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Abstract. We introduce a new kind of tree automaton, a dependency
tree automaton, that is suitable for deciding properties of classes of terms
with binding. Two kinds of such automaton are defined, nondeterministic
and alternating. We show that the nondeterministic automata have a
decidable nonemptiness problem and leave as an open question whether
this is true for the alternating version. The families of trees that both
kinds recognise are closed under intersection and union. To illustrate the
utility of the automata, we apply them to terms of simply typed lambda
calculus and provide an automata-theoretic characterisation of solutions
to the higher-order matching problem.
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1 Introduction

A standard method for solving problems over families of terms is to show that
the solutions are tree recognisable: that is, that there is a tree automaton that
accepts a term if, and only if, it is a solution to the problem [4]. In such a case,
terms are built out of a finite family of (graded) symbols, that is symbols with
an arity, which are naturally represented as trees. A tree automaton involves a
finite set of states and a finite set of transitions. It traverses a term bottom-up or
top-down labelling it with states according to the transitions and if it succeeds
then the term is accepted.

Many logical and computational notations employ binders such as ∃x, μX , λx,
a(x) from first-order logic, fixed-point logic, lambda calculus, π-calculus, and so
on. Although each term of such a notation can be represented as a finite tree, to
represent families of such terms may require an infinite alphabet: as illustrated
by the following formulas ∀z.∃f1 . . . ∃fn.fn(fn−1(. . . (f1(z)) . . .)) for all n ≥ 0.
Although there is research in extending standard automata to infinite alphabets,
see the survey [9], it does not cover the specific case caused by binding.

We introduce a new type of tree automaton, a dependency tree automaton,
for recognising terms with binding. To maintain a finite alphabet, terms are rep-
resented as finite trees which also have an extra binary relation ↓ between their
nodes that represents binding: an idea partly inspired by nested automata which
also employ a binary relation ↓ between nodes representing nesting such as calls
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and returns [1,2]. Two kinds of dependency tree automaton are defined, nonde-
terministic and alternating. We show that the nonemptiness problem, whether
a given automaton accepts at least one tree, is decidable for nondeterministic
automata. However, we are unable to show this for the alternating automata
and we are also unable to determine whether they are more expressive than
nondeterministic automata. The families of trees that both kinds of automata
recognise are closed under intersection and union. To illustrate the utility of
the automata, we apply them to terms of simply typed lambda calculus and
use alternating automata to provide an automata-theoretic characterisation of
solutions to the higher-order matching problem.

In Section 2 we define binding trees and the two kinds of dependency tree
automaton and show decidability of nonemptiness for the nondeterministic case.
We also illustrate how the nondeterministic automata can be used to recognise
normal form terms of simply typed lambda calculus of a fixed type. In Section 3,
we apply the alternating dependency tree automata to higher-order matching.
The proof of characterisation is presented in Section 4.

2 Dependency Tree Automata

In this section we introduce binding trees and dependency tree automata that
operate on them.

Definition 1. Assume Σ is a finite graded alphabet where each element s ∈ Σ
has an arity ar(s) ≥ 0. Moreover, Σ consists of three disjoint sets Σ1 that are
the binders which have arity 1, Σ2 are (the bound) variables and Σ3 are the
remaining symbols. A binding Σ-tree is a finite tree where each node is labelled
with an element of Σ together with a binary relation ↓ (representing binding).
If node n in the tree is labelled with s and ar(s) = k then n has precisely k
successors in the tree, the nodes n1, . . . , nk. Also, if a node n is labelled with a
variable in Σ2 then there is a unique node b labelled with a binder occurring above
n in the tree such that b ↓ n. For ease of exposition we also assume the following
restrictions on Σ-trees: if node n is labelled with a binder then n1 is labelled with
an element of Σ2∪Σ3 and if n is labelled with an element of Σ2∪Σ3 and ni is a
successor then it is labelled with a binder. Let TΣ be the set of binding Σ-trees.

Definition 2. A dependency Σ-tree automaton A = (Q, Σ, q0, Δ) where Q is a
finite set of states, Σ is the finite alphabet, q0 ∈ Q is the initial state and Δ is a
finite set of transition rules each of which has one of the following three forms.

1. qs ⇒ (q1, . . . , qk) where s ∈ Σ2 ∪ Σ3, ar(s) = k, q, q1, . . . , qk ∈ Q
2. qs ⇒ q′s′ where s ∈ Σ1, s′ ∈ Σ3 and q, q′ ∈ Q
3. (q′, q)s ⇒ q1x where s ∈ Σ1, x ∈ Σ2 and q′, q, q1 ∈ Q

Definition 3. A run of A = (Q, Σ, q0, Δ) on t ∈ TΣ is a (Σ × Q)-tree whose
nodes are pairs (n, q) where n is a node of t and q ∈ Q labelled (s, q) if n is
labelled s in t which is defined top-down with root (ε, q0) where ε is the root of
t. Consider a node (n, q) labelled (s, q) of a partial run tree which does not have
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successors. If s ∈ Σ2 ∪ Σ3 and qs ⇒ (q1, . . . , qk) ∈ Δ then the successors of
(n, q) are the nodes (ni, qi), 1 ≤ i ≤ k. If s ∈ Σ1, n1 is labelled s′ ∈ Σ3 and
qs ⇒ q′s′ ∈ Δ then (n1, q′) is the successor of (n, q). If s ∈ Σ1, n1 is labelled
x ∈ Σ2, m ↓ n1 in t, (m, q′) occurs above or at (n, q) and (q′, q)s ⇒ q1x ∈ Δ
then (n1, q1) is the successor of (n, q). A accepts the Σ-tree t iff there is a run
of A on t such that if (n, q) is a leaf then n is a leaf of t. Let TΣ(A) be the set
of Σ-trees accepted by A.

