dstd be
the respective dependency schemes for ψ. Since Dtriv = V×, transitivity
follows immediately because V× is a transitive relation. For Dtree, assume
(a, x) ∈ Dtree, (x, b) ∈ Dtree and (b, y) ∈ Dtree. Then by Definition 3.4.14,
a is predecessor of x, which is predecessor of b, which is predecessor of y in
the parse tree of the mini-scoped formula ψ′. Thus a is also predecessor of
y and q(a) 6= q(y), hence (a, y) ∈ Dtree.

For Dstd, assume that (a, x) ∈ Dstd, (x, b) ∈ Dstd, (b, y) ∈ Dstd and
q(a) = ∀ (the proof works analogously for q(a) = ∃). Then q(x) = ∃,
q(b) = ∀ and q(y) = ∃. By Definition 3.4.17 a < x < b < y in the prefix of
PCNF ψ. Therefore, the X-paths from a to x, from x to b and from b to y
can be chained to obtain an X-path from a to y. Such connection can be
established with existential variables only, which fulfills the requirement of
Definition 3.4.17. Particularly, the clause containing b in the path from x to
b must contain at least one existential variable which is larger than x and,
due to a < x, also larger than a. Hence (a, y) ∈ Dstd.

50 CHAPTER 3. DEPENDENCY SCHEMES

Proposition 3.4.4. Dtriv, Dtree and Dstd are tractable.

Proof. Given a PCNF ψ over variables V , Dtriv can be computed in O(|V |2)
time by traversing the quantifier prefix of ψ and collecting pairs in Dtriv.
For Dtree and Dstd, polynomial-time algorithms were suggested in [12] and
[113], respectively.

We consider efficient computation and representation of Dstd in Chap-
ter 4. As argued in Example 4.1.1 on page 57, a direct application of Defi-
nition 3.4.17 might be too costly for practical applications.

3.4.4 Comparing Dependency Schemes

Tractable dependency schemes by Definition 3.4.12 do not prevent spurious
dependencies. Actually, tractability comes at the cost of a loss of optimality.
In this section we compare dependency schemes by the number of spurious
dependencies. This way, we introduce a refinement relation on dependency
schemes which also affects practical applications.

Definition 3.4.18 (corresponds to Definition 2 in [85], related to Proposi-
tion 6 in [113]). Given two dependency schemes D and D′, D refines D′ if
D ⊆ D′ for all PCNFs ψ. D strictly refines D′ if additionally D 6= D′ for at
least one PCNF ψ.

Equivalently, if D refines D′ then we can regard D as more refined than
D′. See also [51] for observations related to refinements of dependency
schemes. If a dependency scheme D (strictly) refines some other scheme
D′, then this is always due to spurious dependencies which occur in D′ but
not in D. Therefore, we favour D over D′ for practical applications because
it grants more freedom to QBF solvers. In general, we consider all depen-
dency schemes D for a PCNF ψ other than the optimal dependency scheme
Dopt by Definition 3.4.11 as overapproximations thereof, since Dopt refines
all other dependency schemes for ψ (see also Proposition 3.4.5 below).

Given such overapproximation D, we can think of pairs in D as pairs of
variables for which independence as required by Definition 3.4.7 could not
be proved by the particular algorithm A used to compute D. In practice,
dependencies have to be added toD in conservative fashion. If independence
between variables x and y cannot be proved by algorithm A then still the
dependency (x, y) must be added to D in order to fulfill the formal require-
ments of a dependency scheme. Otherwise, if (x, y) 6∈ D and the dependency
(x, y) is not spurious, then D is in fact not a dependency scheme and using
D for QBF solving will yield unsound results if the solver assigns y before
x. This is due to the precise notion of independence by Definitions 3.4.4 and
3.4.5. If (x, y) ∈ D and the dependency (x, y) is spurious, then D is a depen-
dency scheme and thus guarantees sound results, yet it misses independence
of x and y at the cost of additional freedom in QBF solving.

3.4. THE THEORY OF DEPENDENCY SCHEMES 51

Prefix ∀x∃y Prefix ∃y∀x

r

¬x

¬y

x

¬y

r

¬x

¬y

x

y

r

¬x

y

x

¬y

r

¬x

y

x

y

r

¬y

¬x x

r

y

¬x x

M M

Figure 3.9: All four possible assignment trees for the PCNF ψ := ∀x∃y. (x∨
¬y)∧ (¬x∨¬y) from Example 3.4.8 are shown on the left. Since x and y are
independent, these variables can be swapped in the prefix. The two possible
assignment trees for the modified PCNF ψ′ := ∃y∀x. (x∨¬y)∧(¬x∨¬y) are
shown on the right. Assignment trees marked with “M” are PCNF-models.

Example 3.4.8. Given the satisfiable PCNF ψ := ∀x∃y. (x∨¬y)∧(¬x∨¬y)
from Example 3.1.3 on page 25. We have Dopt = ∅ and Dtriv = {(x, y)} for
ψ. A search-based solver relying on Dtriv must assign x before y. Possible
assignment trees that can be constructed by such solver are shown on the
left in Figure 3.9. If Dopt is applied instead, then additionally the solver can
assign y before x, which corresponds to swapping x and y in the prefix of
ψ. Additional assignment trees are shown on the right in Figure 3.9. Given
Dopt, the solver can construct six assignment trees, where two are PCNF-
models (26 = 33%). In contrast to that, a solver with Dtriv can construct
four assignment trees where only one is a PCNF-model (14 = 25%). Hence in
this example, chances to discover a PCNF-model are higher if a dependency
scheme is used which refines Dtriv.

As illustrated by Example 3.4.8, dependency schemes which strictly re-
fine Dtriv grant additional freedom to QBF solvers. This increases the num-
ber of assignment trees and PCNF-models that can be constructed. Our goal
is to apply dependency schemes other than Dtriv, which prevails in QBF lit-
erature, in QBF solving. However, the actual proof-theoretic effects related
to dependency schemes are still unknown and thus considered future work.

Partial Order on Dependency Schemes

Given the refinement relation from Definition 3.4.18, we consider depen-
dency schemes Dopt and Dtriv to be best and worst, respectively, for practi-
cal applications in QBF solving. For a given PCNF ψ, the former is free of
spurious dependencies by definition whereas the latter contains the largest
possible number of spurious ones.

Proposition 3.4.5 (see also Figure 1 in [51]). Given a PCNF ψ. The
refinement relation from Definition 3.4.18 based on subset properties induces

52 CHAPTER 3. DEPENDENCY SCHEMES

.............

.............

.............

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

D
triv

⊆

⊆

⊆

⊆

D
opt ⊆ ⊆

Figure 3.10: Partial order on dependency schemes by Proposition 3.4.5.

a partial order on all dependency schemes for ψ with Dtriv and Dopt as least
and greatest elements, respectively (see Figure 3.10).

Lemma 3.4.3. For every PCNF ψ, Dstd ⊆ Dtree ⊆ Dtriv.

Proof. We show Dstd ⊆ Dtree and Dtree ⊆ Dtriv. The claim then follows by
transitivity of ⊆.

Dtree ⊆ Dtriv: if (x, y) ∈ Dtree then x is predecessor of y in the parse
tree of the mini-scoped formula ψ′ by Definition 3.4.14. Then y was shifted
before x during mini-scoping. Therefore, x < y by the quantifier prefix of ψ
and hence (x, y) ∈ Dtriv.

Dstd ⊆ Dtree: if (x, y) ∈ Dstd then there is an X-path between x and y
for clauses C1, . . . , Ck and X = V∃,i where i = δ(x)+1. By Definition 3.4.15,
x occurs in C1 and y in Ck. See also Figure 3.8. When constructing Dtree,
then y and variables in X are shifted before x since x < y and x < yi for all
yi ∈ X. Clauses C1 and Ck are in the minimized scopes of x and y in the
mini-scoped formula ψ′. Since variables in X are common to at least two
clauses in the X-path, finally x is a predecessor of y and all yi in X in the
parse tree of ψ′. Hence (x, y) ∈ Dtree.

Example 3.3.5 on page 33 shows a concrete PCNF where Dstd contains
fewer spurious dependencies than any non-deterministically constructed vari-
ant of Dtree. Hence Dstd ⊂ Dtree and also Dtree ⊂ Dtriv in that example.
Actually, by Lemma 3.4.3, Dstd is never worse than Dtree for any PCNF
with respect to the number of spurious dependencies. For QBF solving,
Dstd grants at least the same amount of freedom as Dtree and possibly more,
which could improve the performance as pointed out in Example 3.3.6 on
page 34. Together with arguments from Section 3.3, these observations are
our motivation to apply Dstd instead of Dtree in practice.

Note that Dtree by Definition 3.4.14 is based on given PCNFs. In fact, it
is unknown whether Lemma 3.4.3 also holds even if Dtree is computed right
from the parse tree of a non-prenex non-CNF formulae. In this case, Dtree

and Dstd cannot easily be compared. The problem is that CNF conversion

3.4. THE THEORY OF DEPENDENCY SCHEMES 53

introduces clauses and new variables if Tseitin transformation [127] is ap-
plied. Thus two variables x and y might be connected by Definition 3.4.15
in the resulting PCNF which were unrelated in the parse tree of the original
formula because neither was predecessor of the other one. That is, we could
have (x, y) ∈ Dstd but (x, y) 6∈ Dtree, which contradicts Lemma 3.4.3. A
similar effect might occur if a CNF is obtained by applying the laws of dis-
tributivity which, different from Tseitin transformation, avoids introduction
of new variables. Given all that, we are not aware of a proof of Lemma 3.4.3
under the assumption that Dtree is computed from quantifier structure of
the parse tree of non-prenex non-CNF formula. Such proof would finally
allow to prefer Dstd instead of Dtree in QBF solving in general. However, as
we observed already, Dtree obtained by mini-scoping is strictly worse than
Dstd due to non-deterministic construction and spurious dependencies.

3.4.5 Dependency Schemes in Practice

Classical approaches of QBF solving like QDPLL [30] were implicitly intro-
duced with respect to the trivial dependency scheme Dtriv, even if at the
time of publication the notion of dependency schemes was still unknown.
The left-to-right ordering of variables in the quantifier prefix of a PCNF cor-
responds exactly toDtriv. Natural exceptions are approaches of search-based
QBF solving for non-PCNFs which we sketched in Section 2.3 on page 16, or
QDPLL where tree-like dependency information is extracted from the parse
tree of a non-PCNF [62] or from quantifier trees obtained by mini-scoping
[12]. In Chapter 5, we present a novel view on search-based QBF solving
which extends QDPLL from Dtriv to arbitrary dependency schemes. This
directly enables the potential benefits from dependency schemes more re-
fined than Dtriv. Note that Dtriv is the worst of all dependency schemes by
Definition 3.4.13 and Proposition 3.4.5. Modifications of basic QDPLL are
not required and hence dependency schemes can be integrated seamlessly
into search-based QBF solving. From the tractable dependency schemes
presented in Section 3.4.3, we prefer Dstd since it strictly refines both Dtriv

and Dtree. Different from Dtree, it can be constructed deterministically.

Variable Elimination

Dependency schemes can also be used to improve the performance of QBF
solvers based on variable elimination. As an example, we extend univer-
sal expansion for variables from the first non-innermost quantifier block by
Lemma 2.3.3 on page 20 to arbitrary universal variables. Additionally we
comment on related observations made in [113].

Lemma 3.4.4 ([16, 25]). The PCNF

ψ := Q1B1, . . . , ∀(Bi ∪ {x})∃Bi+1∀Bi+2∃Bi+3 . . . ∀Bn−1∃Bn. φ

54 CHAPTER 3. DEPENDENCY SCHEMES

is satisfiability-equivalent to

ψ′ := Q1B1, . . . , ∀Bi∃(Bi+1 ∪B
′
i+1)∀Bi+2∃(Bi+3 ∪B

′
i+3) . . .

. . . ∀Bn−1∃(Bn ∪B
′
n). (φ[x] ∧ φ

′[¬x]).

Sets B′
i+1, B

′
i+3, . . . , B

′
n consist of fresh variables obtained from duplicating

Bi+1, Bi+3, . . . , Bn, and in φ′ occurrences of variables in Bi+1, Bi+3, . . . , Bn
are replaced by occurrences of duplicated ones in B′

i+1, B
′
i+3, . . . , B

′
n.

As noted with respect to Lemma 2.3.3 in Section 2.3.2, not necessarily
all variables in Bi+1, Bi+3, . . . , Bn have to be duplicated. Actually, in Lem-
mata 2.3.3 and 3.4.4 we implicitly rely on Dtriv. If we apply a dependency
scheme D which refines Dtriv then we might be able to find out that some
variables in Bi+1, Bi+3, . . . , Bn are independent from x. This might reduce
the number of duplicated variables in B′

i+1, B
′
i+3, . . . , B

′
n and hence also the

size of the copied part φ′. In the best case, all variables Bi+1, Bi+3, . . . , Bn
are independent and x can be eliminated without increasing the size of the
formula at all. This was pointed out by Example 3.3.7 on page 36. How-
ever, in general all existential variables in the transitive closure D∗(x) of a
dependency scheme D have to be duplicated.

Proposition 3.4.6 (related to Remarks 1 and 2 in [113]). Given a PCNF
ψ over variables V and some x ∈ V where q(x) = ∀. Let D be a dependency
scheme for ψ. Expanding variable x by Lemma 3.4.4 produces a satisfiability-
equivalent formula ψ′ if all existential variables in D∗(x) are duplicated and
respective parts of ψ are copied.

Example 3.4.9 (taken from Remark 2 in [113]). Given the satisfiable PCNF

ψ := ∀x∃u∀y∃v. (x ∨ y ∨ ¬v) ∧ (¬x ∨ ¬y ∨ ¬v) ∧ (u ∨ y ∨ v) ∧

(¬u ∨ y ∨ ¬v) ∧ (¬u ∨ ¬y ∨ v) ∧ (u ∨ ¬y ∨ ¬v).

The triangle dependency scheme D△ was introduced in [113] and refines
Dstd. Similarly to Dstd, it is based on X-paths by Definition 3.4.15 but
it takes the polarities of literals into account. For the given PCNF ψ, we
have D△ := {(x, u), (u, y), (y, v)}. None of the dependencies in D△ is spu-
rious in this case, that is D△ = Dopt. Assume that we want to expand x
by Lemma 3.4.4 with respect to D△ and not D△∗, which contradicts the
requirement in Proposition 3.4.6. Hence we duplicate variables and clauses
with respect to D△(x) = {u} only. However, the expanded formula is unsat-
isfiable. Instead, as noted in Remark 2 in [113], we must duplicate variables
and clauses with respect to the transitive closure D△∗(x) = {u, v}.

Example 3.4.9 shows that the requirement stated in Proposition 3.4.6
cannot be relaxed in general. That might seem surprising given the fact that
all transitive dependencies which are added to obtain the transitive closure

3.5. SUMMARY 55

of a dependency scheme D are actually spurious. This follows right from
Definition 3.4.7: if (x, y) ∈ D∗ but (x, y) 6∈ D then the dependency (x, y) is
spurious because otherwise relation D is not a dependency scheme. Still, if
only variables D(x) instead of D∗(x) are duplicated then expansion might
also copy clauses which contain variables in D∗(x), as in Example 3.4.9. In
order to preserve satisfiability, these variables have to be duplicated as well.

According to Remark 1 in [113], it suffices to consider variables inDstd in-
stead of Dstd∗ for expansion. This observation does not conflict with Propo-
sition 3.4.6 since Dstd is transitive by Lemma 3.4.2, that is Dstd = Dstd∗.
To the best of our knowledge, it is unknown whether, for a specific depen-
dency scheme D, always the full set D∗(x) has to be duplicated. Possibly, a
more refined analysis with respect to the given PCNF could find out which
variables can safely be excluded.

Dependency Schemes for Non-PCNFs – A Challenge

The theory of independence between variables and dependency schemes by
Definitions 3.4.4, 3.4.5 and 3.4.7 takes only QBFs in PCNF into account.
In the previous section we argued that dependency schemes which strictly
refine Dtriv could improve QBF solvers both based on search and on vari-
able elimination. Solvers for non-PCNFs might also profit from dependency
schemes which refine Dtree in terms of quantifier structure present in the
parse tree of a non-PCNF. We observed that Dstd refines Dtree on PCNFs
by Lemma 3.4.3. However, as noted above, that result cannot easily be
obtained with respect to non-PCNFs.

A possible, theoretical framework of dependency schemes for non-PCNFs
does not directly allow for practical applications. Optimal dependency
schemes for non-PCNFs are intractable as well like they are for PCNFs
by Proposition 3.4.3. Dtree, which follows right from the syntactic structure
of non-PCNFs, can be used directly by QBF solvers which do not rely on
PCNF like [46, 62, 66], for example. Apart from that, it is unknown how
to compute tractable dependency schemes like Dstd and related refinements
if the formula is not in clausal form. In that respect, the approach of [81],
where universal variables are expanded in QBFs in prenex NNF rather than
PCNF, extends ideas from [16, 25]. The set of variables to be duplicated is
computed by an algorithm presented in [25] which also allows to compute
Dstd. However, only variables from the innermost universal quantifier block
are considered in [81], like in [16].

3.5 Summary

Given a PCNF ψ, search-based solvers must assign variables in “left-to-
right” ordering with respect to the quantifier prefix of ψ. Violations of this
requirement might cause the solver to produce incorrect results. However,

56 CHAPTER 3. DEPENDENCY SCHEMES

there are situations where the assignment ordering can safely be relaxed,
which increases the freedom of QBF solvers. Variable independence is the
theoretical foundation of possible relaxations of prefix orderings.

A dependency scheme D for a PCNF ψ is a binary relation over the set
of variables of a PCNF which expresses independence between variables. If
(x, y) 6∈ D then x and y are independent and can be assigned in arbitrary
order by a search-based QBF solver. This allows a solver to construct ad-
ditional assignment trees where the strict ordering of paths based on the
quantifier prefix of PCNFs is relaxed. Solvers based on variable elimina-
tion might profit from independence by reducing the costs of eliminating
a variable. Since computing optimal dependency schemes is infeasible in
practice, we have to make a tradeoff between tractability and optimality.
A dependency scheme D is not optimal for a PCNF if it contains spurious
dependencies. A dependency (x, y) ∈ D is spurious if x and y are actu-
ally independent. Comparing dependency schemes with respect to subset
relationship gives rise to a hierarchy in terms of a partial order.

We considered three tractable dependency schemes which can be con-
structed by analyzing the syntactic structure of a given PCNF. The trivial
dependency scheme Dtriv corresponds to the prefix ordering of variables in
a PCNF. It is the worst of all possible dependency schemes in the sense
that it is most restrictive for QBF solvers. The dependency scheme Dtree

can be obtained from tree-like quantifier structure given by mini-scoping.
Mini-scoping suffers from non-deterministic applications of quantifier shift-
ing rules. We pointed out that the standard dependency scheme Dstd refines
both Dtriv and Dstd and can be computed deterministically.

Chapter 4

The Standard Dependency

Scheme

4.1 Introduction

In the previous chapter, we considered dependency schemes as a means
of dependency analysis for PCNFs. We observed that the computation of
optimal dependency schemes is infeasible and cannot be applied in practice.
Instead, we have to confine our interest to tractable dependency schemes.
Whereas until now our focus was on theoretical aspects, we move on to
practical applications in this chapter. Tractable dependency schemes by
Definition 3.4.12 on page 47 can be computed in polynomial time, but that
does not necessarily imply feasibility in practice. For example, the run time
of a quadratic algorithm to compute the standard dependency scheme Dstd

can still be too large.

Example 4.1.1. Given PCNF ψ := Q1B1 . . . QnBn. φ over variables V
where |V | and |φ| are the numbers of variables and clauses, respectively. To
compute Dstd for ψ by Definition 3.4.17 on page 49, we have to search for
X-paths. If we do this explicitly, then in the worst case O(|φ|) clauses must
be checked to find out whether (x, y) ∈ Dstd for variables x, y ∈ V . This has
to be carried out for all variables to obtain Dstd. Thus it takes O(|V | · |φ|)
time in the worst case to compute the full dependency scheme Dstd for ψ.

Although the worst case run time of the algorithm sketched in Exam-
ple 4.1.1 is polynomial, the observed run time might be too large for practical
applications as shown in Section 4.6 below. For large values of |V | and |ψ|,
which are not uncommon in real-world instances,1 the cost of computing

1In the benchmark set used for QBFEVAL’10 [100], formulae have 23546 variables
and 53857 clauses on average. The largest formula c1 BMC p1 k2048-shuffled.qdimacs,
which encodes an instance of bounded model checking (BMC) [19], has 2202779 variables
and 5534890 clauses.

57

58 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

Dstd might outweigh the benefits when combining QDPLL with Dstd, for
example. This holds for dependency schemes in general.

In order to overcome this problem, we address the question of how to
compute and represent the standard dependency scheme Dstd efficiently. We
focus on Dstd because it refines both Dtriv and Dtree and can be computed
deterministically. First, in Section 4.2 we introduce a general representa-
tion of dependency schemes as directed acyclic graphs (DAGs) which is not
limited to Dstd. Such trivial DAGs follow right from a given dependency
scheme D if dependencies (x, y) ∈ D are interpreted as edges in the DAG.
Further, we obtain compressed DAGs with respect to particular equivalence
relations over variables. These compressed DAGs can represent any arbi-
trary dependency scheme. Relying on certain theoretical properties of Dstd

to be observed in Section 4.3, we point out how to compute such compressed
DAGs for Dstd efficiently. Thereby, we improve upon direct applications of
Definition 3.4.17 as demonstrated in Example 4.1.1. In Section 4.6 we show
by experimental analysis that computation time is negligible in practice
while, at the same time, the defined equivalence relations allow for compact
representations. Informally, we consider a representation of a dependency
scheme to be compact if it makes use of equivalence classes rather than
individual variables. Our presented algorithms are tailored towards Dstd.
However, they might also give insights into novel approaches to compute
dependency schemes which refine Dstd like the triangle or quadrangle de-
pendency schemes [51, 113].

As described in Chapter 5, our goal is to combine graph-based repre-
sentations of dependency schemes with search-based QBF solvers relying
on QDPLL. Despite the compactness of DAG-based representations to be
introduced below, additional efforts have to be made to apply them effi-
ciently in the context of QDPLL. We show how the compact DAGs from
this chapter can be augmented for that purpose. In general, these DAGs
can be combined with any kind of QBF solver.

4.2 General Dependency Graphs

In this section, we develop a general graph representation suitable for any
arbitrary dependency scheme. We begin with a trivial directed acyclic graph
(DAG) which directly corresponds to the dependency scheme. This DAG is
revised step by step, until we finally obtain a graph over equivalence classes
of variables. We illustrate the definitions by Example 4.2.1 below.

Definition 4.2.1. Given a dependency scheme D for a PCNF ψ, D−1 :=
{(y, x) ∈ V × V | (x, y) ∈ D} is the inverse of D.

Definition 4.2.2. Given a dependency scheme D for a PCNF ψ over vari-
ables V , the explicit dependency graph for D is the DAG G(D) with vertices
V and directed edges E := {(x, y) | (x, y) ∈ D}.

4.2. GENERAL DEPENDENCY GRAPHS 59

In Definition 4.2.2, vertices in G(D) are variables and edges are depen-
dencies by D, which is explicitly represented by G(D). We might find out
that, for two variables x and x′, the same set of variables depends on x and
x′, that is D(x) = D(x′). In this case, the vertices of x and x′ have the
same set of “outgoing” edges in G(D). With respect to that, there is no
need to distinguish between x and x′. Based on this observation, we define
an equivalence relation on variables as follows.

Definition 4.2.3. Given a dependency scheme D for a PCNF ψ over vari-
ables V , two variables x and x′ are equivalent with respect to D, written as
x ≈D,↓ x

′, if and only if D(x) = D(x′). If D is arbitrary or clear from the
context, then we write x ≈↓ x

′.

The symbol ↓ which appears as subscript in ≈D,↓ and ≈↓ indicates that
the equivalence relation by Definition 4.2.3 merges vertices in G(D) which
have the same set of outgoing edges. Similar to the observation above,
we might find out that two variables y and y′ depend on the same set of
variables, that is D−1(y) = D−1(y′). Consequently, the vertices of y and
y′ have the same set of “incoming” edges in G(D). Like before, there is no
need to distinguish between y and y′ with respect to that.

Definition 4.2.4. Given a dependency scheme D for a PCNF ψ over vari-
ables V , two variables y and y′ are equivalent with respect to D−1, written
as y ≈D,↑ y

′, if and only if D−1(y) = D−1(y′). If D is arbitrary or clear
from the context, then we write y ≈↑ y

′.

The symbol ↑ which appears as subscript in ≈D,↑ and ≈↑ indicates that
the equivalence relation by Definition 4.2.4 merges vertices in G(D) which
have the same set of incoming edges.

Definition 4.2.5. Given a PCNF ψ over variables V , a dependency scheme
D and the equivalence relation ≈↓ on V , the set

V/≈↓
:= {S ⊆ V | S = {x ∈ V | ∃x′ ∈ V : x ≈↓ x

′}}

is the set of equivalence classes or the partition of V induced by ≈↓. Given
≈↑ by Definition 4.2.4, V/≈↑

is defined analogously.

Definition 4.2.6. Given a PCNF ψ over variables V , a dependency scheme
D for ψ and the equivalence relations ≈↓ and ≈↑ by Definitions 4.2.3 and
4.2.4. For x ∈ V , [x]↓ and [x]↑ is the equivalence class of x with respect to
the partitions V/≈↓

and V/≈↑
of V , respectively. We also refer to [x]↓ and

[x]↑ as representatives of the respective classes of x.

The equivalence relations ≈↓ and ≈↑ also induce partitions on the set
of vertices in the explicit dependency graph G(D) by Definition 4.2.2. We
obtain a graph over equivalence classes which is potentially more compact.

60 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

Definition 4.2.7. Given a dependency scheme D for a PCNF ψ over vari-
ables V , the compressed dependency graph for D is the DAG G≈(D) with
vertices V/≈↓

∪ V/≈↑
and directed edges E := {([x]↓, [y]↑) | (x, y) ∈ D}.

Edges in graph G≈(D) connect classes of variables instead of individual
ones. Thus we expect a smaller number of edges altogether compared to
explicit dependency graphs by Definition 4.2.2. Finally, we add auxiliary
edges to G≈(D) based on subset relationships with respect to D−1 and ≈↑.

Definition 4.2.8. Given a dependency scheme D for a PCNF ψ over vari-
ables V , the augmented compressed dependency graph for D is the DAG
G≈,⊆(D) with vertices V/≈↓

∪ V/≈↑
and directed edges E := Ed ∪ Es,

where Ed := {([x]↓, [y]↑) | (x, y) ∈ D} is the set of dependency edges and
Es := {([x]↑, [x

′]↑) | D
−1(x) ⊆ D−1(x′)} is the set of subset edges.

By Definition 4.2.8, an edge ([x]↑, [x
′]↑) in Es connects the classes [x]↑ and

[x′]↑ if [x′]↑ has at least the same and possibly more incoming dependency
edges than [x]↑. This set Es of auxiliary edges does not add additional
information related to dependencies. Due to edges in Es, we even expect
the graph G≈,⊆(D) to be larger than G≈(D) by Definition 4.2.7. Despite of
that overhead, in Chapter 5 we point out that subset edges Es are important
to efficiently integrate dependency schemes into QDPLL-based QBF solvers.
Further, in practice it is actually not necessary to include transitive edges
in Es (see also Section 4.5.2 for related comments).

In general, G≈,⊆(D) can be constructed for any arbitrary dependency
scheme D. In a trivial approach, we could start with the explicit dependency
graph G(D) by Definition 4.2.2 and then obtain G≈(D) and G≈,⊆(D) by
merging variables into equivalence classes and finally adding subset edges.
However, we want to avoid the construction of the explicit graph G(D) at
all because it might be large for PCNFs with large numbers of variables and
clauses. In Sections 4.4 and 4.5 below, we argue that for D := Dstd a variant
of the graph G≈,⊆(D) is compact and can be constructed efficiently. This
allows QDPLL to benefit from Dstd, which is the topic of Chapter 5.

Example 4.2.1. Assume that we are given a PCNF with prefix

∀a∃x1,x2,x3∀y1,y2,y3∃z1,z2

and some dependency scheme D. On the left in Figure 4.1 the explicit
dependency graphG(D) by Definition 4.2.2 is shown. We list the members of
equivalence classes in brackets ’[’ and ’]’. We have D(x1) = D(x2) and hence
x1 ≈D,↓ x2 or simply x1 ≈↓ x2. Trivially, also D−1(x1) = D−1(x2) = ∅ and
hence x1 ≈↑ x2. Further D

−1(y1) = D−1(y2) = {x1, x2} and hence y1 ≈↑ y2.
The augmented compressed dependency graph G≈,⊆(D) by Definition 4.2.8
is shown on the right in Figure 4.1. We have D−1(x3) = {a}, D−1(z2) =
{a, y1, y2, y3}, D

−1(x3) ⊆ D−1(z2) and hence we add a subset edge (dashed)

4.3. THEORETICAL PROPERTIES 61

a

x1 x2 x3

y1 y2 y3

z1 z2

[a]↑ = [a]↓

[x1, x2]↑ = [x1, x2]↓ [x3]↑ = [x3]↓

[y1, y2]↑ = [y1, y2]↓ [y3]↑ = [y3]↓

[z1]↑ = [z1]↓ [z2]↑ = [z2]↓

Figure 4.1: The explicit dependency graph G(D) by Definition 4.2.2
(left) and the corresponding augmented compressed dependency graph
G≈,⊆(D) by Definition 4.2.8 (right) for a presumed PCNF with prefix
∀a∃x1,x2,x3∀y1,y2,y3∃z1,z2 and dependency scheme D from Example 4.2.1
(right). The dashed edge from a to z3 represents a subset edge.

from [x3]↑ to [z2]↑. Note that reflexive subset edges and trivial ones of the
form ([x]↑, [x

′]↑) where D
−1(x) = ∅ are omitted in Figure 4.1.

4.3 Theoretical Properties

In this section, we analyze theoretical properties of Dstd and X-paths by
Definition 3.4.17. We finally obtain an algorithm and data structures which
allow to compute Dstd efficiently in practice. Different from Example 4.1.1,
the idea is to avoid searching for X-paths explicitly for each pair (x, y) of
variables x, y ∈ V . For example, we might be able to justify that (x, y) ∈
Dstd and (x′, y′) ∈ Dstd by one and the same X-path.

