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Abstract

We present a novel unsupervised method for

sentence compression which relies on a de-

pendency tree representation and shortens sen-

tences by removing subtrees. An automatic

evaluation shows that our method obtains re-

sult comparable or superior to the state of the

art. We demonstrate that the choice of the

parser affects the performance of the system.

We also apply the method to German and re-

port the results of an evaluation with humans.

1 Introduction

Within the field of text-to-text generation, the sen-

tence compression task can be defined as follows:

given a sentence S, consisting of words w1w2...wn,

what is a subset of the words of S, such that it

is grammatical and preserves essential information

from S? There are many applications which would

benefit from a robust compression system, such as

subtitle generation, compression for mobile devices

with a limited screen size, or news digests. Given

that to date most text and speech summarization

systems are extractive, sentence compression tech-

niques are a common way to deal with redundancy

in their output.

In recent years, a number of approaches to sen-

tence compression have been developed (Jing, 2001;

Knight & Marcu, 2002; Gagnon & Da Sylva, 2005;

Turner & Charniak, 2005; Clarke & Lapata, 2008,

inter alia). Many explicitly rely on a language

model, usually a trigram model, to produce gram-

matical output (Knight & Marcu, 2002; Hori & Fu-

rui, 2004; Turner & Charniak, 2005; Galley & McK-

eown, 2007). Testing the grammaticality of the out-

put with a language model is justified when work-

ing with a language with rigid word order like En-

glish, and all but one approach mentioned have

been applied to English data. However, compress-

ing sentences in languages with less rigid word or-

der needs a deeper analysis to test grammaticality.

And even for languages with rigid word order the

trigram model ignores the structure of the sentence

and therefore may significantly distort the meaning

of the source sentence. Approaches going beyond

the word level either require a comprehensive lexi-

con (Jing, 2001), or manually devised rules (Gagnon

& Da Sylva, 2005; Clarke & Lapata, 2008) to de-

termine prunable constituents. A lexicon is not al-

ways available, whereas the hand-crafted rules may

not cover all cases and are too general to be univer-

sally applicable (e.g. PPs can be pruned).

In this paper we present a novel unsupervised ap-

proach to sentence compression which is motivated

by the belief that the grammaticality of the output

can be better ensured by compressing trees. In par-

ticular, given a dependency tree, we want to prune

subtrees which are neither obligatory syntactic argu-

ments, nor contribute important information to the

content of the sentence. A tree pruning approach

does not generate new dependencies and is unlikely

to produce a compression with a totally different

meaning. Our approach is unsupervised and adapt-

able to other languages, the main requirement be-

ing that there are a dependency parser and a corpus

available for the languages. We test our approach

on English and German data sets and obtain results

comparable or superior to the state of the art.
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2 Related Work

Many existing compression systems use a noisy-

channel approach and rely on a language model

to test the grammaticality of the output (Knight &

Marcu, 2002; Turner & Charniak, 2005; Galley &

McKeown, 2007). Other ways to ensure gram-

maticality and to decide whether a constituent is

obligatory or may be pruned are to utilize a sub-

categorization lexicon (Jing, 2001), or to define a

set of generally prunable constituents. Gagnon &

Da Sylva (2005) prune dependency trees by remov-

ing prepositional complements of the verb, subordi-

nate clauses and noun appositions. Apparently, this

does not guarantee grammaticality in all cases. It

may also eliminate important information from the

tree.

Most approaches are supervised and require train-

ing data to learn which words or constituents can

be dropped from a sentence (Riezler et al., 2003;

McDonald, 2006). However, it is difficult to obtain

training data. Still, there are few unsupervised meth-

ods. For example, Hori & Furui (2004) introduce

a scoring function which relies on such informa-

tion sources as word significance score and language

model. A compression of a given length which

maximizes the scoring function is then found with

dynamic programming. Clarke & Lapata (2008)

present another unsupervised approach. They for-

mulate the task as an optimization problem and solve

it with integer linear programming. Two scores con-

tribute to their objective function – a trigram lan-

guage model score and a word significance score.

