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Abstract

Data broadcast is a promising technique to improve the bandwidth utilization and conserve

the power consumption in a mobile computing environment. In many applications, the data items

broadcast are dependent upon one another. However, most prior studies on broadcasting dependent

data are restricted to a single broadcast channel environment, and as a consequence, the results are of

limited applicability to the upcoming mobile environments. In view of this, we relax this restriction

and explore in this paper the problem of broadcasting dependent data in multiple broadcast channels.

By analyzing the model of dependent data broadcasting, we derive several theoretical properties for

the average access time in a multiple channel environment. In light of the theoretical results, we

develop a genetic algorithm to generate broadcast programs. Our experimental results show that the

theoretical results derived are able to guide the search of the genetic algorithm very effectively, thus

leading to broadcast programs of very high quality.

Index Terms: Data broadcast, dependent data, unordered query, mobile information system,

mobile computing
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1 Introduction

In a broadcast-based information system [1][5][17], a serverperiodically broadcasts data to mobile

users according to a pre-generated broadcast program by asinglebroadcast channel. To retrieve data

items of interest, the mobile users need to wait for the appearance of the data items on the broadcast

channel instead of explicitly sending data requests to the information system. Due to the above char-

acteristics, data broadcast becomes a promising technique in a mobile computing environment since it

has the following advantages:

• Power conservation: As mentioned in [16], the power needed for transmission from the mobile

client to the mobile support station is proportional to the fourth power of the distance between

them. Hence, the power is conserved in broadcast-based systems since mobile clients need not

explicitly send data requests to information servers.

• High scalability: The high scalability is achieved since the system performance is independent

of the number of clients.

• High bandwidth utilization: Data items of high interest can be received by multiple mobile clients

by one transmission on the broadcast channel.

One objective of designing proper data allocation in the broadcast disks is to reduce the average

access time of data items. Several related research issues have attracted a considerable amount of atten-

tion, including on-demand broadcast [2][3], data indexing [7][13][17], access frequencies estimation

[11][30], and client cache management [25][28]. Note that there do exist situations where multiple

low-bandwidth physical channels cannot be combined into a single high-bandwidth physical channel

[23][26]. Scenarios that the system can only allocate multiple channels with non-contiguous frequency
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ranges have been pointed out in [23][26], and these channels with non-contiguous frequency ranges

cannot be merged into a single channel. In addition, several network standards, such as FDMA-based

systems, divide the network bandwidth into several physical channels where individual mobile clients

are designed to listen to at most one physical channel at a time. As a result, in such network environ-

ments, multiple physical channels (even with contiguous frequencies) cannot be merged into one single

channel in nature.

Hence, a significant amount of research effort has been elaborated on developing the index mech-

anisms [20][24], data allocation schemes [22][23] and dynamic data and channel allocation [14][18]

in multiplebroadcast channels. In addition, the bandwidth allocation for multi-cell environments with

frequency reuse and inference considered was studied in [29].

Most works mentioned above were under the premise that each user requests only one data item

at a time and the requests for all data items are independent. That is, for an arbitrary user, the access

probability that the user requests a data item in thei-th request ispredeterminedand isindependent

of what have been requested in the first, second,· · ·, (i − 1)-th requests. However, in many real

applications, some data items aresemantically relatedand there exists dependency among the requests

of these data items. Broadcast program generation algorithms assuming independent requests might not

be able to effectively optimize the performance of the broadcast programs. This phenomenon attracts

a series of work on solving the problem of dependent data broadcast. A query corresponds to a set of

semantically related data items which are likely to be requested successively by a user, and we use a set

of queries (named a query profile) to model such dependency of all data items. Hence, if several data

items aredependentupon one another (i.e., within the same query), they are likely to be successively

requested by users. According to the constraint of the retrieval sequence of the dependent data items
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within the same query, queries of dependent data can be categorized into the following two types :

Ordered queries: In an ordered query, the required data items should be retrieved in a predetermined

order. Consider a Web page with some images as an example. Once the user requests this Web

page by a browser, the browser will request these images automatically in a predetermined order

after receiving this Web page.

Unordered queries: Similar as an ordered query, an unordered query could be one issued by a mobile

user for requesting multiple data items simultaneously. However, unlike in an ordered query,

these requested data items may be retrieved in any order. Consider a broadcast system to dis-

seminate the stock information. A mobile user may submit a query like “Show me the stock

information of all the LCD companies.” As a result, data items in these LCD companies are

queried together and displayed without being confined to a specific order.

Prior research works of dependent data broadcast can be categorized by the following two proper-

ties: (1) the number of broadcast channels considered (single [6] or multiple channels [15]) and (2) the

constraint of the retrieval sequence of the data items (ordered [6][15] or unordered [8] queries) in each

query. It is noted that two heuristic algorithms are proposed in [6] to generate broadcast programs in

a single channel for ordered queries. In [6], the queries are assumed to beacyclic, meaning that if a

data itemDi is required to be accessed beforeDj in one query,Dj will not be accessed beforeDi in

all other queries. The authors in [8] proposed a greedy algorithm to generate broadcast programs for

unordered queries in one broadcast channel. A randomized algorithm is proposed in [4] to consider

the dependency oftwo data items in single broadcast channel. However, there are few works for de-

pendent data broadcasting on multiple channel environments. In [15], two heuristic algorithms were

designed to generate broadcast programs in multiple channels for ordered queries. Similarly to [6],
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the work in [15] also assumes the queries to be acyclic. In addition, the problem of index and data

allocation [10][17][20] can be treated as a special case of broadcasting dependent data with ordered

queries. Note that for each ordered query, the required data items of this query should be retrieved

according to a predetermined order, and there will be exactly one retrieval order. However, the number

of retrieval orders of an unordered queryQi is |Qi|! where|Qi| is the number of required data items of

Qi. This feature makes the broadcasting dependent data for unordered queries more difficult than that

for ordered queries.

Consequently, we address in this paper the problem of broadcast program generation for unordered

queries with dependent data in multiple broadcast channels. Note that the problem of broadcasting

dependent data in a multiple channel environment is intrinsically difficult in that the factor of data

dependency and the efficient use of multiple channels, though being dealt with separately before, are

in fact entangled, thus making it more complicated to provide an effective solution to this problem.

Specifically, several special cases [8][10][20] of the problem of broadcasting dependent data are shown

to be NP-hard. In view of this, we shall employ the Genetic Algorithm (abbreviated as GA) in this

paper to address the problem of broadcasting dependent data in a multiple channel environment. GA

is a widely-used approach in the literature of soft computing and evolutionary computation to solve

optimization problems. Basically, GAs are iterative procedures that search the problem solutions by

an evolutionary process based on natural selection. GA maintains a population of individual candidate

solutions to specific problems. An individual candidate solution can be represented as a list called a

chromosome. In GA, afitness functionhas to be designed to evaluate the fitness of each chromosome.