Example 4.3.1. Given PCNF ψ := ∀x,x′∃y,y′,y1, . . . , yn. (x ∨ x′ ∨ y1) ∧
(y1∨y2)∧ . . .∧(yn−1∨yn)∧(yn∨y∨y

′). The full set of clauses (x∨x′∨y1)∧
. . .∧ (yn ∨ y ∨ y

′) is an X-path between x and y for X := {y, y′, y1, . . . , yn}.
The same X-path also connects x′ and y′.

We pick up ideas from [82, 83]. In order to avoid searching for X-paths
explicitly, first we determine connections between existential variables in
a given PCNF. Thereby, we focus on those particular connections which
are relevant to establish X-paths as needed in Definition 3.4.17. That pre-
computed information is re-used when searching for X-paths. Relying on
our theoretical analysis, we construct an approximation of the augmented
compressed dependency graph G≈,⊆(D

std) in Section 4.5 on page 70.
It is important to note that the term “approximation” refers only to

the structure of the graph and not to the set of dependencies that is rep-

62 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

resented thereby. That is, the approximation of G≈,⊆(D
std) we introduce

in Section 4.5 below is precise with respect to Dstd. There is a dependency
(x, y) in the approximation of the graph if and only if there is a dependency
(x, y) with respect to Dstd by Definition 3.4.17. However, the approximation
of G≈,⊆(D

std) might not be as compact as the original graph G≈,⊆(D
std)

by Definition 4.2.8. The reason for less compaction is that equivalences be-
tween variables by Definitions 4.2.3 and 4.2.4 might not be considered to the
full extent. Concerning practical applications, it is not necessary to start
with G(Dstd) and then merge classes explicitly, as in the trivial approach
outlined above. Instead, as we show, the approximation of G≈,⊆(D

std) can
largely be computed right away from a given PCNF. Although we focus on
compact representations of Dstd in this chapter, our approaches related to
the computation of approximations of G≈,⊆(D

std) might also be extended
to other dependency schemes which refine Dstd.

In the remaining parts of this section, we apply the following notion of
transitive relations.

Definition 4.3.1 ([1]). Let R ⊆ V × V be a binary relation on some set of
variables V . The reflexive and transitive closure of R is the smallest reflexive
and transitive R′ ⊆ V × V such that R ⊆ R′. The reflexive and transitive
reduction of R is the smallest R′ ⊆ V ×V such that R and R′ have the same
reflexive and transitive closure.

Definition 4.3.1 differs from transitivity of dependency schemes by Defi-
nition 3.4.9 on page 45. The former is related to arbitrary binary relations
and is well-known. In this section we refer to transitive closure by Defini-
tion 4.3.1, unless stated otherwise.

We consider closed PCNFs where, for all clauses Ci := (l1 ∨ . . . ∨ lki),
lj < lj′ for 1 ≤ j < j′ ≤ ki and q(v(lki)) = ∃. That is, literals in clauses
are sorted ascendingly with respect to prefix ordering and the largest literal
is existential. Further, we assume that clauses neither contain multiple nor
complementary literals of one and the same variable.

Recall Definition 3.4.17 on page 49 where the standard dependency
scheme Dstd was introduced. By setting i := δ(x) + 1 and X := V∃,i,
universal variables as well as variables which are from the block of x or
from any smaller block are excluded from X. Hence these variables cannot
participate in any X-path.

Example 4.3.2. For the PCNF in Figure 4.2, we have i = δ(a1) = 1,
e13 ∈ Dstd(a1) by clauses (a1 ∨ a6 ∨ e8 ∨ e14) and (e3 ∨ e8 ∨ e13), and X =
V∃,i+1 = {e3, e4, e5, e8, e9, e10, e13, e14, e15}. Note that variable e8 connects
the two clauses and e8 ∈ V∃,i+1 since i ≤ δ(e8). However, e14 6∈ Dstd(a7)
since a7 and e10 occur only in clause (e4 ∨ a7 ∨ e10). Variable e4 cannot be
used to connect a7 and e14 by clause (e4 ∨ e13 ∨ e14) because δ(e4) < δ(a7).

4.3. THEORETICAL PROPERTIES 63

i q(Bi) Bi (a2 ∨ e5 ∨ e9)
1 ∀ a1, a2 (e5 ∨ e9 ∨ e15)
2 ∃ e3, e4, e5 (e3 ∨ e8 ∨ e13)
3 ∀ a6, a7 (e4 ∨ a7 ∨ e10)
4 ∃ e8, e9, e10 (e4 ∨ e13 ∨ e14)
5 ∀ a11, a12 (a1 ∨ a6 ∨ e8 ∨ e14)
6 ∃ e13, e14, e15 (a11 ∨ a12 ∨ e13)

Figure 4.2: PCNF example used in Sections 4.3 and 4.5.3. The table shows
the levels, quantifiers and variables for each quantifier block in the first three
columns and clauses in the last column. Variable names are prefixed with
“e” and “a” to indicate their types ∃ and ∀, respectively.

Building on related work precedingDstd by Definition 3.4.17 [16, 25, 113],
we first introduce a connection relation between variables which is aware of
the levels of quantifier blocks.

Definition 4.3.2. For x, y ∈ V , x is connected to y with respect to block
Bi, written as x →i y, if and only if y ∈ V∃,i and there is a clause C such
that x ∈ C and y ∈ C. Relation →∗

i is the reflexive and transitive closure
of →i.

Relation →∗
i is defined with respect to some block Bi. If x→∗

i y then x
is connected to y over existential variables from blocks larger than or equal
to Bi only. As pointed out in Theorem 4.3.2 below, this relation can be
applied to compute Dstd. There is a close correspondence between X-paths
as used in Definition 3.4.17 and relation →∗

i .

Corollary 4.3.1. Given x, y ∈ V , if x→∗
i y then there is an X-path between

x and y for X = V∃,i.

Note that, due to Definition 4.3.2, the converse of Corollary 4.3.1 does
not hold in general. For example, if there is an X-path between x ∈ V∃ and
y ∈ V∀ then x 6→∗

i y for all i. A weaker variant can be stated as follows.

Corollary 4.3.2. Given x ∈ V and y ∈ V∃, if there is an X-path between
x and y for X = V∃,i and i ≤ min(δ(x), δ(y)) then x→∗

i y.

We observe that connections with respect to a block Bj are preserved
for any smaller block Bi.

Corollary 4.3.3. Given x, y ∈ V and i ≤ j, if x→∗
j y then also x→∗

i y.

For proper values of i in Definition 4.3.2, connections between existential
variables are symmetric because X-paths resulting from Corollary 4.3.1 can
trivially be reversed.

64 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

Lemma 4.3.1. Given x, y ∈ V∃ and i ≤ min(δ(x), δ(y)), if x →∗
i y then

y →∗
i x.

Example 4.3.3. For the PCNF in Figure 4.2, e3 →4 e8 by clause (e3 ∨
e8 ∨ e13) but e3 6→5 e8, e8 →6 e14 by clause (a1 ∨ a6 ∨ e8 ∨ e14) and by
Corollary 4.3.3 also e8 →1 e14. Further e3 →∗

2 e14 by clauses (e3 ∨ e8 ∨ e13)
and (e4 ∨ e13 ∨ e14) and by Lemma 4.3.1 also e14 →

∗
2 e3.

As a first step towards efficient computation and compact representation
of Dstd we want to take advantage of situations where two variables can be
regarded as equivalent with respect to connections by Definition 4.3.2.

Definition 4.3.3. For x, y ∈ V , x is equivalent to y with respect to connec-
tion relation →∗

i , written as x ≈ y, if and only if either (1) x = y or (2)
q(x) = q(y) = ∃, δ(x) = δ(y) = i and x→∗

i y.

Variables x and y are equivalent by Definition 4.3.3 if x = y or both
are from the same existential block Bi and are connected by existential
variables larger than or equal to Bi. Note that relation≈ is different from the
equivalence relations ≈↓ and ≈↑ introduced previously in Definitions 4.2.3
and 4.2.4. However, as pointed out in Section 4.5.1 below, ≈ has certain
properties which allow to obtain an approximation of ≈↑ for existential
variables in order to construct an approximation of graph G≈,⊆(D

std).

Theorem 4.3.1. Given a PCNF ψ over variables V , relation ≈ by Defini-
tion 4.3.3 is an equivalence relation.

Proof. Reflexivity is trivial since x ≈ x for x ∈ V by Definition 4.3.3. If
not q(x) = q(y) = ∃ then by Definition 4.3.3 x ≈ y if and only if x = y.
Since = is an equivalence relation, symmetry and transitivity of ≈ follow
immediately.

Otherwise, assume q(x) = q(y) = ∃. If x ≈ y and x = y, then also
y ≈ x by Definition 4.3.3. If x ≈ y and x 6= y then by Definition 4.3.2
and Definition 4.3.3 δ(x) = δ(y) and x →∗

i y for i = δ(x) = δ(y). Then by
Lemma 4.3.1 also y →∗

i x and hence y ≈ x. Therefore, ≈ is symmetric.
To show transitivity, assume x ≈ y′ and y′ ≈ y for y′ ∈ V . Then

more precisely y′ ∈ V∃ (because otherwise x 6≈ y′ and y′ 6≈ y) and by
Definition 4.3.3 also x →∗

i y
′, y′ →∗

i y for i = δ(x) = δ(y′) = δ(y) and
q(x) = q(y′) = q(y). By x →∗

i y
′, y′ →∗

i y and transitivity of →∗
i , also

x→∗
i y, hence x ≈ y.

Definition 4.3.4. Given a PCNF ψ over variables V , the partition V/≈ of
V induced by ≈ is obtained similarly to Definition 4.2.5. Given x ∈ V , [x]
is the equivalence class of x with respect to partition V/≈.

Example 4.3.4. For the PCNF in Figure 4.2, e3 ≈ e4 since q(e3) = q(e4) =
∃, δ(e3) = δ(e4) = 2 and e3 →

∗
2 e4 by e3 →2 e8 →2 e14 →2 e4. Also e13 ≈ e14

4.3. THEORETICAL PROPERTIES 65

since e13 →6 e14 but e5 6≈ e4 because e5 6→∗
2 e4. Trivially, a11 ≈ a11 and

e3 6≈ e14.

Relation →∗
i is compatible with ≈. If two variables are connected then

so are all members of their respective classes and vice versa as stated in the
following lemma.

Lemma 4.3.2. Given x, y ∈ V and i ≤ min(δ(x), δ(y)). Then x →∗
i y if

and only if x′ →∗
i y

′ for all x′ ∈ [x], y′ ∈ [y].

Proof. The proof works regardless of the types of x and y by Definition 4.3.2
(reflexivity of →∗

i), Corollary 4.3.3 and Definition 4.3.3. Trivial cases arise
for V∀. Assume x →∗

i y for x, y ∈ V and i ≤ min(δ(x), δ(y)). Then for
x′ ∈ [x], y′ ∈ [y], x′ →∗

i x and y →∗
i y

′ by Corollary 4.3.3 and Definition 4.3.3.
Since x′ →∗

i x, x→∗
i y (by assumption), y →∗

i y
′, also x′ →∗

i y
′ by transitiv-

ity of →∗
i . The other direction can be shown similarly by Lemma 4.3.1.

As in Definition 4.2.6, we regard [x] as an arbitrary member of the equiv-
alence class. We can write, for example, [x] →∗

i [y] by Lemma 4.3.2. This
notation denotes connections between classes. Note that Lemma 4.3.2 would
not hold for arbitrary values of i. For example, if δ(x) < i then x 6→∗

i x
′

for x′ ∈ [x], which contradicts Definition 4.3.3. The following variant of
Lemma 4.3.2 does not refer to [x] and holds for arbitrary values of i.

Lemma 4.3.3. Let x, y ∈ V with δ(x) ≤ δ(y). Then x →∗
i y if and only if

x→∗
i y

′ for all y′ ∈ [y].

Example 4.3.5. For the PCNF in Figure 4.2, e3 ≈ e4, e10 ≈ e10, where
[e10] is a singleton class, and e4 →

∗
2 e10 because e4 →2 e10. By Lemma 4.3.2,

also e3 →
∗
2 e10 because e3 →2 e8 →2 e14 →2 e4 →2 e10.

Apart from considering equivalence classes in →∗
i by Lemma 4.3.2, the

following relation allows to share information about connections, which is
pointed out in Section 4.4.1 below.

Definition 4.3.5. Relation ❀
∗ denotes the directed connection relation.

Given x ∈ V and y ∈ V∃, [x] ❀
∗ [y] if and only if δ(x) ≤ δ(y) and x →∗

i y
for i = δ(x). The reflexive and transitive reduction of ❀∗ is denoted by ❀.

Corollary 4.3.4. Given x, y ∈ V , if [x] ❀∗ [y] then either [x] = [y] or
δ(x) < δ(y).

Relation ❀
∗ is defined on equivalence classes with respect to ≈ only and

respects the ordering of quantifier blocks in the prefix. If [x] ❀∗ [y] then
variables smaller than x are excluded in the connection between x and y.
By Corollary 4.3.4, if [x] ❀∗ [y] then either x and y are in the same class
or in different classes but also from different blocks. We now prove that the
definitions introduced above can be used to compute Dstd.

66 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

Theorem 4.3.2. Given PCNF ψ over variables V , Dstd for ψ can be com-
puted as follows:

Dstd = {(x, y) ∈ V× | i := δ(x) + 1, ∃w ∈ V∃,i : (4.1)

x→∗
i w and y →∗

i w}

= {(x, y) ∈ V× | i := δ(x) + 1, ∃w ∈ V∃,i : (4.2)

x→∗
i [w] and [y] →∗

i [w]}

= {(x, y) ∈ V× | i := δ(x) + 1, ∃w ∈ V∃,i : (4.3)

x→∗
i [w] and [y] ❀∗ [w]}

Proof. We prove equivalence of left (LHS) and right-hand sides (RHS) of
Equations 4.1 to 4.3.

In order to show that LHS(4.1) = RHS(4.1), assume by Definition 3.4.17
that there is an X-path P between x and y by clauses C1, . . . , Ck where
q(x) 6= q(y). P can be split into P1 between x,w for clauses C1, . . . , Cj where
w ∈ Cj , 1 ≤ j ≤ k, w ∈ V∃,i and P2 between w, y by clauses Cj , . . . , Ck. By
P1 and Corollary 4.3.2 also x→∗

i w and by reversing P2 and Corollary 4.3.2,
also y →∗

i w and hence y ∈ RHS(4.1). For the other direction, assume
x→∗

i w and y →∗
i w. Then by Corollary 4.3.1 there are X-paths P1 between

x,w and P2 between y, w for X = V∃,i. An X-path P between x, y can be
constructed by combining P1 with reversed P2, thus y ∈ LHS(4.1).

In order to show that RHS(4.1) = RHS(4.2), assume x →∗
i w and

y →∗
i w. Since w ∈ V∃,i, also δ(x) ≤ δ(w) and hence by Lemma 4.3.3

and Definition 4.3.3 also x →∗
i [w]. Further, because i ≤ δ(y) and i ≤ δ(w)

and hence i ≤ min(δ(y), δ(w)), also [y] →∗
i [w] by Lemma 4.3.2 and Defini-

tion 4.3.3. Since x→∗
i [w] and [y] →∗

i [w], also y ∈ RHS(4.2). For the other
direction, assume x →∗

i [w] and [y] →∗
i [w]. Similar arguments apply to de-

rive x→∗
i w and y →∗

i w by Lemma 4.3.2, Lemma 4.3.3 and Definition 4.3.3.
Hence y ∈ RHS(4.1).

In order to show that RHS(4.2) = RHS(4.3), assume x →∗
i [w] and

[y] →∗
i [w]. Since LHS(4.1) = RHS(4.1) = RHS(4.2), there is an X-path

P between x, y for X = V∃,i and clauses C1, . . . , Ck where y ∈ Ck. Let l
denote the largest literal in Ck. By assumptions in Section 2.1.4, clauses
are sorted by prefix ordering and the largest literal is existential. That is,
v(l) ∈ V∃ and δ(y) ≤ δ(l) (if q(y) = ∀ then δ(y) < δ(l)). Assume that
w = v(l). Then δ(y) ≤ δ(w). By y, w ∈ Ck also y →j w for j = δ(y) and
y →∗

j w by Definition 4.3.2. By y →∗
j w and δ(y) ≤ δ(w) also [y] ❀∗ [w].

Since x →∗
i [w] and [y] ❀∗ [w] also y ∈ RHS(4.3). For the other direction,

Definition 4.3.5, Corollary 4.3.3 and Lemma 4.3.2 apply.

4.4. TOWARDS EFFICIENT COMPUTATION 67

4.4 Towards Efficient Computation

According to Equation 4.1 in Theorem 4.3.2, Dstd can be computed by ap-
plying relation →∗

i , which corresponds to computation by X-paths in Def-
inition 3.4.17. Equation 4.2 refers to equivalence classes by ≈ rather than
individual variables, which is already an improvement. The step from Equa-
tion 4.2 to Equation 4.3 is the most interesting one for practical applications,
yet this is not apparent from theory. Since ❀∗ is directed, it restricts the set
of classes to be considered when connections of a variable are determined.

In this section, we first examine properties of ❀∗ over existential vari-
ables. We observe that its reflexive and transitive reduction ❀ can be rep-
resented efficiently as a compact tree over equivalence classes with respect
to ≈. As pointed out in Section 4.5.2 below, this tree can be shared between
all variables and is the basis for constructing approximations of the graph
G≈,⊆(D

std) by Definition 4.2.8.

4.4.1 A Tree-Shaped Representation of Connections

Since ❀
∗ is directed by Definition 4.3.5 and hence also antisymmetric and

acyclic, its transitive reduction ❀ is unique by Theorem 1 in [1]. The fol-
lowing lemma states a property of ❀∗ which accounts for the tree structure
of ❀.

Lemma 4.4.1. Given x, y, z ∈ V∃ where δ(x) ≤ δ(y), if [x] ❀
∗ [z] and

[y] ❀∗ [z] then [x] ❀∗ [y].

Proof. Assume [x] ❀
∗ [z] and [y] ❀

∗ [z] where δ(x) ≤ δ(y). Then by
Definition 4.3.5, x →∗

i z for i = δ(x) and y →∗
j z for j = δ(y) and δ(x) ≤

δ(y) ≤ δ(z). By Corollary 4.3.3 also y →∗
i z and by Lemma 4.3.1 z →∗

i y.
By Definition 4.3.2, x→∗

i z and z →∗
i y, also x→∗

i y and [x] ❀∗ [y].

If [x] ❀∗ [z] and [y] ❀∗ [z] for existential variables x, y, z and δ(x) ≤ δ(y)
then [x] ❀∗ [z] is transitive by Lemma 4.4.1. Consequently, [x] is not related
to [z] in the transitive reduction of ❀∗, that is [x] 6❀ [z]. Hence at most one
class is related to another one in ❀. Therefore, ❀ can be represented as a
forest, that is a collection of trees, which we introduce informally.

Definition 4.4.1. Given a PCNF ψ over variables V with m existential
quantifier blocks. The connection forest for ψ is a collection of trees over
the set V∃/≈ of vertices with the following properties:

1. For x, y ∈ V∃, there is an edge ([x], [y]) if and only if [x] ❀ [y].

2. For x, y ∈ V∃ there is a path from [x] to [y] if and only if [x] ❀∗ [y].

3. The maximum length of a path by counting the number of edges is
m− 1 (by Corollary 4.3.4).

68 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

4.4.2 Dependency Computation Using Connection Forests

The connection forest represents directed connections between existential
variables. In general, we expect it to be compact due to equivalence classes
in partition V∃/≈ and because it considers the transitive reduction❀ instead
of ❀∗. Our goal is to compute and represent Dstd efficiently by making use
of the connection forest of a PCNF (see also Section 4.5.3 below).

To compute Dstd(x) for an arbitrary x ∈ V , a set of proper classes
of V∃/≈ has to be found in the connection forest which exactly denote all
connections of variable x to larger existential variables. Exactly those vari-
ables are relevant by Definition 3.4.17 and Theorem 4.3.2. Classes in such
a proper set must be connected to x and be minimal with respect to the
prefix ordering since edges in the connection forest are directed. We require
minimality since if there is a non-trivial path from [x] to [y] in the connec-
tion forest then δ(x) < δ(y) by Corollary 4.3.4. Hence [x] can only reach
classes of larger variables. Descendants of such minimal classes in the con-
nection forest comprise all connections of x by ❀

∗ which are relevant for
the computation of Dstd. We identify the desired set of minimal classes by
smallest ancestors in the connection forest.

Definition 4.4.2. For y ∈ V∃ and i ≤ δ(y), the smallest ancestor of [y]
with respect to i in the connection forest is the class h(i, [y]) := [y′] such
that y′ ∈ V∃,i, [y

′] ❀∗ [y] and there is no y′′ ∈ V∃,i with i ≤ δ(y′′) < δ(y′)
and [y′′] ❀∗ [y].

Class h(i, [y]) is the smallest ancestor of [y] in the connection forest which
is larger than or equal to block Bi. Hence h(i, [y]) is minimal with respect to
Bi and the prefix ordering. Smallest ancestors are used to compute the set of
descendants, which are classes reachable by directed edges in the connection
forest, as follows.

Definition 4.4.3. For x ∈ V and the connection forest, the set of descen-
dants H∗

i (x) with respect to x and block Bi is defined as follows:

1. VC,i(x) := {[y] | y ∈ V∃,i and x→i y}

2. Hi(x) := {[z] | [z] = h(i, [y]) for [y] ∈ VC,i(x)}

3. H∗
i (x) := {[y] | [z] ❀∗ [y] for [z] ∈ Hi(x)}

Note that in the definition of set VC,i(x), we have x →i y if there is a
clause which contains both x and y for proper values of i. Starting from
clauses containing a literal of variable x, classes of existential variables larger
than or equal to Bi are collected in VC,i(x). Set Hi(x) contains all smallest
ancestors with respect to Bi for classes in VC,i(x). Finally, H∗

i (x) com-
prises descendants of classes in Hi(x) and represents all connections of x to
existential variables larger than or equal to Bi.

4.4. TOWARDS EFFICIENT COMPUTATION 69

Corollary 4.4.1. Given x ∈ V , if [y] ∈ H∗
i (x) then x→∗

i y.

For some variable x ∈ V , the set H∗
i (x) of descendants in the connection

forest exactly characterizes relevant connections of x to existential variables
which are from block Bi or any larger block. This is precisely what is needed
to compute Dstd. Informally, there is a dependency (x, y) ∈ Dstd if the sets
of descendants of x and y are not disjoint. In this case, there exists an
X-path between x and y as required by Definition 3.4.17.

Theorem 4.4.1. For a PCNF ψ over variables V,

Dstd = {(x, y) ∈ V× | H∗
i (x) ∩H

∗
j (y) 6= ∅ for i := δ(x) + 1, j := δ(y)}.

Proof. We show that Dstd by Definition 3.4.17 is equal to the definition
shown above. Assume x ∈ V and i = δ(x) + 1. Direction ⊇ follows right
from Definition 4.4.3, Corollary 4.4.1, Corollary 4.3.3 and Theorem 4.3.2.

To show ⊆, assume (x, y) ∈ Dstd. Then there is an X-path P between
x, y for X = V∃,i. Hence there are clauses C1, . . . , Ck where y, yk ∈ Ck for
some yk ∈ V∃,i with δ(y) ≤ δ(yk). Such yk always exists since by assumption
the largest literal in a clause is existential (if x ∈ V∀ then y ∈ V∃ and we can
choose yk := y). Then P is also an X-path between x and yk by C1, . . . , Ck
and hence x→∗

i yk and δ(x) < δ(yk) since i ≤ δ(yk), i = δ(x) + 1. We show
that [yk] ∈ H∗

i (x) ∩H
∗
j (y) for i = δ(x) + 1, j = δ(y).

First, we show that [yk] ∈ H∗
j (y) for j = δ(y). Since y, yk ∈ Ck by P ,

also [yk] ∈ VC,j(y). Then [z′] ∈ Hj(y) where [z′] = h(j, [yk]) for j = δ(y).
By Definition 4.4.2, [z′] ❀∗ [yk], hence [yk] ∈ H∗

j (y).

Second, we show that [yk] ∈ H∗
i (x) for i = δ(x) + 1. Since P connects

x and yk, also x, y1 ∈ C1 for some y1 ∈ V∃,i. Thus [y1] ∈ VC,i(x) and
[z1] ∈ Hi(x) for [z1] = h(i, [y1]). Then by Definition 4.4.2, [z1] ❀

∗ [y1]. P
is also an X-path between y1 and yk by C1, . . . , Ck, hence y1 →∗

i yk and
δ(x) < δ(y1), δ(x) < δ(yk). Let w denote the smallest connecting variable in
P between y1, yk: m = δ(w) = min({δ(v) | v ∈ Ci ∩ Ci+1 ∩X, 1 ≤ i < k}).
Since m is minimal, also y1 →

∗
m w, w →∗

m yk and by Lemma 4.3.1 w →∗
m y1.

By Definition 4.3.5 and since m = δ(w), also [w] ❀
∗ [y1], [w] ❀

∗ [yk].
By Lemma 4.4.1, [z1] ❀

∗ [y1] and [w] ❀∗ [y1], also [z1] ❀
∗ [w]. Then by

[z1] ❀
∗ [w], [w] ❀∗ [yk] and transitivity also [z1] ❀

∗ [yk], hence [yk] ∈ H∗
i (x)

because [z1] ∈ Hi(x).

Since [yk] ∈ H∗
j (y) and [yk] ∈ H∗

i (x), also [yk] ∈ H∗
i (x) ∩ H∗

j (y) for
i = δ(x) + 1 and j = δ(y).

In contrast to Theorem 4.3.2, practical application follows right from
Theorem 4.4.1. Dependencies in Dstd can be identified by checking descen-
dants in the connection forest of a PCNF ψ. The advantage compared to
Theorem 4.3.2 is that the connection forest for a PCNF ψ can be computed
once and for all. It can be re-used each time the conditionH∗

i (x)∩H
∗
j (y) 6= ∅

70 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

in Theorem 4.4.1 is checked. This way, we also avoid searching for X-paths
explicitly like in direct applications of Definition 3.4.17. Further, we expect
the connection forest to be compact because it is defined over equivalence
classes of variables.

4.5 Compact Dependency Graphs

In the previous section, we observed several theoretical properties of connec-
tions involved in the computation ofDstd. Starting from explicit connections
as in Equation 4.1, we defined the equivalence relation ≈ on variables. In
Equation 4.2 we pointed out that dependencies can be computed by consid-
ering connections between equivalence classes. Finally, we applied a tree-like
representation of connections between classes of existential variables as in
Equation 4.3 and Theorem 4.4.1.

Now we focus on practical application. Our goal is to obtain a compact
graph representation for Dstd. Instead of the augmented compressed de-
pendency graph G≈,⊆(D

std) by Definition 4.2.8 on page 60, we construct an
approximation thereof. As noted at the beginning of Section 4.3, the approx-
imation is precise with respect to dependencies by Dstd but not with respect to
graph structure. There is a dependency with respect to the approximation if
and only if there is a dependency with respect to Dstd. In Section 4.6 below,
we show that the approximation can be computed efficiently for formulae
from real-world applications, although it might not allow for full compact-
ness as the original graph G≈,⊆(D

std) by Definition 4.2.8. Thus we trade
compactness for efficiency of computation.

First, in Section 4.5.1 we relate theoretical results from the previous sec-
tion to the definition of the original graph G≈,⊆(D

std). These observations
are the basis for defining an approximation of G≈,⊆(D

std). As we consider
only Dstd, we write ≈↑ and ≈↓ instead of ≈Dstd,↑ and ≈Dstd,↓ throughout
this section. It turns out that on existential variables the equivalence rela-
tion ≈↑ by Definition 4.2.4 can be approximated by equivalence relation ≈
by Definition 4.3.3. Further, on universal variables the equivalence relation
≈↑ can be approximated by ≈↓. For existential variables, subset edges Es
by Definition 4.2.8 can be approximated by the directed connection relation
❀

∗ from Definition 4.3.5, which is represented by the connection forest.
Based on these observations, we present an algorithm to construct an

approximation of G≈,⊆(D
std) for a given PCNF ψ in Section 4.5.2. An

experimental evaluation in Section 4.6 confirms its practical efficiency on
formulae from recent QBF evaluations.

4.5.1 Approximations

We point out properties of Dstd related to theoretical results from Sec-
tion 4.3. We want to approximate G≈,⊆(D

std) by Definition 4.2.8 by approx-

4.5. COMPACT DEPENDENCY GRAPHS 71

imating the set V/≈↓
∪ V/≈↑

of vertices and edges E. The idea is to avoid
computing the exact equivalence relations ≈↑ and ≈↓ by Definitions 4.2.3
and 4.2.4 where G≈,⊆(D

std) is based on. Instead, we approximate ≈↑ and
≈↓ by other equivalence relations to be introduced below.

Definition 4.5.1 (see also [98], for example). Given a set of variables V ,
equivalence relations ∼ and ∼̇ over V and the partitions V/∼ and V/∼̇ of V
induced by ∼ and ∼̇, respectively. Partition V/∼̇ is an underapproximation
of V/∼ and V/∼ is an overapproximation of V/∼̇ if for each equivalence class
S ∈ V/∼̇ there is an equivalence class S′ ∈ V/∼ such that S ⊆ S′.

If variables x, x′ ∈ V are equivalent with respect to V/∼̇ in Defini-
tion 4.5.1, then also with respect to V/∼ but not necessarily vice versa.
Therefore, the underapproximation V/∼̇ might achieve less compaction on
the set of variables than V/∼ because of smaller equivalence classes.

In this section, we show how to underapproximate ≈↑ and ≈↓ from Defi-
nitions 4.2.3 and 4.2.4. In these underapproximations defined below, we only
consider variables within the same quantifier block as equivalent under cer-
tain additional criteria. This way, we obtain a partition of quantifier blocks
rather than variables which allows for simpler implementation as pointed
out in Section 4.5.2. Finally, the underapproximations of ≈↑ and ≈↓ give
rise to an approximation of G≈,⊆(D

std). Note that here we focus on Dstd. It
is unclear how to obtain similar theoretical results and approximations with
respect to other dependency schemes which refine Dstd such as the triangle
or quadrangle dependency scheme [51, 113].

In the following, we present the theoretical background where the un-
derapproximations of ≈↑ and ≈↓ and finally the approximation of graph
G≈,⊆(D

std) are based on.

Lemma 4.5.1. Given a PCNF ψ over variables V and y, y′ ∈ V where
q(y) = q(y′) = ∃ and δ(y) = δ(y′) = j: if y ≈ y′ then y ≈↑ y

′.