A dependency tree automaton A has a finite set of states Q and transitions Δ
(which can be nondeterministic). A run of A on a Σ-tree t adds an additional Q
labelling to (a subtree of) t: so it is a (Σ ×Q)-tree. It starts with (ε, q0) where ε
is the root of t and q0 is the initial state of A. Subsequent nodes are derived by
percolating states down t. The state at a node that is labelled with a variable
not only depends on the state of its immediate predecessor but also on the state
of the node that labels its binder. This introduces non-local dependence in the
automaton (hence the name). A run on t is accepting if it is complete in the
sense that each node of t is labelled with an element of Q: if (n, q) is a leaf of
the run tree then n is a leaf of t.

Dependency tree automata were partly inspired by nested word and tree au-
tomata [1,2] which are also an amalgam of a traditional automaton and a binary
relation ↓ on nodes of the (possibly infinite) word or tree. However, in that set-
ting ↓ represents nesting such as provided by bracketing and useful for modelling
procedure calls and returns. Nesting involves natural restrictions on the relation
↓ such as “no-crossings”: if m1 ↓ m2 and n1 ↓ n2 and m1 is above n1 then either
m2 is above n1 or n2 is above m2. Such restrictions are not appropriate when
modelling binding, for instance as with a formula ∀f.∃x.φ(f(x)).

A fundamental exemplar of binding is terms of the simply typed lambda
calculus. Simple types are generated from a single base type 0 using the binary
→ operator1: A → B is the type of functions from A to B. Assuming → associates
to the right, if type A �= 0 then it has the form A1 → . . . → An → 0, written
(A1, . . . , An,0) here. The order of 0 is 1 and the order of (A1, . . . , An,0) is k+1
where k is the maximum of the orders of the Ais.

Terms of the simply typed λ-calculus (in Church style) are built from a count-
able set of typed variables x, y, . . . and constants a, f, . . . (each variable and
constant has a unique type).

Definition 4. The smallest set T of simply typed terms is:

1. if x (f) has type A then x : A ∈ T (f : A ∈ T ),
2. if t : B ∈ T and x : A ∈ T then λx.t : A → B ∈ T ,
3. if t : A → B ∈ T and u : A ∈ T then (tu) : B ∈ T .

The order of a typed term is the order of its type. In a sequence of unparenthe-
sized applications, we adopt the usual convention that application associates to
the left, so tu1 . . . uk is ((. . . (tu1) . . .)uk). The usual definitions of free and bound
1 For simplicity, we assume just one base type: everything that is to follow can be

extended to the case of arbitrary many base types.
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variable occurrences and when a typed term is closed are assumed. Moreover, we
assume the standard definitions and properties of α-equivalence, β-reduction, η-
reduction and βη-equivalence, =βη, such as strong normalization of β-reduction:
see, for instance, Barendregt [3].

Fact 1. Every simply typed λ-calculus term is βη-equivalent to a unique term
(up to α-equivalence) in η-long form as follows,

1. if t : 0 then it is u : 0 where u is a constant or a variable, or u t1 . . . tk where
u : (B1, . . . , Bk,0) is a constant or a variable and each ti : Bi is in η-long
form,

2. if t : (A1, . . . , An,0) then t is λy1 . . . yn.t′ where each yi : Ai and t′ : 0 is in
η-long form.

Throughout, we write λz1 . . . zm for λz1 . . . λzm. A term is in normal form if it
is in η-long form.

Definition 5. For any type A and set of constants C, TA(C) is the set of closed
terms in normal form of type A whose constants belong to C.

Example 1. The monster type M = ((((0,0),0),0),0,0) has order 5. Assume
x1 : (((0,0),0),0), x2 : 0 and zi : (0,0) for i ≥ 1. The following family of terms
in normal form λx1x2.x1(λz1.x1(λz2 . . . x1(λzn.zn(zn−1(. . . z1(x2)) . . .)) . . .)) for
n ≥ 0 belong to TM (∅). Even to write down this subset of terms up to α-
equivalence requires an alphabet of unbounded size. More technically, M is
known not to be finitely generable [6]. However, there is a straightforward rep-
resentation of this family of terms as binding Σ-trees (when dummy λs are
added to fulfil the restrictions in Definition 1). Nodes are labelled with binders
λx1x2, λz, λ, or with variables x1, z of arity 1 and x2 of arity 0: in linear form
λx1x2.x1(λz.x1(λz . . . x1(λz.z(λ.z(. . . λ.z(λ.x2)) . . .)) . . .)) where there is an edge
↓ from the node labelled λx1x2 to each node labelled x1 or x2, and an edge ↓
from the first node labelled λz to the last node labelled z, and so on. There are
no edges ↓ from nodes labelled with the empty binder λ. Given such a represen-
tation of normal form terms in TM (∅), dependency tree automata can be defined
that recognize subsets: there is a simple deterministic two state automaton that
recognizes the subset which have an even number of occurrences of x1. �
Fact 2. For any type A and finite C, there is a finite Σ such that every t∈TA(C)
up to α-equivalence is representable as a binding Σ-tree (with dummy λs).