The probability that each chromosome will be selected is in proportion to its fitness. The design of the

fitness function is key to the effectiveness of the GA algorithms.
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Explicitly, in this paper we first model the problem of broadcast program generation for unordered

queries in multiple channels. By analyzing the model of dependent data broadcasting, we derive sev-

eral theoretical properties for the average access time in a multiple channel environment. In light of the

theoretical results, we then formulate the fitness functions for the GA to generate broadcast programs.

Sensitivity analysis on several parameters is conducted. Our experimental results show that with the

analytical results derived, the fitness functions designed are able to guide the search of GA very effec-

tively, thus leading to broadcast programs of very high quality. To the best of our knowledge, there is

no prior work on the broadcast program generation for unordered queries in multiple channels. This

fact distinguishes this paper from others.

The rest of this paper is organized as follows. Section 2 gives the preliminaries of this study. Ana-

lytical models of the problem of dependent data broadcast with unordered queries are given in Section

3. In light of the analysis in Section 3, we devised a GA-based algorithm in Section 4. Performance

evaluation on various parameters is conducted in Section 5. Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Overview of Genetic Algorithms

The flowchart of GAs is presented in Figure 1. Before designing a GA, one must decide a chromosome

representation (e.g., tree, list...) policy to transform a solution into a chromosome. In addition, a fitness

function is also designed to evaluate how good a chromosome (i.e., a solution) is. Several chromosomes

are generated to form initial population. Initial population can be generated by random generation or

heuristics. In fitness evaluation phase, the fitness values of all chromosomes are evaluated according
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Figure 1: The flowchart of a genetic algorithm

to the fitness function taken. The chromosome with the maximal fitness is then selected as the best

chromosome.

During the selection phase, chromosomes in the current population are selected and recombined to

produce offspring which will comprise the next generation of population. Chromosomes are selected

randomly from the current population using a roulette wheel with slots sized according to fitness.

Consider a generation containing three chromosomes and suppose that the fitness of chromosomes 1,

2, and 3 are 4, 2, and 2, respectively. The percentages of chromosomes 1, 2, and 3 being selected will

be 50%( 4
4+2+2

), 25%( 2
4+2+2

), and 25%( 2
4+2+2

), respectively. Thus, chromosomes with higher fitness

have a higher likelihood to be reproduced.

After selection, crossover is applied in the selected chromosomes with probabilityPC . This op-

erator takes two randomly chosen parent chromosomes as input and combines them to generate two

children. The crossover operator provides the exploration capacity by exchanging the information from

two parents. Crossover may lead to fall into a local optimum of the fitness function because the gen-

erated children tend to resemble their parents. In order to reduce this phenomenon, mutation operates

with a probabilityPM and creates new chromosomes by modifying one or more of the gene values

of an existing chromosome. Mutation provides a random search in the solution space and reduces the

probability of falling into a local optimum of the fitness function.
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Figure 2: The architecture of a data broadcast system

Finally, a termination criterion is checked to decide whether to terminate the GA. If yes, the best

chromosome up to now is then returned as the result of the GA. If not, the GA will enter the fitness

evaluation phase to start another iteration. An iteration is called a generation in the GA literature.

Interested readers are referred to [9] for the details of GAs.

2.2 System Architecture

Figure 2 shows an example system architecture of a data broadcast system which broadcasts data items

periodically according to a broadcast program. We assume that each data item is read-only [19]. In the

beginning, since a mobile user will not know the broadcast program of the system, the mobile device

should listen on a broadcast channel to wait for the appearance of the broadcast program. The broadcast

program contains some auxiliary information such as the data identifiers, attributes for each data item,

the data index information and so on. Attributes for each data item are then used to process the query

submitted by the user. The broadcast program is kept in the mobile device until it is expired. When
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Q1 = {D1, D2, D3, D4} 40%
Q2 = {D1, D3, D4} 20%
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Figure 3: An example query profile
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Figure 4: An example broadcast program

the user submits a query to his or her mobile device, the mobile device will process this query with

the aid of stored broadcast program to determine the required data items. The mobile device will then

determine the optimal retrieve order to minimize the access time of the required data items and retrieve

them from broadcast channels according to the determined retrieve order.

2.3 Problem Description

Suppose that the databaseD contains|D| data items,D1, D2, · · · , D|D|. From the users’ point of view,

a query is an indivisible request of single or multiple data item(s), and is defined as follows.

Definition 1: An unorderedqueryQi = {Dqi(1), Dqi(2), · · · , Dqi(|Qi|)} is a non-empty subset of all data

items where|Qi| represents that number of required data items inQi andDqi(x) 6= Dqi(y) whenx 6= y.

Note that1 ≤ qi(j) ≤ |D| for all j, 1 ≤ j ≤ |Qi|, andqi(j) = k represents that thej-th accessed data

item inQi is Dk.

The query profile is the aggregation of the access behavior of all users. Formally, we have the

following definition.

Definition 2: A query profileQ consists of a set of〈Qi, P r(Qi)〉 pairs where|Q| indicates the number

of queries inQ. Pr(Qi) represents the probability that a query issued by users isQi. It is noted that
∑|Q|

i=1 Pr(Qi) = 1.

The capture of the query profile is a challenging problem since the data items are dependent upon

one another. If the same database can be accessed from Internet, we can assume that the query behavior
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of Internet users and mobile users are similar in essence, and hence use the query profile of Internet

users to model that of mobile users. Similar to [12], when an uplink channel is provided, the mobile

device can store hot queries of its owner and send its query statistics to the server. When the mobile

device is about to connect to the server, this statistics can be transferred by piggypacks. Clearly, depen-

dent on applications, different methods to capture the query profile of a broadcast-based information

system are conceivable.

Assume that the bandwidth of each channel is divided into slots of equal sizes. A data itemDi

will occupy
⌈ |Di|

s

⌉
slots where|Di| is the size ofDi. Let r =

⌈ |Di|
s

⌉
andDi occupy slotsD1

i , D2
i ,

· · ·, Dr
i . If a mobile device requestsDi, the system will retrieveD1

i , D
2
i , · · · , Dr

i to composeDi.

Therefore, a query containing a multi-slot data itemsDi should be expanded from{· · · , Di, · · ·} into

{· · · , D1
i , D

2
i , · · · , Dr

i , · · ·}. Since the expanded queries are still unordered, we assume that the data

items are all of equal size for ease of presentation.

Example 1: Consider a databaseD containing six data items. Figure 3 shows an example query profile

containing four queries. The queryQ3 will read data itemsD4, D6 andD1. Note that the read of data

items need not follow this order.Pr(Q3) = 20% shows that 20% of the queries submitted by users is

the queryQ3.

Let n represent the number of channels andL be the length of the broadcast program. A broadcast

program is defined below.

Definition 3: A broadcast programP is aplacementof all data items inD into ann by L array where

L =
⌈ |D|

n

⌉
.

