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Outline
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Introduction: Background

• Dictionary learning and sparse coding

• Sparse factor analysis model 

(Factor/feature/dish/dictionary atom)

• Indian Buffet process and beta process
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Introduction: Background

• Beta process and Bernoulli process (Thibaux & 

Jordan AISTATS2007)

• Indian Buffet process (Griffiths & Ghahramani 2005)
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Introduction: Motivation

• Exchangeability assumption is not true

Image interpolation with BPFA (Zhou et al. 2009)

80% pixels are missing at random
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Introduction: Covariate Dependence

• Dependent Dirichlet process

� MacEachern (1999), Duan et al. (2007), Griffin & Steel 

(2006)

• Non-exchangeable IBP

� Phylogenetic IBP (Miller, Griffiths & Jordan 2008)

� Dependent IBP (Williamson, Orbanz & Ghahramani 2010)

• Bayesian density regression (Dunson & Pillai 2007)
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Review of Beta Process (Thibaus & Jordan 2007)

• A beta process is a positive Levy process, whose Levy 

measure lives on                  and can be expressed as 

• If the base measure       is continuous, then                   

is drawn from a degenerate beta 

distribution parameterized by    

• If                       , then
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Dependent Hierarchical Beta Process

• Random walk matrix 

• dHBP

• Covariate-dependent correlations
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Dictionary Learning with dHBP

BP

dHBP
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• Missing data

� Full data: 

� Observed:                        ,   Missing:

• Sparse spiky noise

• Recoverd data: 

Missing Data and Outliers
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• Independence chain Metropolis-Hastings

• Slice sampling

• Gibbs sampling

MCMC Inference
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Experiments

• Image interpolation

� Missing pixels

� Locations of missing pixels are known

• Image denoising

� WGN + sparse spiky noise

� Amplitudes unknown

� Locations of spiky noise are unknown

• Covariates: patch spatial locations



13

Image Interpolation: BP vs. dHBP

BP: 26.9 dB dHBP: 29.92 dB

80% pixels missing at random
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BP atom usage dHBP atom usage

BP dictionary dHBP dictionary Dictionary atom activation probability map

dHBP recovery
OriginaldHBP recovery

BP recoveryObserved

Image Interpolation: BP vs. dHBP
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Observed (20%) BP recovery

dHBP recovery Original

dHBP recovery

Image Interpolation: BP vs. dHBP
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Image Interpolation: BP vs. dHBP

Observed (20%) BP recovery

dHBP recovery Original

dHBP recovery
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Spiky Noise Removal: BP vs. dHBP

BP denoised imageNoisy image (WGN + Sparse 

Spiky noise)
BP dictionary

dHBP denoised imageOriginal image dHBP dictionary
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Spiky Noise Removal: BP vs. dHBP

BP denoised imageNoisy image (WGN + Sparse 

Spiky noise)

dHBP denoised imageOriginal image dHBP dictionary

BP dictionary
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Future Work

• Landmark-dHBP

� J landmarks

� J << N

• Locality constraint for manifold learning

� Covariates: cosine distance between samples

� Dictionary atoms look like the data

• Variational inference, online learning

• Other applications

� Super-resolution

� Deblurring

� Video background & foreground modeling
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• A dependent hierarchical beta process is 

proposed

• Efficient hybrid MCMC inference is presented

• Encouraging performance is demonstrated on 

image-processing applications

Conclusions