The nonemptiness problem for classical (bottom-up or top-down) nondetermin-
istic tree automata, whether a given automaton accepts at least one tree, is
decidable in linear time. Also, the set of families of trees that are recognizable
is regular (which implies closure under complement and intersection) [4].

Theorem 1. Assume A, A1 and A2 are dependency Σ-tree automata.

1. The nonemptiness problem, given A is TΣ(A) �= ∅?, is decidable.
2. Given A1 and A2, there is an A such that TΣ(A) = TΣ(A1) ∩ TΣ(A2).
3. Given A1 and A2, there is an A such that TΣ(A) = TΣ(A1) ∪ TΣ(A2).
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Proof. Assume A = (Q, Σ, q0, Δ) is a Σ-tree automaton and Σ = Σ1 ∪ Σ2 ∪ Σ3

where Σ1 are the binders, Σ2 the variables and Σ3 the other symbols. Let ‖ t ‖
be the height of the Σ-tree t and |S| be the size of the finite set S. We show that
if TΣ(A) �= ∅ then A accepts a Σ-tree t such that ‖ t ‖≤ (|Σ1||Q|+1)(|Σ||Q|+1).
If A accepts t and ‖ t ‖> l(|Σ||Q|+ 1) then in the accepting run of A on t there
are l nodes of t, n1, . . . , nl with the same label in Σ and labelled with the same
state q ∈ Q such that each ni occurs above nj when i < j. Let B(i, j), where
1 ≤ i < j ≤ l, be the set of pairs binders a ∈ Σ1 and states q′ ∈ Q such
that there is a node n′ between ni and nj (excluding nj) labelled with a and
q′ in the successful run of A on t such that there is an edge n′ ↓ n′′ where n′′

is nj or occurs below it in t. Also, let U(i) be the set of pairs binders a ∈ Σ1

and states q ∈ Q such that there is a node n′ above ni in t labelled with a
and q in the successful run of A on t. Clearly, if B(i, j) ⊆ U(i) then there is
a smaller Σ-tree t′ which is accepted by A: the subtree at node ni is replaced
with the subtree at nj and any edge n′ ↓ n′′ where n′′ is nj or below it and n′

is between ni and nj (excluding nj) is replaced with an edge n ↓ n′′ where n
is the node above ni labelled with the same binder and state as n′. Clearly, if
A accepts t then it accepts t′. By simple counting, there must be an i, j with
1 ≤ i < j ≤ (|Σ1||Q| + 1) such that B(i, j) ⊆ U(i). Therefore, nonemptiness
is decidable. The other parts of the theorem follow from the usual product and
disjoint union of automata (which here includes the binding relations). �
We do not know if the families of trees recognized by these automata are closed
under complement.

Definition 6. An alternating dependency Σ-tree automaton A = (Q, Σ, q0, Δ)
is as in Definition 2 except for the first clause for transitions which now is

1. qs ⇒ (Q1, . . . , Qk) where s ∈ Σ2∪Σ3, ar(s) = k, q ∈ Q and Q1, . . . , Qk ⊆ Q.

Definition 7. A run of alternating dependency Σ-automaton A = (Q, Σ, q0, Δ)
on t ∈ TΣ is a (Σ × Q)-tree whose nodes are pairs (n, α) where n is a node
of t and α ∈ Q∗ is a sequence of states, labelled (s, q) if n is labelled s in t
and α = α′q which is defined top-down with root (ε, q0) where ε is the root of t.
Consider a node (n, α) labelled (s, q) of a partial run tree which does not have suc-
cessors. If s ∈ Σ2 ∪Σ3 and qs ⇒ (Q1, . . . , Qk) ∈ Δ then the successors of (n, α)
are {(ni, αq′) | 1 ≤ i ≤ k and q′ ∈ Qi}. If s ∈ Σ1, n1 is labelled s′ ∈ Σ3 and
qs ⇒ q′s′ ∈ Δ then (n1, αq′) is the successor of (n, α). If s ∈ Σ1, n1 is labelled
x ∈ Σ2, m ↓ n1 in t, (m, α′q′) occurs above or at (n, α) and (q′, q)s ⇒ q1x ∈ Δ
then (n1, αq1) is the successor of (n, α). A accepts the Σ-tree t iff there is a run
of A on t such that if (n, αq) is a leaf labelled (s, q) of the run tree then either s
has arity 0 or qs ⇒ (∅, . . . , ∅) ∈ Δ. Let TΣ(A) be the set of Σ-trees accepted by A.

A run of an alternating automaton on a Σ-tree t is itself a tree built out of the
nodes of t and sequences of states Q+. There can be multiple copies of nodes of t
within a run because a transition applied to a node n qs ⇒ (Q1, . . . , Qk) spawns
individual copies at ni for each state in Qi. These automata are alternating as
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the Qis can be viewed as conjuncts
∧

q∈Qi
q and nondeterminism provides the

disjuncts.
Classically, nondeterministic and alternating tree automata accept the same

families of trees and the nonemptiness problem for alternating automata is de-
cidable in exponential time [4]. We do not know whether nondeterministic de-
pendency tree automata are as expressive as the alternating automata. Also, it
is an open question whether the nonemptiness problem for alternating depen-
dency tree automata is decidable. However, the families of trees recognized by
the alternating automata are closed under intersection and union using a similar
argument to Theorem 1.