Here, we assume that|D| = L × n without loss of generality. To facilitate the further discussion,

we define a functionplacement : {1, 2, · · · , |D|} → {1, 2, · · · , L} to be an onto function which maps

9



each data item into its placement in the broadcast program. Figure 4 shows an example of broadcast

program on two broadcast channels. In this example, the value ofplacement(4) is equal to 2 which

indicates that the broadcast order of the data itemD4 in the broadcast program is 2.

Two metrics,access timeand tuning time, are introduced in [17] to evaluate the performance of

broadcast programs. The access time is the time elapsed from the moment a client issues a query to the

moment all the relevant data are read. The tuning time is the amount of time spent by the client listening

on the broadcast channels, which is a measurement of the power consumption. In this paper, we take the

access time as the measurement of the performance of broadcast programs. Hence, broadcast program

generation for unordered queries in multiple channels can be formulated as follows.

Definition 4: Given the number of broadcast channels, the databaseD and a query profileQ, the

problem of broadcast program generation for unordered queries in multiple channels is to determine a

broadcast programP which minimizes the average access time of the query profileQ.

Denote the average access time of a queryQi asTAccess(Qi) and the average access time of a query

file Q asTAccess(Q). The average access time of the query profileQ can be formulated as

TAccess(Q) =
|Q|∑

i=1

[
TAccess(Qi)× Pr(Qi)

]
. (1)

3 Analytical Models

3.1 Decomposition of Average Access Time

The access time of an arbitrary queryQi can be decomposed into two portions:startup timeand

retrieval time. When a mobile user submits a queryQi, the mobile device should wait until the system

starts to broadcast any required data item ofQi. This time interval is called startup time. Retrieval time
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Figure 5: An example scenario of a query

is defined as the time intervals between the moment that the mobile device starts to read data items

from broadcast channels and that the mobile device finishesQi.

Denote the size of each data item ass and the bandwidth of each broadcast channel asB. We have

the following example.

Example 2: Consider the scenario shown in Figure 5. This example assumes that the mobile user

submitsQ3 shown in Figure 3. After the user submitsQ3, the mobile device will manipulate the stored

broadcast program and obtains the optimal request order to beD1 → D4 → D6. It is noted that

D6 → D4 → D1 is also an optimal request order. And the choice of the mobile device will not affect

the access time ofQi. In this example, the startup time ofQ3 is s1 = 1 × s
B

and the retrieval time is

s2 = 4× s
B

. Finally, the access time ofQ3 is equal to the summation of startup time and retrieval time

(i.e.,5× s
B

).

Denote the average startup time and the average retrieval time of a queryQi asTStartup(Qi) and

TRetr.(Qi), respectively. By the above definitions, the average access time of a query is equal to the

summation of the average startup time and the average retrieval time of the query. Hence, we have the

following equation.

TAccess(Qi) = TStartup(Qi) + TRetr.(Qi) (2)

11



3.2 Derivation of Average Access Time

By Equation (1), the average access time of a query profile is a weighted summation of the average

access of all queries. Then, the average access time of each query should be calculated first in order to

obtain the average access time of a query profile. However, it is in general difficult to directly derive

the average access time of a query since some data items of the query may have the same placement

(i.e., with the same value of functionplacement) in a broadcast program.

To address this difficulty, we propose the procedure query refinement to refine each queryQi before

the calculation ofTAccess(Qi) on a broadcast program. For a queryQi, the refined queryQ
′
i and an

integercycleNo will be obtained after query refinement. In the rest of this subsection, the details

of query refinement will be described first, and the procedure to calculateTAccess(Qi) from Q
′

and

cycleNo will then be given.

Given a broadcast program, all required data items ofQi are hashed into a hash tableH according

to their placements. That is, the functionplacement is taken as the hash function ofH. Due to the

domain of the functionplacement, H consists ofL buckets. LetH[j] represent the contents of thej-th

bucket ofH, and|H[j]| be the number of the data items inH[j]. The setQ
′
i is initialized to be an empty

set. Letmax be “the maximum among all|H[j]|”. Then, for each bucketH[k] where|H[k]| is equal to

max, we randomly selectone data item fromH[j] and insert the selected data item intoQ
′
i. Moreover,

the value ofcycleNo is set to bemax − 1. Finally, Q
′
i andcycleNo are returned as the results of the

query refinement ofQi. The algorithmic form of query refinement is as below.

Function QueryRefinement(Qi, P )
Input : A queryQi and a broadcast programP .
Output : The refined queryQ

′
i and the number of necessarily complete cyclescycleNo.

1: Hash all required data items ofQi into H according to their placements.
2: max ← max1≤j≤L {|H[j]|};
3: cycleNo = max− 1;
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4: Q
′
i ← φ;

5: for (k = 1 to L) do
6: if (|H[k]| = max) then
7: Randomly selectone data item fromH[k], and insert the selected data item intoQ

′
i;

8: end if
9: end for

10: return (Q
′
i, cycleNo);

Example 3: Consider the broadcast program in Figure 4. Suppose thatQi = {D4, D6, D1}. We first

hash the placements ofD4, D6 andD1 intoH. H[1] = {D1, D6} and|H[1]| = 2 sinceplacement(1) =

placement(6) = 1. Similarly, |H[2]| = 1 and |H[3]| = 0. The value ofmax is 2 since|H[1]| =

max
{
|H[1]|, |H[2]|, |H[3]|

}
, and thereforecycleNo = max− 1 = 1. By the loop in line 5-9, we have

Q
′
i = {D1} or Q

′
i = {D6}.

By the definitions and procedure query refinement mentioned above, we have the following lemmas.

Interested readers are referred to the Appendix for the proofs of all lemmas. Note thatTAccess(Q
′
i) is

independent of the selection of data items fromH[j] in line 7 of the procedure QueryRefinement.

Lemma 1: Given a queryQi, a broadcast program and the results of the refinement ofQi (i.e.,Q
′
i and

cycleNo), the average access time of a queryQi (i.e.,TAccess(Qi)) can be formulated as

TAccess(Qi) = TAccess(Q
′
i) + cycleNo× L× s

B
.

In Lemma 1,s andL are system parameters which can be obtained easily. As a consequence, the

average access time of a queryQi can be obtained by the results of query refinement ofQi and Lemma

1. That is to say, after query refinement,TAccess(Qi) can be obtained byTAccess(Q
′
i) andcycleNo.

In addition, the refined queryQ
′
i has the following property.

Lemma 2: Consider a broadcast program, a queryQi, and the refined queryQ
′
i of Qi. Let Dx andDy

represent two randomly selected data items fromQ
′
i. Then, we haveplacement(x) 6= placement(y).
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According to Lemma 2, the placements of all data items of the refined queryQ
′
i are distinct. This

property makes the derivation ofTAccess(Q
′
i) possible. The derivation ofTAccess(Q

′
i) is as follows.