Additionally, the grammaticality of the output is en-

sured by a handful of linguistic constraints, stating

e.g. which arguments should be preserved.

In this paper we suggest an alternative to the pop-

ular language model basis for compression systems

– a method which compresses dependency trees and

not strings of words. We will argue that our formu-

lation has the following advantages: firstly, the ap-

proach is unsupervised, the only requirement being

that there is a sufficiently large corpus and a depen-

dency parser available. Secondly, it requires neither

a subcategorization lexicon nor hand-crafted rules to

decide which arguments are obligatory. Thirdly, it

finds a globally optimal compression by taking syn-

tax and word importance into account.

3 Dependency Based Compression

Our method compresses sentences in that it removes

dependency edges from the dependency tree of a

sentence. The aim is to preserve dependencies

which are either required for the output to be gram-

matical or have an important word as the dependent.

The algorithm proceeds in three steps: tree transfor-

mation (Section 3.1), tree compression (Section 3.2)

and tree linearization (Section 3.3).

3.1 Tree Transformation

Before a dependency tree is compressed, i.e. be-

fore some of the dependencies are removed, the tree

is modified. We will demonstrate the effect of the

transformations with the sentence below:

(1) He said that he lived in Paris and Berlin

The first transformation (ROOT) inserts an explicit

rootnode (Fig. 1(a)). The result of the second trans-

formation (VERB) is that every inflected verb in the

tree gets an edge originating from the rootnode (Fig.

1(b)). All edges outgoing from the rootnode bear the

s label. Apart from that we remove auxiliary edges

and memorize such grammatical properties as voice,

tense or negation for verbs.

The purpose of the remaining transformations is

to make relations between open-class words more

explicit. We want to decide on pruning an edge

judging from two considerations: (i) how important

for the head this argument is; (ii) how informative

the dependent word is. As an example, consider a

source sentence given in (2). Here, we want to de-

cide whether one prepositional phrase (or both) can

be pruned without making the resulting sentence un-

grammatical.

(2) After some time, he moved to London.

It would not be very helpful to check whether an ar-

gument attached with the label pp is obligatory for

the verb move. Looking at a particular preposition

(after vs. to) would be more enlightening. This

motivates the PREP transformation which removes

prepositional nodes and places them as labels on the

edge from their head to the respective noun (Fig.

1(c)). We also decompose a chain of conjoined ele-

ments (CONJ) and attach each of them to the head of

the first element in the chain with the label the first
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Figure 1: The dependency structure of He said that he lived in Paris and Berlin after the transformations

element attaches to its head with (Fig. 1(d)). This

way we can retain any of the conjoined elements

in the compression and do not have to preserve the

whole sequence of them if we are interested in only

one. This last transformation is not applied to verbs.

3.2 Tree Compression

We formulate the compression task as an optimiza-

tion problem which we solve using integer linear

programming1. Given a transformed dependency

tree (a graph if new edges have been added), we de-

cide which dependency edges to remove. For each

directed dependency edge from head h to word w we

thus introduce a binary variable xl
h,w where l stands

for the edge’s label:

xl
h,w =

{

1 if the dependency is preserved

0 otherwise
(1)

The goal is to find a subtree which gets the highest

score of the objective function (2) to which both the

1In our implementation we use lp solve (http://
sourceforge.net/projects/lpsolve).

probability of dependencies (P (l|h)) and the impor-

tance of dependent words (I(w)) contribute:

f(X) =
∑

x

xl
h,w · P (l|h) · I(w) (2)

Intuitively, the conditional probabilities prevent us

from removing obligatory dependencies from the

tree. For example, P (subj|work) is higher than

P (with|work), and therefore the subject will be

preserved whereas the prepositional label and thus

the whole PP can be pruned. This way we do

not have to create an additional constraint for every

obligatory argument (e.g. subject or direct object).

Neither do we require a subcategorization lexicon to

look up which arguments are obligatory for a cer-

tain verb. Verb arguments are preserved because the

dependency edges, with which they are attached to

the head, get high scores. Table 1 presents the prob-

abilities of a number of labels given that the head

is study. Table 2 presents the probabilities for their

German counterparts.