Despite these open expressiveness and algorithmic questions, we shall show
that alternating dependency tree automata do have an interesting application.

3 Application of Dependency Automata

We apply alternating dependency tree automata to higher-order matching.

Definition 8. A matching problem in simply typed lambda calculus is an equa-
tion v = u where v, u : 0 are in normal form and u is closed. The order of the
problem is the maximum of the orders of the free variables x1, . . . , xn in v. A
solution is a sequence of terms t1, . . . , tn such that v{t1/x1, . . . , tn/xn} =β η u
where v{t1/x1, . . . , tn/xn} is the simultaneous substitution of ti for each free
occurrence of xi in v for i : 1 ≤ i ≤ n.

Given a matching problem v = u, one question is whether it has a solution:
can v be pattern matched to u? The motivation here is a different question: is
there an automata-theoretic characterization of the set of solutions of a matching
problem? Comon and Jurski define (almost classical) bottom-up tree automata
that characterize all solutions to a 4th-order problem [5]: the slight elaboration
is the use of �A symbols standing for arbitrary typed subterms of type A. The
authors describe two problems with extending their automata beyond the 4th-
order case. The first is how to guarantee only finitely many states. States of their
automata are constructed out of observational equivalence classes of terms due
to Padovani [8]. Up to a 4th-order problem, one only needs to consider finitely
many terms. With 5th and higher orders, this is no longer true and one needs to
quotient the potentially infinite terms into their respective observational equiv-
alence classes in order to define only finitely many states: however as Padovani
shows this procedure is, in fact, equivalent to the matching problem itself [8]. The
second problem is how to guarantee that the alphabet has finite size. As we saw
with the monster type in Example 1, fifth-order terms may (essentially) contain
infinitely many different variables. In [14], we overcame the first problem but
not the second: relative to a fixed finite alphabet, the set of solutions over that
alphabet to a matching problem is tree automata recognizable. The proof relies
on a similar technology to that used here (a game-theoretic characterisation of
matching). We now overcome the second problem using alternating dependency
tree automata.
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Definition 9. Assume u : 0 and w : A are closed terms in normal form and
x : (A,0). An interpolation problem P has the form xw = u. The type of problem
P is that of x and the order of P is the order of x. A solution of P of type B is
a closed term t : B in normal form such that tw =β u. We write t |= P if t is a
solution of P .

Because terms are in η-long form, β-equality and β η-equality coincide (for in-
stance, see [15] for a recent account).

Conceptually, interpolation is simpler than matching because there is a single
variable x that appears at the head of the equation. If v = u is a matching
problem with free variables x1 : A1, . . . , xn : An where v and u are in normal
form, then its associated interpolation problem is x(λx1 . . . xn.v) = u where
x : ((A1, . . . , An,0),0). This appears to raise order by 2 as with the reduc-
tion of matching to pairs of interpolation equations in [10]. However, we only
need to consider potential solution terms (in normal form with the right type)
λz.zt1 . . . tn where each ti : Ai is closed and so cannot contain z: we say that
such terms are canonical.

Proposition 3. A matching problem has a solution iff its associated interpola-
tion problem has a canonical solution.

Proof. Assume v = u is a matching problem with x1 : A1, . . . , xn : An as free
variables and where v and u are in normal form. If it has a solution t1, . . . , tn
where each ti is in normal form, then v{t1/x1, . . . , tn/xn} =β u. Clearly, it
therefore follows that λz.zt1 . . . tn(λx1 . . . xn.v) =β v{t1/x1, . . . , tn/xn} =β u.
Conversely, if λz.zt1 . . . tn is a canonical solution to its associated interpolation
problem x(λx1 . . . xn.v) = u then t1, . . . , tn solves the problem v = u. �
In the literature there are slight variant definitions of matching. Statman de-
scribes the problem as a range problem [11]: given v : (A1, . . . , An, B) and
u : B where both u and v are closed, are there terms t1 : A1, . . . , tn : An

such that vt1 . . . tn =β η u? If B = (A1, . . . , Am,0) is of higher type then u in
normal form is λx′

1 . . . x′
m.w. Therefore, we can consider the matching problem

(vx1 . . . xn)c1 . . . cm = w{c1/x′
1, . . . , cm/x′

m} where the ci’s are new constants
that cannot occur in a solution term. In [8] a matching problem is a family of
equations v1 = u1, . . . , vm = um to be solved uniformly: they reduce to a single
equation fv1 . . . vm = fu1 . . . um where f is a constant of the appropriate type.

Example 2. The matching problem x1(λz.x1(λz′.za)) = a from [5] is 4th-order
where z, z′ : (0,0) and x1 : (((0,0),0),0). Its associated interpolation problem
is x(λx1.x1(λz.x1(λz′.za))) = a with x : (((((0,0),0),0),0),0). A canonical
solution has the form λx.x(λy.y(λy1

1 . . . y(λyk
1 .s) . . .)) where s is the constant a

or one of the variables yj
1, 1 ≤ j ≤ k. �

Definition 10. If P is xw = u then CP is the set of constants that occur in u
together with one fresh constant b : 0.