Without loss of generality, we assume that the user submits a query in them-th broadcast cycle.

We also assume that the offset between the start point ofm-th broadcast cycle and the moment of the

mobile user submits a query (i.e.,s0) follows a uniform distribution over(0, L). According to Equation

(2), we have the following equation.

TAccess(Q
′
i) = TStartup(Q

′
i) + TRetr.(Q

′
i) (3)

Let a seriesa(j), 1 ≤ j ≤ |Q′
i|, represent thesortedplacements of all required data items ofQ

′
i, and

b be |Q′
i|. Since the placements of all data items of the refined queryQ

′
i are distinct (by Lemma 2),

TStartup(Q
′
i) andTRetr.(Q

′
i) can be formulated by the following lemmas.

Lemma 3: TStartup(Q
′
i) can be formulated as

TStartup(Q
′
i) =

s

B × L
×





b−1∑

j=1

[
a(j + 1)− a(j)

]2

2
+

[
L− a(b) + a(1)

]2

2





.

Lemma 4: TRetr.(Q
′
i) can be formulated as

TRetr.(Q
′
i) =

s

B × L

{
(L− a(b) + a(1))× (a(b)− a(1) + 1)

+
b∑

j=2

[
(a(j)− a(j − 1))× (L− a(j) + a(j − 1) + 1)

]}
.

Then, the average access time ofQ
′
i can be obtained by Lemmas 3, 4 and Equation (3).

We now summarize the derivation of the average access time of a query profile. According to

Equation (1), the average access time of a query profile (i.e.,TAccess(Q)) is a weighted summation of
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the average access time of each queryQi (i.e., TAccess(Qi)). To calculateTAccess(Q), we first refine

Qi by query refinement. The results of refiningQi are a refined queryQ
′
i and an integercycleNo.

According to Equation (3), the average access time ofQ
′
(i.e.,TAccess(Q

′
i)) is equal to the summation of

the startup time and the retrieve time ofQ
′
i which can be derived by Lemmas 3 and 4. WithTAccess(Q

′
)

andcycleNo, TAccess(Qi) can be obtained by Lemma 1. Finally, after obtainingTAccess(Qi) for each

queryQi, TAccess(Q) can be calculated by Equation (1). The algorithmic form of the procedure to

obtainTAccess(Q) is given in Section 4.1.

4 Design of Genetic Algorithm

4.1 Chromosome Representation and Fitness Evaluation

By the definitions in Section 2, a broadcast program can be transformed into a list as shown in Figure

6. Partially mapped crossover (abbreviated as PMX) [9] is a widely-used crossover method when the

chromosomes are encoded as lists, and is taken as the crossover operator. Here, we use swap operator

as the mutation operator. Fitness is the measurement of the quality of the chromosomes, and the GA

is designed to search the chromosome with the highest fitness (i.e, maximize the fitness). Since the

goal of dependent data broadcast is to minimize the average access time of the given query profile, the

fitness function is defined asFitness(P ) = 1
TAccess(Q)

.

According to Equation (1),TAccess(Q) is a weighted summation of allTAccess(Qi). In addition,

TAccess(Qi) for each queryQi can be calculated on the basis of the theoretical results derived in Section

3. Hence,TAccess(Q) can be obtained by Equation (1) after the calculation ofTAccess(Qi) for each

queryQi. The algorithmic forms of the calculations ofTAccess(Qi) andTAccess(Q) are as below. After
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Figure 6: The mapping of a broadcast program and its corresponding chromosome

TAccess(Q) is calculated, the fitness value of each chromosome can be obtained based on the definition

of fitness function.

Procedure CalAccessTime(Q,P )
Input : A query profileQ and a broadcast programP .
Output : TAccess(Q) over the broadcast programP .

1: TAccess(Q) ← 0
2: for i = 1 to |Q| do
3: TAccess(Q) ← TAccess(Q) + CalAccessT imeOfQuery(Qi, P )× Pr(Qi)
4: end for
5: returnTAccess(Q)

Function CalAccessTimeOfQuery(Qi, P )
Input : A queryQi and a broadcast programP .
Output : TAccess(Qi) on the broadcast programP .

1: (Q
′
i, cycleNo)←QueryRefinement(Qi, P ) /* Refine the queryQi */

2: CalculateTStartup(Q
′
i) andTRetr.(Q

′
i) in accordance with the results of Lemma 3 and 4

3: TAccess(Q
′
i) ← TStartup(Q

′
i) + TRetr.(Q

′
i)

4: returnTAccess(Q
′
i) + cycleNo× L× s

B
/* According to Lemma 1 */

4.2 Complexity Analysis

In this paper, we terminate the GA after a specified number of generations (nGen). It is intuitive that the

optimal solution can be obtained by exhaustive search. However, when exhaustive search is employed,

the time complexity is in proportion to the size of search space(i.e.,O(|D|!)) which makes exhaustive

search infeasible. On the other hand, for a given population sizenPop afternGen generations, the size of

the search space of the proposed GA is reduced toO(nPop×nGen). It is noted that the time complexity is

dominated by the number of objective function evaluations. Since the time complexity of the objective
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Parameters Values

The size of population (nPop) 4
The probability of crossover (PC) 0.5
The probability of mutation (PM ) 0.5
The size of each data item (s) 8K bytes
The bandwidth of each broadcast channel (B) 80K bytes/sec.

Table 1: System Parameters in the example

function isO(|Q|×|D|), the overall time complexity of the proposed GA isO(nPop×nGen×|Q|×|D|).

Next, we analyze the space complexity of the GA. There are two main data structures in the GA.

One is used to store the whole query profile, and therefore, the size of this data structure isO(|Q| ×

AvgQLen), whereAvgQLen represents the average query length. The other data structure is used to

store the chromosomes. Since there arenPop chromosomes and the length of one chromosome is equal

to L×n = |D|, the size of this data structure isO(nPop×|D|). As a result, the overall space complexity

of the proposed GA isO(|Q| × AvgQLen + nPop × |D|).

4.3 An Illustrative Example

Figure 7 shows an example to illustrate the execution of the proposed algorithm. The query profile is

shown in Figure 3 and the system parameters of this example are given in Table 1. Note that only the

process of the first generation of the proposed GA is described in Figure 7, since GA is iterative and

the process of each iteration (i.e., generation) is similar to one another.

In the beginning, since the initial population is empty, four chromosomes (i.e.,C1, C2, C3 and

C4) are randomly generated as shown in Figure 7a. Then, the fitness values of all chromosomes are

calculated in fitness evaluation phase. Consider the fitness evaluation ofQ1 on C1. After query re-

finement, we haveQ
′
1 = {D1, D2} andcycleNo = 1. In accordance with Lemma 1 and Equation

(3), TStartup(Q
′
1) andTRetr.(Q

′
1) should be calculated before the calculation ofTAccess(Q1). By Lemma
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ID Representation Fitness Selection Prob.