Proof. Assume that y ≈ y′ and that there is x ∈ V such that x ∈ (Dstd)−1(y).
Note that actually q(x) = ∀ and δ(x) = i for some i with i < j by Theo-
rem 4.3.2. We show that also x ∈ (Dstd)−1(y′) and hence y ≈↑ y

′ by Defini-
tion 4.2.4. Alternatively to x ∈ (Dstd)−1(y) we can write (x, y) ∈ Dstd. By
Equation 4.2 in Theorem 4.3.2 there is w ∈ V∃,δ(x)+1 such that x→∗

δ(x)+1 [w]

and [y] →∗
δ(x)+1 [w]. Since y ≈ y′, by Definition 4.3.3 y →∗

j y
′ for j = δ(y) =

δ(y′) where δ(x)+ 1 ≤ j. Hence [y′] →∗
δ(x)+1 [w] and therefore (x, y′) ∈ Dstd

by Equation 4.2 in Theorem 4.3.2 and finally x ∈ (Dstd)−1(y′).

By Lemma 4.5.1, if two existential variables y and y′ from the same
block are connected with respect to variables from the same or any larger
existential block as in Definition 4.3.3, then they are equivalent with respect
to ≈. In this case, y and y′ also depend on the same set of universal variables

72 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

and hence are equivalent by ≈↑. The converse does non necessarily hold.
Two variables from different blocks but of the same quantifier type could
depend on the same set of variables even if they are not equivalent by ≈.

Lemma 4.5.2. Given a PCNF ψ over variables V and y, y′ ∈ V where
q(y) = q(y′) = ∀ and δ(y) = δ(y′) = j: if y ≈↓ y

′ then y ≈↑ y
′.

Proof. Assume that y ≈↓ y
′. By Definition 4.2.3 Dstd(y) = Dstd(y′). As-

sume that (x, y) ∈ Dstd for some x ∈ V∃ and i = δ(x) where i < j by The-
orem 4.3.2. By Equation 4.3 there is an arbitrary but fixed w ∈ V∃,δ(x)+1

such that x→∗
δ(x)+1 [w] and [y] ❀∗ [w]. By [y] ❀∗ [w], Definition 4.3.5 and

Theorem 4.3.2, also (y, w) ∈ Dstd. By assumption Dstd(y) = Dstd(y′), also
(y′, w) ∈ Dstd. Since (y′, w) ∈ Dstd, by Equation 4.3 in Theorem 4.3.2 also
y′ →∗

δ(y′)+1 [w] and [w] ❀∗ [w]. By y′ →∗
δ(y′)+1 [w], Definition 4.3.5 and

Corollary 4.3.3, also [y′] ❀∗ [w]. By assumption x →∗
δ(x)+1 [w] and since

[y′] ❀∗ [w], also (x, y′) ∈ Dstd by Equation 4.3 in Theorem 4.3.2.

By Lemma 4.5.2, if two universal variables from the same block have
equal sets of depending variables, then they also depend on the same set of
variables.

Lemma 4.5.3. Given a PCNF ψ over variables V and x, x′ ∈ V where
δ(x) = δ(x′) = i: if Hi+1(x) = Hi+1(x

′) then x ≈↓ x
′.

Proof. Assume that Hi+1(x) = Hi+1(x
′). Then by Definition 4.4.3 also

H∗
i+1(x) = H∗

i+1(x
′). Assume that (x, y) ∈ Dstd by Theorem 4.4.1, that

is H∗
i+1(x) ∩ H∗

j (y) 6= ∅ for j := δ(y). Let [z] ∈ H∗
i+1(x) ∩ H∗

j (y). Since
by assumption H∗

i+1(x) = H∗
i+1(x

′), also [z] ∈ H∗
i+1(x

′) ∩ H∗
j (y). Then

H∗
i+1(x

′) ∩ H∗
j (y) 6= ∅ for j := δ(y) and by Theorem 4.4.1 also (x′, y) ∈

Dstd.

By Lemma 4.5.3, variables with equal sets of ancestors in the connection
forest also have equal sets of depending variables. This follows right from
Definition 4.4.3. If the sets of descendants in the connection forest are equal,
then the sets of connected existential variables are equal. By Theorem 4.4.1
this information is precise and relevant to compute dependencies.

Lemma 4.5.4. Given y, y′ ∈ V∃, if [y] ❀
∗ [y′] then ([y]↑, [y

′]↑) ∈ Es, where
Es as in Definition 4.2.8.

Proof. We show that if [y] ❀
∗ [y′] then (Dstd)−1(y) ⊆ (Dstd)−1(y′) and

hence ([y]↑, [y
′]↑) ∈ Es by Definition 4.2.8. Assume that [y] ❀∗ [y′] and x ∈

(Dstd)−1(y) for some x ∈ V∀. Alternatively to x ∈ (Dstd)−1(y) we can write
(x, y) ∈ Dstd. By Equation 4.3 in Theorem 4.3.2, there is an arbitrary but
fixed w ∈ V∃,δ(x)+1 such that x→∗

δ(x)+1 [w] and [y] ❀∗ [w]. Since [y] ❀∗ [w],

also δ(y) ≤ δ(w) and [y] →∗
δ(y) [w] by Definition 4.3.5. Then by Lemma 4.3.1,

4.5. COMPACT DEPENDENCY GRAPHS 73

also [w] →∗
δ(y) [y]. Since [y] ❀∗ [y′], also δ(y) ≤ δ(y′) and [y] →∗

δ(y) [y
′] by

Definition 4.3.5. From [w] →∗
δ(y) [y], [y] →∗

δ(y) [y′] and transitivity, we

obtain [w] →∗
δ(y) [y′]. By Lemma 4.3.1, also [y′] →∗

δ(y) [w]. Since δ(x) <

δ(y) ≤ δ(y′), also [y′] →∗
δ(x)+1 [w] by Corollary 4.3.3. From x →∗

δ(x)+1

[w], [y′] →∗
δ(x)+1 [w] and Equation 4.2 in Theorem 4.3.2, we conclude that

(x, y′) ∈ Dstd, or alternatively x ∈ (Dstd)−1(y′). Therefore (Dstd)−1(y) ⊆
(Dstd)−1(y′) and hence ([y]↑, [y

′]↑) ∈ Es by Definition 4.2.8.

Lemma 4.5.4 relates paths between classes in the connection forest to
subset edges in G≈,⊆(D

std). Given existential variables y and y′ such that
[y] ❀∗ [y′], the connection from a universal variable x to y can be extended
to y′. Thus if (x, y) ∈ Dstd then also (x, y′) ∈ Dstd and hence there is a
subset edge ([y]↑, [y

′]↑). Relying on the lemmata introduced above, we define
approximations of equivalence relations ≈↓ and ≈↑ from Definitions 4.2.3
and 4.2.4.

Definition 4.5.2. Given a PCNF over variables V and x, x′ ∈ V such
that δ(x) = δ(x′) = i. The equivalence relation ≈̇↓ is defined based on
Lemma 4.5.3:

x ≈̇↓ x
′ if and only if Hi+1(x) = Hi+1(x

′).

Given x ∈ V , [x]↓̇ is the class of x with respect to V/≈̇↓
.

Corollary 4.5.1. Given a PCNF over variables V, the partition V/≈̇↓
is an

underapproximation of V/≈↓
due to Lemma 4.5.3.

Definition 4.5.3. Given a PCNF over variables V and x, x′ ∈ V such
that δ(x) = δ(x′) = i. The equivalence relation ≈̇↑ is defined based on
Lemmata 4.5.1 to 4.5.3 with respect to the type of x and x′:

• q(x) = q(x′) = ∃: x ≈̇↑ x
′ if and only if x ≈ x′.

• q(x) = q(x′) = ∀: x ≈̇↑ x
′ if and only if Hi+1(x) = Hi+1(x

′).

Given x ∈ V , [x]↑̇ is the class of x with respect to V/≈̇↑
.

Corollary 4.5.2. Given a PCNF over variables V , the partition V/≈̇↑
is

an underapproximation of V/≈↑
due to Lemmata 4.5.1 to 4.5.3.

Given the underapproximations ≈̇↓ and ≈̇↑ from Definitions 4.5.2 and
4.5.3, we introduce an approximation of the graph G≈,⊆(D

std) from Defini-
tion 4.2.8. This approximation goes without the original equivalence rela-
tions ≈↓ and ≈↑ from Definitions 4.2.3 and 4.2.4.

Definition 4.5.4. Given the standard dependency scheme Dstd for a PCNF
ψ over variables V and equivalence relations ≈̇↓ and ≈̇↑. The approximated,

74 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

augmented and compressed dependency graph for Dstd is a DAG Ġ≈,⊆(D
std)

with vertices V/≈̇↓
∪ V/≈̇↑

and directed edges E := E′
d ∪ E

′
s where

E′
d := {([x]↓̇, [y]↑̇) | (x, y) ∈ Dstd}

is the set of dependency edges and

E′
s := {([x]↑̇, [x

′]↑̇) | q(x) = q(x′) = ∃ and [x]↑̇ ❀
∗ [x′]↑̇} ∪

{([x]↑̇, [x
′]↑̇) | q(x) = q(x′) = ∀ and (Dstd)−1(x) ⊆ (Dstd)−1(x′)}

is the set of subset edges.

Note that, when defining E′
s in Definition 4.5.4, notation [x]↑̇ ❀

∗ [x′]↑̇
is well-defined because of Lemma 4.5.1 and Definition 4.5.3. That is, the
equivalence relations≈ and ≈̇↑ are equal with respect to existential variables.

The reason for considering graph Ġ≈,⊆(D
std) from Definition 4.5.4 an

approximation of G≈,⊆(D
std) from Definition 4.2.8 is twofold. First, if two

variables are equivalent in Ġ≈,⊆(D
std), that is they occur in the same equiv-

alence class, then they are also equivalent in G≈,⊆(D
std), but not necessarily

vice versa. Hence classes in G≈,⊆(D
std) might be larger than in Ġ≈,⊆(D

std)
and therefore G≈,⊆(D

std) might be more compact. Second, we have E′
s ⊆ Es

in general, because of underapproximations ≈̇↓ and ≈̇↑ in addition to ❀
∗,

where subset edges between classes of existential variables are based on.
Note that, with respect to existential variables, every edge ([x], [x′]) in the
connection forest by Definition 4.4.1 corresponds to a subset edge ([x]↑̇, [x

′]↑̇).

4.5.2 Computing Approximations

We illustrate an algorithm to construct the approximated dependency graph
Ġ≈,⊆(D

std) from Definition 4.5.4. The idea is to build the connection forest
in advance, which represents directed connections between existential vari-
ables by Definitions 4.3.5 and 4.4.1. Due to equivalence classes we expect the
connection forest to be compact. That precomputed information can then
be used to complete the construction of Ġ≈,⊆(D

std). Note that the connec-
tion forest we compute corresponds exactly to Definition 4.4.1 even though
we finally obtain the approximated graph Ġ≈,⊆(D

std). In Section 4.6, we
show by experiments on formulae from QBF competitions that the run time
of our algorithm is negligible. We consider an example in Section 4.5.3.

The algorithm we are going to sketch consists of different phases. It is
possible to merge the first two phases shown below, which could give addi-
tional run time improvements in an implementation. However, for simplicity
of presentation we keep the phases separate.

In the following, assume that we are given a PCNF ψ where we want
to compute Ġ≈,⊆(D

std) for Dstd with respect to ψ. Initially all equivalence
classes with respect to ≈̇↑ and ≈̇↓ are singleton. Further, all clauses in ψ
are sorted ascendingly with respect to the ordering of the quantifier prefix.

4.5. COMPACT DEPENDENCY GRAPHS 75

Phase 1: Constructing the Connection Forest

In the first phase, the connection forest for ψ is constructed by inspecting the
clauses in ψ. Clauses are inspected one after the other where only existential
literals are considered. The equivalence relation ≈, which approximates ≈̇↑

by Definition 4.5.3, is computed step by step with respect to the clauses
that have been processed already.

1. Assume that the connection forest contains only singleton classes as
vertices but no edges.

2. For all clauses Cj in ψ:

2.1. Consider every pair (l1, l2) of existential literals in Cj such that
the corresponding variables v1 := v(l1) and v2 := v(l2) are from
the same existential block, that is b(v1) = b(v2). Merge the classes
[v1] and [v2] of v1 and v2 with respect to ≈. Note that by Defini-
tion 4.5.3 this corresponds to merging the classes [v1]↑̇ and [v2]↑̇.
Since clauses are sorted, it is actually not necessary to consider
all pairs of existential literals in Cj . One linear pass over literals
in Cj is sufficient to carry out this step.

3. For all clauses Cj in ψ:

3.1. Consider all pairs ([v1], [v2]) of existential classes in Cj with re-
spect to ≈ where v1 < v2 in the prefix ordering. Again it is not
necessary to search for all pairs explicitly, as noted above. We
add edges to the connection forest as follows.

3.1.1. For i := δ(v1), let [v′2] := h(i, [v2]) be the smallest ancestor
of [v2] in the connection forest by Definition 4.4.2. Note that
v′2 ≤ v2.

3.1.2. If [v1] = [v′2] then do nothing and consider the next pair at
the beginning of the loop.

3.1.3. If v1 < v′2, that is v1 and v′2 are from different blocks, then
insert an edge ([v1], [v

′
2]) into the connection forest as in Def-

inition 4.4.1.
Otherwise, if v1 and v′2 are from the same block then merge
the classes [v1] and [v′2] with respect to ≈.
At this point we might have destroyed the structure of the
connection forest. After class merging or edge insertion, the
vertex representing [v′2] could have two parents.

3.1.4. If class [v′2] has one parent then do nothing and go to the
next pair at the beginning of the loop.

3.1.5. Otherwise, the forest structure has to be repaired. Consider
the set of all predecessors of [v1] and [v′2] in the connection

76 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

forest. Consider the sequence of that predecessors sorted
by prefix ordering. If there are predecessors from the same
block, then merge the respective classes with respect to ≈.
Remove edges which connect a predecessor with another in
the set. Connect all the sorted predecessors linearly by new
edges in the connection forest.

4. At this point, the connection forest is fully constructed.

Phase 2: Computing Ancestors

Given the connection forest that has been constructed in the first phase, we
compute the sets Hi(x) of ancestors like in Definition 4.4.3 for each variable.
The following algorithm is actually a direct application of that definition.
Ancestor information is used to insert dependency edges into the graph and
to compute equivalence classes with respect to Definition 4.5.2.

1. Assume that the connection forest was fully constructed.

2. For all clauses Cj in ψ, consider all the literals in Cj :

2.1. Consider pairs (v1, [v2]) such that there are literals l1 and l2 in Cj
with v1 = v(l1) and v2 = v(l2) where v1 < v2 and either q(v1) =
q(v2) = ∃ or q(v1) = ∀ and q(v2) = ∃. Given v2, find the smallest
ancestor [v′2] := h(i, [v2]) of [v2], where i := δ(v1) + 1, which is
larger than v1 by prefix order. LetHi(v1) := Hi(v1)∪{[v

′
2]} where

i := δ(v1)+ 1. The previous steps correspond to Definition 4.4.3.

3. At this point, all the sets Hi(v) of ancestors where i = δ(v) + 1 were
computed for all variables in ψ.

Due to equivalence classes [v2] with respect to ≈, we expect that not
all of the literals in a clause have to be considered explicitly during phase
2. If v is universal then set Hi(v) corresponds to dependency edges from
universal classes with respect to ≈̇↓ by Definition 4.5.2 to existential classes
with respect to ≈̇↑. By Definition 4.5.3 the latter corresponds to ≈ already
built in the first phase.

Phase 3: Computing Partitions

Equivalence relations ≈̇↓ and ≈̇↑ by Definitions 4.5.2 and 4.5.3 are part
of the approximated dependency graph Ġ≈,⊆(D

std). These relations take
into account equivalences of ancestors sets Hi(v) that were computed in
the previous phase. In this phase, we explicitly compare ancestor sets to
compute the partitions V/≈̇↓

and V/≈̇↑
. For existential variables, V/≈̇↑

was computed already implicitly by ≈ in phase 1 due to Definition 4.5.3.

4.5. COMPACT DEPENDENCY GRAPHS 77

Additionally by Definition 4.5.2, ≈̇↓ equals ≈̇↑ for universal variables. Thus
it remains to consider ≈̇↓ for both universal and existential variables.

1. Assume that the connection forest and sets Hi(v) where i = δ(v) + 1
for all variables v were constructed previously.

2. For all existential blocks Bj :

2.1. As long as there are classes [e]↓̇ and [e′]↓̇ with [e]↓̇ 6= [e′]↓̇ by ≈̇↓

for variables e and e′ in Bi such that Hi+1(e) = Hi+1(e
′), merge

[e]↓̇ and [e′]↓̇.

3. For all universal blocks Bj :

3.1. As long as there are classes [a]↓̇ and [a′]↓̇ with [a]↓̇ 6= [a′]↓̇ by ≈̇↓

for variables a and a′ in Bi such that Hi+1(a) = Hi+1(a
′), merge

[a]↓̇ and [a′]↓̇ as well as [a]↑̇ and [a′]↑̇.

Phase 4: Inserting Dependency Edges

In phase 2 we computed ancestor sets Hi(v) for all variables in ψ and
i := δ(v)+1. Regarding universal variables v, each ancestor [v′] in Hi(v) cor-
responds to a dependency edge ([v]↓̇, [v

′]↑̇) in the approximated dependency
graph by Definition 4.5.4. For existential variables, we explicitly insert de-
pendency edges based on the connection forest and partitions V/≈̇↓

that were
computed in the previous phase. Thereby, we directly apply Theorem 4.4.1.

1. Assume that the connection forest and partitions V/≈̇↓
and V/≈̇↑

were
computed.

2. For all universal variables a in ψ, consider the class [a]↓̇ with respect
to ≈̇↓:

2.1. For all classes [e] of existential variables with respect to ≈ (note
that [e] corresponds to [e]↑̇ by Definition 4.5.3) such that [e] ∈
Hi(a) where i = δ(a) + 1:

2.1.1. For all predecessors [e′] of [e] (including [e′] := [e] itself) in
the connection forest:

2.1.1.1. If there is a class [e′′]↓̇ with respect to ≈̇↓ where e′′ is

existential such that [e′] ∈ Hi(e
′′) and i = δ(e′′)+1, then

insert a dependency edge ([e′′]↓̇, [a]↓̇). Note that we may

write ([e′′]↓̇, [a]↓̇) instead of ([e′′]↓̇, [a]↑̇) since [a]↓̇ equals
[a]↑̇ by Definitions 4.5.2 and 4.5.3.

78 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

Phase 5: Inserting Subset Edges

We finish the construction of the approximated dependency graph by insert-
ing missing subset edges. For existential variables, edges in the connection
forest by Definition 4.4.1 correspond to subset edges between classes with
respect to ≈̇↑ because of Definition 4.5.3 and Lemma 4.5.4. Since the con-
nection forest represents the transitive reduction of relation ❀

∗, there are no
transitive subset edges between classes of existential variables. This property
is different from Definition 4.5.4 and can be regarded as an improvement.

In the final phase, we insert subset edges between classes of universal
variables explicitly. Optionally, transitive edges can be removed afterwards.
We consider classes [a]↑̇ of universal variables a from blocks Bi from the

outermost to the innermost. If there is a class [a′]↑̇ of a universal variable

a′ from a larger block Bj where i < j such that (Dstd)−1(a) ⊆ (Dstd)−1(a′)
then we insert a subset edge ([a]↑̇, [a

′]↑̇).

4.5.3 Graph Example

[a1]↓̇ [a2]↓̇

[e3, e4]↑̇ [e5]↑̇

[a6]↓̇ [a7]↓̇

[e8]↑̇ [e10]↑̇ [e9]↑̇

[a11, a12]↓̇

[e13, e14]↑̇ [e15]↑̇

x Hδ(x)+1(x) x Hδ(x)+1(x)

a1 [e3, e4]↑̇ e9 [e15]↑̇
a2 [e5]↑̇ e10 –

e3 [e8]↑̇ a11 [e13, e14]↑̇
e4 [e8]↑̇, [e10]↑̇ a12 [e13, e14]↑̇
e5 [e9]↑̇ e13 –

a6 [e8]↑̇ e14 –

a7 [e10]↑̇ e15 –

e8 [e13, e14]↑̇

i q(Bi) Bi (a2 ∨ e5 ∨ e9)
1 ∀ a1, a2 (e5 ∨ e9 ∨ e15)
2 ∃ e3, e4, e5 (e3 ∨ e8 ∨ e13)
3 ∀ a6, a7 (e4 ∨ a7 ∨ e10)
4 ∃ e8, e9, e10 (e4 ∨ e13 ∨ e14)
5 ∀ a11, a12 (a1 ∨ a6 ∨ e8 ∨ e14)
6 ∃ e13, e14, e15 (a11 ∨ a12 ∨ e13)

Figure 4.3: The connection forest (dashed edges) and dependency edges
(solid) from universal to existential classes for the PCNF from Figure 4.2,
which is replicated in the table. For simplicity, we omit dependency edges
from existential to universal classes and subset edges between universal
classes. Further, classes by ≈̇↓ and ≈̇↑ of existential and universal variables,
respectively, are omitted. Note that the dashed edges of the connection for-
est correspond to subset edges between classes of existential variables. The
table shows the set of ancestors Hδ(x)+1(x) by Definition 4.4.3.

4.6. EXPERIMENTAL RESULTS 79

Figure 4.3 shows part of the approximated graph for the PCNF from
Figure 4.2 as constructed by the algorithm described in the previous sec-
tion. Dashed edges are part of the connection forest. Solid edges represent
dependencies of universal classes by equivalence relation ≈̇↓ according to
Definition 4.5.2. For example, we have a11 ≈̇↓ a12 because Hδ(a11)+1(a11) =
Hδ(a12)+1(a12) = {[e13, e14]↑̇} as indicated in the table. Hence variables
a11 and a12 have the same set of dependencies and the single dependency
edge from [a11, a12]↓̇ to [e13, e14]↑̇ in the graph compactly represents the four

explicit dependencies (a11, e13), (a11, e14), (a12, e13) and (a12, e14) in Dstd.
Further, we have e13 ≈̇↑ e14 by Definition 4.5.3, which is due to e13 ≈ e14
by Definition 4.3.3 and by clause (e4 ∨ e13 ∨ e14).

In addition to classes, subset edges between existential variables in Fig-
ure 4.3 allow to reduce the number of explicit dependency edges. For ex-
ample, the dependency (a2, e15) is represented implicitly by the dependency
edge from [a2]↓̇ to [e5]↑̇ and by the path from [e5]↑̇ to [e15]↑̇ given by dashed
subset edges.

We briefly sketch how to insert dependency edges from existential to
universal classes (not shown in Figure 4.3) as done in phase four of the
algorithm from the previous section. Recall that, for a universal variable
a, [a]↓̇ equals [a]↑̇ by Definitions 4.5.2 and 4.5.3. We start at the universal
class [a11, a12]↓̇ and consider the existential class [e13, e14]↑̇, which is the only
class in the setHδ(a11)+1(a11). Further, we consider predecessors of [e13, e14]↑̇
in the connection forest, which are [e13, e14]↑̇, [e8]↑̇ and [e3, e4]↑̇. We have
[e13, e14]↑̇ ∈ Hδ(e8)+1(e8) for predecessor [e13, e14]↑̇ and [e8]↑̇ ∈ Hδ(e3)+1(e3)
and [e8]↑̇ ∈ Hδ(e4)+1(e4) for predecessor [e8]↑̇. Therefore, we add dependency
edges ([e8]↓̇, [a11, a12]↑̇), ([e3]↓̇, [a11, a12]↑̇) and ([e4]↓̇, [a11, a12]↑̇).

For example, note that e3 6≈̇↓ e4 by Definition 4.5.2 since Hδ(e3)+1(e3) 6=

Hδ(e4)+1(e4). Hence a7 ∈ Dstd(e4) but a7 6∈ Dstd(e3).

4.6 Experimental Results

We implemented a variant of the algorithm presented in Section 4.5.2 in
an experimental tool called qdag.2 The tool constructs the approximated
graph Ġ≈,⊆(D

std) similar to Definition 4.5.4 for a given PCNF ψ. An effi-
cient union-find data structure [126] is used to represent equivalence classes.
However, the tool is actually subsumed by an implementation of approx-
imated dependency graphs which is part of the search-based QBF solver
DepQBF described in Chapter 5.

In this section, we report experimental results with respect to qdag

which were already published in [82]. Different from the algorithm from
Section 4.5.2, the first two phases were merged in the implementation of
qdag. Thus one of the passes over the set of clauses of PCNF ψ can be

2A binary and log-files of experiments are available from http://fmv.jku.at/qdag/.

http://fmv.jku.at/qdag/

80 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

2005 2006 2007 2008

Size 211 216 1136 3328

Explicit Search for X-Paths

Total Time 19527.3 132.04 101424 173349

Max. Time 900 (15) 8.67 900 (83) 900 (135)

Avg. Time 92.54 0.61 89.28 52.12

Graph-Based Computation

Total Time 7.94 1.35 227.05 300.31

Max. Time 0.58 0.03 7.96 8.11

Avg. Time 0.04 0.01 0.2 0.09

x ∈ V∀
Max. |Dstd(x)| 256535 9993 2177280 2177280
Avg. |Dstd(x)| 82055.87 4794.60 33447.6 19807

Max. |Hi(x)| 256 1 518 518
Avg. |Hi(x)| 3.26 0.98 2.02 1.14

Max. |H∗
i (x)| 797 5 797 1872

Avg. |H∗
i (x)| 19.51 1.12 39.06 8.24

Avg.
|{[y]

↑̇
|y∈Dstd(x)}|

|{y|y∈Dstd(x)}|
3.44% 0.04% 6.42% 1.21%

Classes per Variables 28.2% 10.23% 40.31% 21.29%

x ∈ V∃
Max. |Dstd(x)| 5040 440 5040 22696
Avg. |Dstd(x)| 12.76 2.98 3.24 4

Max. |Hi(x)| 24 7 490 490
Avg. |Hi(x)| 0.14 0.13 0.17 0.13

Max. |H∗
i (x)| 797 7 797 1872

Avg. |H∗
i (x)| 5.16 0.16 1.32 1.31

Avg.
|{[y]

↑̇
|y∈Dstd(x)}|

|{y|y∈Dstd(x)}|
2.37% 0.4% 2.76% 2.09%

Classes per Variables 10.96% 4.99% 11.45% 7.11%

Table 4.1: Computing the standard dependency scheme Dstd on structured
instances from QBF evaluations 2005 to 2008 [56]. We compare explicit
search for X-paths to our algorithm which constructs a variant of the ap-
proximated, augmented and compressed dependency graph Ġ≈,⊆(D

std).

4.6. EXPERIMENTAL RESULTS 81

avoided. The remaining phases consider equivalence classes rather than in-
dividual variables. Depending on the size of the classes, we expect that the
effort spend on that phases can be kept low in practice. In our implemen-
tation of qdag, we also skip phase five where subset edges between classes
of universal variables are inserted. This information is not relevant as we
are only interested in the sets of dependencies by Dstd in the experiments
reported here. Further, the partition with respect to ≈̇↓ for existential vari-
ables is not computed in phase three. This was included in a later version of
DepQBF. For the experimental analysis, we considered structured instances
(called “fixed class”) from QBF evaluations 2005 to 2008 [56]. We did not
include random instances. Experiments were run on 64-bit Ubuntu Linux
8.04, Intel R© Q6700 at 2.66 GHz and 8 GB of memory.

Table 4.1 shows experimental results. For all formulae in the benchmark
sets a variant of the approximated dependency graph Ġ≈,⊆(D

std) was con-
structed using the tool qdag as described above. The first line in Table 4.1
shows the numbers of formulae per benchmark set.

First, we compare the effort of computing Dstd by explicit search for
X-paths by Definition 3.4.17 on page 49 and by construction of Ġ≈,⊆(D

std).
The former approach was pointed out in Example 4.1.1 on page 57 and is
also implemented in qdag.

We report the total run time, the maximum over all formulae and the
average per formula in seconds for the two approaches in the table. It can be
seen that explicit search is significantly worse. In contrast to the graph-based
approach, explicit search times out on several formulae, where we used a time
limit of 900 seconds. The number of timeouts is given in parentheses in row
“Max. Time”. Further, the average time spent by the graph-based approach
is negligible in practice. Consequently, when computing Ġ≈,⊆(D

std) to be
used in combination with a QBF solver, we expect almost no overhead with
respect to run time. Combinations of dependency graphs with search-based
QBF solvers are the topic of Chapter 5.

Next, we measure the quality of Ġ≈,⊆(D
std) in terms of compactness

with respect to partitions V/≈̇↓
and V/≈̇↑

. We relate the number of depen-
dencies of a variable to the sizes of the equivalence classes which represent
that dependencies in the graph. This way, the effectiveness of the graph-
based approach can be evaluated. Statistics are divided into two sections
for existential and universal variables, respectively. Maximum and average
numbers of dependencies by Dstd over all variables are shown.

Compactness of the graph is indicated several times. For x ∈ V∀, the
set H∗

i (x) of descendants for i = δ(x) + 1 in the connection forest efficiently
represents Dstd(x). These classes are reachable from ancestors in Hi(x).
When comparing the numbers |Hi(x)|, |H

∗
i (x)| and |Dstd(x)|, it becomes

apparent that Ġ≈,⊆(D
std) is compact. For example, on the benchmark set

from 2008, universal variables have 19807 dependencies on average but this
information is stored in Ġ≈,⊆(D

std) using only 8.24 descendants on average.

82 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

Recall that the connection forest is computed only once an thus shared
between all the variables in a PCNF. Descendants H∗

i (x) are not stored
explicitly for each variable. The data reported for |H∗

i (x)| in the table
was obtained by traversing the connection forest starting from ancestors
Hi(x). The small values of |H∗

i (x)| for universal variables x show that many
existential variables occur in the same equivalence class by partition V/≈̇↑

.

For existential variables x ∈ V∃, |Hi(x)| and |H∗
i (x)| measure the effort

for inserting dependency edges in phase four since Hi(x) and H
∗
i (x) have to

be checked explicitly. Note that in these experiments we did not compute
the partition V/≈̇↓

for existential variables with respect to sets |Hi(x)| by
Definitions 4.5.2. Making use of classes with respect to V/≈̇↓

rather than
individual variables as we did in Section 4.5.2 could further improve the
computation of dependency edges.

Finally, we evaluate the size of equivalence classes in partition V/≈̇↑
.

Recall that for universal variables V/≈̇↑
is equal to V/≈̇↓

. For existential
variables, we did not construct V/≈̇↓

as noted above. Given a variable x,

we computed the number |{y | Dstd(x)}| of dependencies and the number
|{[y]↑̇ | y ∈ Dstd(x)}| of classes of depending variables by ≈̇↑. The average
fraction of these numbers is shown in the table. The worst-case is 100%,
where each depending variable occurs in a singleton class with respect to
≈̇↑. This is clearly not the case. The partition V/≈̇↑

compactly represents
the sets of dependencies. Line “Classes per Variables” shows the average
number of classes per variable with respect to partition V/≈̇↑

in each formula.
Again, values are far below 100%, hence many variables can be regarded as
equivalent by ≈̇↑.