Fact 4. Let C be any set of constants and let P be an interpolation problem of
type B. If t |= P and t ∈ TB(C) then there is a t′ ∈ TB(Cp) such that t′ |= P .
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Fig. 1. An interpolation tree

Given a potential solution term t in normal form to the interpolation problem P ,
xw = u, there is the tree in Figure 1. If x : (A,0) then the explicit application
operator @ : ((A,0), A,0) has its expected meaning: @tw = tw. Our goal is
to define an alternating dependency tree automaton that accepts the tree in
Figure 1 when t is a solution of P . By Fact 4 we can assume that any such
solution term t only contains constants in the finite set CP . Moreover, we assume
the following representation of binders and variables. A binder λy is such that
either y is empty and therefore is a dummy λ and can not bind a variable
occurrence or y = y1 . . . yk and λy can only then bind variable occurrences of
the form yi, 1 ≤ i ≤ k. Consequently, in the binding tree representation if n ↓ m
and n is labelled λy1 . . . yk then m is labelled yi for some i.

In general the right term u of an interpolation problem may contain bound
variables: for instance, x(λz.z) = f(λx1x2x3.x1x3)a has order 3 where x has type
((0,0),0) and f : (((0,0),0,0,0),0,0) assuming x2 : 0. For ease of exposition,
as it simplifies the presentation considerably, we restrict ourselves to the case
where there are no such variables: this is discussed further in Section 5.

Definition 11. Assume u : 0 is closed and does not contain bound variables.
The set of subterms of u, Sub(u), is defined inductively: if u = a : 0 then Sub(u)
= {u} and if u = fu1 . . . uk then Sub(u) =

⋃
1≤i≤kSub(ui) ∪ {u}.

Given P , we assume a simple finite alphabet Σ (containing CP , the constants
in w, @ and suitable λys and variable occurrences).

Example 3. In the case of Example 2, there is the finite syntax where Σ1 =
{λx, λy, λy′, λx1, λz, λz′, λ}, Σ2 = {x, y, y′, x1, z, z′} and Σ3 = {a, b, @}. �

The states of our dependency tree automaton are based on Ong [7] (which is a dif-
ferent setting, with a fixed infinite λ-term built out of a fixed finite alphabet and
an alternating parity automaton). To give intuition, consider a game-theoretic
understanding (such as with game-semantics) of Figure 1 where t = λz.zt1 . . . tn
and w = λx.w′ as pictured in Figure 2. In the game, play jumps around the in-
terpolation tree. It starts at @ and proceeds down from λz to z and then jumps
to λx of w (as it labels the subterm that would replace z in a β-reduction). It
then proceeds down w and eventually may reach xj , in which case it jumps to
the jth successor of z in t labelled with λy and then play proceeds in t and may
eventually reach yk and so jump to the kth successor of xj in w and so on. The
question is how to capture jumping within a tree automaton. This we do using
variable assumptions as in [14]: Ong calls them “variable profiles” in his setting.
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Fig. 2. Game-theoretic view

Definition 12. Assume Σ is the alphabet for P , xw = u, and R = Sub(u).
Relative to R, for each variable z ∈ Σ2 the set of z assumptions, Γ (z) is defined
inductively: if z : 0 then Γ (z) = {(z, r, ∅) | r ∈ R}; if z : (A1, . . . , Ak,0) then
Γ (z) = {(z, r, Γ ) | r ∈ R, Γ ⊆ ⋃

1≤i≤k

⋃
x:Ai∈Σ2

Γ (x)}. A mode is a pair (r, Γ )
where r ∈ R and Γ ⊆ ⋃

z∈Σ2
Γ (z).

A variable assumption is an abstraction from a sequence of moves in a game. For
instance (z, u, {(xj, r1, {(yk, r2, {(wm, r3, ∅)})})}) abstracts from the play pic-
tured in Figure 2: the subterms ri of u represent what is left of u that still needs
to be achieved in order for tw =β u.

A mode is a pair (r, Γ ) where r ∈ R and Γ is a set of variable assumptions.
Because R is finite and Σ is fixed, there can only be boundedly many different
modes (r, Γ ): modes are the states of our automaton.

Definition 13. Assume P is xw = u, Σ is its alphabet and R = Sub(u). The
dependency tree automaton is AP = (Q, Σ, q0, Δ) where Q is the set of modes
(ri, Γi), q0 = (u, ∅) and the transition relation Δ is defined on nodes of the
binding Σ-tree by cases on Σ.

1. (u, ∅)@ ⇒ ({(u, Γ )}, {(u, Γ1)}) if Γ = {(z, u, Γ1)}
2. ((r, Γ ), (r′, Γ ′))λy ⇒ (r′, Σ)xi if (xi, r

′, Σ) ∈ Γ
3. (fr1 . . . rk, Γ )λy ⇒ (fr1 . . . rk, ∅)f
4. (a, ∅)λy ⇒ (a, ∅)
5. (r, Γ )xj ⇒ (Q1, . . . , Qk) if Qi = {(r′, Γ ′) | (yi, r