Note that if we would not apply the PREP trans-

formation we would not be able to distinguish be-
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subj dobj in at after with to

0.16 0.13 0.05 0.04 0.01 0.01 0.01

Table 1: Probabilities of subj, d(irect)obj, in, at, after,

with, to given the verb study

subj obja in an nach mit zu

0.88 0.74 0.44 0.42 0.09 0.02 0.01

Table 2: Probabilities of subj, obja(ccusative), in, at, af-

ter, with, to given the verb studieren

tween different prepositions and could only calcu-

late P (pp|studieren) which would not be very in-

formative. The probabilities for English are lower

than those for German because we calculate the con-

ditional probabilities given word lemma. In English,

the part of speech information cannot be induced

from the lemma and thus the set of possible labels

of a node is on average larger than in German.

There are many ways in which word importance,

I(w) can be defined. Here, we use the formula intro-

duced by Clarke & Lapata (2008) which is a modifi-

cation of the significance score of Hori et al. (2003):

I(wi) =
l

N
· fi log

FA

Fi

(3)

wi is the topic word (either noun or verb), fi is the

frequency of wi in the document, Fi is the frequency

of wi in the corpus, and FA is the sum of frequencies

of all topic words in the corpus. l is the number of

clause nodes above w and N is the maximum level

of embedding of the sentence w belongs to.

The objective function is subject to constraints of

two kinds. The constraints of the first kind are stuc-

tural and ensure that the preserved dependencies re-

sult in a tree. (4) ensures that each word has one

head at most. (5) ensures connectivity in the tree.

(6) restricts the size of the resulting tree to α words.

∀w ∈ W,
∑

h,l

xl
h,w ≤ 1 (4)

∀w ∈ W,
∑

h,l

xl
h,w −

1

|W |

∑

u,l

xl
w,u ≥ 0 (5)

∑

x

xl
h,w ≤ α (6)

α is a function of the length of the source sentence

in open-class words. The function is not linear since

the degree of compression increases with the length

of the sentence. The compression rate of human-

generated sentences is about 70% (Clarke & Lapata,

2008)2. To approximate this value, we set the pro-

portion of deleted words to be 20% for short sen-

tences (5-9 non-stop words), this value increases up

to 50% for long sentences (30+ words).

The constraints of the second type ensure the syn-

tactic validity of the output tree and explicitly state

which edges should be preserved. These constraints

can be general as well as conditional. The former

ensure that an edge is preserved if its source node

is retained in the output. Conditional syntactic con-

straints state that an edge has to be preserved if (and

only if) a certain other edge is preserved. We have

only one syntactic constraint which states that a sub-

ordinate conjunction (sc) should be preserved if and

only if the clause it belongs to functions as a sub-

ordinate clause (sub) in the output. If it is taken as

the main clause, the conjunction should be dropped.

In terms of edges, this can be formulated as follows

(7):

∀xsc
w,u, xsub

h,w − xsc
w,u = 0 (7)

Due to the constraint (4), the compressed subtree

is always rooted in the node added as a result of the

first transformation. A compression of a sentence to

an embedded clause is not possible unless one pre-

serves the structure above the embedded clause. Of-

ten, however, main clauses are less important than an

embedded clause. For example, given the sentence

He said they have to be held in Beirut it is the em-

bedded clause which is informative and to which the

source sentence should be compressed. The purpose

of the VERB modification is to amend exactly this

problem. Having an edge from the rootnode to ev-

ery inflected verb allows us to compress the source

sentence to any clause.

3.3 Tree Linearization

A very simple but reasonable linearization technique

is to present the words of a compressed sentence in

the order they are found in the source sentence. This

method has been applied before and this is how we

2Higher rates correspond to longer compressions.
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linearize the trees obtained for the English data. Un-

fortunately, this method cannot be directly applied to

German because of the constraints on word order in

this language. One of the rules of German grammar

states that in the main clause the inflected part of the

verb occupies the second position, the first position

being occupied by exactly one constituent. There-

fore, if the sentence initial position in a source sen-

tence is occupied by a constituent which got pruned

off as a result of compression, the verb becomes

the first element of the sentence which results in an

undesirable output. There are linearization meth-

ods developed for German which find an optimal

word order for a sentence (Ringger et al., 2004;

Filippova & Strube, 2007). We use our recent

method to linearize compressed trees.