4.7 Summary

The standard dependency scheme Dstd can be computed in polynomial time
by direct applications of Definition 3.4.17. However, explicitly searching for
connections between variables can be infeasible on large formulae.

As an alternative, we considered graph representations for arbitrary de-
pendency schemes. In explicit dependency graphs, edges correspond exactly
to dependencies of the form (x, y) in a given dependency scheme D. We
introduced equivalence relations over the set of variables (or vertices) based
on dependency information by D. Thereby, we obtained graphs over classes
of variables which are potentially more compact than explicit graphs. Fi-
nally, we suggested augmented, compressed dependency graphs to represent
arbitrary dependency schemes. These graphs contain auxiliary edges which
are useful for practical applications, as pointed out in the following chapter.

As an example for our graph-based representations, we presented an
algorithm to compute an approximation of the augmented, compressed de-
pendency graph for Dstd. The approximation is precise with respect to

4.7. SUMMARY 83

dependencies by Dstd but might achieve less compaction than the exact
graph. We observed that X-paths by Definition 3.4.15 on page 48 often
connect multiple variables. Hence it is not necessary to compute that infor-
mation from scratch for each pair (x, y) of variables to check if (x, y) ∈ Dstd.
Instead, given a PCNF ψ, we first determine all connections between exis-
tential variables which are relevant for X-paths in terms of the connection
forest of ψ. The connection forest is used to complete the construction of
the graph by inserting missing dependency and auxiliary edges.

Although our presented algorithm construct only an approximation of
the augmented, compressed dependency graph for Dstd, experimental re-
sults on benchmarks from QBF evaluations show that the approximation is
compact and that is can be computed efficiently in practice.

84 CHAPTER 4. THE STANDARD DEPENDENCY SCHEME

Chapter 5

QDPLL and Dependency

Schemes

5.1 Introduction

In Chapter 3 we argued that the linear quantifier prefix of QBFs in PCNF
might be a severe drawback for QBF solvers. The quantifier prefix naturally
induces a linear ordering on the variables. This ordering restricts the set of
possible assignment a search-based QBF solver can consider, for example.
As pointed out in Example 3.3.6 on page 34, there might be an exponential
gap between the run time of solvers relying on the quantifier prefix and
solvers which carry out a more sophisticated dependency analysis.

In order to alleviate the limitations of quantifier prefixes, we introduced
dependency schemes as a framework for dependency analysis in PCNFs in
Section 3.4. Due to Proposition 3.4.5 on page 51, the linear quantifier prefix
of PCNFs constitutes the worst of all dependency schemes. In contrast to
quantifier prefixes, the use of dependency schemes in general allows a QBF
solver to profit from additional freedom to assign variables. This way, the
policy of assigning variables strictly from “left to right” in prefix ordering
can be overcome.

In this chapter, we combine dependency schemes with search-based QBF
solvers relying on QDPLL, which we briefly introduced in Section 2.3.1. The
goal is to enable QBF solvers to profit from dependency information which is
more refined than what can be obtained from quantifier prefixes. Although
we focus on PCNF and search-based QBF solving by QDPLL, our approach
is relevant for non-PCNF formulae and variable elimination as well. It turns
out that the combination of dependency schemes and QDPLL does not
require to change the overall structure of the algorithm.

Throughout QBF literature, QDPLL has been described based on the
linear quantifier prefix. Since the prefix gives rise to the trivial depen-
dency scheme by Definition 3.4.13, we can regard the original QDPLL al-

85

86 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

gorithm [30] to be combined with that particular dependency scheme. We
generalize that combination of QDPLL and the prefix-based trivial depen-
dency scheme to arbitrary dependency schemes.

Apart from theoretical aspects of dependency schemes and QDPLL, we
are interested in efficient practical applications. It is crucial to check for
dependencies between variables within certain parts of QDPLL such as deci-
sion making or clause learning. In order to carry out such checks efficiently,
we apply compact dependency graphs which we introduced in Section 4.2.
These graphs are general and not limited to representations of particular
dependency schemes.

We provide an experimental evaluation of QDPLL with dependency
schemes. Our QDPLL-based QBF solver DepQBF [84] integrates depen-
dency schemes as compact dependency graphs. We analyze the costs of
moving from simple dependency information like linear quantifier prefixes
of PCNFs or quantifier trees to more general dependency schemes. The re-
sults of this analysis give insights into practical applicability. Further, we
evaluate the dynamic effects on QDPLL when combined with various depen-
dency schemes. For that purpose, we implemented a common framework
for compact dependency graphs in DepQBF. In addition to the standard
dependency scheme Dstd, this framework is able to represent the trivial
dependency scheme Dtriv arising from linear quantifier prefixes and Dtree

given by quantifier trees as well. We compare the effects of Dtriv, Dtree

and Dstd on the performance of QDPLL. Our experiments indicate that,
despite increased overhead, the combination of QDPLL with Dstd outper-
forms QDPLL relying on Dtriv and Dtree. These results motivate the use of
general dependency schemes in QDPLL.

The combination of QDPLL with dependency schemes is closely related
to an approach which aims at exploiting tree-based quantifier structure
within QDPLL [62]. However, our work generalizes observations made in
[62] from quantifier trees to arbitrary dependency schemes.

In addition to combinations of QDPLL with dependency schemes, an-
other contribution of this chapter is a description of clause and cube learn-
ing, also called constraint learning. From the theoretical point of view,
learning methods for QDPLL were presented independently in related work
[58, 78, 133, 134]. From a high level perspective, QDPLL with constraint
learning resembles the well-known and widely applied DPLL algorithm for
propositional logic (SAT). Implementations of DPLL are available in popular
open source SAT solvers like MiniSAT [42] or PicoSAT [18]. However, im-
plementations of clause learning for SAT cannot directly be ported to QBF.
Therefore, we aim at providing an integrated view of constraint learning as
implemented in our QDPLL-based, open source solver DepQBF.

We give an overview of QDPLL with constraint learning in Section 5.2.
Starting with boolean constraint propagation for QBF (QBCP) in Section 5.3,
we point out how to profit from dependency schemes within QDPLL. Appli-

5.2. QDPLL WITH CONSTRAINT LEARNING 87

cations of QBCP infer additional assignments from given ones, which reduces
the need for explicit branching during the search process. As noted above,
the freedom for branching, also called decision making, in QDPLL is limited
by the linear ordering of the quantifier prefix. In order to overcome these
limitations, we apply arbitrary dependency schemes for decision making in
Section 5.4. We describe constraint learning in Section 5.6 and conclude
with experimental results in Section 5.7.

5.2 QDPLL with Constraint Learning

In the following sections, we informally describe QDPLL with conflict-
directed clause and solution-directed cube learning, called constraint learn-
ing, based on the presentation in [134]. Learning methods for QBF were
published independently in [58, 78, 133, 134]. We consider the details of
constraint learning in Section 5.6 below. For a description of DPLL with
clause learning for SAT, we refer to [36, 117], for example.

5.2.1 Basics

From a very simplistic point of view, QDPLL with constraint learning suc-
cessively generates (partial) assignments of the variables in a given PCNF
ψ. These assignments correspond to paths in an assignment tree as defined
in Section 2.2.1 which is implicitly constructed. The algorithm terminates
if either a satisfying assignment tree was found or if it was proved that no
such assignment tree exists. Note that assignment trees are never explicitly
represented in QDPLL. Instead, only the paths in such trees are enumerated
by means of assignments to variables. Although QDPLL is often presented
as a recursive algorithm, it is typically implemented iteratively.

The ordering in which variables are assigned must follow the structure
of dependencies in the PCNF. This corresponds to the requirement stated
in Definition 2.2.3 that assignments along paths in assignment trees must
be ordered. Information on dependencies can be drawn from the quantifier
prefix or, as we point out later in this chapter, from more sophisticated
dependency schemes computed for the PCNF. Informally, QDPLL checks
the truth value of ψ under the current assignment A, that is ψ[A]. If the
truth value can not yet be determined, then A is extended with further
assignments. Otherwise, assignment A is analyzed to find out which parts of
it were responsible for the resulting truth value. Depending on the outcome
of that analysis, a learnt clause or learnt cube is constructed and added to ψ.

Definition 5.2.1. A cube is a conjunction Ci := (l1 ∧ . . .∧ lki) over literals.
The empty cube is an empty conjunction and is denoted by ∅.

Similar to clauses, we assume that a cube neither contains multiple nor
complementary literals of a variable, nor truth constants ⊤ and ⊥.

88 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

Definition 5.2.2. A constraint is either a clause or a cube.

After a learnt constraint has been added to ψ, QDPLL retracts certain
assignments in A in order to continue the search in a different search space.
Thus another path of the assignment tree is entered. Informally, the purpose
of constraint learning is to prevent the generation of assignments which do
not contribute to overall progress of the search. Further, QDPLL with
constraint learning can produce a proof which allows to verify its result
using independent proof checkers. We briefly address proofs in Section 5.2.4
below. We may think of QDPLL with constraint learning like presented in
this chapter as an algorithm which guides the search for a proof by successive
generation of assignments. For DPLL-based solvers with clause learning,
such view was suggested in [70], for example.

QDPLL with constraint learning does not directly operate on a given
PCNF ψ := Q1B1 . . . QnBn. φ but on a formula with specific structure. The
idea is to extend the CNF-part φ of ψ in order to represent learnt clauses
and learnt cubes in addition to original clauses.

Definition 5.2.3 ([134]). Given a PCNF

ψ := Q1B1 . . . QnBn. φ

with CNF-part φ. Let φOCL := φ. The QBF

ψ′ := Q1B1 . . . QnBn. (φOCL ∧ φLCL) ∨ φLCU

is represented as augmented CNF (ACNF), where φOCL and φLCL are con-
junctions over original and learnt clauses, respectively, and φLCU is a dis-
junction over learnt cubes.

Alternatively, a formula in ACNF is called extended QBF [58]. Given a
PCNF ψ, the ACNF ψ′ by Definition 5.2.3 is satisfiable if and only if ψ is
satisfiable. This is due to properties of learnt clauses and learnt cubes which
are generated by Q-resolution. In Section 5.6 below, we address Q-resolution
and the construction of learnt constraints. The semantics of PCNFs based
on assignment trees from Section 2.2.1 can be extended to ACNFs. In
Definition 2.2.4 on page 13, assignments along paths in satisfying assignment
trees must satisfy all the clauses of a PCNF. Additionally, an ACNF is
satisfied if at least one cube is satisfied under the assignment along a path.

During the search, learnt clauses and cubes are added to φLCL and φLCU ,
respectively. Initially, subformulae φLCL and φLCU are empty. Different
from the approach in [134], we do not consider to learn constraints contain-
ing complementary literals (called long-distance resolution). Instead, our
description of the learning procedure is based on [61]. We consider con-
straint learning in detail in Section 5.6 below.

5.2. QDPLL WITH CONSTRAINT LEARNING 89

State qdpll ()

while (true)

State s = qbcp ();

if (s == UNDET)

// Make decision.

v = select_dec_var ();

assign_dec_var (v);

else

// Conflict or solution.

// s == UNSAT or s == SAT.

btlevel = analyze_leaf (s);

if (btlevel == INVALID)

return s;

else

backtrack (btlevel);

DecLevel analyze_leaf (State s)

R = get_initial_constraint (s);

// s == UNSAT: ’R’ is empty clause.

// s == SAT: ’R’ is sat. cube...

// ..or new cube from assignment.

while (!stop_res (R))

p = get_pivot (R);

R’ = get_antecedent (p);

R = constraint_res (R, p, R’);

add_to_formula (R);

return get_asserting_level (R);

Figure 5.1: Pseudo-code of QDPLL with conflict-directed clause and
solution-directed cube learning [58, 78, 134]. Code blocks are indicated
by indentation level.

5.2.2 Generation of Assignments

Figure 5.1 shows a high-level pseudo-code of QDPLL with constraint learn-
ing. The algorithm consists of two major parts. Function qdpll successively
generates assignments as described above and checks the truth value of the
given ACNF ψ to be evaluated. Constraint learning is performed in function
analyze leaf.

An important approach is the propagation of implications, which is car-
ried out in function qbcp. Given an ACNF ψ and an assignment A, an
implication is an additional assignment to a variable which is not yet part of
A and which can be inferred from the formula ψ[A]. Thus QDPLL considers
the formula ψ[A] under the current assignment A each time A was modi-
fied. Propagation is the iterative inference of implications. This process in
QDPLL is called quantified boolean constraint propagation (QBCP). We ex-
plicitly distinguish QBCP from boolean constraint propagation (BCP) which
is commonly applied in SAT solvers because QBCP and BCP typically rely
on different inference rules. In Section 5.3 below, we consider common QBF-
specific inference rules implemented in qbcp. QDPLL is complete without
the rules in QBCP, that is it always terminates even if no implications are
inferred. However, in general QBCP is able to improve the performance
of QDPLL. Apart from propagating implications, qbcp evaluates the truth
value of ψ under the current assignment A.

Definition 5.2.4. Given an ACNF ψ and an assignment A, the formula
ψ[A] is obtained similarly as defined in Section 2.2.1 by substituting truth
constants for literals of assigned variables and performing simplifications.
Additionally, empty constraints are handled as follows. If there is a clause

90 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

C ∈ ψ[A] such that C[A] = ∅ then C is replaced by ⊥ in ψ[A]. If there is a
cube C ∈ ψ[A] such that C[A] = ∅ then C is replaced by ⊤ in ψ[A]. All truth
constants that were introduced this way are eliminated subsequently in ψ[A].

Definition 5.2.5. Given an ACNF ψ and a (partial) assignment A, the
state of ψ under A is defined as follows. If ψ[A] = ⊥ then A is a conflicting
assignment, also called a conflict, and ψ is falsified under A. If ψ[A] = ⊤
then A is a satisfying assignment, also called a solution, and ψ is satisfied
under A. If A is neither conflicting nor satisfying then A is an inconclusive
assignment and ψ is undetermined under A. We may drop “. . . under A”
from definitions if assignment A is clear from the context.

Definition 5.2.5 is based on the current assignment only and ignores the
QBF-specific rule of constraint reduction to be introduced in Section 5.3.
Given an assignment, constraint reduction allows to ignore certain literals of
universal variables in clauses and existential variables in cubes. This way, it
might be be found out earlier than by Definition 5.2.5 that some assignment
A cannot be part of a PCNF-model of ψ (see also Definition 5.3.7 below).

Function qbcp in Figure 5.1 propagates implications until saturation
and checks the truth value of the ACNF under the current assignment A.
If A is neither conflicting nor satisfying (s == UNDET) then some variable
x is assigned as the next decision in function select dec var. This pro-
cess is called decision making or branching. Different from decision making
in DPLL for SAT, the choice of variables for decisions is not arbitrary in
QDPLL. With respect to the current assignment A, a variable x can be
assigned as decision only if all variables where x depends on are assigned in
A already. For example, when relying on the quantifier prefix, then x can
be assigned as decision only if all variables which are differently quantified
to the left of x are assigned. This policy corresponds to decision making in
classical descriptions of QDPLL like [31, 57]. In Section 5.4 below, we con-
sider decision making by means of arbitrary dependency schemes which are
represented by compact dependency graphs. Note that assignments made
as implications by inference rules during QBCP do not have to respect de-
pendencies.

Decision Levels and Trail Levels

Decisions are numbered ascendingly by decision levels, starting at decision
level one. Once a variable x with decision level dl(x) has been selected
by select dec var, the value to be assigned is typically chosen according
to certain heuristics in assign dec var. Given the current assignment A,
assigning x to true or false produces a new, extended assignment A′ := A∪
{x} or A′ := A∪ {¬x}, respectively. All implications y that can be inferred
from the current assignment A′ are propagated in turn by qbcp, where

5.2. QDPLL WITH CONSTRAINT LEARNING 91

dl(y) := dl(x). Hence, implications get the same decision level as the most
recent decision or decision level zero if no decision has been made before.

In addition to decision levels, every single assignment of a variable, re-
gardless of whether it was made as a decision or implication, is numbered
chronologically starting from zero in the order of assignments made. This
numbering is called the trail level tl(x) of an assigned variable x. Different
from decision levels, the trail level of every assigned variable is unique. We
regard assignments A := {l0, l1, . . . , lm−1} to be sorted chronologically by
trail levels, where i is the trail level of assignment li ∈ A. Trail levels are
related to the following property of assignments generated by QDPLL.

Definition 5.2.6. Given an assignment A := {l0, l1, . . . , lm−1} sorted as-
cendingly by trail levels 0 to m − 1 and a dependency scheme D. Assign-
ment A is admissible with respect to D if and only if, for every assignment
li ∈ A made as decision, the following holds: given the set V<i := {x | x =
v(lj), lj ∈ A, j < i} of variables which were assigned before li in A, every
variable where the decision variable v(li) depends on by D must have been
assigned before v(li) in A, that is D

−1(v(li)) ⊆ V<i.

Note that assignments generated in QDPLL as shown in Figure 5.1 are
always admissible by Definition 5.2.6 with respect to the dependency scheme
D that was used throughout all parts of QDPLL. This property also applies
to classical descriptions of QDPLL where decisions have to be made de-
pending on the quantifier prefix, as pointed out above. Actually, admissible
assignments in classical QDPLL can be described by setting D := Dtriv in
Definition 5.2.6. This way, QDPLL implicitly constructs assignment trees
which correspond exactly to the original Definition 2.2.1 on page 11.

Further, admissible assignments are closely related to relaxed orderings
of paths in PCNF-models by Proposition 3.4.1 on page 46. Given a depen-
dency scheme D, the assignments along every path in a PCNF-model of a
formula must respect dependencies in D. If two variables are independent
then they can be assigned as decisions in arbitrary relative order along the
paths, which increases the freedom for decision making. We consider the
generation of admissible assignments in the context of arbitrary dependency
schemes by QBCP and decision making in Sections 5.3 and 5.4.

5.2.3 Constraint Learning

Decision making as described above extends the current assignment A if A is
neither conflicting nor satisfying. Otherwise, the ACNF ψ is either satisfied
or falsified under A. This situation corresponds to a leaf in the assignment
tree implicitly constructed by QDPLL. The current state of ψ under A is
caused by at least one clause or cube in ψ.

Definition 5.2.7. Given an ACNF ψ, let C ∈ ψ be a clause or cube and A
be a (partial) assignment. The state of C under A is defined as follows. If

92 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

C[A] = ⊥ then C is falsified under A. If C[A] = ⊤ then C is satisfied under
A. Otherwise, if C is neither falsified nor satisfied, then C is undetermined
under A. We may drop “. . . under A” from definitions if assignment A is
clear from the context.

With respect to Definition 5.2.5, falsified clauses and satisfied cubes are
related to satisfying and falsifying assignments, respectively. This relation
is due to the structure of ACNFs by Definition 5.2.3. Similar to Defini-
tion 5.2.5, the effects of constraint reduction are ignored in Definition 5.2.7.
We present an adapted variant in Section 5.3.4 below.

Proposition 5.2.1 ([134]). Given an ACNF ψ and a (partial) assignment
A. There is a clause C ∈ ψ such that C is falsified under A if and only if
A is conflicting. If there is a cube C ∈ ψ such that C is satisfied under A
then A is satisfying.

Note that it is not possible to have a falsified clause and a satisfied cube
under the same assignment in an ACNF. This is due to the way how learnt
constraints are generated as described in Section 5.6.1.

Given an assignment A which is conflicting or satisfying, certain as-
signments to variables in A have to be retracted in order to continue the
search in a different search space. The process of retracting assignments is
called backtracking. The notion of “backtracking” is often associated with
a chronological way of retracting assignments: the truth value of the most
recently assigned decision variable x is flipped and implications with trail
levels larger than the one of x are retracted.

Different from that, in modern implementations of QDPLL and DPLL
with learning, like in Figure 5.1, in general assignments are retracted non-
chronologically. That is, depending on the learning procedure, the effects
of assignments that have been made earlier than the most recent decision
could be undone. This policy is called non-chronological backtracking or
backjumping, see also [36, 59, 117], for example. For simplicity, we use
“backtracking” to denote the non-chronological variant.

Further, in contrast to the classical notion of backtracking, the truth
values of decision variables are not explicitly flipped if the learning proce-
dure always generates asserting clauses and cubes. Modern SAT and QBF
solvers relying on (Q)DPLL like [18, 42, 54, 84, 93] only generate asserting
clauses. Informally, a learnt constraint C is asserting if QBCP is able to infer
an implication from C after backtracking to a certain decision level called
asserting level. We refer to [36, 118, 132], for example, for further details
related to the generation of asserting clauses in SAT solvers. In Section 5.6
below, we focus on the generation of asserting constraints in QDPLL.

Learnt constraints are generated in function analyze leaf in Figure 5.1.
The idea is to apply Q-resolution to derive new learnt constraints, called re-
solvents, with respect to the current conflicting or satisfying assignment. Q-

5.2. QDPLL WITH CONSTRAINT LEARNING 93

resolution is the QBF-specific variant of the resolution operation for propo-
sitional logic. Resolution is also the core of clause learning in SAT solvers.
In addition to clauses, cubes are learnt in QDPLL based on term resolution
steps [61] involving cubes which have been learnt previously. Term resolution
for cubes can be regarded to be dual to Q-resolution for clauses. For simplic-
ity, we use “Q-resolution” to denote either Q-resolution over clauses or term
resolution over cubes. We introduce Q-resolution formally in Section 5.6
below. According to our experimental results in Section 5.7, Q-resolution
is able to generate shorter learnt constraints in the context of the standard
dependency scheme Dstd compared to the prefix ordering of PCNFs.

Learning from Conflicts

If the current assignment A is conflicting (s == UNSAT) then the ACNF
contains at least one falsified clause. Function get initial constraint

returns a reference to one such clause R which is called initial constraint.
Given the initial constraint, new clauses are constructed using Q-resolution.
In function constraint res, clause R is resolved with the antecedent clause
R′ of an existential variable p which occurs in R and which was assigned
as an implication in the current assignment A (see also Section 5.3.2 be-
low). Variable p is the pivot of the current Q-resolution step and function
get antecedent returns its antecedent clause. The selection of pivots from
the current constraint R by function get pivot is not arbitrary. It de-
pends on the current assignment. Care has to be taken in order to avoid
the generation of constraints which contain complementary literals. We ad-
dress the details of pivot selection in Section 5.6.1. Function stop res stops
the resolution process if the current clause R is asserting. The generated
clause R is added to the set φLCL of learnt clauses in the ACNF. Func-
tion get asserting level computes the asserting level d such that, after
backtracking to d, QBCP can infer a new implication from R.

Learning from Solutions

If the current assignment A is satisfying (s == SAT) then either the ACNF
contains at least one satisfied learnt cube or all clauses in the ACNF are
satisfied. The idea is to produce a learnt cube by Q-resolution starting from
an initial constraint. If there is a satisfied learnt cube R in the ACNF then
R is the initial constraint. Otherwise, an initial constraint is computed by
selecting a subset A′ ⊆ A of the assignment A such that A′ is satisfying.

Definition 5.2.8 ([134]). Given an ACNF ψ := Q1B1 . . . QnBn. (φOCL ∧
φLCL)∨ φLCU and a (partial) assignment A as generated by QDPLL like in
Figure 5.1. A cover set A′ ⊆ A is a subset of A such that A′ ∩Ci 6= ∅ for all
original clauses Ci ∈ φOCL.

94 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

A cover set A′ satisfies at least one literal in each original clause. Due
to properties of ACNFs, it is not necessary to consider learnt constraints in
Definition 5.2.8 to make A′ satisfying. Note that there might be multiple
cover sets for a given assignment A and set of original clauses.

The cover set A′ constitutes the initial constraint R. Apart from obtain-
ing initial constraints, learnt cubes are generated dually to learnt clauses.
Q-resolution is applied to antecedent cubes of universal pivot variables. The
process stops if the current cube R is asserting and R is added to the set
φLCU of learnt cubes in the ACNF. Finally, the asserting level is computed
and returned to algorithm qdpll.

After backtracking to the asserting level d and unassigning all variables
with decision levels larger than d in function backtrack, QBCP is carried
out again. A new implication is inferred by qbcp from the previously gen-
erated learnt constraint, possibly in addition to further implications.

5.2.4 Q-Resolution Proofs

Algorithm qdpll in Figure 5.1 terminates (btlevel == INVALID) if and
only if Q-resolution produces an empty clause or an empty cube in function
analyze leaf. In this case, the learning procedure of QDPLL completed a
Q-resolution proof of unsatisfiability or satisfiability of the given ACNF.

Definition 5.2.9 (terminology adapted from Section 2.3 of [9]). Given an
ACNF ψ := Q1B1 . . . QnBn. (φOCL ∧ φLCL) ∨ φLCU . The sequence P :=
(C1, C2, . . . , Cm) of clauses is a Q-resolution proof of unsatisfiability of ψ if
Cm = ∅ and Ci ∈ (φOCL∪φLCL) for all Ci ∈ P such that if Ci ∈ φLCL then Ci
can be derived by Q-resolution from two clauses Cj , Ck ∈ P where j, k < i.

Definition 5.2.10 (terminology adapted from Section 2.3 of [9]). Given
an ACNF ψ := Q1B1 . . . QnBn. (φOCL ∧ φLCL) ∨ φLCU . The sequence P :=
(C1, C2, . . . , Cm) of cubes is a Q-resolution proof of satisfiability of ψ if Cm =
∅ and Ci ∈ φLCU for all Ci ∈ P such that Ci is either a cover set or Ci can
be derived by Q-resolution from two cubes Cj , Ck ∈ P where j, k < i.

For simplicity, we write “proof” if the result of QDPLL is clear from the
context. Note that in proofs P by Definitions 5.2.9 and 5.2.10 we do not
assume any particular order for the generation of the constraints. That is,
for Ci ∈ P and Cj ∈ P where i < j, the learning procedure of QDPLL as in
Figure 5.1 might have derived Cj before Ci.

Proposition 5.2.2. Given an ACNF ψ. If QDPLL with constraint learning
as shown in Figure 5.1 derives the empty constraint then there is a proof by
Definitions 5.2.9 or 5.2.10, respectively.

After termination of QDPLL with constraint learning, a proof P for an
ACNF by Proposition 5.2.2 can trivially be obtained from the sets of clauses

5.2. QDPLL WITH CONSTRAINT LEARNING 95

or cubes, respectively: let P := φOCL ∪ φLCL for unsatisfiable ACNFs or
P := φLCU for satisfiable ones. However, not all constraints in φOCL ∪φLCL

or φLCU might be necessary to derive the empty constraint.
Proposition 5.2.2 asserts the correctness of QDPLL with learning based

on the correctness of Q-resolution [27, 61, 134]. The other direction, which
amounts to completeness, also holds. If a PCNF is (un)satisfiable then
QDPLL with learning will derive the empty constraint.

A comprehensive treatment of work related to proofs for QBFs is out
of scope of this work. An overview of the topic is given in [94]. Proofs by
Definitions 5.2.9 and 5.2.10 allow to verify the result of QDPLL based on
the underlying proof system of Q-resolution. For example, if a formula is
unsatisfiable and QDPLL returns a proof P then it can be checked whether
the empty clause indeed can be derived from the clauses in P . This ap-
proach was considered in [130] and in a variant of the QuBE solver [94].
However, the proof P does not contain information on concrete values that
have to be chosen for universal variables of a PCNF in order to explain un-
satisfiability with respect to assignment trees. Dually, values for existential
variables in satisfiable PCNFs explain satisfiability. Representations of val-
ues for variables are called certificates. As an alternative to merely checking
Q-resolution proofs, Skolem functions [121] were suggested to represent cer-
tificates of a formula [11, 74]. A uniform approach combining Q-resolution
proofs and certificates allows to construct a certificate for a PCNF from a
given Q-resolution proof of (un)satisfiability [8]. This approach was imple-
mented and evaluated using our QDPLL-based solver DepQBF [95, 105].

In addition to QDPLL with learning as shown in Figure 5.1, we im-
plemented optimizations in our QBF solver DepQBF [84] presented in Sec-
tion 5.6.2. These approaches are inspired by modern SAT solvers. For exam-
ple, learnt constraints are heuristically deleted to speed up QBCP. Instead of
backtracking to the asserting level, the solver periodically retracts all assign-
ments made so far and thus restarts the search process. Our experimental
analysis in Section 5.7 demonstrates the potential of these optimizations.

At the beginning of this chapter, we argued that QDPLL with constraint
learning could profit from dependency schemes which refine the trivial de-
pendency scheme given by the quantifier prefix. However, when considering
Figure 5.1, dependency information is not explicitly used, although it is
crucial to respect dependencies within QDPLL as pointed out.

In the following sections, we take a closer look on the core parts such as
QBCP, decision making and constraint learning. We point out how these
parts can profit from more refined dependency information than quantifier
prefixes. Thereby, we obtain a generalization of QDPLL with constraint
learning to arbitrary dependency schemes. The overall picture of the algo-
rithm does not change. We consider a dependency scheme as an additional
parameter passed to QDPLL. Compact dependency graphs from the previ-
ous chapter allow for efficient applications of the generalization of QDPLL.

96 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

5.3 QBCP

In this section, we focus on the details of quantified boolean constraint propa-
gation (QBCP) which is carried out in function qbcp in Figure 5.1. Given an
ACNF and an assignment A, the purpose of QBCP is to infer implications,
that is additional assignments not yet being part of A by certain inference
rules. This way, the number of decisions can be reduced which in turn might
increase the performance of QDPLL. We report on the results of a related
experiment in Section 5.7.

We introduce universal and existential reduction, also called constraint
reduction, and rules for the detection of unit literals and pure literals. This
set of rules is standard in QBF literature and it is part of QBCP in most
QDPLL-based solvers [30, 52, 54, 60, 84]. In state-of-the-art SAT solvers,
typically only unit literal detection is carried out in boolean constraint prop-
agation (BCP). Apart from a variant based on tree-like dependency structure
[62], usually QBCP is defined with respect to the linear ordering of quanti-
fier prefixes, that is the trivial dependency scheme Dtriv. We point out how
to generalize the rules applied in QBCP from quantifier prefixes to arbitrary
dependency schemes. Experimental results presented in Section 5.7 show
that QBCP based on dependency schemes which refine Dtriv infers more
implications than classical variants based on Dtriv.

In the following, we assume that we are given the ACNF ψ for a PCNF
to be solved by QDPLL with constraint learning like in Figure 5.1. Further,
we consider ψ[A] at an arbitrary point of time during the solving process
with respect to the current assignment A. That is, learnt constraints might
have been added to the ACNF. Originally, the rules of constraint reduction
and detection of unit and pure literals were introduced for PCNF. However,
we focus on ACNF as the representation used in practice.