′, Γ ′) ∈ Γ} for each i : 1 ≤
i ≤ k and ar(xj) = k > 0

6. (fr1 . . . rk, ∅)f ⇒ ({(r1, ∅)}, . . . , {(rk, ∅)})
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The root of the interpolation tree labelled @ has two successors t of the form
λz.zt1 . . . tn and w. The automaton starts with state (u, ∅) at @ and then a single
z variable assumption (z, u, Γ1) is chosen. The state at node labelled λz is then
(u, {(z, u, Γ1)}) and (u, Γ1) at the other successor of @. Assume the current state
is (r′, Γ ′) at node n of the interpolation tree labelled λy. If n1 is labelled with
variable xi and m ↓ n1 then m is labelled λx1 . . . xk for some k and the state
above (r′, Γ ′) at m has the form (r, Γ ) where Γ is a set of assumptions for each
xj , 1 ≤ j ≤ k. One of the xi assumptions, (xi, r

′, Σ) where the right term r′ is as
in the state at n is chosen and state (r′, Σ′) labels n1. If n1 is labelled f then for
the automaton to proceed from node n to n1, r′ must have the form fr1 . . . rk.
In which case n1 is labelled with state (r′, ∅). Similarly, if n1 is labelled with the
constant a : 0 then r′ must be a and Γ ′ = ∅. If the state is (r, Γ ) at node n of the
interpolation tree and n is labelled xj with arity k > 0 then Γ consists of sets
of yi assumptions, 1 ≤ i ≤ k for some y (reflecting when play would return to
successors of n: for instance, in Figure 2 play jumps from xj to λy and returns
to xjs kth successor if it reaches yk and there can be multiple occurrences of
yk meaning that there could be further returns jumps). For each yi assumption
(yi, r

′, Γ ′) the automaton spawns a copy at ni with state (r′, Γ ′). Finally, if the
state is (fr1 . . . rk, ∅) at node n of the interpolation tree labelled with f then the
automaton proceeds down each successor ni with state (ri, ∅).
Theorem 2. Assume P is xw = u, Σ is the alphabet and AP is the dependency
Σ-tree automaton in Definition 13. For any canonical Σ-term t, AP accepts the
tree @tw iff t |= P .

4 Proof of Theorem 2

The proof of Theorem 2 employs a game-theoretic interpretation of an interpo-
lation tree as illustrated in Figure 2 and developed in [14]. (It avoids questions,
answers and justification pointers of game-semantics [7] and uses iteratively de-
fined look-up tables.)

Assume P is the problem xw = u, Σ is the alphabet, R = Sub(u) and t is a
potential solution term. We define the game G(t, P ) played by one participant,
player ∀, the refuter who attempts to show that t is not a solution of P . The
game is played on the Σ-binding tree @tw of Figure 1.

Definition 14. N is the set of nodes of the binding tree @ tw labelled with ele-
ments of Σ = Σ1∪Σ2∪Σ3 and S is the set {[ x ] |x ∈ R∪{∀, ∃}} of game-states.
[ ∀ ] and [ ∃ ] are the final game-states. Let N1 be the subset of nodes N whose
labels belong to Σ1 (the binders). For each i ≥ 1, the set of look-up tables Θi is
iteratively defined: Θ1 = {θ1} where θ1 = ∅ and Θi+1 is the set of partial maps
from N1 → (

⋃
s∈Σ1

Nar(s) × ⋃
j≤i Θj).

Definition 15. A play of G(t, P ) is a finite sequence n1q1θ1, . . . , nlqlθl of posi-
tions where each ni ∈ N , each qi ∈ S and ql is final and each θi ∈ Θi is a look-up
table. For the initial position n1 is the root of the interpolation tree labelled @,
q1 = [ u ] where u is the right term of P and θ1 is the empty look-up table. Player
∀ loses the play if the final state is [ ∃ ], otherwise she wins the play.
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The game G(t, P ) appeals to a finite set of states S comprising goal states [ r ],
r ∈ R, and final states, [ ∀ ], winning for the refuter, and [∃ ], losing for the
refuter. The central feature of a play of G(t, P ), as depicted in Figure 2, is that
repeatedly control may jump from a node of t to a node of w and back again.
Therefore, as play proceeds, one needs an account of the meaning of free variables
in subtrees. A free variable in a subtree of t (a subtree of w) is associated with
a subtree of w (a subtree of t). This is the role of the look-up table θk ∈ Θk

at position k ≥ 1. If n is labelled λy1 . . . ym and θk(n) is defined then it is of
the form ((n1, . . . , nm), θj) which tells us that any node m labelled yi such that
n ↓ m is associated with the subtree rooted at node ni: that subtree may itself
contain free variables, hence, the presence of a previous look-up table θj .

Current position is n[r]θ. Next position by cases on label at node n:

1. @ then n1[r]θ′ where θ′ = θ{((n2), θ)/n1}
2. λy then n1[r]θ
3. a : 0 if r = a then n[ ∃ ]θ else n[∀ ]θ
4. f : (B1, . . . , Bk,0) if r = fr1 . . . rk then ∀ chooses j ∈ {1, . . . , k} and nj [rj ]θ else

n[∀ ]θ
5. yj : 0 if m ↓ n and θ(m) = ((m1, . . . , ml), θ

′) then mj [r]θ′

6. yj : (B1, . . . , Bk,0) if m ↓ n and θ(m) = ((m1, . . . , ml), θ
′) then mj [r]θ′′ where

θ′′ = θ′{((n1, . . . , nk), θ)/mj}

Fig. 3. Game moves

Definition 16. If the current position in G(t, P ) is n[r]θ and [r] is not final
then the next position is determined by a unique move in Figure 3 according to
the label at node n.