C1 {D1, D2, D6, D4, D3, D5} 1.86 25.41%
C2 {D4, D2, D6, D1, D5, D3} 1.82 24.863%
C3 {D2, D3, D1, D5, D6, D4} 1.82 24.863%
C4 {D4, D1, D5, D3, D6, D2} 1.82 24.863%

(a) Initial population

ID Representation Fitness Selection Prob.

C1 {D1, D2, D6, D4, D3, D5} 1.86 25.272%
C2 {D4, D2, D6, D1, D5, D3} 1.82 24.728%
C1 {D1, D2, D6, D4, D3, D5} 1.86 25.272%
C3 {D2, D3, D1, D5, D6, D4} 1.82 24.728%

(b) The result of selection

ID Representation Fitness Selection Prob.

C5 {D4, D2, D6, D1, D3, D5} 1.86 25.272%
C6 {D1, D2, D6, D4, D5, D3} 1.82 24.728%
C1 {D1, D2, D6, D4, D3, D5} 1.86 25.272%
C3 {D2, D3, D1, D5, D6, D4} 1.82 24.728%

(c) The result of crossover

ID Representation Fitness Selection Prob.

C5 {D4, D2, D6, D1, D3, D5} 1.86 24.668%
C7 {D6, D1, D2, D5, D4, D3} 1.86 24.668%
C1 {D1, D2, D6, D4, D3, D5} 1.86 24.668%
C8 {D2, D3, D6, D1, D5, D4} 1.96 25.996%

(d) The result of mutation

Figure 7: The first generation of the proposed GA

D1 D5 D2

D6 D4 D3

Figure 8: The result broadcast program of the example
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3, we can obtainTStartup(Q
′
1) = 8

80×3
×

[
(2−1)2

2
+ (3−2+1)2

2

]
= 1

12
. Similarly, we haveTRetr.(Q

′
1) =

8
80×3

×
[
(3 − 2 + 1) × (2 − 1 + 1) + (2 − 1) × (3 − 2 + 1 + 1)

]
= 7

30
, and TAccess(Q

′
1) =

TStartup(Q
′
1)+TRetr.(Q

′
1) = 1

12
+ 7

30
= 19

60
. Finally, we haveTAccess(Q1) = 19

60
+1×3× 8

80
= 37

60
= 0.6167.

By similar approach, we haveTAccess(Q2) = TAccess(Q3) = 11
20

= 0.55 andTAccess(Q4) = 7
20

=

0.35. On the basis of Lemma 1, the average access time of the query profile onC1 is TAccess(Q) =

0.4 × 0.6167 + 0.2 × 0.55 + 0.2 × 0.55 + 0.2 × 0.35 = 0.53668. The fitness value ofC1 is equal to

1
0.53668

= 1.86. Similarly, the fitness values ofC2, C3 andC4 are as shown in Figure 7a.

In selection phase, the selection probability ofC1 is equal to 1.86
1.86+1.82+1.82+1.82

= 25.41%. Similarly,

the selection probabilities of other chromosomes are as shown in Figure 7a. Then the chromosome se-

lection executes four (i.e., the value ofnPop) times, and in each execution of chromosome selection,C1,

C2,C3 andC4 are selected with probabilities 25.41%, 24.863%, 24.863% and 24.863%, respectively.

Note that one chromosome can be selected multiple times. The result of selection in this example is

shown in Figure 7b.

In crossover phase, on the average, 50% of chromosomes are selected to crossover sincePC = 0.5.

We assume thatC1 andC2 are selected to crossover. After the execution of crossover operator (PMX

in this example), two offspring ofC1 andC2 (i.e.,C5 andC6) are generated and the result of crossover

is described in Figure 7c. Interested readers are referred to [9] for the details of PMX. In mutation

phase, we assume thatC3 and C6 are selected to mutate, and the result of mutation is shown in

Figure 7d. Finally, the chromosome with largest fitness value is recorded as the best chromosome.

In this iteration, the best chromosome isC8 = {D2, D3, D6, D1, D5, D4}. A better chromosome

{D1, D5, D2, D6, D4, D3} can be obtained by successive iterations. This chromosome is then trans-

formed into the broadcast program as shown in Figure 8.
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Parameters Values

The number of generations (nGen) 200
The size of population (nPop) 20
The probability of crossover (PC) 0.5
The probability of mutation (PM ) 0.5
The size of each data item (s) 8K bytes
The bandwidth of each broadcast channel (B) 80K bytes/sec.
The number of data items (|D|) 1000
The number of queries (|Q|) 500
The average query length 15
The Zipf parameter 0.4

Table 2: System Parameters

5 Performance Evaluation

5.1 The System Model

We implement our GA-based algorithm with GAlib [27]. In addition, we also implement a query profile

generator based on the approach mentioned in [21]. The query profile generator contains the following

adjustable parameters: (1) the size of database (|D|), (2) the number of queries (|Q|), (3) the average

length of queries and (4) the fanout of each data item. The dependency among data items is modeled as a

dependency graph. The fanout of each data item represents the degree of the corresponding vertex in the

dependency graph. The probability of the queryQi issued by users is assumed to bePr(Qi) =
( 1

i
)θ

∑|Q|
j=1

( 1
j
)θ

whereθ is the parameter of the Zipf [31] distribution. Table 2 shows the system parameters in our

experiments. The simulator and query profile generator are coded in C++.

In addition to the proposed GA, named as scheme GA, we also implement scheme VFK [22],

GREEDY and OPT for comparison purposes. Scheme VFK is an effective algorithm which can ef-

ficiently generate a broadcast program in multiple channels. As shown in [22], the results of VFK

are very close to the optimal ones if there is no dependency among data items. Scheme OPT is an

exhaustive search algorithm which is able to obtain the optimal broadcast programs.
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Scheme GREEDY is a greedy algorithm which generates a broadcast program for unordered queries.

The rationale of scheme GREEDY is to place the data items within the same query closely since these

data items are likely to be requested together. Scheme GREEDY takes the chromosome proposed

in Section 4.1 as the representation of a broadcast program. The details of scheme GREEDY are as

follows. First, all queries in the query profile are sorted according to their access probabilities in de-

scending order. In addition, the resulting chromosome is initialized as empty and all data items are

marked as UNPLACED states. Scheme GREEDY then considers each query according to the sorted

order. In the consideration of a query, sayQi, data items in PLACED states are removed fromQi since

their placements are determined (i.e., they have been placed). Then, the remaining data items inQi are

appended to the chromosome. In addition, these data items are marked as PLACED states. Scheme

GREEDY considers the queries in the query profile in turn until all data items are in PLACED states.

Finally, scheme GREEDY transforms the resulting chromosome into the corresponding broadcast pro-

gram and takes this broadcast program as the result.