5.3.1 Constraint Reduction

As pointed out in Section 5.2.3 above, Q-resolution is applied to generate
learnt constraints in QDPLL. Different from propositional resolution as used
in SAT solvers, resolvents obtained by Q-resolution in general can be simpli-
fied further by deleting certain literals. Actually, Q-resolution as originally
introduced for clauses [27] differs from propositional resolution exactly in
that additional reduction step.

Recall notation ≺ and ≺D from Definition 3.4.7 on page 45. Further, by
Definition 5.2.4, ψ[A] is the ACNF ψ simplified under the assignment A by
fully eliminating truth constants.

Definition 5.3.1. Given an ACNF ψ, a constraint C ∈ ψ and Q ∈ {∀, ∃},
LQ(C) := {l ∈ C | q(l) = Q}.

5.3. QBCP 97

Definition 5.3.2 ([27, 30, 61]). Given an ACNF

ψ := Q1B1Q2B2 . . . QnBn. (φOCL ∧ φLCL) ∨ φLCU ,

a constraint C ∈ ψ such that there is no variable x with {x,¬x} ⊆ C and
a dependency scheme D defining the relation ≺D. Let Q := ∀ and Q := ∃
if C is a clause and Q := ∃ and Q := ∀ if C is a cube. The application of
constraint reduction to C with respect to D produces the constraint

CRD(C) := C \ {l ∈ LQ(C) | ∀l
′ ∈ LQ(C) : l 6≺D l′}.

We may write CR instead of CRD if D is clear from the context. Constraint
reduction is generalized from constraints to ACNFs:

CR(ψ) is the ACNF such that if C ∈ ψ then CR(C) ∈ CR(ψ).

Additionally, the quantifier prefix of CR(ψ) is simplified by removing quan-
tified occurrences of variables which do no longer occur in the quantifier free
part of CR(ψ) after reduction.

Constraint reduction by Definition 5.3.2 operates on clauses and cubes.
Originally, this operation was introduced explicitly for clauses [27] under
the names universal reduction or forall reduction. Later, it was extended to
cubes [61], where reduced constraints were referred to asminimal. Implicitly,
constraint reduction appears in early descriptions of QDPLL like [30] where
literals are not removed but ignored in order to detect unit literals. We
consider unit literal detection in Section 5.3.2 below.

Note that the dependency scheme D in Definition 5.3.2 is arbitrary.
Actually, early definitions of constraint reduction took into account the or-
dering of the quantifier prefix, which is Dtriv in our framework. Therefore,
Definition 5.3.2 generalizes constraint reduction from quantifier prefixes to
arbitrary dependency schemes.

Informally, constraint reduction removes literals from a constraint C
which are irrelevant to satisfy or falsify C, depending on whether C is a
clause or a cube. In the following, we assume that D is an arbitrary but
fixed dependency scheme applied in constraint reduction by Definition 5.3.2.
We prove the correctness of constraint reduction with respect toD separately
for reductions of clauses and cubes in Theorems 5.3.1 and 5.3.2 below.

Theorem 5.3.1 (see also Theorem 1 in [61]). Given an ACNF

Q̂. (φOCL ∧ φLCL ∧ C) ∨ φLCU

where C is a clause and Q̂ is the quantifier prefix. Constraint reduction on
clause C produces a model-equivalent ACNF:

Q̂. (φOCL ∧ φLCL ∧ C) ∨ φLCU ≡m Q̂′. (φOCL ∧ φLCL ∧ CR(C)) ∨ φLCU ,

where Q̂′ is obtained from Q̂ by deleting superfluous quantifiers.

98 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

r

¬y

x

y

¬x

r

¬y

x

y

x

Figure 5.2: The two possible refuting assignment trees by Definition 5.3.3
for the unsatisfiable PCNF ψ := ∃y∀x. (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y).

By Theorem 5.3.1, constraint reduction on clauses in an ACNF preserves
models. Every model of the original ACNF is also a model of the reduced
one. In fact, reduced clauses are also satisfied by the assignments along the
paths in models, that is satisfying assignment trees, of the original ACNF.
However, in general it is crucial for the correctness of constraint reduction
not to reduce constraints containing complementary literals.

Example 5.3.1. Given the satisfiable PCNF ψ := ∀x. (x ∨ ¬x). Con-
straint reduction produces the empty clause from (x ∨ ¬x), thus CR(ψ) is
unsatisfiable.

In order to allow for simpler correctness proofs, we introduce a particular
variant of assignment trees which allows to explain unsatisfiability of ACNFs.
Thus the existence of a satisfying assignment tree can be refuted.

Definition 5.3.3. Given an unsatisfiable ACNF ψ, a refuting assignment
tree T of ψ is defined dually to a satisfying assignment tree by Defini-
tions 2.2.3 and 2.2.4. Nodes which assign universal variables in T do not
have siblings whereas there is exactly one sibling for nodes which assign
existential variables. The assignments along every path in T all falsify the
CNF-part and the cubes in ψ. Assignments along paths in refuting assign-
ment trees are ordered with respect to the quantifier prefix or, as noted
above in Definition 5.2.6, by some arbitrary dependency scheme.

A refuting assignment tree represents a sufficient selection of values for
the universal variables in an ACNF such that no assignment to the depend-
ing existential variables satisfies either all the clauses or at least one cube.
Note that, similar to satisfying assignment trees by Definition 2.2.4, refuting
assignment trees are not necessarily unique. Figure 5.2 shows an example.

Proof of Theorem 5.3.1. Let ψ := Q̂. (φOCL ∧ φLCL ∧ C) ∨ φLCU and ψ′ :=
Q̂′. (φOCL ∧ φLCL ∧ CR(C)) ∨ φLCU . Thus ACNF ψ′ was obtained from ψ
by reducing clause C. We show that ψ and ψ′ are model-equivalent.

If ψ is unsatisfiable then there is a refuting assignment tree T of ψ.
By Definition 5.3.3, the CNF-part of ψ and all cubes are falsified by each
assignment along the paths in T . Since the clause CR(C) ∈ ψ′ has fewer
literals than C ∈ ψ, CR(C) is also falsified under every assignment in T .

5.3. QBCP 99

...

¬x

v(l′)

¬v(l) v(l)

x

Figure 5.3: Part of a satisfying assignment tree m which illustrates the
proof of Theorem 5.3.1. Variable x is universal and irrelevant. Variable v(l)
is universal and was reduced by constraint reduction from clause C to obtain
clause CR(C). A literal of the existential variable v(l′) satisfies both C and
CR(C), since v(l′) was assigned before v(l) along the path in m.

The other constraints in ψ′ are the same as in ψ. Therefore, T is a refuting
assignment tree of ψ′ as well and hence ψ′ is unsatisfiable.

If ψ is satisfiable, let m be a satisfying assignment tree of ψ, that is
m |= ψ. Assume that all assignments along the paths in m are complete
and admissible with respect to D where D is the dependency scheme that
was applied for constraint reduction. We show that also m |= ψ′.

By definition of satisfying assignments trees, assignments along paths in
m must satisfy the quantifier-free part of ψ. We consider all assignments
along paths at the leaves of m. If such an assignment satisfies a cube in ψ
then that cube is also satisfied in ψ′ since constraint reduction did not affect
cubes in ψ. The same holds for all clauses in ψ′ other than CR(C) since
they were not affected by constraint reduction.

Consider the clauses C and CR(C) and, without loss of generality, as-
sume that exactly one universal literal l was removed from C to obtain
CR(C). We can assume that, among all variables occurring in CR(C), vari-
able v(l) was assigned last on the current path in m since all assignments
are admissible. Figure 5.3 illustrates the situation. Further, due to Defini-
tion 5.3.2, there is no other variable v′′ in C such that v(l) ≺ v′′. Therefore,
clause C must be satisfied by some other existential literal l′ because v(l)
is universal: otherwise, considering the sibling of node v(l) which assigns
the opposite truth value, C would no longer be satisfied. Since literal l′ is
existential, it cannot be removed by constraint reduction and therefore l′

will also satisfy CR(C).

100 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

Theorem 5.3.2. Given an ACNF

Q̂. (φOCL ∧ φLCL) ∨ (φLCU ∨ C)

where C is a cube and Q̂ is the quantifier prefix. Constraint reduction on
cube C produces a model-equivalent ACNF:

Q̂. (φOCL ∧ φLCL) ∨ (φLCU ∨ C) ≡m Q̂′. (φOCL ∧ φLCL) ∨ (φLCU ∨ CR(C)),

where Q̂′ is obtained from Q̂ by deleting superfluous quantifiers.

Proof. The proof is similar to the one of Theorem 5.3.1 and dual arguments
apply. Let ψ and ψ′ be defined like in the proof above. That is ACNF ψ′

was obtained from ψ by reducing cube C.
If ψ is satisfiable then so is ψ′. Let m be a satisfying assignment tree of

ψ, that is m |= ψ. If an assignment along a path in m satisfies all clauses
in ψ then it also satisfies the clauses in ψ′ because clauses were not affected
by constraint reduction. The same applies to cubes other than C in ψ. If
an assignment along a path in m satisfies the cube C ∈ ψ then all literals
in C are satisfied. Thus, that assignment also satisfies the reduced cube
CR(C) ∈ ψ′ which has fewer literals than C. Thus also m |= ψ′.

If ψ is unsatisfiable then there is a refuting assignment tree T . The CNF-
part and all cubes in ψ are falsified with respect to each assignment along
the paths in T . Since clauses were not affected by constraint reduction,
the CNF-part of ψ′ is falsified as well. This also holds for all cubes in
ψ other than C. Consider cubes C and CR(C). Similar to the proof of
Theorem 5.3.1, we assume that exactly one existential literal l was reduced
and that assignments in T are complete and admissible. Cube C must be
falsified by some other literal l′ in addition to l because otherwise C would
be satisfied when v(l) is assigned the opposite truth value in the sibling
node of v(l). Hence CR(C) is also falsified after removing l by constraint
reduction.

Different from Definition 5.3.2, in QDPLL constraint reduction is ap-
plied to the formula ψ[A] under the current assignment A. We consider the
practice of constraint reduction in QDPLL as part of QBCP in Section 5.3.4.

Given an ACNF ψ, a partial assignment A and a constraint C ∈ ψ, C
might be empty after constraint reduction in CR(ψ[A]) but not in ψ[A]. For
example, if C is a clause then assignment A cannot be extended to a solution
in this case. In fact we have CR(ψ[A])[A] = ⊥ by Definition 5.2.4. That
is, constraint reduction allows to detect conflicting or satisfying assignments
implicitly by empty clauses and empty cubes, respectively. According to
that, we refine Definition 5.2.5 by Definition 5.3.7 below.

As pointed out, constraint reduction was originally introduced with re-
spect to the linear ordering of variables by quantifier prefixes. By Defini-
tion 5.3.2, we obtained a generalization to arbitrary dependency schemes.

5.3. QBCP 101

In the forthcoming sections of this chapter, we consider how QDPLL might
benefit from dependency schemes which are more refined than the trivial one
arising from quantifier prefixes. For example, constraint reduction might
produce shorter constraints.

Proposition 5.3.1. Given two dependency schemes D and D′ such that
D ⊆ D′. Let CRD and CRD′ denote constraint reduction with respect to D
and D′, respectively. Given a constraint C, CRD(C) ⊆ CRD′(C).

As pointed out below, constraint reduction is a crucial part of QBCP.
Due to Proposition 5.3.1, using more refined dependency schemes for con-
straint reduction might influence unit and pure literal detection positively.

5.3.2 Unit Literal Detection

We consider a common rule in QBCP which allows to infer forced assign-
ments to variables from a given ACNF. For example, if there is a clause in
a CNF which consists of only one existential literal, then that clause can
only be satisfied by assigning the variable of the literal accordingly. Such
literals are called unit literals. The rule for the detection of unit literals
allows to identify forced assignments in an ACNF during QBCP. In general,
unit literals can appear in clauses as well as in cubes of an ACNF.

In state-of-the-art SAT solvers, unit literals are detected during BCP.
Classical definitions of unit literal detection for QBF [31] typically differ
from the rule applied in SAT solvers. That difference is due to a combina-
tion of constraint reduction and unit literal detection into one single rule.
We introduce unit literal detection for ACNFs separately from constraint
reduction. Our definition corresponds exactly to the rule which is com-
mon for SAT solving, as far as clauses are concerned. That is, we focus
on constraints in ACNFs which contain exactly one literal. In Section 5.3.4
below, we explicitly combine constraint reduction and unit literal detection
in QBCP. This way, we obtain the same effects as the original definition of
unit literal detection [31] which implicitly includes constraint reduction.

Definition 5.3.4 (see also [30, 61, 134], for example). Given an ACNF ψ
and constraint C ∈ ψ. Let Q := ∃ if C is a clause and Q := ∀ if C is a cube.
Constraint C is unit if and only if C = (l1) and q(v(l1)) = Q, where l1 is
called a unit literal. Given a constraint C, unit literal detection

UL(C) := {l}

collects the assignment {l} from C if C = (l1) and C is unit, where l := l1
if C is a clause and l := ¬l1 if C is a cube. Constraint C = ante(l) is the
antecedent constraint of assignment {l}. Otherwise, if C is not unit then
UL(C) := ∅ is the empty assignment. Unit literal detection is extended

102 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

from individual constraints to sets of constraints in an ACNF ψ, that is to
original clauses, learnt clauses and cubes:

UL(ψ) :=
⋃

C∈ψ

UL(C).

In order to show the correctness of unit literal detection, proofs apply
as given in [31, 61], for example. This is possible because, as pointed out
above, our variant from Definition 5.3.4 does not take constraint reduction
into account. Therefore, it can be considered a special case of those variants
which combine unit literal detection and constraint reduction.

Unit literal detection by Definition 5.3.4 infers assignments from unit
literals in an ACNF. Note that, in addition to clauses like in SAT solving,
also cubes can be unit. Informally, a unit cube C := (l1) asserts that there
exists a full assignment A′ which assigns the variable of l1 such that the
formula is satisfied under A′. Assignment A′ was used during cube learning
to generate cube C. Unit literal detection on cubes assigns the variable
of l1 in such a way to prevent QDPLL from generating A′ again. In gen-
eral, assignments drawn from unit clauses prevent QDPLL from generating
assignments which are obviously falsifying. Dually, obvious solutions that
have been found already are prevented by assignments from unit cubes.

We briefly introduced the notion of antecedent constraints in the con-
text of constraint learning in Section 5.2.3 and in Figure 5.1 above. In
fact, antecedents used for Q-resolution during learning correspond exactly
to antecedents by Definition 5.3.4, which is pointed out in Section 5.6 below.

Unit literal detection during QBCP in QDPLL always interprets the
given ACNF ψ under the current assignment A. That is, different from
Definition 5.3.4, UL(ψ[A]) is computed instead of UL(ψ). Further, the rule
is applied iteratively in QBCP. Given an ACNF ψ, first units are detected
on ψ. ACNF ψ is simplified under the resulting assignment UL(ψ) and unit
are detected again on ψ[UL(ψ)], as pointed out in Example 5.3.2 below.

5.3.3 Pure Literal Detection

In addition to unit literals, QBCP detects variables which either have only
positive or only negative literals left in the constraints of an ACNF. Such
literals are called pure or monotone [30, 60]. A truth value can be assigned
depending on the quantifier type of the variable. Assignments due to pure
literals are not forced because, in contrast to unit literals, they are not
necessary to satisfy particular clauses, for example. Therefore, detection
of pure literals is usually not carried out in state-of-the-art SAT solvers.
However, assignments due to pure literals can produce additional unit literals
in clauses and cubes of an ACNF, as illustrated in Example 5.3.2 below.

In order to introduce pure literals formally, we adapt the definition of
occurrences of a variable, which was given in Section 2.1.2, to ACNF. Given

5.3. QBCP 103

an ACNF ψ and a literal l, O(l) := {C | C ∈ ψ, l ∈ C} is the set of
occurrences of l, that is the set of all constraints including clauses and cubes
in ψ which contain literal l.

Definition 5.3.5 ([30]). Given an ACNF ψ, a literal l where O(l) 6= ∅ and
O(¬l) = ∅ is pure in ψ. The operation of pure literal detection

PL(ψ) :=
⋃

{l′}

collects assignments {l′} such that there is a literal l which is pure in ψ
where l′ := l if q(l) = ∃ and l′ := ¬l if q(l) = ∀.

Correctness of pure literal detection was proved in [30] with respect to
clauses in a PCNF only. However, the same arguments apply to our def-
inition as well since including learnt cubes in the definition of the set of
occurrences O(l) imposes an additional restriction.

Pure literal detection by Definition 5.3.5 assigns existential variables x
such that all clauses where x occurs are satisfied and literals of x are satisfied
in cubes. Dually, assignments of universal variables falsify cubes and falsify
literals in clauses. Therefore, assignments by pure literal detection can make
constraints unit, as pointed out in Example 5.3.2 below.

Different from unit literal detection by Definition 5.3.4, there are no
antecedent constraints associated with assignments by pure literal detection.
As pointed out in Section 5.6 below, constraint learning relies on antecedent
constraints of unit literals and does not have to deal with assignments by
pure literals in any special way.

5.3.4 Putting It All Together

QBCP as described informally in Section 5.2.2 and in Figure 5.1 applies the
combination of constraint reduction and detection of unit and pure literals.
We call assignments that are inferred during QBCP implications, regardless
of whether they are due to unit or pure literal detection.

Above, we introduced constraint reduction separately from unit literal
detection, which is different from classical definitions. When looking at
Definitions 5.3.2, 5.3.4 and 5.3.5, it turns out that only constraint reduc-
tion by Definition 5.3.2 is involved with dependency schemes. As done in
Proposition 5.3.1, our separate definition allows to point out the benefits of
combining constraint reduction with arbitrary dependency schemes. Apart
from this generalized variant of constraint reduction, our definition of QBCP
introduced below is equivalent to variants where constraint reduction and
unit literal detection are combined into one single rule. Since we proved the
correctness of constraint reduction with respect to arbitrary dependency
schemes in Section 5.3.1 above, the correctness of QBCP when relying on
that generalized variant follows right away.

104 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

Definition 5.3.6. Let ψ be an ACNF and A an assignment.

• QBCP0(ψ[A]) := ψ′[A∪A′] where A′ := (UL(ψ′)∪PL(ψ′)) and ψ′ :=
CR(ψ[A]).

• QBCP i(ψ[A]) := QBCP0(QBCP i−1(ψ[A])) for natural number i > 0.

• QBCP(ψ[A]) := QBCP i(ψ[A]) for the smallest natural number i such
that QBCP i(ψ[A]) = QBCP i+1(ψ[A]).

QBCP by Definition 5.3.6 infers additional assignments from a given
one in QDPLL. For an ACNF ψ and the current assignment A generated by
QDPLL, first constraint reduction is applied to ψ[A] to obtain the reduced
formula ψ′. Implications A′ by unit and pure literal detection are inferred
from ψ′. Extending the current assignment A with the set of implications
A′ yields a new assignment A∪A′ which is used to simplify ψ′ further. This
process is repeated until no more implications can be found.

Constraint reduction is crucial in QBCP. The deletion of literals from
constraints can enable the detection of both new unit and new pure literals.
Due to Proposition 5.3.1, the use of more refined dependency schemes in
constraint reduction can produce shorter constraints. This in turn might
allow to identify more unit and pure literals. Further, as noted in Sec-
tion 5.3.1, constraints might become empty exclusively due to constraint
reduction. This property allows to generalize the state of a formula under
an assignment by Definition 5.2.5 to QBCP including constraint reduction.

Definition 5.3.7. Given an ACNF ψ and a (partial) assignment A, the
state of ψ under QBCP and A is defined as follows. If QBCP(ψ[A]) = ⊥
then A is a conflicting assignment, also called a conflict, and ψ is falsified
under A. If QBCP(ψ[A]) = ⊤ then A is a satisfying assignment, also called a
solution, and ψ is satisfied under A. If A is neither conflicting nor satisfying
then A is an inconclusive assignment and ψ is undetermined under A.

Notation QBCP(ψ[A]) = ⊥ and QBCP(ψ[A]) = ⊤ is well-defined due
to Definition 5.2.4. Empty constraints produced by constraint reduction
are replaced by truth constants which in turn are eliminated in the formula
QBCP(ψ[A]). Function qbcp in Figure 5.1 typically implements QBCP and
determines the state of the formula according to Definitions 5.3.6 and 5.3.7,
respectively. Proposition 5.2.1 is adapted to QBCP accordingly.

It is desirable to maximize the number of implications during QBCP. In
general, the more implications are inferred, the fewer decisions have to made
by QDPLL. Each of the three rules applied in Definition 5.3.6 contributes
to the inference of implications, as illustrated in the following example.

Example 5.3.2. Given the ACNF ψ which, for simplicity, only contains
clauses:

ψ := ∃e1∀a2∃e3,e4. (e1∨a2∨e3∨e4)∧(e1∨a2∨¬e4)∧(¬e1∨e3∨¬e4)∧(¬a2∨¬e3).

5.3. QBCP 105

Assume that the current assignment is A := {e4}. We consider ψ under A:

ψ[A] = ∃e1∀a2∃e3. (e1 ∨ a2) ∧ (¬e1 ∨ e3) ∧ (¬a2 ∨ ¬e3).

Neither the unit nor the pure literal rule is applicable to ψ[A]. Constraint
reduction with respect to Dtriv on ψ[A] deletes the universal literal a2 from
clause (e1, a2) to obtain the reduced clause (e1):

CR(ψ[A]) = ∃e1∀a2∃e3. (e1) ∧ (¬e1 ∨ e3) ∧ (¬a2 ∨ ¬e3).

Variable a2 has only one negative occurrence left and is pure in CR(ψ[A]).
Pure literal detection assigns variable a2 to true to obtain the new as-
signment A′ := {a2}. Further, clause (e1) is unit in CR(ψ[A]) and the
new assignment A′ is extended by setting variable e1 to true, which yields
A′ := {a2, e1}. No further implications can be inferred from CR(ψ[A]).
Formula CR(ψ[A]) is simplified using the new, current assignment A ∪A′:

CR(ψ[A])[A ∪A′] = ∃e3. (e3) ∧ (¬e3).

Assume that unit literal detection infers the assignment A′′ := {e3} from
CR(ψ[A])[A ∪A′]. Simplifications under A′′ produce the empty clause:

CR(ψ[A])[A ∪A′][A′′] = ⊥.

QBCP without constraint reduction could miss the inference of both unit
and pure literals. In Example 5.3.2 above, variable a2 becomes pure only
after constraint reduction was applied. Similarly, the clause (e1, a2) becomes
unit only by constraint reduction. Dual effects on cubes can be observed
in general. Further, pure literal detection is crucial for QBCP to detect
additional unit clauses. In Example 5.3.2, clause (¬a2,¬e3) is unit only
after variable a2 becomes pure. Dually, cubes can become unit by assigning
existential variables by pure literal detection. Therefore, none of the three
rules of constraint reduction, unit and pure literal detection can be omitted
from QBCP without harming its ability to infer implications.

Note that, due to lack of decisions, new assignments generated by unit
and pure literal detection in QBCP according to Definition 5.3.6 are trivially
admissible by Definition 5.2.6 with respect to the same dependency scheme
D that was used for constraint reduction (we require that one and the same
D is used in all parts of QDPLL). As noted, variables assigned by unit
and pure literal rule during QBCP get trail levels in chronological fashion.
Additionally, we distinguish assignments to variables as follows.

Definition 5.3.8. Given an assignment A generated by QDPLL, the as-
signment mode of a literal l ∈ A assigned by A is am(l) := D if l was
assigned as decision, am(l) := U if l was assigned by unit literal rule and
am(l) := P if l was assigned by pure literal rule.

Definition 5.3.9. Given a decision level i ∈ {1, 2, . . . , n}, the unique vari-
able x with dl(x) = i and am(x) = D is the decision variable at decision
level i.

106 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

Implementation

Different from Definition 5.3.6, in our QBF solver DepQBF QBCP is not
implemented recursively but iteratively. Literals reduced by constraint re-
duction with respect to the current assignment are never explicitly deleted
from constraints but disabled instead. This way, reduced literals do not have
to be introduced again during backtracking.

Additionally, the application of constraint reduction is merged with unit
literal detection. For that purpose, the approach of two-literal watching [93],
which is commonly applied in modern SAT solvers, can be extended to QBF
[52]. The following description was published previously in [84].

Two unassigned literals l1 and l2 are watched in each constraint C under
the following restrictions. If C is a clause, then either (1) q(l1) = q(l2) = ∃
or (2) q(l1) = ∀, q(l2) = ∃ and l1 ≺D l2 where D is the dependency scheme
applied in QDPLL. Otherwise, C is a cube and either (1) q(l1) = q(l2) = ∀
or (2) q(l1) = ∃, q(l2) = ∀ and l1 ≺D l2.

If variable x is assigned in QDPLL then the watchers of all constraints C
where a literal of x is watched will be updated under the restrictions stated
above. That is, watchers must be set such that either case (1) or case (2)
holds. Whenever a current watcher already satisfies clause C (or falsifies
cube C) then no update is made. If a clause (cube) C contains exactly one
unassigned existential (universal) literal then C is unit. If clause (cube) C
does not contain unassigned existential (universal) literals then C is falsified
(satisfied). During watcher update of C, constraint reduction is applied on
the fly to C by ignoring any universal (existential) literals in C which are
unassigned or false (true). Dependency checking during watcher updates,
which is needed in case (2) only, can be carried out efficiently as described
in Section 5.5 below.

Pure literal detection in QBCP considers the given ACNF ψ under the
current assignment A. Since learnt constraints have to be taken into account
by Definition 5.3.5, it might become expensive to search for pure literals in
ψ explicitly if the number of learnt constraints becomes large. In order to
overcome this problem in implementations, constraints can be watched [52].
A literal of variable x is not pure as long as x has at least one positive and
one negative occurrence in ψ[A]. For each variable a, one negative and one
positive occurrence C¬x and Cx of x is watched, respectively. Whenever
either C¬x or Cx are satisfied (or falsified, if C¬x or Cx are cubes) under
a modified assignment A′ 6= A then new watched constraints are selected
for x. If this is not possible because x does not have positive or negative
occurrences in ψ[A′] then x is pure.

In addition to constraint watching, learnt constraints could be ignored
during pure literal detection. That is, only the set φOCL of original clauses of
the ACNF ψ := (φOCL∧φLCL)∨φLCU is taken into consideration. Variables
might be pure with respect to φOCL but not with respect to ψ if learnt

5.4. DECISION MAKING 107

constraints are included. This approach might produce spurious pure literals
[60], which have to be treated in a special way whenever they are involved
in the detection of new unit literals or empty constraints. In our QBF
solver DepQBF we implemented both constraint watching and spurious pure
literals [84]. We refer to [52, 60, 84] for further details.

As noted above, assignments made during QBCP are always admissible.
In order to guarantee admissible assignments not only by QBCP but also
by decision making, that is in entire QDPLL, variable dependencies have to
be taken into account as follows.

5.4 Decision Making

In classical descriptions of QDPLL [30] which rely on the variable ordering
given by the quantifier prefix, decisions have to be made with respect to that
linear ordering. That is, function select dec var in Figure 5.1 must select
decision variables “from left to right”, which corresponds to the natural
ordering by variable dependencies in the quantifier prefix. We extend this
approach from the prefix-based trivial dependency scheme to arbitrary ones.
Thereby, QDPLL can benefit from more freedom in decision making because
the linear prefix ordering is relaxed, as shown in Example 3.1.3 on page 25.
Instead of the linear prefix ordering, decisions are made with respect to the
partial ordering defined by the dependency scheme.

The requirement of respecting variable dependencies in decision mak-
ing is necessary in QDPLL to generate assignments which are admissible
by Definition 5.2.6. This way, the assignment tree implicitly constructed
by QDPLL complies with semantics of PCNF (and also ACNF) from Sec-
tion 2.2 and, when generalized to arbitrary dependency schemes, by Proposi-
tion 3.4.1. Assignment which are not admissible might yield unsound results,
as pointed out in Example 3.1.1 on page 24.

Implications assigned during QBCP are exempted from the requirements
stated in Definition 5.2.6. Assignments to some variable x by unit or pure
literal rule can always be made even if not all variables where x depends
on are assigned already. Note that Definitions 5.3.4 and 5.3.5 do not refer
to dependency schemes. Therefore, the extension of an admissible assign-
ment by implications detected in QBCP will again produce an admissible
assignment. The problem of generating admissible assignments in QDPLL
is limited to decision making only. In the following, we assume that an
arbitrary dependency scheme D is applied for QBCP and decision making.

QDPLL as illustrated in Figure 5.1 generates assignments starting from
the empty assignment A := ∅, which is trivially admissible with respect toD.
We have to ensure that every decision selected by function select dec var

results in a new admissible assignment. From a theoretical point of view,
we adopt Definition 5.2.6 to obtain a sufficient condition as follows.

108 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

Definition 5.4.1. Given a dependency scheme D, an admissible assignment
A generated by QDPLL and a variable x. Let VA := {z | z = v(l), l ∈ A} be
the set of variables assigned in A. A variable x is a decision candidate with
respect to D and A if and only if D−1(x) ⊆ VA. If x is a decision candidate
then x is enabled under A, otherwise x is disabled.

By Definition 5.4.1, every variable y where a decision candidate x de-
pends on must be assigned already. Checking the condition explicitly might
be expensive in practice if the set D−1(x) is large.

Therefore, our goal is to maintain the set DC of decision candidates
incrementally based on the current assignment A. Initially, A = ∅ and all
variables x whereD−1(x) = ∅ are decision candidates. For example, in terms
of quantifier prefixes likes in classical QDPLL, this situation corresponds
to the left-most quantifier block in an ACNF. Each additional assignment
to a variable potentially enables some variable x. Variable x is enabled if
all variables in D−1(x) are assigned. When it comes to decision making,
function select dec var must select variables from the set DC only. If
assignments are retracted during backtracking in function backtrack, then
a candidate x ∈ DC must be removed from this set if there is at least one
variable in D−1(x) which was unassigned, thus disabling x.

In order to maintain the set DC of decision candidates incrementally,
we present an approach relying on the augmented compressed dependency
graph G≈,⊆(D) for D by Definition 4.2.8 on page 60. First, the idea is not
to check the condition of decision candidates by Definition 5.4.1 explicitly
for each variable, but to focus on equivalence classes of variables as part of
graph G≈,⊆(D) instead. Second, the set DC of decision candidates does not
have to be updated each time the current assignment A is modified. We
want to check the condition only if modifying A potentially changes the set
DC . For that purpose, equivalence classes are applied as follows.