4 Corpora and Annotation

We apply our method to sentences from two corpora

in English and German. These are presented below.

English Compression Corpus: The English data

we use is a document-based compression cor-

pus from the British National Corpus and

American News Text Corpus which consists of

82 news stories3. We parsed the corpus with

RASP (Briscoe et al., 2006) and with the Stan-

ford PCFG parser (Klein & Manning, 2003).

The output of the former is a set of dependency

relations whereas the latter provides an option

for converting the output into dependency for-

mat (de Marneffe et al., 2006) which we use.

TüBa-D/Z: The German corpus we use is a col-

lection of 1,000 newspaper articles (Telljohann

et al., 2003)4. Sentence boundaries, morphol-

ogy, dependency structure and anaphoric rela-

tions are manually annotated in this corpus.

RASP has been used by Clarke & Lapata (2008)

whose state of the art results we compare with ours.

We use not only RASP but also the Stanford parser

for several reasons. Apart from being accurate, the

latter has an elaborated set of dependency relations

3The corpus is available from http://homepages.
inf.ed.ac.uk/s0460084/data.

4The corpus is available from http://www.sfs.
uni-tuebingen.de/en_tuebadz.shtml.

(48 vs. 15 of RASP) which is not overly large (com-

pared with the 106 grammatical relations of the Link

Parser). This is important for our system which

relies on syntactic information when making prun-

ing decisions. A comparison between the Stanford

parser and two dependency parsers, MiniPar and

Link Parser, showed a decent performance of the for-

mer (de Marneffe et al., 2006). It is also of interest to

see to what extent the choice of the parser influences

the results.

Apart from the corpora listed above, we use the

Tipster corpus to calculate conditional probabilities

of syntactic labels given head lemmas as well as

word significance scores. The significance score

is calculated from the total number of 128 mil-

lion nouns and verbs. Conditional probabilities are

calculated from a much smaller portion of Tipster

(about 6 million tokens). The latter number is com-

parable to the size of the data set we use to com-

pute the probabilities for German. There, we use

a corpus of about 4,000 articles from the German

Wikipedia to calculate conditional probabilities and

significance scores. The corpus is parsed with the

highly accurate CDG parser (Foth & Menzel, 2006)

and has the same dependency format as TüBa-D/Z

(Versley, 2005).

Although all corpora are annotated with depen-

dency relations, there are considerable differences

between the annotation of the English and German

data sets. The phrase to dependency structure con-

version done by the Stanford parser makes the se-

mantic head of the constituent its syntactic head. For

example, in the sentence He is right it is the adjec-

tive right which is the root of the tree. Unlike that,

sentences from the German corpora always have a

verb as the root. To unify the formats, we write a set

of rules to make the verb the root of the tree in all

cases.

5 Evaluation

We evaluate the results automatically as well as with

human subjects. To assess the performance of the

method on the English data, we calculate the F-

measure on grammatical relations. Following Rie-

zler et al. (2003), we calculate average precision and

recall as the amount of grammatical relations shared

between the output of our system and the gold stan-
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dard variant divided over the total number of rela-

tions in the output and in the human-generated com-

pression respectively. According to Clarke & Lapata

(2006), this measure reliably correlates with human

judgements. The results of our evaluation as well as

the state of the art results reported by Clarke & Lap-

ata (2008) (LM+SIG+CONSTR), whose system uses

language model scoring (LM), word significance

score (SIG), and linguistic constraints (CONSTR),

are presented in Table 3. The F-measure reported

by Clarke & Lapata (2008) is calculated with RASP

which their system builds upon. For our system we

present the results obtained on the data parsed with

RASP as well as with the Stanford parser (SP). In

both cases the F-measure is found with RASP in or-

der to allow for a fair comparison between the three

systems. We recalculate the compression rate for the

gold standard ignoring punctuation. On the whole

corpus the compression rate turns out to be slightly

higher than that reported by Clarke & Lapata (2008)

(70.3%).