We use the query profile shown in Figure 3 to illustrate the execution of scheme GREEDY. Initially,

all data items are in UNPLACED states and the resulting chromosome is set to be empty. The order that

scheme GREEDY considers these queries isQ1, Q2, Q3 andQ4. Note that the order ofQ2, Q3 andQ4

are randomly determined sincePr(Q2) = Pr(Q3) = Pr(Q4). When consideringQ1, sinceD1, D2,

D3 andD4 are in UNPLACED states, scheme GREEDY appends them into the resulting chromosome

and marks them as PLACED states. Hence, the resulting chromosome after the consideration ofQ1

is {D1, D2, D3, D4}. Then, scheme GREEDY considersQ2. Nothing happens since all data items

in Q2 are in PLACED states. When consideringQ3, scheme GREEDY appendsD6 to the resulting

chromosome. Then, the resulting chromosome becomes{D1, D2, D3, D4, D6}. Similarly, the resulting
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chromosome is{D1, D2, D3, D4, D6, D5} after the consideration ofQ4. Finally, the resulting broadcast

program can be obtained by transforming the resulting chromosome by the steps shown in Figure 6.

For performance comparison, the performance gain of scheme A over scheme B is defined as

Avg. Access Time of scheme B− Avg. Access Time of scheme A
Avg. Access Time of scheme B

.

In addition, we use performance degradation as the performance metric when comparing scheme A and

scheme OPT. The performance degradation of scheme A over scheme OPT is defined as

Avg. Access Time of scheme A− Avg. Access Time of scheme OPT
Avg. Access Time of scheme OPT

.

5.2 Experimental Results

5.2.1 The Evolution of Scheme GA

As mentioned in Section 4, scheme GA is an iterative process. The quality of obtained result and

execution time is dependent on the value ofnGen. Obviously, the obtained result is of better quality

whennGen is larger. However, a largenGen implies long execution time. Hence, it is important to

determine a proper value ofnGen to strike a balance between the execution time and the quality of

result. In this experiment, we investigate the evolution process of scheme GA by varying the value

of nGen. Figure 9 shows the effect of different values ofnGen ranging from 0 to 500 on the average

access times of the resulting broadcast programs. The corresponding execution times of all schemes are

presented in Figure 10. Note thatnGen = 0 represents the case of randomly generatingnPop solutions.

As shown in Figure 9, since scheme OPT, GREEDY and VFK are independent ofnGen, the average

access times of the result broadcast programs of these schemes are not affected bynGen. We observe
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that the results of VFK are much worse than that of other schemes, and hence, the results of VFK are

omitted henceforth. Although the results of VFK are close to the optimal ones when the data items are

independent of one another, scheme VFK does not perform well due to the lack of the consideration

of data dependency. This result shows the necessity of the consideration of data dependency. We also

observe that scheme GREEDY outperforms scheme VFK . This can be explained by the reason that

scheme GREEDY considers the data dependency by placing the required data items of the queries with

higher access probabilities as closely as possible.

The average access times of the broadcast programs of scheme GA decrease as the value ofnGen

increases. In addition, the results obtained by scheme GA become closer to the optimal ones when the

value ofnGen is larger. However, the speed of convergence becomes slow whennGen is larger than 200.

Therefore, we setnGen to be 200 in the following experiments. We observe that whennGen is small,

scheme GREEDY outperforms scheme GA. However, whennGen is large enough (larger than 80 in this

experiment), the results of scheme GA are better than that of scheme GREEDY. The performance gain

of scheme GA over GREEDY increases from 17% to 31.4% whennGen increases from 100 to 500.
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ied
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Figure 12: The execution time withn varied

As shown in Figure 10, the execution time of scheme GA increases linearly as the value ofnGen

increases, which fully agrees with the time complexity analysis in Section 4.2. Since scheme VFK

and GREEDY are simple heuristics, they execute much faster than scheme GA. In addition, since the

execution time of scheme OPT is much longer than that of other schemes, the execution time of scheme

OPT is omitted in this and the following experiments.

5.2.2 The Effect of the Number of Channels

This experiment investigates the effect of the number of channels in the average access times and the

execution times of all schemes. Figures 11 and 12 show the average access times and execution times

of scheme GA, GREEDY and OPT with the number of broadcast channels (i.e.,n) varied. The value

of n ranges from 2 to 10.

Consider the results shown in Figure 11. The average access times of all schemes decrease as the

number of channels increases. This result agrees with our intuition in that the increase of the network

bandwidth causes the average access time to decrease. However, the improvement on the average access

time decreases as the number of channels increases. As a result, the determination of the number of
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broadcast channels should consider the balance between performance improvement and the number

of channels used. The number of broadcast channels suggested by our experiment is around 6. The

performance gain of scheme GA over scheme GREEDY increases from 13.33% to 25.67% when the

number of channels increases from 2 to 10. This result shows that scheme GA outperforms scheme

GREEDY especially when the number of channels is large.

As shown in Figure 12, the execution time of scheme GREEDY is not affected by the number of

channels. However, the execution time of scheme GA decreases as the number of channels increases.

This result is caused by query refinement. By Definition 3, a large value ofn implies a short broadcast

program (i.e., a small value ofL). According to function QueryRefinement, the number of the required

data items of each refined queryQ
′
i is always smaller than or equal toL. The decrease ofL will incur

short refined queries and therefore decrease the time to calculateTStartup(Q
′
i) andTRetr.(Q

′
i).

5.2.3 Comparison of Single and Multiple Channel Environments

We next investigate the effect of the number of channels by fixing the total available bandwidth. We

set the total bandwidth to be 800K bytes/sec, and the number of channels is set to be from 1 to 10. The

average access times of all schemes with the number of channels varied are given in Figure 13.

As observed, the average access times of all schemes increase as the number of channels increases.

This result agrees with the intuition that in a single environment, all bandwidth can be best utilized

to minimize the average access time. The utilization of bandwidth degrades in a multiple channel

environment since a mobile client can only listen on one channel at a time. Multiple channels also

increase the difficulty to minimize the average access time. Hence, the performance degradation of

scheme GA over scheme OPT increases from 0.96% to 8.02% as the number of channels increases
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from 1 to 10. Under the same condition, it is interesting to see that the performance degradation of

scheme GREEDY over scheme OPT increases from 5.64% to 48.88%. This is explained by the reason

that scheme GREEDY only tries to place data items with the same query as closely as possible and

does not consider the effect of multiple channels. As a result, the performance degradation of scheme

GREEDY over scheme OPT becomes more severe when the number of channels increases.