Given variables x and x′, if D−1(x) = D−1(x′) then also x ≈↑ x
′ by

Definition 4.2.4. Since x and x′ depend on the same set of variables, x
becomes a decision candidate if and only if x′ becomes one. Thus, the whole
class [x]↑ becomes enabled.

Further, if some variable y is assigned then that single assignment does
not enable some variable x ∈ D(y) if there is an unassigned variable y′ with
y′ 6= y where x depends on. Consider the classes [y]↓ induced by relation
≈↓ according to Definition 4.2.3, which checks equality of the sets D(y) of
dependencies. A variable x in D(y) might become enabled as soon as all
variables in the class [y]↓ are assigned. Note that x might depend on other
variables in addition to [y]↓. Thus having all variables in class [y]↓ assigned
is a necessary but not a sufficient condition to enable new variables in D(y).
In practice, we count the number of assigned variables in classes [y]↓.

In addition to equivalence classes given by relations ≈↑ and ≈↓, subset
edges in the graph G≈,⊆(D) can be used to reduce the amount of work that

5.4. DECISION MAKING 109

has to be carried out in order to update the set DC of decision candidates.
In the following, we describe how to maintain the set DC incrementally
and lazily based on modifications of the current assignment A by QBCP,
decision making and backtracking. For that purpose, we assume that the
dependency scheme D that is used in QDPLL is represented as the aug-
mented compressed dependency graph G≈,⊆(D) by Definition 4.2.8.

5.4.1 Maintaining Decision Candidates

Each time some variable y is assigned during QBCP or decision making,
potentially some other variable x ∈ D(y) is enabled. QDPLL starts with
the empty assignment A = ∅ and the set DC := {x | D−1(x) = ∅} of
variables which do not depend on other ones as decision candidates. Given
the current assignment A and the current set DC of decision candidates,
assume that variable y is unassigned in A. Let A′ be a new assignment
obtained from A by assigning y. We present an algorithm to obtain the
new set DC ′ of decision candidates with respect to A′ based on the graph
G≈,⊆(D), which includes subset edges.

1. Let DC ′ := DC .

2. Given the assigned variable y, consider the class [y]↓ of variables which
have the same set of dependencies as y.

3. If there is an unassigned variable y′ in class [y]↓ then no additional
variables are enabled after y was assigned. No additional work has to
be done.

4. Otherwise, all variables in class [y]↓ are assigned. Consider the set
REF := {[x]↑ | ([y]↓, [x]↑) ∈ Ed} of classes which are referenced from
class [y]↓ by a dependency edge and possibly from other classes as well.
These classes have to be checked as follows.

5. For all classes [x]↑ ∈ REF :

5.1. If class [x]↑ is referenced by a dependency edge from a class [y′]↓
such that [y′]↓ contains an unassigned variable then continue with
the next class in REF . No additional work has to be done.

5.2. Otherwise, given the class [x]↑, all variables in D−1(x) are as-
signed and the set DC is updated as follows.

5.3. For all classes [x′]↑ which are reachable from [x]↑ over zero or
more subset edges:

5.3.1. If class [x′]↑ is referenced by a dependency edge from a class
[y′′]↓ such that [y′′]↓ contains an unassigned variable, then
continue with the next class. No additional work has to be
done.

110 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

5.3.2. Otherwise, given the class [x′]↑, all variables in D−1(x) are
assigned and the new set DC ′ is updated by DC ′ := DC ′ ∪
{[x′]↑}.

6. Finally, set DC ′ contains all decision candidates with respect to the
new assignment A′.

The algorithm described above keeps track of the number of unassigned
variables in a class with respect to relation ≈↓. The only situation where
potentially any work has to be done is when that number becomes zero
due to assigning variable y. In this case, at least the class [y]↓ does not
prevent other variables in the set D(y) from becoming enabled. Note that if
assigning y enables any variable x then x ∈ D(y). Therefore, it is sufficient
to check the set D(y) for new decision candidates. Classes [x′]↑ of variables
in the set D(y) are visited by traversing subset edges in graph G≈,⊆(D). The
traversal implicitly performs a check whether, given a visited class [x′]↑, all
variables in D−1(x′) are assigned. If so then the whole class [x′]↑ is enabled.

As an optimization, subset edges in graph G≈,⊆(D) allow to skip all
successors of visited classes [x′]↑ in step 5.3 if it was found out that [x′]↑ is
not enabled. In this case, class [x′]↑ is referenced by at least one class which
contains an unassigned variable. If there is a class [x′′]↑ which is reachable
from [x′]↑ by subset edges then [x′′]↑ is (implicitly) referenced by the same
unassigned variable. Thus the traversal can stop at class [x′]↑.

If assignments are retracted in function backtrack in Figure 5.1 then
decision candidates in the set DC will be disabled. However, as noted above
similarly for enabling variables, not every single variable y which is unas-
signed will disable decision candidates. Unassigning some variable y from
the current assignment A produces the new assignment A′ := A \ {y}. Vari-
ables from the set D(y) which are decision candidates under A potentially
are disabled under A′. Note that if unassigning y disables any variable x
then x ∈ D(y). Consider the class [y]↓ containing all variables which have
the same set of dependencies as y. If there is another variable y′ ∈ [y]↓ which
is unassigned already under the old assignment A then unassigning y cannot
disable additional variables since D(y) = D(y′). Like for enabling variables,
we assume that retracting assignments and disabling decision candidates is
done for each unassigned variable separately. Only if y is the first variable to
be unassigned in [y]↓ we have to check if variables in D(y) are disabled. In
this case, all classes [x′]↑ of variables in the set D(y) are visited by traversing
subset edges in graph G≈,⊆(D). Analogously to the optimization described
above, classes [x′]↑ and all of their successors by subset edges can be skipped
if [x′]↑ was already disabled before y was unassigned.

Example 5.4.1. Consider graph on the left in Figure 5.4. Assigning x3
does not enable any new decision candidates since x4 is still unassigned
in the class [∀x3, x4]↓. After x4 was assigned, the class [∀x3, x4]↓ does not

5.4. DECISION MAKING 111

[∃y1, y2]↑

[∀x5]↓

[∃y3, y4]↑ [∃y5]↑

[∃y6]↑

[∀x3, x4]↓

[∀x1, x2]↓

DC DC

DC

[∃y1, y2]↑ DC

[∀x5]↓

[∃y5]↑

[∃y6]↑ DC

[∀x3, x4]↓

[∀x1, x2]↓

DC DC

DC

DC [∃y3, y4]↑

Figure 5.4: Illustration of a compressed augmented dependency graph
G≈,⊆(D) by Definition 4.2.8 for an arbitrary dependency scheme D and
PCNF. Examples 5.4.1 and 5.4.2, point out enabling and disabling of vari-
ables. For simplicity, not all edges are shown. Solid and dashed edges repre-
sent dependency and subset edges, respectively. Dotted edges in the graph
on the right indicate that the respective dependency edge is disabled due to
assigned variables. Classes labeled with “DC” are decision candidates.

contain assigned variables anymore. Class [∃y3, y4]↑ is not directly referenced
by a dependency edge from another class. However, there is an implicit
dependency edge by the subset edge from class [∃y1, y2]↑ to [∃y3, y4]↑. Class
[∃y1, y2]↑ is referenced by a dependency edge from class [∀x1, x2]↓ which
has unassigned variables. This dependency edge refers to [∃y3, y4]↑ as well
implicitly by the subset edge. Therefore, none of class [∃y3, y4]↑ and its
successors by subset edges is enabled. Due to subset edges, it is sufficient
to find out that the parent class [∃y1, y2]↑ of class [∃y3, y4]↑ is not enabled.
No other classes in the graph have to be checked. Further, assigning x1
does not enable new decision candidates since x2 is still unassigned in the
class [∀x1, x2]↓. After x2 was assigned, the class [∃y1, y2]↑ is enabled since
it is not referenced by dependency edges from classes containing unassigned
variables. Class [∃y5]↑ is not enabled due to the reference from class [∀x5]↓.
All successors [∃y3, y4]↑ and [∃y6]↑ of [∃y1, y2]↑ by subset edges are now
enabled, which is shown in the graph on the right.

Example 5.4.2. Consider graph on the right in Figure 5.4. Variables
x1, x2, x3 and x4 are assigned, hence all variables except the class [∃y5]↑ are

112 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

decision candidates. During backtracking, decision candidates are disabled
as follows. Unassigning x3 disables the class [∃y3, y4]↑ which is referenced
from class [∀x3, x4]↓ by a dependency edge. All successors of [∃y3, y4]↑ by
subset edges, in this case only [y6]↑, are disabled as well. Unassigning x4
does not incur any additional work since the class [∀x3, x4]↓ already contains
an unassigned variable. It is not necessary to traverse subset edges again.

In our solver DepQBF, decision candidates are maintained as described
above based on the approximated dependency graph Ġ≈,⊆(D

std) for the
standard dependency scheme Dstd by Definition 4.5.4 on page 73. In our
implementation, the graph Ġ≈,⊆(D

std) neither contains transitive subset
edges nor transitive dependency edges. In order to avoid additional overhead
during QBCP, the function for enabling variables is called only right before
a decision is made in function select dec var in Figure 5.1. The effects of
all assignments that were made since the most recent decision are then taken
into account one after the other to update the set DC . Our experimental
results presented in Section 5.7 show that this way decision candidates can
be maintained efficiently.

The set DC of decision candidates with respect to the current assign-
ment and the dependency scheme applied in QDPLL contains all variables
which can be assigned as decisions. In SAT solving, where at any point
of time in QDPLL all variables are decision candidates, several branching
heuristics have been suggested to select a variable from the set DC as next
decision. We referred to related work in Section 2.3.1 on page 16. Branch-
ing heuristics from the domain of SAT solving basically can be extended to
QBF by restricting the selection to set DC . In our QBF solver DepQBF [84],
we implemented variable state independent decaying sum heuristic (VSIDS)
[93] similarly to the MiniSAT solver [42].

5.5 Dependency Checking

Constraint reduction by Definition 5.3.2 shortens constraints with respect
to dependencies between variables occurring in the constraint. Due to appli-
cations in QBCP, a slow implementation of constraint reduction will likely
have a negative effect on the overall run time of QBCP. In fact, the vast
majority of assignments in QDPLL are due to implications in QBCP.1 We
conclude that constraint reduction is performed frequently during QBCP
and we aim at efficient application in practice.

1For example, on 372 formulae solved by DepQBF out of total 568 formulae from
QBFEVAL’10[100], on average 19.08 implications were detected per decision during QBCP
in function qbcp in Figure 5.1. On the benchmark set from in QBFEVAL’08 (3326 formu-
lae), 88% of total assignments in DepQBF were implications, with 59% unit literals and
29% pure literals [84].

5.6. CONSTRAINT LEARNING 113

With respect to the trivial dependency scheme Dtriv, variable y depends
on variable x if x < y by prefix ordering. This way, dependencies can easily
be checked by comparing the levels of quantifier blocks. However, this is no
longer possible if more refined dependency schemes D ⊆ Dtriv are applied.

In order to check for dependencies with respect to an arbitrary depen-
dency scheme D, we consider a similar approach as for decision making
described in the previous section.

Let D be a dependency scheme and G≈,⊆(D) be the compressed aug-
mented dependency graph for D by Definition 4.2.8. We assume that the
graph G≈,⊆(D) does not contain dependency edges which are implicitly
represented by subset edges. This also applies to our implementation of
the graph-based representation of the standard dependency scheme Dstd in
DepQBF (see Section 4.5.3 for an illustration). Given two variables x and y,
we can check if x ≺D y as follows.

1. Find the classes [x]↓ and [y]↑ of x and y, respectively.

2. Consider all ancestors [y′]↑ of [y]↑ which are reachable over zero or
more subset edges in G≈,⊆(D):

2.1. If ancestor [y′]↑ is referenced by a dependency edge from class
[x]↓ then x ≺D y.

3. At this point, all ancestors of [y]↑ have been checked and hence x 6≺D y.

5.6 Constraint Learning

In the previous sections, we considered the generation of assignments in
QDPLL as shown in Figure 5.1 by means of decision making and QBCP.
We generalized these parts to arbitrary dependency schemes. As the final
step of combining QDPLL with arbitrary dependency schemes, we address
constraint learning in this section. Similarly to QBCP, it turns out that
the classical approach of constraint learning can be adapted by applying the
generalized variant of constraint reduction from Definition 5.3.1.

As noted in Section 5.2.3 above, constraint learning in QDPLL relies
on Q-resolution, the QBF-specific variant of resolution [27, 108]. Given a
PCNF ψ, Q-resolution is a sound and complete approach to solve ψ [27].
PCNF ψ is unsatisfiable if and only if the empty clause can be derived from
ψ by Q-resolution. Otherwise, if the set of all possible Q-resolvents that can
be derived from ψ does not contain the empty clause then ψ is satisfiable.
In contrast to that, the application of Q-resolution for constraint learning
in QDPLL does not focus on the generation of all possible Q-resolvents.
Instead, Q-resolvents are derived selectively with respect to the current con-
flicting assignment that was enumerated by QDPLL. Thus we may think
of constraint learning in QDPLL as a heuristic application of Q-resolution

114 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

guided by the generation of assignments. A similar view was presented for
propositional resolution in SAT solvers [70].

In the following, we present constraint learning for QDPLL as imple-
mented in our solver DepQBF. Function analyze leaf in Figure 5.5 shows
a high-level workflow. We focus on practical aspects such as the selection
of pivot variables to generate asserting constraints. We begin with a formal
definition of Q-resolution.

Definition 5.6.1 ([26, 27, 61, 134]). Let C1 and C2 either be two clauses
or two cubes such that, for some variable v, v ∈ C1,¬v ∈ C2 and q(v) = ∃
if C1 and C2 are clauses and q(v) = ∀ otherwise. The tentative Q-resolvent
of C1 and C2 on pivot variable v is the constraint

C1 ⊗ C2 := (CR(C1) ∪ CR(C2)) \ {v,¬v}.

If the tentative Q-resolvent C1 ⊗ C2 contains complementary literals, that
is {x,¬x} ⊆ C1 ⊗ C2 for some variable x, then no Q-resolvent exists. Oth-
erwise, the Q-resolvent

C := CR(C1 ⊗ C2)

is obtained by an additional application of constraint reduction to C1 ⊗C2.

Although Q-resolution is originally defined for clauses, we extend the
definition to cubes for simplicity. Q-resolution on cubes is also called consen-
sus [134]. Note that by Definition 5.6.1 the pivot variable must be existential
if clauses are resolved and universal otherwise.

As far as clauses are concerned, the application of constraint reduction
is the only difference between Q-resolution by Definition 5.6.1 and propo-
sitional resolution as applied in SAT solvers. In fact, Q-resolution is in-
complete if constraint reduction is not applied [26] as pointed out in the
following example.

Example 5.6.1 (see also Section 23.5 in [26] for a related example). Given
the unsatisfiable PCNF ψ := ∃x∀y. (x∨y)∧(¬x∨¬y). If constraint reduction
is omitted in Q-resolution then the empty clause cannot be derived from ψ
since the tentative resolvent (x∨y)⊗(¬x∨¬y) = (y∨¬y) on x is tautological.

Due to constraint reduction, as pointed out in Example 5.3.1 above, in
general it is crucial for the correctness of Q-resolution to prevent comple-
mentary literals in Q-resolvents.

Example 5.6.2. Given the satisfiable PCNF ψ := ∀x∃y. (x∨¬y)∧(¬x∨y).
If the requirement that tentative Q-resolvents must not contain complemen-
tary literals is dropped from Definition 5.6.1, then Q-resolution can de-
rive the empty clause from ψ: (x ∨ ¬y) ⊗ (¬x ∨ y) = (x ∨ ¬x) and finally
CR((x ∨ ¬x)) = ∅.

5.6. CONSTRAINT LEARNING 115

DecLevel analyze_leaf (State s)

R = get_initial_constraint (s);

// s == UNSAT: ’R’ is empty clause.

// s == SAT: ’R’ is sat. cube...

// ..or new cube from assignment.

while (!stop_res (R))

p = get_pivot (R);

R’ = get_antecedent (p);

R = constraint_res (R, p, R’);

add_to_formula (R);

return get_asserting_level (R);

Figure 5.5: Function analyze leaf from Figure 5.1. Assuming that
the current assignment A generated by decision making and QBCP
is conflicting (s == UNSAT), initially R is a clause which is falsified
(get initial constraint). Q-resolution generates a new learnt clause by
successively resolving the antecedent clauses R′ (get pivot) of unit literals
in the current clause R with R. The process stops if clause R is asserting
(stop res) and QDPLL backtracks to the asserting level where the new
learnt clause R triggers an implication (get asserting level).

We assume that formulae do not contain clauses or cubes with com-
plementary literals. This way, incorrectness of constraint reduction and
Q-resolution as pointed out in Examples 5.3.1 and 5.6.2 is avoided.

Note that dependency schemes affect Q-resolution only with respect to
constraint reduction. Due to Proposition 5.3.1, the use of more refined
dependency schemes potentially produces shorter resolvents. This property
motivates combinations of constraint learning for QDPLL based on more
refined dependency schemes. Altogether, this adds to the benefits that can
be drawn from dependency schemes in QBCP and decision making as argued
in Sections 5.3.4 and 5.4 above.

Recall that we apply one and the same dependency scheme D in all
parts of QDPLL, that is constraint reduction in QBCP, decision making
and constraint learning to be discussed below.

5.6.1 Generation of Learnt Constraints

In the following, we describe the generation of learnt constraints in QDPLL.
Our description largely relies on insights presented in [61, 134], but we also
address the implementation of our solver DepQBF [84]. Thereby, we include
practical aspects of constraint learning. For simplicity, we confine the pre-
sentation of constraint learning to the generation of learnt clauses. Apart
from initialization, the generation of learnt cubes is entirely dual to clause
learning. We refer to Section A.1.1 in the appendix for related definitions.

116 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

Initialization - Clause Learning

Given the current ACNF ψ, where learnt constraints might have been added
previously, and the current admissible assignment A := {l1, l2, . . . , ln} gen-
erated by QBCP which is sorted by trail levels 1, 2, . . . , n. Assume that A
is conflicting by Definition 5.3.7, that is QBCP(ψ[A]) = ψ′[A] = ⊥. Fig-
ure 5.5 shows function analyze leaf from Figure 5.1 again. Note that by
assumption s == UNSAT in the figures. Since A is conflicting, there must
be at least one clause R ∈ ψ such that R either is empty (thus falsified)
under assignment A, that is R[A] = ⊥, or R became empty by constraint
reduction in QBCP(ψ[A]), that is CR(R[A]) = ∅. If there are multiple such
clauses in ψ then let R be an arbitrary one. Clause R could be an original
or a learnt clause. Starting from R, clause learning produces a new learnt
clause C such that, after backtracking to a specific decision level, QBCP
can infer an additional implication from C by the unit literal rule.

In practice, function get initial constraint in Figure 5.5 selects R
according to the requirements stated above. Clause R is used as initial clause
for the process of generating a new learnt clause by Q-resolution according
to Definition 5.6.1. Antecedent clauses R′ of unit literals assigned in R by
Definition 5.3.4 are successively resolved with R to obtain a new clause.
In order to carry out constraint reduction efficiently during Q-resolution, a
similar approach as described in Section 5.5 can be applied. If the current
resolvent R is asserting, that is a new implication can be inferred from R
after backtracking, then the process stops. Clause R is added to the set
of learnt clauses and QDPLL backtracks to the asserting level of R. We
consider asserting clauses and asserting levels in Section 5.6.1 below.

Initialization - Cube Learning

Assume that the current assignment A is satisfying by Definition 5.3.7, that
is QBCP(ψ[A]) = ψ′[A] = ⊤ (s == SAT in Figure 5.5). Either there is a
cube R ∈ ψ which became empty (thus satisfied) by QBCP or all clauses in
ψ are satisfied under A. The former case is dual to an empty clause under a
conflicting assignment A and function get initial constraint select one
such cube R to generate a new learnt cube according to Figure 5.5.

If all clauses in ψ are satisfied under A then a cover set A′ ⊆ A is
generated from A by Definition 5.2.8. Function get initial constraint

constructs a new cube R′ containing all the literals in A′ and returns the
reduced cube R := CR(R′). Although cube R is not necessarily a cover set,
Proposition 5.2.1 still holds due to the correctness of constraint reduction by
Theorem 5.3.2. The cube to be learnt is generated from R dually to clause
learning, which is described below.

5.6. CONSTRAINT LEARNING 117

Pivot Selection

In modern SAT solvers like PicoSAT or MiniSAT [18, 42], for example, func-
tion get pivot in Figure 5.5 typically selects pivot variables from variables
in the current clause R in reverse trail ordering. Hence the variable which
was assigned as unit literal most recently in clause R is selected. Accord-
ing to that policy, a learnt clause related to the first unique implication
point (1UIP) in the implication graph, which is associated with the current
assignment A, is obtained. Informally, an implication graph represents im-
plications in A as a directed acyclic graph [36, 117, 118, 132]. To the best of
our knowledge, there is no comprehensive theoretical framework of implica-
tion graphs and 1UIPs in the context of QBF. We concentrate on practical
aspects in our description of learning for QDPLL.

The strategy to select pivot variables in reverse trail ordering like in
clause learning for SAT cannot directly be applied to QBF. If that strategy
was applied then, due to combinations of constraint reduction and the unit
literal rule, universal literals which were reduced from antecedent clauses by
QBCP might produce tautological resolvents during Q-resolution (function
constraint res in Figure 5.5). The dual problem can occur in cube learning
if complementary existential literals are introduced into the resolvent.

One approach to tackle the problem of resolvents containing complemen-
tary literals is to integrate them into the theoretical and practical framework
of QDPLL with constraint learning. The resulting variant of Q-resolution
is called long-distance resolution [133]. The rules for unit literal detection
and constraint reduction have to be adapted accordingly.

As an alternative, resolvents containing complementary literals can be
prevented by selecting other pivot variables whenever Q-resolution on the
previously selected pivot would introduce complementary literals into the
resolvent [61]. We implemented this approach in our solver DepQBF. Our
presentation below relies on the algorithm sketched in Figure 6 in [61]. Ad-
ditionally, we address pitfalls related to bad selections of pivot variables.

Let A be the current assignment and R be the current resolvent in the
loop in Figure 5.5. At any time during the generation of a learnt clause,
all existential literals in R are falsified by A. Additionally, there might be
unassigned universal literals in R which are reducible by constraint reduc-
tion. Thus clause R is falsified under A, that is QBCP(R[A]) = ⊥. The
pivot variable is selected with respect to A and R as follows.

1. Let R be the current resolvent (line p = get pivot (R) in Figure 5.5).

2. Let P (R) := {y | y = v(l), l ∈ R, q(l) = ∃, am(l) = U} be the set of
existential variables in R which were assigned by the unit literal rule.
Set P (R) contains all potential pivot variables to be selected.

3. Select p ∈ P (R) such that p has the maximum trail level of variables
in P (R), that is tl(p) = max ({tl(y) | y ∈ P (R)}).

118 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

4. If the tentative resolvent R⊗R′ of R and the antecedent R′ = ante(p)
of p does not contain complementary literals, then variable p is the
pivot for the next application of Q-resolution (line R = constraint res

(R, p, R’) in Figure 5.5).

5. Otherwise, if {x,¬x} ⊆ (R ⊗ R′) for some variable x ∈ R then an
alternative pivot is selected as follows.

5.1. Let x be one of the variables which occur both positively and
negatively in the tentative resolvent (R⊗R′).

5.2. Let P ′(R) := P (R) \ {y | y ∈ P (R), x 6≺ y} \ {y | y ∈ P (R),
{x′,¬x′} ⊆ R ⊗ R′′ where R′′ = ante(y)}. In addition to the
restrictions on set P (R) as defined above, the set P ′(R) contains
only existential variables which depend on variable x. Further,
the resolvent of R and the antecedent of variables in P ′(R) does
not contain complementary literals.

5.3. Select p ∈ P ′(R) such that p has the maximum trail level of
variables in P ′(R), that is tl(p) = max ({tl(y) | y ∈ P ′(R)}).

5.4. Variable p is the pivot for the next application of Q-resolution
(line R = constraint res (R, p, R’)).

Note that complementary literals in resolvents are always due to uni-
versal variables which were reduced by constraint reduction in the current
resolvent and the antecedent. Therefore, this problem cannot occur during
clause learning in SAT solvers since all variables are existential. Dually in
cube learning, complementary existential literals might be introduced.

The idea behind the two-phase selection process described in the algo-
rithm above is to always pick the existential variable p which was assigned
as unit literal most recently. Only if resolution on p would introduce com-
plementary literals of some variable x then an alternative pivot is selected.
In this case, the goal is to resolve out existential variables which prevent the
literal of x in the current resolvent from being removed by constraint reduc-
tion. Therefore, it is necessary to focus on variables which depend on x with
respect to the dependency scheme that is used in QDPLL. During the gener-
ation of a learnt constraint, complementary literals which were removed by
constraint reduction might be introduced again into the current resolvent.
In the worst case, an exponential number of intermediate resolvents has to
be produced until the final learnt constraint is obtained [50].

For cube learning, pivot selection is dual to clause learning. The goal
is to select universal variables assigned by the unit literal rule, where the
introduction of complementary literals into the resolvent has to be avoided
analogously. We refer to the appendix in for related algorithms.

The algorithm presented above is in essence equivalent to Figure 6 in
[61], where it was proved that an asserting clause can always be generated

5.6. CONSTRAINT LEARNING 119

according to that algorithm (see Lemma 4 in [61]). Note that in our pre-
sentation, we generalize dependency checking by quantifier prefixes as in
[61] to arbitrary dependency schemes. We conjecture that the proof can be
adapted in a similar way.

Stop Criteria and Asserting Levels

After a suitable pivot variable p has been selected, the current resolvent R
is resolved with the antecedent R′ of p (line R = constraint res (R, p,

R’) in Figure 5.5). The resolution process stops if the current resolvent is
asserting according to the current assignment A (function stop res). See
also Example 5.6.3 below.

Definition 5.6.2 ([53, 133]). Given the current resolvent R. Let m :=
max ({d | d = dl(y), y = v(l), l ∈ R, q(l) = ∃}) be the largest decision level
of existential variables in R. Clause R is asserting if and only if:

1. There is exactly one literal l ∈ R with q(l) = ∃ such that dl(v(l)) = m.
Let va := v(l).

2. The decision variable at decision level m is existential.

3. Variables where va depends on must be assigned where the decision
levels must be smaller than m = dl(va), that is:

∀y ∈ {y | y = v(l), l ∈ R, y ≺ va} : dl(y) < m.

If R is asserting then variable va is asserted by R.

Different from the definition of asserting clauses in [133], Condition 2 is
not included in [53]. Asserting clauses are generated in DepQBF with respect
to Definition 5.6.2. For cube learning, the conditions of asserting cubes are
dual. We refer to Definition A.1.1 in the appendix.

As pointed out in Section 5.2.3, QDPLL by Figure 5.1 does not explicitly
flip the value of decision variables. Instead, every learnt constraint R is
constructed in such way that QBCP can infer an additional unit literal from
R after backtracking. Given the current conflicting assignment A and the
asserting clause R that was learnt according to Definition 5.6.2, QDPLL
backtracks to the asserting level with respect to R defined as follows.

Definition 5.6.3. Given an asserting clause R by Definition 5.6.2 and the
variable va asserted by R.

1. Let DL∃(R) := {d | d = dl(y), y = v(l), l ∈ R, q(l) = ∃, y 6= va} be the
set of decision levels of existential variables in R, excluding va.

2. Let DL≺(R) := {d | d = dl(y), y = v(l), l ∈ R, y ≺ va} be the set of
decision levels of variables in R where va depends on.

120 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

3. The asserting level da with respect to R is da := max (DL∃(R) ∪
DL≺(R)).

Given the current conflicting assignment A, asserting clause R and the
asserting level da by Definition 5.6.3, QDPLL retracts all assignments which
have decision levels larger than da during backtracking, yielding a new as-
signment A′ ⊆ A. The assignment l, where l ∈ R is the literal of variable
va in R, can now be inferred from R by unit literal detection because R
is unit under A′ with constraint reduction, that is CR(R[A′]) = (l). Due
to Definition 5.6.3, universal literals of variables where va depends on are
falsified by A′ in R. All other universal literals are removed by constraint re-
duction from the clause R[A′]. For cube learning, the definition of asserting
levels is dual. We refer to Definition A.1.2 in the appendix. Definitions 5.6.2
and 5.6.3 are illustrated by the following example.

Example 5.6.3. Given the quantifier prefix ∃x∀a∃y∀b∃z and the clause
C := (x(1)∨a(4)∨y(3)∨b(3)∨z(3)), where numbers in parenthesis indicate
decision levels. We are using the prefix ordering for dependency analysis.

Clause C is not asserting since variables y and z have decision level 3,
which is the largest decision levels of existential variables in C.

Clause C := (x(1)∨a(4)∨y(3)∨b(3)∨z(2)) is not asserting since variable
a, where y depends on, is assigned at a decision level larger than y.

Clause C := (x(1)∨a(2)∨y(3)∨b(3)∨z(2)) is asserting since the asserted
variable y is the only variable at the largest decision level of all existential
variables. Further, variable a, where y depends on, is assigned at a decision
level smaller than y.

Given the asserting clause C := (x(10) ∨ a(15) ∨ y(30) ∨ b(25) ∨ z(20)),
where variable y is asserted by C. Decision level da := 20 is the asserting
level with respect to R. Variable b is ignored for the computation of da since
y does not depend on b.

Given the asserting clause C := (x(10) ∨ a(20) ∨ y(30) ∨ b(25) ∨ z(10)),
where variable y is asserted by C. Decision level da := 20 is the asserting
level with respect to R. Variable a is taken into account for the computation
of da since y depends on b.

Note that clause (cube) learning does not treat literals of universal (exis-
tential) variables in the current resolvent R in any special way. For example,
assume that there is a literal l of an unassigned universal variable in clause R
which prevents R from being asserting. The criterion of asserting clauses by
Definition 5.6.2 (Condition 3) makes sure that the variable v(l) of l is eventu-
ally reduced by constraint reduction during forthcoming Q-resolution steps.

Constraint Learning and Dependency Schemes

It is important to note that the general workflow of constraint learning as
illustrated by Figure 5.5 is independent of the dependency scheme that is

5.7. EXPERIMENTAL RESULTS 121

used in QDPLL. This applies to the high-level view of QDPLL with con-
straint learning shown in Figure 5.1 as well. Actually, the only difference
between our description and classical ones implicitly relying on the trivial
dependency scheme Dtriv [61, 134] is the generalization to arbitrary depen-
dency schemes. This affects dependency checking for pivot selection, stop
criteria and the computation of asserting levels. Actually, we may think of
a dependency scheme as an additional parameter that is passed to QDPLL.
The generalization of constraint learning to arbitrary dependency schemes
presented in this section completes the combination of QDPLL with depen-
dency schemes.