At the initial node labelled @, play proceeds to its first successor labelled λz
and the look-up table is updated as its other successor is associated with λz.
Later, if play reaches a node labelled z (bound by initial successor of root) then
it jumps to the second successor of the root node. Standard updating notation
is assumed: γ{((m1, . . . , mk), γ′)/n} is the partial function similar to γ except
that γ(n) = ((m1, . . . , mk), γ′) where n will be labelled λy1 . . . yk for some y.
If play is at a node labelled λy, where y can be empty, then it descends to its
successor. At a node labelled with the constant a : 0, the refuter loses if the goal
state is [ a ] and wins otherwise. At a node labelled with a constant f with arity
more than 0, ∀ immediately wins if the goal state is not of the form [ fr1 . . . rk ].
Otherwise ∀ chooses a successor j and play moves to its jth successor. If play
is at node n labelled with variable yj : 0 and θ(m) = ((m1, . . . , ml), θ′) when
m ↓ n then play jumps to mj and θ′ becomes the look-up table. If n is labelled
yj : (B1, . . . , Bk,0) and θ(m) = ((m1, . . . , ml), θ′) when m ↓ n then play jumps
to mj which is labelled λx1 . . . xk for some x and the look-up table is θ′ together
with the association of ((n1, . . . , nk), θ) to mj .

Definition 17. Player ∀ loses the game G(t, P ) if she loses every play of it and
otherwise she wins the game.
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Lemma 1. Player ∀ loses G(t, P ) iff t |= P .

Proof. Given P : A, xw = u and t : A either t |= P or t �|= P . Because the
simply typed λ-calculus is strongly normalizing, it follows that there is an m
such that tw reduces to normal form using at most m β-reductions (whatever
the reduction strategy). For any position n[r]θ of a play of G(t, P ) we say that
it m-holds (m-fails) if r = ∃ (r = ∀) and when not final, by cases on the label
at n(where look-up tables become delayed substitutions and we elide between
nodes, subtrees and terms)

– @ then n1n2 =β r (n1n2 �=β r) and n1n2 normalizes with m β-reductions
– λ then n1θ =β r (n1θ �=β r) and n1θ normalizes with m β-reductions
– λy1 . . . yk then n1θ =β r (n1θ �=β r) and n1θ normalizes with (m − k) β-

reductions
– f then nθ =β r (nθ �=β r) and nθ normalizes with m β-reductions
– yj : 0 if n′ ↓ n and θ(n′) = ((n1, . . . , nl), θ′) then njθ

′ =β r (njθ
′ �=β r) and

njθ
′ normalizes with m β-reductions

– yj : (B1, . . . , Bk,0) if n′ ↓ n and θ(n′) = ((n1, . . . , nl), θ′) then t′ =β r
(t′ �=β r) where t′ = (njθ

′)n1θ . . . nkθ and t′ normalizes with m β-reductions

Initially, play is at n labelled @ with state [u] and the empty look-up table:
therefore, as either tm =β u or tm �=β u it follows that for some m, either n[u]θ1

m-holds or m-fails. The following invariants are easy to show by case analysis.

1. If n[r]θ m-holds (m-fails), n labels λy1 . . . yk and n′[r′]θ′ is the next position
then it (m − k)-holds ((m − k)-fails)

2. If n[r]θ m-holds (m-fails), n labels λ and n′[r′]θ′ is the next position then it
m-holds (m-fails)

3. If n[r]θ m-holds and n labels f and n′[r′]θ′ is any next position then it
m′-holds for m′ ≤ m

4. If n[r]θ m-fails and n labels f then some next position n′[r′]θ′ m′-fails for
some m′ ≤ m

5. If n[r]θ m-holds (m-fails) and n labels yj and n′[r′]θ′ is the next next position
then it m-holds (m-fails)

From these invariants it follows first that if a non-final position m-holds then any
next position m′-holds for some m′ ≤ m and second if a non-final position n[r]θ
m-fails then there is a next position that m′-fails for some m′ ≤ m. Moreover,
there cannot be an infinite sequence of positions (as the index m strictly decreases
with a move at a node labelled λy1 . . . yk, k > 0, and must be 0 at a node labelled
with a constant a : 0). Therefore, the result follows. �
In the following we let p ∈ G(t, P ) abbreviate that p is a position in some play of
G(t, P ). If such a position p is at a node labelled with a variable then we identify
the earlier position at the node labelled with its binder when the value of that
binder in the look-up table at p is defined.

Definition 18. Assume p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P ) and
nj is labelled with a variable. Position pi is a parent of pj iff ni ↓ nj and
θi(ni) = θj(ni).
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Fact 5. If p ∈ G(t, P ) is at a node labelled with a variable then there is a unique
q ∈ G(t, P ) that is the parent of p.

We now extend the notion of a successor in a tree to positions in a play.

Definition 19. Assume p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P ), node
nm is a successor of nk (so, for some j, nm = nkj) and 1 ≤ k < m < l. Position
pm succeeds position pk if either m = k + 1 or nk is labelled @, or nk is labelled
with a variable and pk+1 is the parent of pm−1.