5.2.4 The Effect of Average Fanout of Data Items

This experiment evaluates the effect of the average fanout of data items. Figure 14 shows the average

access times of all schemes with the value of average fanout varied. The value of average fanout is set

to be from 5 to 30. As shown in Figure 14, the average fanout of data items only slightly affects the

results of all schemes. The average access time of scheme OPT ranges from 9.8 to 10.2. In addition,

scheme GA outperforms scheme GREEDY in this experiment. The performance gain of scheme GA

over scheme GREEDY ranges from 16.62% to 26.41%.
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5.2.5 The Effect of Average Query Length

In this experiment, we investigate the effect of the average query length. Figure 15 shows the average

access times of all schemes with the value of average query length varied. The value of average query

length is set from 5 to 30. It is intuitive that the average access time increases as the value of average

query length increases. We observe that the performance degradation of scheme GA over scheme OPT

increases from 8.24% to 13.67% when the value of average query length increases from 5 to 15. In

addition, the performance degradation of scheme GA over scheme OPT keeps in the range between

11.5% and 13.5% when the average query length is larger than 15. On the other hand, the performance

degradation of scheme GREEDY over scheme OPT increases from 15.11% to 41.95%. In addition,

the performance degradation of scheme GREEDY over scheme OPT keeps in the range between 34%

and 43.5% when the average query length is larger than 15. It can be explained that the optimization

constraints are relaxed when the value of query length is small. Hence, all schemes perform well with a

small value of average query length. In addition, scheme GA outperforms scheme GREEDY especially

when the value of average query length is large. Since scheme GREEDY is a simple heuristic, the
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performance of scheme GREEDY degrades severer than that of scheme GA when the optimization

constraints are strict (i.e., the value of average query length is large).

5.2.6 The Effect of the Skewness of Queries

In this experiment, we consider the effect of the skewness of the access probabilities of queries. The

skewness is controlled by the value ofθ. The larger the value ofθ, the more skewed the access proba-

bilities of the queries are. The value ofθ is set to be from 0 to 1.2. Note thatθ = 0 indicates that the

access probabilities of all queries are uniform (i.e.,Pr(Qi) = Pr(Qj) for all i andj).

Figure 16 shows the average access times of all schemes withθ varied. We observe that the average

access times of all schemes decrease as the value ofθ increases. It is because that when the access

probabilities are not skewed, minimizing the average access time is not effective since more queries

are involved. When the access probabilities of queries are skewed, optimizing hot queries is able to

minimize the average access time well. Hence, scheme GREEDY performs better when the access

probabilities are highly skewed since scheme GREEDY favors queries with high access probabilities.

As a result, the performance gain of scheme GA over scheme GREEDY decreases from 27.79% to

13.73% as the value ofθ increases from 0 to 1.2.

5.2.7 Summary

Based on the above experimental results, the characteristics of scheme GA and GREEDY are summa-

rized in this subsection according to the following respects.

• Result effectiveness:The relative performance of schemes depends on the value ofnGen. If nGen

is large enough (i.e., given sufficient time to execute), scheme GA is more effective than scheme
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GREEDY. However, if the time to execute is not sufficient (i.e.,nGen is too small), scheme

GREEDY outperforms scheme GA.

• Execution speed:Scheme GREEDY is faster than scheme GA due to the simplicity of scheme

GREEDY.

• Performance stability:If nGen is large enough (i.e., given sufficient time to execute), the results

of scheme GA are always close to the optimal ones. On the other hand, the performance of

the results of scheme GREEDY depends on several factors. For example, as pointed out above,

scheme GREEDY does not perform well when the access probabilities of queries are not skewed.

Hence, the performance of scheme GA is more stable than that of scheme GREEDY.

• Convergence:Since genetic algorithms are convergent processes, the results of scheme GA be-

come better when the allowed time to execute is longer. On the contrary, the results of scheme

GREEDY are not affected by the allowed time to execute.

5.3 Adaptation Ability of Scheme GA

We next investigate the adaptation ability of scheme GA against the change of the query profile.

To adapt the change of the query profile, an adaptive version of scheme GA (referred to as scheme

Adaptive-GA) is proposed. In scheme Adaptive-GA, scheme GA is activated periodically, and we call

each activation a run. In each run, scheme GA is executed for a predetermined time interval. The

resulting population of the current run is taken as the initial population of the next run.

According to the observations in Section 5.2.7, the relative merits of scheme GREEDY and GA are

in fact complementary rather than competitive. Therefore, we propose a scheme named Augmented-
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GA to take advantage of the respective merits of both schemes. In essence, scheme Augmented-GA is

a revised version of scheme Adaptive-GA. In each run of scheme Augmented-GA, scheme GREEDY

is executed and the result of scheme GREEDY is inserted into the population of the current run.

To compare the adaptation ability of scheme Adaptive-GA and Augmented-GA on the change of

the query profile, we execute scheme GREEDY and scheme OPT in each run. We assume the time

interval between runs to be one hour. The allowed time to execute scheme GA for each run is set to six

seconds. In the first run, the value ofθ is set to be 0.6. The value ofθ is changed to 1.2 after a period

which is, without loss of generality, eight hours. The order of the access probabilities of all queries is

also changed. The value ofθ is changed to 0.2 after more eight hours. The experiment executes for 24

hours. The average access times of scheme GREEDY, OPT, Adaptive-GA and Augmented-GA with

time varied are shown in Figure 17.

In the first run, since the allowed time to execute scheme GA is short, scheme GREEDY outper-

forms scheme Adaptive-GA. Since the result of scheme GREEDY is inserted into the population of

scheme Augmented-GA, the result of scheme Augmented-GA is at least as good as that of scheme

GREEDY. In the successive runs (from the second run to the eighth run), due to the convergence prop-
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erty of GAs, the results of schemes Adaptive-GA and Augmented-GA become better and better. We

observe that scheme Adaptive-GA outperforms scheme GREEDY after the fifth run. Due the insertion

of the result of scheme GREEDY, the convergence speed of scheme Augmented-GA is faster than that

of scheme Adaptive-GA. Hence, scheme Augmented-GA outperforms scheme Adaptive-GA. The re-

sults of schemes GREEDY and OPT remain stable in the first eight runs since the query profile is not

changed.

The first change of the query profile occurs in the ninth run. As the results shown in Section 5.2.6,

the increase of skewness will increase the average access time. Hence, the average access times of

schemes GREEDY and OPT decrease after the ninth run. Scheme Adaptive-GA is able to adapt the

change of the query profile. However, since the allowed time to execute scheme GA is short, scheme

Adaptive-GA in the ninth run is outperformed by scheme GREEDY. The results of schemes Adaptive-

GA and Augmented-GA improve in the subsequent runs until the second change of the query profile.

Since the second change of the query profile occurs in the 17th run, the scenario between the 17th run

and the 25th run is similar to that between the ninth run and the 16th run.

This experiment result shows that scheme Augmented-GA can successfully take advantages of the

respective merits of scheme GREEDY and scheme GA to achieve better performance than pure GA-

based schemes. In fact, with scheme Augmented-GA, one can either decrease the period of each run or

increase the execution time to speed up adaptation and convergence.