5.6.2 Optimizations

The basic framework of QDPLL with constraint learning as shown in Fig-
ure 5.1 does not differ from DPLL for SAT, apart from cube learning. Several
optimizations have been suggested for DPLL which address the selection of
decision variables or the management of learnt clauses, for example. We
considered related work in Section 2.3.1. We refer to [84] for further details
on the implementation of the following optimizations.

In DepQBF, learnt constraints in φLCL and φLCU are periodically deleted.
Deletion is necessary to avoid overhead in QBCP. The idea is to keep those
constraints which are considered to be important with respect to a certain
heuristic criterion. Learnt clauses and cubes are kept in doubly linked lists.
The idea is to let frequently used learnt constraints appear at the head of
the lists by a simple move-to-front strategy. When deleting constraints, the
lists are processed starting from the tail, thus removing least-recently used
and possibly less important constraints.

In SAT solving, restarting the search has been found useful to improve
performance [17, 65, 70, 109, 119]. Instead of backtracking to the asserting
level as described in Section 5.6.1, the solver periodically retracts all assign-
ments made so far and thus restarts the search process, while keeping learnt
constraints. DepQBF implements a restart schedule inspired by PicoSAT [18]
which is based on ideas from [15]. Different from typical restarts in SAT
solvers, DepQBF restarts the search from the decision level of the most re-
cently assigned universal decision variable. Like many SAT solvers, DepQBF
combines restarts with assignment caching [103]. Decision variables are as-
signed a cached value, if possible. The cache of the values of variables is
updated whenever assignments are made. In Section 5.7.2 below, we report
the results of related experiments.

5.7 Experimental Results

In this chapter, we combined the classical QDPLL algorithm [30] with arbi-
trary dependency schemes. Actually, we extended QDPLL from the trivial

122 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

dependency scheme, which is implicitly applied in its classical variant, to
arbitrary ones. This way, QDPLL can profit from additional information
on independence of variables in a given PCNF. Apart from decision mak-
ing, constraint reduction is the central point where independence might
have a positive influence. Since constraint reduction removes literals from
constraints, we might detect more unit literals during QBCP and generate
shorter learnt constraints, for example.

Given the theoretical framework of QDPLL with dependency schemes,
we now focus on practical aspects. In addition to comparing the effects
of different dependency schemes in QDPLL in the following section, we
provide a general performance analysis of our solver DepQBF in Section 5.7.2.
Thereby, we also briefly address the role of preprocessing.

5.7.1 QDPLL with Different Dependency Schemes

In this section, we evaluate the performance of QDPLL when combined with
the three dependency schemes Dtriv, Dtree and Dstd as introduced in Sec-
tion 3.4.3. We want to find out whether the theoretical advantages of more
refined dependency schemes due to Dstd ⊆ Dtree ⊆ Dtriv also show up in
practice. The number of solved formulae or average run times indicate over-
all performance. Additionally, the number of backtracks, implications and
decision candidates allow for a more fine-grain analysis of dynamic effects.

For experiments, we used a variant of our solver DepQBF.2 The standard
dependency scheme Dstd is represented as the approximated dependency
graph Ġ≈,⊆(D

std) by Definition 4.5.4 on page 73. For Dtriv and Dtree, we
implemented augmented compressed dependency graphs G≈,⊆(D

triv) and
G≈,⊆(D

tree) by Definition 4.2.8 on page 60, where transitive dependency
edges and subset edges were omitted. Actually, the graph G≈,⊆(D

triv) cor-
responds to a linear list of equivalence classes of variables.

Apart from the different dependency graphs for representing the depen-
dency schemes, the implementation of QDPLL by Figure 5.1 in DepQBF is
the same regardless of whether Dtriv, Dtree or Dstd is applied. This tight in-
tegration of QDPLL and dependency schemes allows for a direct comparison
of the effects observed in practice. In order to construct one out of possibly
many non-deterministic dependency graphs (trees) for Dtree, we adapted the
approach from [12] to our framework.

Table 5.1 shows a comparison3 of DepQBF with Dtriv, Dtree and Dstd

on instances from previous QBF competitions [56]. Benchmarks include all
structured formulae from QBFEVAL’07, QBFEVAL’08 and from set Herb-

2Experimental data on the comparison of dependency scheme combined with QDPLL
in Tables 5.1 to 5.3 was published in [85]. The publicly available DepQBF version 0.1
described in [84] is different and supports only D

triv and D
std.

3Setup for all experiments reported in Section 5.7.1, unless stated otherwise: Ubuntu
Linux 9.04, Intel R© Q9550@2.83 GHz, 3 GB/900 seconds memory and time limit.

5.7. EXPERIMENTAL RESULTS 123

QBFEVAL’08 (3326 formulae)

Dtriv Dtree Dstd QuBE6.6-nopp QuBE6.6

Solved 1223 1221 1252 1106 2277

Avg. Time 579.94 580.64 572.31 608.97 302.49

QBFEVAL’07 (1136 formulae)

Solved 533 548 567 458 734

Avg. Time 497.12 484.69 469.97 549.29 348.05

Herbstritt (478 formulae)

Solved 321 357 357 296 395

Avg. Time 316.06 248.20 248.07 357.52 173.53

Table 5.1: Performance comparison of DepQBF with quantifier prefixes
(Dtriv), quantifier trees (Dtree) and the standard dependency scheme (Dstd).
Statistics of the QDPLL-based solver QuBE6.6 [57] with and without pre-
processing (QuBE6.6-nopp) are listed for reference.

stritt [56]. Average run times are given in seconds. The three versions
of DepQBF do not apply preprocessing and differ only in the integrated
dependency schemes, all other parts are exactly the same. For external
reference, statistics of PCNF-based QuBE6.6 [57] with and without prepro-
cessing (QuBE6.6-nopp) are listed.4 Preprocessing in QuBE6.6 is based on
approaches described in [55]. We evaluate the performance of DepQBF with
and without preprocessing in Section 5.7.2 below.

We implemented dependency checking with respect to Dtree and Dstd

as described in Section 5.5. For Dtriv, an optimal approach was applied.
By comparing the levels of variables based on the quantifier prefix ordering,
dependencies can be checked in constant time. An approach based on num-
berings of quantifier trees by depth-first search was applied in [62]. This way,
dependency checking can be carried out in constant time for Dtree as well.
However, we did not implement that approach but inspect the dependency
graph of G≈,⊆(D

tree) explicitly. Although we expect additional overhead
from dependency checking for Dstd and Dtree, QDPLL with Dstd is best on
QBFEVAL’07 and QBFEVAL’08 and is slightly faster than Dtree on set
Herbstritt. There is a large performance gap to QuBE6.6 which, differently
from DepQBF, uses preprocessing. However, any version of DepQBF out-
performs QuBE6.6-nopp, where preprocessing is disabled. Note that in our
terminology QuBE6.6 uses Dtriv.

A more detailed comparison of all three versions of DepQBF is shown in
Table 5.2. Only formulae solved by both solvers (∩) were considered. For

4Due to limited computational resources, we did not rerun the experiments for Table 5.1
with QuBE7.2, the current successor of QuBE6.6 by February 2012.

124 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

QBFEVAL’08 (solved only)

Dtriv ∩Dtree Dtriv ∩Dstd Dtree ∩Dstd

solved 1172 1196 1206

time 23.15 26.68 23.73 25.93 25.63 22.37

implied/assigned 90.4% 90.7% 88.6% 90.5% 90.9% 92.1%

backtracks 32431 27938 34323 31085 25106 26136

sat. cubes/sol. 1.8% 2.9% 1.8% 2.6% 3.6% 3.1%

learnt constr. size 157 99 150 96 102 95

QBFEVAL’07 (solved only)

solved 501 513 537

time 31.22 34.46 32.76 32.66 33.31 28.33

implied/assigned 89.0% 89.2% 87.7% 89.5% 89.9% 91.9%

backtracks 35131 22334 39906 26362 21945 22323

sat. cubes/sol. 4.0% 10.0% 4.0% 9.5% 10.8% 9.9%

learnt constr. size 150 101 134 113 100 96

Herbstritt (solved only)

solved 312 308 348

time 26.86 19.28 24.41 19.28 20.46 20.83

implied/assigned 96.6% 97.4% 96.2% 97.4% 97.4% 97.4%

backtracks 26565 1329 26733 1482 1615 1800

sat. cubes/sol. 0% 0% 0% 0% 0% 0%

learnt constr. size 174 306 173 323 407 410

Table 5.2: Comparing combinations of DepQBF with quantifier prefixes
(Dtriv), quantifier trees (Dtree) and the standard dependency scheme (Dstd)
on the intersection of solved formulae.

example, in section “Dtriv∩Dstd”, the left column reports statistics for Dtriv,
the right one for Dstd. Average values are given for run time in seconds,
ratio of implications among all assignments, number of backtracks, ratio
of satisfied learnt cubes among all identified solutions and size (number of
literals) of learnt constraints.

In general, Dtriv is slightly faster on the QBFEVAL sets. However, Dtriv

yields more backtracks than Dtree and Dstd on all sets. On set Herbstritt,
the difference in this respect is a factor of up to 20. Dtree and Dstd, both
being more refined than Dtriv, produce smaller learnt constraints on the
QBFEVAL sets. Furthermore, Dstd triggers more implications in QBCP on
all sets and Dtriv fewer satisfied learnt cubes. These effects can be attributed
to unit literal detection and constraint reduction, which benefit from more
refined dependency schemes.

The results from Table 5.2 indicate that moving from Dtriv to more

5.7. EXPERIMENTAL RESULTS 125

refined dependency schemes incurs run time overhead (except on set Herb-
stritt), but also allows QDPLL to produce shorter runs in terms of back-
tracks. Dependency checking is not a constant-time operation in general
dependency DAGs used to represent Dtree and Dtriv, for example. Instead,
such DAGs are inspected explicitly as described in Section 5.5. Addition-
ally, maintaining the set of decision candidates as described in Section 5.4
is more expensive than with respect to Dtriv. As indicated in Table 5.1,
QDPLL still seems to profit from using more refined dependency schemes
such as Dtree and Dstd.

In order to assess both the costs and benefits of combining dependency
schemes with QDPLL in more detail, we carried out the following experi-
ment. In addition to the dependency DAG which is used to represent the
dependency scheme in QDPLL, called primary DAG G1, another depen-
dency scheme is represented by a secondary dependency DAG G2. The
secondary DAG G2 is independent from G1 and used in parallel for statisti-
cal computations only. The idea is to compare the effects of using different
dependency schemes dynamically, that is during a run of QDPLL.

This setup allows to compute more fine-grain statistics than overall run
time or number of backtracks, as listed in Tables 5.1 and 5.2. During a run
of QDPLL, it is interesting to compare the numbers of decision candidates
(DC) by Definition 5.4.1 with respect to G1 and G2 under the current as-
signment. These numbers are computed each time before a decision is made
and reflect the degree of freedom resulting from more refined dependency
schemes. For example, we expect Dstd to allow more decision candidates
than Dtriv and Dtree. Apart from that, we want to measure the average
costs of dependency checking and decision candidate maintenance for de-
pendency DAGs resulting from different dependency schemes.

For G1 and G2, we compared Dstd to Dtriv and Dtree , where all four
combinations were run to even out biased solver behaviour. Due to limited
computational resources, we did not compare Dtriv to Dtree and omitted
QBFEVAL’07.

Table 5.3 shows the results of the experiments described above with a
time out of 900 seconds. DepQBF maintains two dependency DAGs G1 (pri-
mary) and G2 (secondary) in parallel. For example, in section “Dtriv

⋉Dstd”,
G1 is obtained from Dtriv (left column), G2 from Dstd (right column). Note
that columns “Dstd” in “Dstd

⋉Dtriv” and “Dstd
⋉Dtree” are incomparable

since G2 influences run time, that is “Dstd
⋉Dtriv” and “Dstd

⋉Dtree” may
run at different speeds. We compare the numbers of decision candidates (set
DC as introduced in Section 5.4) when using different dependency schemes.
Each time before decision making, the size of the set DC under the cur-
rent assignment is computed. Row “DC/d” shows the total sum of decision
candidates over the total number of decisions in the benchmark set after at
most 900 seconds run time.

As indicated for sets QBFEVAL’08 and Herbstritt, the difference in DC

126 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

QBFEVAL’08 (3326 formulae)

Dtriv
⋉Dstd Dstd

⋉Dtriv

DC/d 13801.0 13801.6 11409.7 11409.0

DC-updt. 3.23 3.16 3.30 3.43

≺ 1 - 6.21 -

C-red. 1.18 - 535.62 -

Herbstritt (478 formulae)

DC/d 21.3 26.55 20.14 20.13

Pan (384 formulae) ∪ Sorting-Networks (84 formulae)

DC/d 75.81 93.87 117.50 109.66

QBFEVAL’08 (3326 formulae)

Dtree
⋉Dstd Dstd

⋉Dtree

DC/d 8932.5 8933.0 15625.6 15625.3

DC-updt. 3.38 3.37 3.30 3.36

≺ 7.15 - 6.26 -

C-red. 538.30 - 540.94 -

Herbstritt (478 formulae)

DC/d 20.67 20.67 20.16 20.16

Pan (384 formulae) ∪ Sorting-Networks (84 formulae)

DC/d 86.89 86.90 120.03 119.98

Table 5.3: Comparing the costs and benefits of Dtriv, Dtree and Dstd in
DepQBF on the intersection of solved formulae.

statistics is very small in general, sometimes less than one candidate on
average per decision. However, it seems that this is already enough for
QDPLL with Dstd to outperform Dtriv and Dtree by Table 5.1. Further, DC
statistics are also family-dependent, as shown by the results for sets Pan
and Sorting-Networks in Table 5.3.

Additionally, we measured the costs of integrating dependency DAGs
in QDPLL. Cost statistics in Table 5.3 (rows “DC-updt.”, “≺”, “C-red.”)
are correlated to the number of equivalence classes of variables that have
to be visited (pointer dereferences) when inspecting a dependency DAG.
Such inspections are necessary for decision candidate management and de-
pendency checking as described in Sections 5.4 and 5.5. Average costs are
listed for (un)assigning an assignment as defined in Section 5.4 to update
the set DC of decision candidates (DC-updt.), for constraint reduction as
needed in QBCP and for the stop criterion during constraint learning (≺),
and separately for constraint reduction per Q-resolution operation (C-red.).

5.7. EXPERIMENTAL RESULTS 127

The latter are irrelevant for G2 (“-”).

Average costs for dependency checking and (un)assigning variables for
updating DC before decisions or during backtracking are small. This is due
to equivalence classes in dependency DAGs. However, costs of constraint re-
duction during constraint learning are very high for Dtree and Dstd. These
effects are closely related to implementation. When using Dtriv, all con-
straints C can be kept sorted according to prefix ordering, which allows for
efficient constraint reduction. This was implemented in DepQBF with Dtriv

and is reflected by low costs in Table 5.3. In general, such an approach is im-
possible for arbitrary dependency schemes. Instead, we reduce constraints
based on classes in the dependency DAG for Dtree and Dstd. Classes are
collected for all literals in a constraint C before reduction, where the size of
C (particularly for cubes) can be large. This effort is included in the statis-
tics shown in Table 5.3. Despite that overhead in Dtree and Dstd, overall
performance by Tab. 5.1 is still better than with Dtriv.

5.7.2 General Performance Analysis

Experimental results in the previous sections illustrate that combining
QDPLL with dependency schemes other than Dtriv potentially increases
the performance. Despite additional overhead for constructing and main-
taining dependency DAGs, more refined dependency schemes such as Dtree

and Dstd might allow to detect more implications and produce shorter learnt
constraints. We conclude that the use of an arbitrary dependency scheme
D where D ⊂ Dtriv can pay off in practice, provided that the augmented
compressed dependency graph G≈,⊆(D) by Definition 4.2.8 on page 60 is
implemented carefully.

In this section, we analyze the general performance of DepQBF with
Dstd.5 We address the effects of optimizations described in Section 5.6.2
and compare DepQBF to other solvers, with and without preprocessing.
Parts of the experimental results in this section were previously published
in [21, 84, 86] and reported in related conference talks.

Improvements of QDPLL

Table 5.4 shows experimental results of DepQBF 0.1 with Dstd where opti-
mizations of QDPLL such as pure literal detection, restarts and assignment
caching were disabled. The time limit was set to 900 seconds. DepQBF

performs best if all of these techniques are enabled. Switching off restarts
in DepQBF-nr affects the number of solved satisfiable instances negatively.
Without assignment caching but with restarts (DepQBF-nc), the perfor-
mance is even worse. DepQBF performs worst if neither restarts nor as-

5Setup for all experiments reported in Section 5.7.2, unless stated otherwise: Ubuntu
Linux 9.04, Intel R© Q9550@2.83 GHz, 7 GB/900 seconds memory and time limit.

128 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

QBFEVAL’10 (568 formulae)

Solved Avg. Time SAT UNSAT

DepQBF 370 337.10 165 205

DepQBF-nr 360 352.33 154 206

DepQBF-nc 350 384.66 157 193

DepQBF-np 345 398.12 141 204

DepQBF-ncnr 340 400.24 147 193

Table 5.4: The influence of optimization such as restarts (disabled in
DepQBF-nr), assignment caching (disabled in DepQBF-nc) and pure literal
detection (disabled in DepQBF-np) on the performance of DepQBF 0.1.

QBFEVAL’10 (568 formulae) – with preprocessing

Solved Avg. Time SAT UNSAT

Bloqqer + QxBF + DepQBF 468 197.31 (16.47) 224 244
Bloqqer + DepQBF 466 198.50 (7.69) 223 243

QuBE7.2 435 264.70 (–) 202 233
QxBF+ DepQBF 378 323.19 (7.21) 167 211

QBFEVAL’10 (568 formulae) – without preprocessing

DepQBF 372 334.60 166 206
QuBE7.2-nopp 319 431.47 144 175

Nenofex 211 573.65 103 108
Quantor 3.0 203 590.15 99 104
squolem 2.02 124 708.80 53 71

Table 5.5: DepQBF and other solvers with and without preprocessing.

signment caching is enabled (DepQBF-ncnr). Pure literal detection, which
is disabled in DepQBF-np, has a substantial negative influence on the num-
ber of solved satisfiable instances. This is interesting because modern SAT
solvers typically do not detect pure literals. As argued in Section 5.3.4, pure
literal detection during QBCP might cause additional constraints to become
unit. As future work, we want to analyze the actual effects in detail.

Preprocessing and Other Solvers

DepQBF version 0.1 [84] using Dstd took first place in QBFEVAL’10 [100].
The lower part of Table 5.5 shows statistics for an improved, non-public ver-
sion of DepQBF and other solvers without preprocessing. In fact, QuBE is
the only solver listed in Table 5.5 which applies preprocessing natively [55].
Both DepQBF and QuBE are search-based solvers relying on QDPLL with
constraint learning whereas all other solvers eliminate variables. On the
considered benchmark set, QDPLL outperforms variable elimination. With
respect to QDPLL, DepQBF performs better than QuBE7.2-nopp where pre-
processing was disabled. However, there is a huge performance gap between

5.7. EXPERIMENTAL RESULTS 129

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 150 200 250 300 350 400 450 500

T
im

e
 (

s
e
c
o
n
d
s
)

Solved Formulae

Bloqqer+QxBF+DepQBF
Bloqqer+DepQBF

QuBE7.2
QxBF+DepQBF

DepQBF
QuBE7.2-nopp

Figure 5.6: Sorted run times of selected solvers from Table 5.5.

solvers with and without preprocessing.

We considered preprocessing in the upper part of Table 5.5. Numbers in
parentheses are average times spent on preprocessing by various approaches.
QuBE7.2 performs substantially better if preprocessing is enabled, which in-
cludes resource bounded variable elimination and equivalence reasoning [55].
We were not able to determine the preprocessing time spent in QuBE7.2.
As DepQBF does not include preprocessing natively, we applied two exter-
nal tools. Bloqqer [21]6 combines blocked clause elimination [71] for QBF
with approaches like resource bounded variable elimination and equivalence
reasoning inspired from SAT solving [41]. QxBF [86]7 is a preprocessor
which detects failed literals in a QBF. The version listed in Table 5.5 ap-
plies abstraction-based and SAT-based failed literal detection (see [86] for
further details). We allowed at most 80 seconds to be spent in QxBF whereas
Bloqqer uses static limits which are not based on time. Altogether, prepro-
cessing and solving time was limited to 900 seconds.8

Combining DepQBF with Bloqqer yields a larger performance improve-
ment than with QxBF. By first running Bloqqer and then QxBF, DepQBF
solves only two instances more. However, if we consider the number of

6See also http://fmv.jku.at/bloqqer/.
7See also http://fmv.jku.at/qxbf/.
8Due to limited computational resources, we did not combine QuBE7.2 with Bloqqer

and QxBF.

http://fmv.jku.at/bloqqer/
http://fmv.jku.at/qxbf/

130 CHAPTER 5. QDPLL AND DEPENDENCY SCHEMES

instances that were solved solely by preprocessing then it turns out that
QxBF has a considerable positive effect. QxBF solves 30 and Bloqqer 148
instances. The combination Bloqqer + QxBF as applied in Table 5.5 solves
172 instances, which amounts to 36.7% of the 468 instances solved by De-

pQBF combined with Bloqqer and QxBF. With respect to the full set of 568
instances, 30% are solved solely by preprocessing.

The results in Table 5.5 point out that QDPLL without preprocessing
as in Figure 5.1 on page 89 is by far not competitive. Further experimental
evaluation is necessary to analyze the actual role and interplay of individual
preprocessing approaches applied in QuBE7.2, Bloqqer and QxBF.

5.8 Summary

In this chapter, we considered combinations of QDPLL and dependency
schemes. The classical variant of QDPLL implicitly relies on the quantifier
prefix of the given PCNF, that is the trivial dependency scheme Dtriv. We
extended QDPLL to arbitrary dependency schemes. We may think of a de-
pendency scheme D as an additional parameter of QDPLL. By analyzing
the core parts of QDPLL, we figured out that the decision making, depen-
dency checking and constraint reduction in QDPLL must be adapted from
Dtriv to arbitrary schemes D. Apart from that, the high-level workflow of
the algorithm does not change. Hence the theoretical framework of depen-
dency schemes introduced in Chapter 3 fits seamlessly into QDPLL, which
is a state-of-the-art approach in QBF solving.

In general, it is important to apply one and the same dependency scheme
D throughout all parts of QDPLL. Our generalization of QDPLL is indepen-
dent from the actual dependency scheme. That is, approaches of decision
making or dependency checking as presented in Sections 5.4 and 5.5 apply
to arbitrary dependency schemes.

In our experimental analysis, QDPLL with the standard dependency
scheme Dstd outperformed combinations of QDPLL with Dtriv and Dtree,
which relies on quantifier trees obtained by mini-scoping. We represent
dependency schemes as augmented compressed dependency graphs by Def-
inition 4.2.8 on page 60. Despite additional overhead compared to Dtriv,
QDPLL with Dtree and Dstd showed better overall performance.

Chapter 6

Summary and Outlook

The presence of universally and existentially quantified variables in quanti-
fied Boolean formulae (QBF) gives rise to dependencies between variables.
If variable y depends on another variable x in some QBF ψ, then in general
y must not be assigned before x during a semantical evaluation of ψ. Thus
variable dependencies restrict the freedom of QBF solvers to assign values
to variables. Violations of such restrictions might cause QBF solvers to pro-
duce incorrect results. This property is a crucial difference to propositional
logic (SAT). SAT solvers are free to assign any variables, all of which are
(implicitly) existentially quantified.

Variable dependencies are intrinsic to QBF. For example, given a QBF
ψ in prenex CNF (PCNF), the classical QDPLL algorithm requires to assign
variables “from left to right” in the ordering of the quantifier prefix of ψ. If
variable x occurs to the left of some other, differently quantified variable y
in the prefix, then y is regarded to depend on x. However, there are QBFs
where dependencies of that kind are spurious. In this case, even if a QBF
solver assigns y before x during semantical evaluation, the result returned by
the solver will be correct. Thus spurious dependencies impose unnecessary
restrictions to QBF solvers.

We considered dependency schemes as a means of analyzing variable
dependencies in PCNFs. A dependency scheme D for a given PCNF ψ
is a binary relation over the set of variables in ψ such that if (x, y) 6∈ D
then y does not depend on x. The theoretical framework of dependency
schemes allows to figure out precisely all dependencies between variables,
thereby entirely avoiding spurious ones. However, obtaining such optimal
information on dependencies is at least as hard as QBF solving and therefore
not feasible in practice.

A trade-off has to be made between optimality and efficiency of com-
putation of dependency schemes. Consequently, dependency schemes which
can be computed efficiently, that is in polynomial time, necessarily con-
tain spurious dependencies. Dependency schemes can be compared with

131

132 CHAPTER 6. SUMMARY AND OUTLOOK

respect to the amount of independence that can be identified. We pre-
sented the tractable dependency schemes Dtriv, Dtree and Dstd. All three
can be computed by analyzing the syntactic structure of a given PCNF.
We pointed out that the standard dependency scheme Dstd never contains
more spurious dependencies than Dtree and Dtriv, which are based on tree-
like quantifier structure present in PCNFs and on the quantifier prefixes,
respectively. Since Dstd ⊆ Dtree ⊆ Dtriv, Dstd potentially allows more free-
dom on a given PCNF than Dtree and Dtriv. Differently from Dtree, Dstd can
be computed deterministically. Therefore, we combined Dstd with search-
based QBF solvers relying on QDPLL. This way, QDPLL can profit from
additional information on independent variables.

In order to apply some tractable dependency scheme D in QDPLL, first
D must be computed and also represented efficiently. Since D is a binary
relation over the set V of variables in a given PCNF,D contains |V |·|V | pairs
of variables in the worst case. Hence it might be prohibitive to represent D
explicitly as a graph, for example, if the value of |V | is large.

We presented a way to compute and represent the standard dependency
scheme Dstd efficiently. By partitioning the set of variables into equivalence
classes with respect to dependency information, we obtained a compact
dependency graph over classes rather than individual variables. Although
our algorithms are tailored towards Dstd, they might give insights into new
algorithms to construct graphs for other dependency schemes. Further, the
concept of compact dependency graphs based on equivalence classes can be
used to represent arbitrary dependency schemes. Experimental analysis on
instances from QBF evaluations showed that the time for computing and
representing Dstd by our approaches is negligible.

Relying on compact dependency graphs as a general way to represent
dependency schemes efficiently, we considered to combine QDPLL with ar-
bitrary dependency schemes. The original variant of QDPLL implicitly uses
Dtriv where variables must be assigned in the ordering of the quantifier prefix
of the given PCNF. Thus combinations of QDPLL with dependency schemes
are generalizations of classical QDPLL rather than novel approaches.

We described QDPLL and analyzed its core parts. It turned out that
arbitrary dependency schemes can seamlessly be integrated into QDPLL
without the need to change its high-level workflow. The crucial parts are
maintenance of decision candidates and dependency checking. A decision
candidate is a variable which, given the current assignment generated by
QDPLL, can safely be assigned as decision variable without risking incor-
rect results. Maintaining decision candidates with respect to arbitrary de-
pendency schemes generalizes the “left-to-right” policy of Dtriv in classical
QDPLL. Given two variables x and y, dependency checking finds out if
(x, y) ∈ D, where D is the dependency scheme applied in QDPLL. This
kind of information is necessary for constraint reduction and for the genera-
tion of asserting constraints during constraint learning. In general, one and

133

the same dependency scheme D must be used in all parts of QDPLL.

We evaluated combinations of QDPLL with dependency schemes Dtriv,
Dtree and Dstd in a variant of our QBF solver DepQBF. Experimental results
on instances from QBF competitions show that QDPLL with Dstd outper-
forms both Dtree and Dtriv. However, the performance was only slightly
better than with Dtree. Still we favour Dstd because it can be constructed
deterministically and is more refined than Dtree, that is Dstd ⊆ Dtree.

We observed more implications, shorter learnt constraints and fewer
backtracks for QDPLL with Dstd or Dtree compared to Dtriv. These observa-
tions clearly motivate further research related to dependency schemes which
refine Dstd such as the triangle [113] or quadrangle dependency scheme [51].

Despite promising experimental results, combining QDPLL with depen-
dency schemes other than Dtriv is not free of costs. Whereas checking if
variable y depends on another variable x by Dtriv is a constant time opera-
tion, in general dependency graphs have to be inspected explicitly for other
dependency schemes. The approach presented in [62], which allows for de-
pendency checking based on Dtree in contant time as well, cannot be applied
for arbitrary dependency schemes. We presented approaches based on com-
pact dependency graphs which allow to keep the overhead of dependency
checking and decision candidate maintenance low.

It is important to note that dependency schemes are in fact not a new
concept. Rather, they are inherent to QBF semantics. Implicitly, classical
descriptions of QDPLL [30] apply the ordering of quantifier prefixes in given
PCNFs. Such orderings correspond exactly to the trivial dependency scheme
Dtriv. The theoretical framework of dependency schemes [111, 112, 113] al-
lows to generalize the classical QDPLL algorithm naturally from Dtriv to
arbitrary dependency schemes. There is a close interplay between depen-
dency schemes and QBF semantics. Therefore, we believe that dependency
schemes D which strictly refine Dstd, that is D ⊂ Dstd, have the potential
to improve the state-of-the-art in QBF solving considerably.

Outlook

Although we pointed out the potential of using advanced dependency schemes,
QDPLL still suffers from severe drawbacks. First, constraint learning is
based on resolution over clauses or cubes, which is applied only heuristi-
cally. Constraint learning produces a constraint by selecting pivot variables
for resolution with respect to the current assignment that was generated by
QDPLL. Variable dependencies restrict the set of assignments that can be
enumerated by QDPLL. Therefore, pivot selection heuristics in constraint
learning are also restricted by variable dependencies. As illustrated by Ex-
ample 3.3.6 on page 34, restricted constraint learning could miss short proofs
which otherwise could be found with general resolution strategies.

134 CHAPTER 6. SUMMARY AND OUTLOOK

Further, the selection of pivot variables in constraint learning is biased
towards quantifier types. When generating a clause, all pivot variables are
existential. This is due to the fact that clause learning relies on antecedents
of existential unit literals detected in clauses during QBCP. Dually, learnt
cubes are generated by resolutions over universal variables. Although these
pivot-restricted variants of resolution are complete [27], we conjecture that
allowing clause (cube) resolutions over universal (existential) variables could
produce shorter proofs in certain cases. In general, it would be interesting
to address proof theoretic properties of QDPLL with dependency schemes.