Proposition 6. Assume p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P ) and pm

is a position with m < l. There is a unique subsequence of positions pi1 , . . . , pik

such that i1 = 1, ik = m and for all j : 1 ≤ j < k position pij+1 succeeds pij and
for any c if nic ↓ nij then pic is the parent of pij .

Proof. Assume that p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P ) and pm is a
position with m < l. Consider the branch of the interpolation tree from the root
labelled @ to nm. We now pick out the subsequence of positions at these nodes
backwards starting with pm at nm. Suppose pij+1 is given. If nij+1 is labelled xi,
f or a then pij is pij+1−1. If nij is labelled λy and its immediate predecessor is
f then pij is also pij+1−1. If nij is labelled λy and its immediate predecessor is
xi and pl is the parent of pij+1−1 then pij is pl−1. The argument that if nic ↓ nij

then pic is the parent of pij is also straightforward. �

Definition 20. If p = n[r]θ ∈ G(t, P ) and n is labelled yj then its associated
variable assumption, V (p), is defined by induction on the type of yj. If yj : 0
then V (p) = (yj , r, ∅). If yj : (B1, . . . , Bk,0) and p′ is the next position after p
then V (p) = (yj , r, Γ ) where Γ = {V (q) | q ∈ G(t, P ) and p′ is the parent of q}.

Definition 21. If p = n[r]θ ∈ G(t, P ) then M(p) is the mode at node n associ-
ated with p defined by cases on the label at n (and which uses Definition 20). If
@, f or a then M(p) = (r, ∅). If yj and V (p) = (yj , r, Γ ) then M(p) = (r, Γ ). If
λy then M(p) = (r, Γ ) where Γ = {V (q) | q ∈ G(t, P ) and p is the parent of q}.

Theorem 2 is a corollary (via Lemma 1) of the following result.

Theorem 3. Assume P is xw = u, Σ is the alphabet and AP is the dependency
Σ-tree automaton in Definition 13. For any canonical Σ-term t, ∀ loses G(t, P )
iff AP accepts the tree @tw.

Proof. Assume ∀ loses G(t, P ). We show that there is a successful run of AP on
@tw via Proposition 6 and Definition 21. More precisely, the successful run
tree is built in such a way that for any of its nodes (n, α(r, Γ )) there is a
play p1 = n1q1θ1, . . . , pl = nlqlθl of G(t, P ) and a position pm with m < l
such that if pi1 , . . . , pik

is the subsequence identified in Proposition 6 then
the branch from the root to (n, α(r, Γ )) consists of nodes n′

1, . . . , n
′
k where

n′
j = (nij , M(pi1) . . . M(pij )), 1 ≤ j ≤ k. Initially this is true as (n1, (u, ∅))
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is the root node of the run tree when n1[u]θ1 is the initial position (of any play).
It is now an easy exercise to show that there is always an application of a transi-
tion rule of AP of Definition 13 to a nonterminal node (n, α(r, Γ )) that preserves
this property.

For the other direction assume ∀ wins G(t, P ) but there is a successful run of
AP on @tw. There is a winning play p1 = n1[r1]θ1, . . . , pl = nl[rl]θl of G(t, P )
for ∀. So, nl−1 is labelled a : 0 or f : (B1, . . . , Bk,0) and rl−1 �= a or rl−1 �=
fr1 . . . rk because rl = ∀. Let pm be the earliest position in this play such
that there are positions pi1 , . . . , pik

of Proposition 6 such that there is a branch
of the successful run tree of AP on @tw consisting of nodes n′

1, . . . , n
′
k−1 with

n′
ij

= (nij , αj(rij , Γj)) for some αj and Γj , 1 ≤ j < k but no successor of n′
k−1 of

the form (nm, α(rm, Γ )). We know that there is such a position pm, 1 < m < l,
because the root of the run tree has the form (n1, (r1, ∅)) and by the transition
rules 3 and 4 of Definition 13 there cannot be a node of a successful run tree
(nl−1, α(rl−1, Γ )) for any α and Γ . A case analysis on the label at node nm

shows that if there is such a position pm then there is an even earlier position
with this property which is a contradiction. �

5 Conclusion

We introduced nondeterministic and alternating dependency tree automata for
recognising terms with binding. Decidability of nonemptiness is shown for the
nondeterministic automata. There are significant open questions for the alter-
nating automata: are they more expressive than the nondeterministic automata
and is their nonemptiness problem decidable? We also provided an application
of the alternating automata to characterise solutions to a higher-order matching
problem. We need to see if there are other applications of these automata.

To save space, we assumed that a right term u in an interpolation problem
does not contain bound variables. We handle them as in [14,13] by including new
corresponding constants which are not allowed to occur in solution terms. If u is
f(λx1x2x3.x1x3)a then c1, c2 and c3 are included where each ci has the same type
as xi. Definition 11 is refined to only allow closed subterms of base type by re-
placing bound variables by their corresponding constants: for u above we include
a, c1(c3) and c3. A new kind of variable assumption is included, a triple of the
form (zi, r, c) where c is one of the new constants and look-up tables are extended
to include entries of the form θm(z) = c. Transition rules for the automaton and
the game moves are extended accordingly. For instance, in 4 of Figure 3 there is
also the case when rj = λx1 . . . xm.r′ and nj is labelled λy1 . . . ym: so the next
position is nj[r′{c1/x1, . . . , cm/xm}]θ′ where θ′ = θ{c1/y1, . . . , cm/ym}.
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