6 Conclusion

Data broadcast is an important data dissemination technique on mobile computing environments. Gen-

erating broadcast programs to effectively reduce the average waiting time is an important issue of data
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broadcast. We explored in this paper the problem of broadcasting dependent data in multiple broadcast

channels for unordered queries. By analyzing the model of dependent data broadcasting, we derived

several theoretical properties for the average access time in a multiple channel environment. In light of

the theoretical results, we developed scheme GA to generate broadcast programs for unordered queries.

To evaluate the effectiveness of scheme GA, we developed scheme OPT which is able to generate the

optimal broadcast programs by exhaustive search. In addition, we also designed scheme GREEDY to

efficiently generate broadcast programs for unordered queries in a greedy manner.

To measure the performance of scheme GA, several experiments were then conducted. Our exper-

imental results showed that the theoretical results derived are able to guide the search of the genetic

algorithm very effectively, thus leading to broadcast programs of very high quality. Specifically, the

performance of the broadcast programs generated by scheme GA is close to that generated by scheme

OPT (i.e., the performance of the optimal broadcast programs). After summarizing the experimental

results, we observed that the relative merits of scheme GA and scheme GREEDY are in fact comple-

mentary rather than competitive. As a result, we developed scheme Augmented-GA to take advantage

of the respective merits of both schemes. Experimental results showed that scheme Augmented-GA

can achieve better performance than pure GA-based schemes.
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Appendix: Proofs of All Lemmas

Proof of Lemma 1:Consider the procedure QueryRefinement in Section 3.2. SincecycleNo is defined

as “the maximum of all|H[j]|”−1, the maximal number of data items in allH[j] for 1 ≤ j ≤ L is

cycleNo + 1. Since the mobile device can only listen to at most one broadcast channel at a time, the

mobile device can retrieve at most one data item inH[j] in one full broadcast cycle (i.e., the mobile

device listens on the broadcast channels forL × s
B

). Therefore, to read all required data items ofQi,

the mobile device should listen on the broadcast channels at leastcycleNo full broadcast cycles.

Suppose that the mobile user submitsQi in them-th broadcast cycle, and the distance between the

starting point ofm-th broadcast cycle and the moment that the mobile user submitsQi to bex. Assume

thatx follows a uniform distribution over(0, L). After listening on the broadcast channels forcycleNo

full broadcast cycles, the mobile device should then retrieve data items inQ
′
i in the(m+ cycleNo+1)-

st broadcast cycle. Denote the access time when the mobile user submitsQi in offset x as t(Q, x).

TAccess(Qi) can be formulated as

TAccess(Qi) =
1
L
×

[∫ L

0
t(Qi, x)dx

]
× s

B
=

1
L
×

[∫ L

0

(
cycleNo× L + t(Q

′
i, x)

)
dx

]
× s

B

= TAccess(Q
′
i) + cycleNo× L× s

B
. Q.E.D.

Proof of Lemma 2:According to the procedure QueryRefinement in Section 3.2, all data items of equal

placements are hashed into the same bucket. Due to the loop in line 5-9, for each bucket inH, at most

one data item will be selected and inserted intoQ
′
i. Therefore, for two randomly selected data items

from Q
′
i, sayDx andDy, we haveplacement(x) 6= placement(y). Q.E.D.

Proof of Lemma 3:Consider the proof of Lemma 2. Let the seriesa(j), 1 ≤ j ≤ |Q′
i| represent the

sortedplacements of all data items required byQ
′
i in ascending order andb represent|Q′

i|. Without

loss of generality, we reorder all required data items ofQ
′
i to be{Dk(1), Dk(1), · · · , Dk(b)} according to

the placements of all data items in ascending order. Note that the placement ofDk(j) is a(j). Due to

the result of Lemma 2, all elements in the seriesa(j) are distinct with one another.

As shown in Figure 18, the broadcast program can be divided intob + 1 parts by the start time of

Dk(j), k = 1, 2, · · · , b. Consider the same scenario in the proof of Lemma 1. To minimize the access

time, the mobile device will readDk(p) as the first retrieved data item whenx lies on partp, 1 ≤ p ≤ b.

In addition, the mobile device will readDk(1) in (m + 1)-st broadcast cycle whenx lies on part(b + 1).
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Figure 18: The illustration of the proof of
Lemma 3

Dk(1)

Dk(j)
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r(1)
r(j)

r(b)

Figure 19: The illustration of the proof of
Lemma 4

Recall that the time interval between the start time of them-th broadcast cycle and the moment of the

appearance ofDj is (placement(j)−1)× s
B

= (a(j)−1))× s
B

. Sincex follows a uniform distribution

over (0, L), the average startup time ofQi on the broadcast program can be formulated as below.

TStartup(Q
′
i) =

1
L
×

{∫ a(1)−1

x=0

[
a(1)− 1− x

]
dx +

∫ a(2)−1

x=a(1)−1

[
a(2)− 1− x

]
dx

+ · · ·+
∫ a(b)−1

x=a(b−1)−1

[
a(b)− 1− x

]
dx +

∫ L

x=a(b)−1

[
L− x + a(1)− 1

]
dx

}
× s

B

=
s

L×B
×





b−1∑

i=1

[
a(i + 1)− a(i)

]2

2
+

[
L− a(b) + a(1)

]2

2





Q.E.D.

Proof of Lemma 4:Consider the same scenario in the proof of Lemma 3. Letp(j) represent the

probability that the mobile device readsDk(j) as the first retrieved data item. For2 ≤ j ≤ b, p(j) is the

probability thatx lies on partj. In addition,p(1) is the probability thatx lies on part1 andb + 1. p(j)

can be formulated asp(j) = L−a(b)+a(1)
L

whenj = 1 andp(j) = a(j)−a(j−1)
L

whenj 6= 1.

Now consider Figure 19. Since the placements ofDk(j) j = 1, 2, · · · , b are distinct and in an ascend-

ing order, the mobile device will sequentially retrieveDk(j), Dk(j+1), · · · , Dk(b) in them-th broadcast

cycle and then retrieveDk(1), Dk(2), · · · , Dk(j−1) in the(m + 1)-th broadcast cycle. Letr(j) represent

the retrieval time ofQ
′
when the mobile device readsDk(j) as the first retrieved data item.r(j) can be

formulated asr(j) = (a(b) − a(1) + 1) × s
B

whenj = 1 andr(j) = (L − a(j) + a(j − 1) + 1) × s
B

whenj 6= 1. Then,TRetr.(Q
′
) can be formulated asTRetr.(Q

′
) =

∑b
j=1 p(j)× r(j)

=
s

B × L

{
(L− a(b) + a(1))× (a(b)− a(1) + 1) +

b∑

j=2

[
(a(j)− a(j − 1))× (L− a(j) + a(j − 1) + 1)

]}
.

Q.E.D.
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