From the practical side, most QDPLL-based QBF solvers lack features
for incremental solving. In contrast to that, support for incremental solving
is common in modern SAT solvers like MiniSAT or PicoSAT, for example.
In bounded model checking (BMC) [19] based on QBF [14, 73], a sequence
ψ1, ψ2, . . . , ψn of PCNFs is solved where the structure of ψi is typically
related to the previously solved instance ψi−1. A QBF solver could re-use
information learnt from ψi−1 in order to solve ψi. An approach for BMC of
black box designs relying on a specific variant of incremental QBF solving
was presented in [88], but we are not aware of a general-purpose incremental
QBF solver. Further challenges arise from the use of dependency schemes
other than Dtriv in an incremental setting. So far it is not clear how to
efficiently update dependency information which is represented by compact
dependency graphs if clauses are added to or removed from an instance.
Learnt constraints might have to be discarded if the underlying dependency
scheme in QDPLL is modified.

We have not yet considered the role of dependency schemes in prepro-
cessing like blocked clause elimination [21] or failed literal detection [86]
for QBF. Dependency schemes might also give rise to smaller certificates
if approaches based on resolution proofs are used [8, 95, 105]. In general,
optimizations of DPLL which have been proved very effective in SAT solv-
ing could be ported to QDPLL for QBF. For example, as experimental
results show, our variants of restarts and assignment caching inspired by
SAT solvers improve the performance of our solver DepQBF considerably.
Further promising approaches are clause minimization techniques like [122],
to take a single example.

By the year 2012, there have been about 20 years of active research on
practical SAT solving. Continuous improvements led to robust SAT solvers
being capable of effectively tackling instances with thousands of variables
and millions of clauses. In contrast to that, we are still waiting for the
breakthrough of QBF. The success of SAT solving is driven both by the ap-
plication side and the implementation side. We believe that similar synergy
effects are necessary to boost QBF solving and applications. If we take the
advent of the classical QDPLL algorithm [30] in the year 1998 as a starting
point, then we have about 10 more years to bring QBF solving within a time
span of 20 years to where SAT solving is now in the year 2012.

Appendix A

A.1 Cube Learning

A.1.1 Pivot Selection for Cubes

1. Let R be the current resolvent (line p = get pivot (R) in Figure 5.5).

2. Let P (R) := {y | y = v(l), l ∈ R, q(l) = ∀, am(l) = U} be the set of
universal variables in R which were assigned by the unit literal rule.
Set P (R) contains all potential pivot variables to be selected.

3. Select p ∈ P (R) such that p has the maximum trail level of variables
in P (R), that is tl(p) = max ({tl(y) | y ∈ P (R)}).

4. If the tentative resolvent R⊗R′ of R and the antecedent R′ = ante(p)
of p does not contain complementary literals, then variable p is the
pivot for the next application of Q-resolution (line R = constraint res

(R, p, R’) in Figure 5.5).

5. Otherwise, if {x,¬x} ⊆ (R ⊗ R′) for some variable x ∈ R then an
alternative pivot is selected as follows.

(a) Let x be one of the variables which occur both positively and
negatively in the tentative resolvent (R⊗R′).

(b) Let P ′(R) := P (R) \ {y | y ∈ P (R), x 6≺ y} \ {y | y ∈ P (R),
{x′,¬x′} ⊆ R ⊗ R′′ where R′′ = ante(y)}. In addition to the
restrictions on set P (R) as defined above, the set P ′(R) contains
only universal variables which depend on variable x. Further, the
resolvent of R and the antecedent of variables in P ′(R) does not
contain complementary literals.

(c) Select p ∈ P ′(R) such that p has the maximum trail level of
variables in P ′(R), that is tl(p) = max ({tl(y) | y ∈ P ′(R)}).

(d) Variable p is the pivot for the next application of Q-resolution
(line R = constraint res (R, p, R’)).

135

136 APPENDIX A.

Definition A.1.1 ([53, 133]). Given the current resolvent R. Let m :=
max ({d | d = dl(y), y = v(l), l ∈ R, q(l) = ∀}) be the largest decision level
of universal variables in R. Clause R is asserting if and only if:

1. There is exactly one literal l ∈ R with q(l) = ∀ such that dl(v(l)) = m.
Let va := v(l).

2. The decision variable at decision level m is universal.

3. Variables where va depends on must be assigned at decision levels
smaller than m = dl(va), that is ∀y ∈ {y | y = v(l), l ∈ R, y ≺ va} :
DL(y) < m.

If R is asserting then variable va is asserted by R.

Definition A.1.2. Given an asserting clause R by Definition A.1.1 and the
variable va asserted by R.

1. Let DL∀(R) := {d | d = dl(y), y = v(l), l ∈ R, q(l) = ∀, y 6= va} be the
set of decision levels of universal variables in R, excluding va.

2. Let DL≺(R) := {d | d = dl(y), y = v(l), l ∈ R, y ≺ va} be the set of
decision levels of variables in R where va depends on.

3. The asserting level da with respect to R is da := max (DL∀(R) ∪
DL≺(R)).

A.2 Brief Biography

Personal Details

Name: Florian Matthias Lonsing

Private Address:
Im Weideland 1
4060 Leonding
Austria

Date and Place of Birth: 12th April 1983 in Linz, Austria

Research

Feb. 2008 – Feb. 2012

Research and Teaching Assistant at the In-
stitute for Formal Models and Verification
(FMV), Johannes Kepler Universität Linz.
Research Interests: QBF, SAT, Formal Veri-
fication.
Website: http://fmv.jku.at/lonsing/

http://fmv.jku.at/lonsing/

A.2. BRIEF BIOGRAPHY 137

Education

Feb. 2008 – Apr. 2012
Doctorate Computer Science,
Johannes Kepler Universität Linz

Oct. 2005 – Feb. 2008
Master Computer Science,
Johannes Kepler Universität Linz

Oct. 2002 – Oct. 2005
Bachelor Computer Science,
Johannes Kepler Universität Linz

Okt. 2001 – Apr. 2002 Military Service

Sep. 1993 – Jun. 2001
Grammar School (Allgemeinbildende Höhere
Schule) in Linz

Sep. 1989 – Jul. 1993 Primary School in Linz

138 APPENDIX A.

Bibliography

[1] A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction
of a Directed Graph. SIAM J. Comput., 1(2):131–137, 1972.

[2] B. Aspvall, M. F. Plass, and R. E. Tarjan. A Linear-Time Algorithm
for Testing the Truth of Certain Quantified Boolean Formulas. Inf.
Process. Lett., 8(3):121–123, 1979.

[3] G. Audemard, J. Lagniez, B. Mazure, and L. Sais. On Freezing and
Reactivating Learnt Clauses. In Sakallah and Simon [110], pages 188–
200.

[4] G. Audemard and L. Sais. A Symbolic Search Based Approach for
Quantified Boolean Formulas. In Bacchus and Walsh [7], pages 16–30.

[5] G. Audemard and L. Simon. Predicting Learnt Clauses Quality in
Modern SAT Solvers. In C. Boutilier, editor, IJCAI, pages 399–404,
2009.

[6] A. Ayari and D. A. Basin. QUBOS: Deciding Quantified Boolean
Logic Using Propositional Satisfiability Solvers. In M. Aagaard and
J. W. O’Leary, editors, FMCAD, volume 2517 of LNCS, pages 187–
201. Springer, 2002.

[7] F. Bacchus and T. Walsh, editors. Theory and Applications of Satisfi-
ability Testing, 8th International Conference, SAT 2005, St. Andrews,
UK, June 19-23, 2005, Proceedings, volume 3569 of LNCS. Springer,
2005.

[8] V. Balabanov and J. R. Jiang. Resolution Proofs and Skolem Func-
tions in QBF Evaluation and Applications. In G. Gopalakrishnan
and S. Qadeer, editors, CAV, volume 6806 of LNCS, pages 149–164.
Springer, 2011.

[9] P. Beame, H. A. Kautz, and A. Sabharwal. Towards Understanding
and Harnessing the Potential of Clause Learning. J. Artif. Intell. Res.
(JAIR), 22:319–351, 2004.

139

140 BIBLIOGRAPHY

[10] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-Optimal Sep-
aration of Treelike and General Resolution. Electronic Colloquium on
Computational Complexity (ECCC), 7(5), 2000.

[11] M. Benedetti. Extracting Certificates from Quantified Boolean For-
mulas. In L. P. Kaelbling and A. Saffiotti, editors, IJCAI, pages 47–53.
Professional Book Center, 2005.

[12] M. Benedetti. Quantifier Trees for QBFs. In Bacchus and Walsh [7],
pages 378–385.

[13] M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. In
R. Nieuwenhuis, editor, CADE, volume 3632 of LNCS, pages 369–376.
Springer, 2005.

[14] M. Benedetti and H. Mangassarian. QBF-Based Formal Verification:
Experience and Perspectives. JSAT, 5:133–191, 2008.

[15] A. Bhalla, I. Lynce, J. T. de Sousa, and J. Marques-Silva. Heuristic-
Based Backtracking Relaxation for Propositional Satisfiability. Jour-
nal of Automated Reasoning (JAR), 35(1-3):3–24, 2005.

[16] A. Biere. Resolve and Expand. In H. H. Hoos and D. G. Mitchell,
editors, SAT (Selected Papers), volume 3542 of LNCS, pages 59–70.
Springer, 2004.

[17] A. Biere. Adaptive Restart Strategies for Conflict Driven SAT Solvers.
In Büning and Zhao [29], pages 28–33.

[18] A. Biere. PicoSAT Essentials. JSAT, 4(2-4):75–97, 2008.

[19] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In R. Cleaveland, editor, TACAS, volume
1579 of LNCS, pages 193–207. Springer, 1999.

[20] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009.

[21] A. Biere, F. Lonsing, and M. Seidl. Blocked Clause Elimination for
QBF. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE,
volume 6803 of LNCS, pages 101–115. Springer, 2011.

[22] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johannsen. On the
Relative Complexity of Resolution Refinements and Cutting Planes
Proof Systems. SIAM J. Comput., 30(5):1462–1484, 2000.

[23] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manip-
ulation. IEEE Trans. Computers, 35(8):677–691, 1986.

BIBLIOGRAPHY 141

[24] U. Bubeck. Model-Based Transformations for Quantified Boolean For-
mulas, volume 329 of Dissertations in Artificial Intelligence. IOS
Press, 2010.

[25] U. Bubeck and H. Kleine Büning. Bounded Universal Expansion for
Preprocessing QBF. In Marques-Silva and Sakallah [89], pages 244–
257.

[26] H. Kleine Büning and U. Bubeck. Theory of Quantified Boolean For-
mulas. In Biere et al. [20], pages 735–760.

[27] H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quan-
tified Boolean Formulas. Inf. Comput., 117(1):12–18, 1995.

[28] H. Kleine Büning and T. Lettmann. Propositional Logic: Deduction
and Algorithms. Cambridge University Press, New York, NY, USA,
1999.

[29] H. Kleine Büning and X. Zhao, editors. Theory and Applications of
Satisfiability Testing - SAT 2008, 11th International Conference, SAT
2008, Guangzhou, China, May 12-15, 2008. Proceedings, volume 4996
of LNCS. Springer, 2008.

[30] M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate
Quantified Boolean Formulae. In AAAI/IAAI, pages 262–267, 1998.

[31] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An Algo-
rithm to Evaluate Quantified Boolean Formulae and Its Experimental
Evaluation. J. Autom. Reasoning, 28(2):101–142, 2002.

[32] P. Chatalic and L. Simon. Multi-resolution on Compressed Sets of
Clauses. In ICTAI, pages 2–10. IEEE Computer Society, 2000.

[33] P. Chatalic and L. Simon. ZRES: The Old Davis-Putman Procedure
Meets ZBDD. In D. A. McAllester, editor, CADE, volume 1831 of
LNCS, pages 449–454. Springer, 2000.

[34] S. A. Cook. The Complexity of Theorem-Proving Procedures. In
STOC, pages 151–158. ACM, 1971.

[35] S. A. Cook and R. A. Reckhow. The Relative Efficiency of Proposi-
tional Proof Systems. J. Symb. Log., 44(1):36–50, 1979.

[36] A. Darwiche and K. Pipatsrisawat. Complete Algorithms. In Biere
et al. [20], pages 99–130.

[37] M. Davis, G. Logemann, and D. Loveland. A Machine Program for
Theorem-proving. Commun. ACM, 5(7):394–397, 1962.

142 BIBLIOGRAPHY

[38] M. Davis and H. Putnam. A Computing Procedure for Quantification
Theory. J. ACM, 7(3):201–215, 1960.

[39] T. Boy de la Tour. An Optimality Result for Clause Form Translation.
J. Symb. Comput., 14(4):283–302, 1992.

[40] N. Dershowitz, Z. Hanna, and A. Nadel. A Clause-Based Heuristic for
SAT Solvers. In Bacchus and Walsh [7], pages 46–60.

[41] N. Eén and A. Biere. Effective Preprocessing in SAT Through Variable
and Clause Elimination. In Bacchus and Walsh [7], pages 61–75.

[42] N. Eén and N. Sörensson. An Extensible SAT-Solver. In Giunchiglia
and Tacchella [63], pages 502–518.

[43] U. Egly. On the Value of Antiprenexing. In F. Pfenning, editor, LPAR,
volume 822 of LNCS, pages 69–83. Springer, 1994.

[44] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing
Different Prenexing Strategies for Quantified Boolean Formulas. In
Giunchiglia and Tacchella [63], pages 214–228.

[45] U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex
Form. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo
Traverso, editors, ECAI, volume 141 of Frontiers in Artificial Intelli-
gence and Applications, pages 477–481. IOS Press, 2006.

[46] U. Egly, M. Seidl, and S. Woltran. A solver for QBFs in negation
normal form. Constraints, 14(1):38–79, 2009.

[47] U. Egly, H. Tompits, and S. Woltran. On Quantifier Shifting for Quan-
tified Boolean Formulas. In In Proceedings of the SAT-02 Workshop
on Theory and Applications of Quantified Boolean Formulas (QBF-02,
pages 48–61, 2002.

[48] R. Feldmann, B. Monien, and S. Schamberger. A Distributed Al-
gorithm to Evaluate Quantified Boolean Formulae. In AAAI/IAAI,
pages 285–290. AAAI Press / The MIT Press, 2000.

[49] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[50] A. Van Gelder. Contributions to the Theory of Practical QBF Solving.
In Pragmatics of SAT (POS) Workshop, 2011.

[51] A. Van Gelder. Variable Independence and Resolution Paths for Quan-
tified Boolean Formulas. In Lee [77], pages 789–803.

BIBLIOGRAPHY 143

[52] I. P. Gent, E. Giunchiglia, M. Narizzano, A. G. D. Rowley, and A. Tac-
chella. Watched Data Structures for QBF Solvers. In Giunchiglia and
Tacchella [63], pages 25–36.

[53] E. Giunchiglia, P. Marin, and M. Narizzano. Reasoning with Quanti-
fied Boolean Formulas. In Biere et al. [20], pages 761–780.

[54] E. Giunchiglia, P. Marin, and M. Narizzano. QuBE7.0. JSAT, 7(2-
3):83–88, 2010.

[55] E. Giunchiglia, P. Marin, and M. Narizzano. sQueezeBF: An Effective
Preprocessor for QBFs Based on Equivalence Reasoning. In Strichman
and Szeider [125], pages 85–98.

[56] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean
Formulas Satisfiability Library (QBFLIB), 2001. http://www.

qbflib.org.

[57] E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A System
for Deciding Quantified Boolean Formulas Satisfiability. In R. Goré,
A. Leitsch, and T. Nipkow, editors, IJCAR, volume 2083 of LNCS,
pages 364–369. Springer, 2001.

[58] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quanti-
fied Boolean Logic Satisfiability. In AAAI/IAAI, pages 649–654, 2002.

[59] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for
Quantified Boolean Logic satisfiability. Artif. Intell., 145(1-2):99–120,
2003.

[60] E. Giunchiglia, M. Narizzano, and A. Tacchella. Monotone Literals
and Learning in QBF Reasoning. In Wallace [128], pages 260–273.

[61] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolu-
tion and Learning in the Evaluation of Quantified Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

[62] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifier Structure
in Search-Based Procedures for QBFs. TCAD, 26(3):497–507, 2007.

[63] E. Giunchiglia and A. Tacchella, editors. Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, vol-
ume 2919 of LNCS. Springer, 2004.

[64] E. I. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-
Solver. In DATE, pages 142–149. IEEE Computer Society, 2002.

http://www.qbflib.org
http://www.qbflib.org

144 BIBLIOGRAPHY

[65] C. P. Gomes, B. Selman, and H. A. Kautz. Boosting Combinatorial
Search Through Randomization. In AAAI/IAAI, pages 431–437, 1998.

[66] A. Goultiaeva and F. Bacchus. Exploiting Circuit Representations in
QBF Solving. In Strichman and Szeider [125], pages 333–339.

[67] A. Goultiaeva and F. Bacchus. Exploiting QBF Duality on a Circuit
Representation. In M. Fox and D. Poole, editors, AAAI. AAAI Press,
2010.

[68] A. Goultiaeva, V. Iverson, and F. Bacchus. Beyond CNF: A Circuit-
Based QBF Solver. In Kullmann [76], pages 412–426.

[69] A. Haken. The Intractability of Resolution. Theor. Comput. Sci.,
39:297–308, 1985.

[70] J. Huang. The Effect of Restarts on the Efficiency of Clause Learning.
In M. M. Veloso, editor, IJCAI, pages 2318–2323, 2007.

[71] M. Järvisalo, A. Biere, and M. Heule. Blocked Clause Elimination. In
J. Esparza and R. Majumdar, editors, TACAS, volume 6015 of LNCS,
pages 129–144. Springer, 2010.

[72] M. Järvisalo, T. A. Junttila, and I. Niemelä. Unrestricted vs. Re-
stricted Cut in a Tableau Method for Boolean Circuits. Ann. Math.
Artif. Intell., 44(4):373–399, 2005.

[73] T. Jussila and A. Biere. Compressing BMC Encodings with QBF.
ENTCS, 174(3):45–56, 2007.

[74] T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. M. Wintersteiger. A
First Step Towards a Unified Proof Checker for QBF. In Marques-Silva
and Sakallah [89], pages 201–214.

[75] T. Jussila, C. Sinz, and A. Biere. Extended Resolution Proofs for Sym-
bolic SAT Solving with Quantification. In Armin Biere and Carla P.
Gomes, editors, SAT, volume 4121 of LNCS, pages 54–60. Springer,
2006.

[76] Oliver Kullmann, editor. Theory and Applications of Satisfiabil-
ity Testing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of
LNCS. Springer, 2009.

[77] J. Ho-Man Lee, editor. Principles and Practice of Constraint Pro-
gramming - CP 2011 - 17th International Conference, CP 2011, Peru-
gia, Italy, September 12-16, 2011. Proceedings, volume 6876 of LNCS.
Springer, 2011.

BIBLIOGRAPHY 145

[78] R. Letz. Lemma and Model Caching in Decision Procedures for Quan-
tified Boolean Formulas. In U. Egly and C. G. Fermüller, editors,
TABLEAUX, volume 2381 of LNCS, pages 160–175. Springer, 2002.

[79] M. D. T. Lewis, P. Marin, T. Schubert, M. Narizzano, B. Becker, and
E. Giunchiglia. PaQuBE: Distributed QBF Solving with Advanced
Knowledge Sharing. In Kullmann [76], pages 509–523.

[80] M. D. T. Lewis, T. Schubert, B. Becker, P. Marin, M. Narizzano,
and E. Giunchiglia. Parallel QBF Solving with Advanced Knowledge
Sharing. Fundam. Inform., 107(2-3):139–166, 2011.

[81] F. Lonsing and A. Biere. Nenofex: Expanding NNF for QBF Solving.
In Büning and Zhao [29], pages 196–210.

[82] F. Lonsing and A. Biere. A Compact Representation for Syntactic
Dependencies in QBFs. In Kullmann [76], pages 398–411.

[83] F. Lonsing and A. Biere. Efficiently Representing Existential Depen-
dency Sets for Expansion-based QBF Solvers. ENTCS, 251:83–95,
2009.

[84] F. Lonsing and A. Biere. DepQBF: A Dependency-Aware QBF Solver.
JSAT, 7(2-3):71–76, 2010.

[85] F. Lonsing and A. Biere. Integrating Dependency Schemes in Search-
Based QBF Solvers. In Strichman and Szeider [125], pages 158–171.

[86] F. Lonsing and A. Biere. Failed Literal Detection for QBF. In Sakallah
and Simon [110], pages 259–272.

[87] P. Manolios and D. Vroon. Efficient Circuit to CNF Conversion. In
Marques-Silva and Sakallah [89], pages 4–9.

[88] P. Marin, C. Miller, M. Lewis, and B. Becker. Verification of Partial
Designs Using Incremental QBF Solving. In DATE. IEEE, 2012.

[89] J. Marques-Silva and K. A. Sakallah, editors. Theory and Applica-
tions of Satisfiability Testing - SAT 2007, 10th International Confer-
ence, Lisbon, Portugal, May 28-31, 2007, Proceedings, volume 4501 of
LNCS. Springer, 2007.

[90] A. R. Meyer and L. J. Stockmeyer. The Equivalence Problem for
Regular Expressions with Squaring Requires Exponential Space. In
SWAT (FOCS), pages 125–129. IEEE Computer Society, 1972.

[91] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combina-
torial Problems. In DAC, pages 272–277, 1993.

146 BIBLIOGRAPHY

[92] M. N. Mneimneh and K. A. Sakallah. Computing Vertex Eccentricity
in Exponentially Large Graphs: QBF Formulation and Solution. In
Giunchiglia and Tacchella [63], pages 411–425.

[93] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver. In DAC, pages 530–535.
ACM, 2001.

[94] M. Narizzano, C. Peschiera, L. Pulina, and A. Tacchella. Evaluating
and Certifying QBFs: A Comparison of State-of-the-Art Tools. AI
Commun., 22(4):191–210, 2009.

[95] A. Niemetz. Extracting and Checking Q-Resolution Proofs from a
State-Of-The-Art QBF Solver. Master’s thesis, Johannes Kepler Uni-
versität, Linz, Austria, 2012 (to appear).

[96] A. Nonnengart and C. Weidenbach. Computing Small Clause Normal
Forms. In J. A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 335–367. Elsevier and MIT Press, 2001.

[97] O. Olivo and E. Allen Emerson. A More Efficient BDD-Based QBF
Solver. In Lee [77], pages 675–690.

[98] R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms.
SIAM J. Comput., 16(6):973–989, 1987.

[99] G. Pan and M. Y. Vardi. Symbolic Decision Procedures for QBF. In
Wallace [128], pages 453–467.

[100] C. Peschiera, L. Pulina, A. Tacchella, U. Bubeck, O. Kullmann, and
I. Lynce. The Seventh QBF Solvers Evaluation (QBFEVAL’10). In
Strichman and Szeider [125], pages 237–250.

[101] F. Pigorsch and C. Scholl. Exploiting Structure in an AIG Based QBF
Solver. In DATE, pages 1596–1601. IEEE, 2009.

[102] F. Pigorsch and C. Scholl. An AIG-Based QBF-solver Using SAT for
Preprocessing. In Sachin S. Sapatnekar, editor, DAC, pages 170–175.
ACM, 2010.

[103] K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching
Scheme for Satisfiability Solvers. In Marques-Silva and Sakallah [89],
pages 294–299.

[104] D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause
Form Translation. J. Symb. Comput., 2(3):293–304, 1986.

BIBLIOGRAPHY 147

[105] M. Preiner. Extracting and Validating Skolem/Herbrand Function-
Based QBF Certificates. Master’s thesis, Johannes Kepler Universität,
Linz, Austria, 2012 (to appear).

[106] QBFLIB. QDIMACS Standard v1.1, 2005. http://www.qbflib.org/
qdimacs.html.

[107] S. Reimer, F. Pigorsch, C. Scholl, and B. Becker. Integration of Or-
thogonal QBF Solving Techniques. In DATE, pages 149–154. IEEE,
2011.

[108] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23–41, 1965.

[109] V. Ryvchin and O. Strichman. Local Restarts. In Büning and Zhao
[29], pages 271–276.

[110] K. A. Sakallah and L. Simon, editors. Theory and Applications of
Satisfiability Testing - SAT 2011 - 14th International Conference, SAT
2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, volume
6695 of LNCS. Springer, 2011.

[111] M. Samer. Variable Dependencies of Quantified CSPs. In I. Cervesato,
H. Veith, and A. Voronkov, editors, LPAR, volume 5330 of LNCS,
pages 512–527. Springer, 2008.

[112] M. Samer and S. Szeider. Backdoor Sets of Quantified Boolean For-
mulas. In Marques-Silva and Sakallah [89], pages 230–243.

[113] M. Samer and S. Szeider. Backdoor Sets of Quantified Boolean For-
mulas. Journal of Automated Reasoning (JAR), 42(1):77–97, 2009.

[114] H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing QBF. In
F. Benhamou, editor, CP, volume 4204 of LNCS, pages 514–529.
Springer, 2006.

[115] C. E. Shannon. The Synthesis of Two Terminal Switching Circuits.
Bell System Technical Journal, 28(1):59–98, 1949.

[116] J. P. Marques Silva. The Impact of Branching Heuristics in Propo-
sitional Satisfiability Algorithms. In P. Barahona and J. J. Alferes,
editors, EPIA, volume 1695 of LNCS, pages 62–74. Springer, 1999.

[117] J. P. Marques Silva, I. Lynce, and S. Malik. Conflict-Driven Clause
Learning SAT Solvers. In Biere et al. [20], pages 131–153.

[118] J. P. Marques Silva and K. A. Sakallah. GRASP: A Search Algorithm
for Propositional Satisfiability. IEEE Trans. Computers, 48(5):506–
521, 1999.

http://www.qbflib.org/qdimacs.html
http://www.qbflib.org/qdimacs.html

148 BIBLIOGRAPHY

[119] C. Sinz and M. Iser. Problem-Sensitive Restart Heuristics for the
DPLL Procedure. In Kullmann [76], pages 356–362.

[120] A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear
Temporal Logics. J. ACM, 32(3):733–749, 1985.

[121] T. Skolem. Logisch-kombinatorische Untersuchungen über die
Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem
Theoreme über dichte Mengen. Translation in: From Frege to Gödel,
van Heijenoort, Harvard Univ. Press, 1971.

[122] N. Sörensson and A. Biere. Minimizing Learned Clauses. In Kullmann
[76], pages 237–243.

[123] L. J. Stockmeyer. The Polynomial-Time Hierarchy. Theor. Comput.
Sci., 3(1):1–22, 1976.

[124] L. J. Stockmeyer and A. R. Meyer. Word Problems Requiring Expo-
nential Time: Preliminary Report. In STOC, pages 1–9. ACM, 1973.

[125] O. Strichman and S. Szeider, editors. Theory and Applications of
Satisfiability Testing - SAT 2010, 13th International Conference, SAT
2010, Edinburgh, UK, July 11 - July 14, 2010. Proceedings, LNCS.
Springer, 2010.

[126] R. E. Tarjan. Efficiency of a Good But Not Linear Set Union Algo-
rithm. J. ACM, 22(2):215–225, 1975.

[127] G. S. Tseitin. On the Complexity of Derivation in Propositional Cal-
culus. Studies in Constructive Mathematics and Mathematical Logic,
1968.

[128] M. Wallace, editor. Principles and Practice of Constraint Program-
ming - CP 2004, 10th International Conference, CP 2004, Toronto,
Canada, September 27 - October 1, 2004, Proceedings, volume 3258 of
LNCS. Springer, 2004.

[129] C. Wrathall. Complete Sets and the Polynomial-Time Hierarchy. The-
oretical Computer Science, 3(1):23 – 33, 1976.

[130] Y. Yu and S. Malik. Validating the Result of a Quantified Boolean
Formula (QBF) Solver: Theory and Practice. In T. Tang, editor,
ASP-DAC, pages 1047–1051. ACM Press, 2005.

[131] L. Zhang. On Subsumption Removal and On-the-Fly CNF Simplifica-
tion. In Bacchus and Walsh [7], pages 482–489.

BIBLIOGRAPHY 149

[132] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
Conflict Driven Learning in Boolean Satisfiability Solver. In ICCAD,
pages 279–285, 2001.

[133] L. Zhang and S. Malik. Conflict Driven Learning in a Quantified
Boolean Satisfiability Solver. In L. T. Pileggi and A. Kuehlmann,
editors, ICCAD, pages 442–449. ACM, 2002.

[134] L. Zhang and S. Malik. Towards a Symmetric Treatment of Satis-
faction and Conflicts in Quantified Boolean Formula Evaluation. In
P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages 200–215.
Springer, 2002.

	Introduction
	Preliminaries
	Syntax
	Propositional Logic
	Conjunctive Normal Form
	Quantified Boolean Formulae
	Prenex Conjunctive Normal Form

	Semantics
	Assignments and Assignment Trees
	Recursive Semantical Evaluation
	Complexity

	Decision Procedures: An Overview
	Backtracking Search
	Variable Elimination

	Dependency Schemes
	Introduction
	Variable Orderings by Prefixes in PCNFs
	The Need for Dependency Analysis

	Methods of Dependency Analysis
	Maximizing Quantifier Scopes: Prenexing
	Minimizing Quantifier Scopes: Anti-Prenexing

	Quantifier Trees are not Optimal
	Dependency Schemes: An Informal View
	The Standard Dependency Scheme vs. Quantifier Trees
	The Benefits of More Powerful Dependency Schemes

	The Theory of Dependency Schemes
	Variable Independence
	Dependency Schemes
	Tractable Dependency Schemes
	Comparing Dependency Schemes
	Dependency Schemes in Practice

	Summary

	The Standard Dependency Scheme
	Introduction
	General Dependency Graphs
	Theoretical Properties
	Towards Efficient Computation
	A Tree-Shaped Representation of Connections
	Dependency Computation Using Connection Forests

	Compact Dependency Graphs
	Approximations
	Computing Approximations
	Graph Example

	Experimental Results
	Summary

	QDPLL and Dependency Schemes
	Introduction
	QDPLL with Constraint Learning
	Basics
	Generation of Assignments
	Constraint Learning
	Q-Resolution Proofs

	QBCP
	Constraint Reduction
	Unit Literal Detection
	Pure Literal Detection
	Putting It All Together

	Decision Making
	Maintaining Decision Candidates

	Dependency Checking
	Constraint Learning
	Generation of Learnt Constraints
	Optimizations

	Experimental Results
	QDPLL with Different Dependency Schemes
	General Performance Analysis

	Summary

	Summary and Outlook
	
	Cube Learning
	Pivot Selection for Cubes

	Brief Biography