F-measure compr.rate

LM+SIG+CONSTR 40.5 72.0%

DEP-BASED (RASP) 40.7 49.6%

DEP-BASED (SP) 49.3 69.3%

GOLD - 72.1%

Table 3: Average results on the English corpus

As there are no human-generated compressions

for German data, we evaluate the performance of the

method in terms of grammaticality and importance

by means of an experiment with native speakers. In

the experiment, humans are presented with a source

sentence and its compression which they are asked

to evaluate on two five-point scales. Higher grades

are given to better sentences. Importance represents

the amount of relevant information from the source

sentence retained in the compression. Since our

method does not generate punctuation, the judges

are asked to ignore errors due to missing commas.

Five participants took part in the experiment and

each rated the total of 25 sentences originating from

a randomly chosen newspaper article. Their ratings

as well as the ratings reported by Clarke & Lapata

(2008) on English corpus are presented in Table 4.

grammar importance

LM+SIG+CONSTR 3.76 3.53

DEP-BASED (DE) 3.62 3.21

Table 4: Average results for the German data

6 Discussion

The results on the English data are comparable with

or superior to the state of the art. These were ob-

tained with a single linguistic constraint (7) and

without any elaborated resources which makes our

system adaptable to other languages. This suggests

that tree compression is a better basis for sentence

compression systems than language model-oriented

word deletion.

In order to explain why the choice of parser sig-

nificantly influences the performance of the method,

we calculate the precision P defined as the number

of dependencies shared by a human-generated com-

pression (depc) and the source sentence (deps) di-

vided over the total number of dependencies found

in the compression:

P =
|depc ∩ deps|

|depc|
(8)

The intuition is that if a parser does not reach high

precision on gold standard sentences, i.e. if it does

not assign similar dependency structures to a source

sentence and its compression, then it is hopeless

to expect it to produce good compression with our

dependency-based method. However, the precision

does not have to be as high as 100% because of,

e.g., changes within a chain of conjoined elements

or appositions. The precision of the two parsers cal-

culated over the compression corpus is presented in

Table 5.

RASP Stanford parser

precision 79.6% 84.3%

Table 5: Precision of the parsers

The precision of the Stanford parser is about 5%

higher than that of RASP. In our opinion, this partly

explains why the use of the Stanford parser increases

the F-measure by 9 points. Another possible reason

for this improvement is that the Stanford parser iden-

tifies three times more dependency relations than
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RASP and thus allows for finer distinctions between

the arguments of different types.

Another point concerns the compression rates.

The compressions generated with RASP are consid-

erably shorter than those generated with the Stanford

parser. This is mainly due to the fact that the struc-

ture output by RASP is not necessarily a tree or a

connected graph. In such cases only the first subtree

of the sentence is taken as input and compressed.

The results on the German set are not conclu-

sive since the number of human judges is relatively

small. Still, these preliminary results are compara-

ble to those reported for English and thus give us

some evidence that the method can be adapted to

languages other than English. Interestingly, the im-

portance score depends on the grammaticality of the

sentence. A grammatical sentence can convey unim-

portant information but it was never the case that an

ungrammatical sentence got a high rating on the im-

portance scale. Some of the human judges told us

that they had difficulties assigning the importance

score to ungrammatical sentences.

7 Conclusions

We presented a new compression method which

compresses dependency trees and does not rely on a

language model to test grammaticality. The method

is unsupervised and can be easily adapted to lan-

guages other than English. It does not require a

subcategorization lexicon or elaborated hand-crafted

rules to decide which arguments can be pruned and

finds a globally optimal compression taking syn-

tax and word importance into account. We demon-

strated that the performance of the system depends

on the parser and suggested a way to estimate how

well a parser is suited for the compression task. The

results indicate that the dependency-based approach

is an alternative to the language model-based one

which is worth pursuing.
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