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Abstract

In this paper we propose two constructions
of dependent normalized random measures,
a class of nonparametric priors over depen-
dent probability measures. Our construc-
tions, which we call mixed normalized ran-
dom measures (MNRM) and thinned nor-
malized random measures (TNRM), involve
(respectively) weighting and thinning parts
of a shared underlying Poisson process be-
fore combining them together. We show that
both MNRM and TNRM are marginally nor-
malized random measures, resulting in well
understood theoretical properties. We de-
velop marginal and slice samplers for both
models, the latter necessary for inference in
TNRM. In time-varying topic modeling ex-
periments, both models exhibit superior per-
formance over related dependent models such
as the hierarchical Dirichlet process and the
spatial normalized Gamma process.

1. Introduction

In recent years there has been growing interest in
extending models for random probability measures
(RPMs) like the Dirichlet process (DP) to dependent
random probability measures (MacEachern, 1999).
A popular class is the hierarchical Dirichlet process
(HDP) (Teh et al., 2006), which introduces dependen-
cies in an exchangeable set of DPs by having them
share the same random base measure. A number of al-
ternate approaches exist in the literature, many index-
ing DPs by more structured sets, and allowing more
refined control of dependency. Examples include (Sre-
bro & Roweis, 2005; Griffin & Steel, 2006; Caron et al.,
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2007; Ahmed & Xing, 2008; MacEachern et al., 2001;
Gelfand et al., 2005). Of relevance to this paper is
the spatial normalized Gamma process (Rao & Teh,
2009), which exploits the representation of the DP as
a normalized Gamma process, and constructs depen-
dent DPs from overlapping restrictions of a common
Gamma process. (Lin et al., 2010) considered addi-
tional operations to introduce dependencies between
DPs, viz. subsampling and perturbing atoms of a com-
mon Gamma process.

There has also been a growing body of work extend-
ing the DP to more expressive RPMs. A flexible
framework is the class of normalized random measures
(NRMs) (James et al., 2009), which includes the DP,
the normalized inverse Gaussian process and the nor-
malized generalized Gamma process.

In this paper we consider constructions for depen-
dent random measures, all of which are marginally
distributed as a specific NRM. We propose two ap-
proaches which we call mixed normalized random mea-
sures (MNRM) and thinned normalized random mea-
sures (TNRM), and study these models using tools
from the Poisson process partition calculus of (James,
2005). Our framework encompasses and extends work
such as (Rao & Teh, 2009), (Griffin et al., 2012), (Chen
et al., 2012), (Lin et al., 2010), and (Lin & Fisher,
2012), and is an alternative to (Williamson et al.,
2010). One contribution of this work is a systematic
comparison of these related models, and we find that
on a number of real world datasets, the MNRM (a
novel and simple model) perform best. Additionally,
many of the listed works propose approximate poste-
rior MCMC samplers; here we develop and compare
two exact samplers, a marginal Gibbs sampler and a
slice sampler. We find the latter preferable in most
cases. We also provide faster approximations to this
sampler, as well as bounds on the approximation error.
Proofs are provided in the appendices in the supple-
mentary material.
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2. Normalized Random Measures

In this section we provide a concise review of normal-
ized random measures (NRMs). Consider a Poisson
process N on a product space S = R+×Θ, with inten-
sity ν(w, θ). A completely random measure (CRM) on
Θ is defined as a linear functional of N :

µ̃(dθ) =
∫

R+
wN (dw,dθ) =

∞∑
k=1

wkδθk(dθ) (1)

Here {(wi, θi)} are the atoms of N . The Poisson in-
tensity ν(w, θ) is the density of the Lévy measure of
µ̃ (called Lévy intensity), and is defined so that the
total measure Z =

∫
Θ
µ̃(dθ) =

∫
R+×Θ wN (dw,dθ) is

finite and positive almost surely. A CRM is so called
because of its property that the random masses as-
signed to disjoint sets are independent, this follows
from the properties of the Poisson process (which it-
self is a CRM)1. When ν(w, θ) = Mw−1e−wH(θ), for
some probability density H, we get a homogeneous
Gamma process with concentration parameter M and
base distribution with density H. Other examples in-
clude the stable process, the inverse Gaussian process
and the generalized Gamma process, which has Lévy
intensity ν(w, θ) = Mw−σ−1e−wH(θ) and which in-
cludes the other examples as subclasses.

The total mass is finite and nonzero. An NRM is ob-
tained by normalizing µ̃ to a random probability mea-
sure: µ(dθ) = 1

Z µ̃(dθ). From the Poisson construc-
tion, it follows that like the DP, an NRM is a discrete
probability measure with a countably infinite number
of atoms:

µ =
1
Z

∞∑
k=1

wkδθk , Z =
∞∑
k=1

wk (2)

3. Dependent NRMs

In many applications, one has observations at a finite
collection of indices T = (t1, · · · , tT ), we refer to the
indices as ‘times’ from now on. The observations at
each time t are modeled as i.i.d. draws from a random
probability measure µt. By allowing dependencies in
the measures µt, one allows the sharing of statistical
information between observations at different times.
We use the term dependent normalized random mea-
sures (dNRMs) to refer to a dependent set of random
measures {µt}, each distributed marginally as a NRM.

Here we propose two approaches to model dependen-
cies between the measures µt: mixed normalized ran-

1CRMs can also have random weights at fixed locations,
like most work, we ignore this component.

dom measures (MNRM) and thinned normalized ran-
dom measures (TNRM). We start by defining R :=
{1, . . . , R} for some positive integer R. We refer to
the elements of R as regions, and define a collection
of independent CRMs µ̃r with Lévy intensity νr(w, θ)
for each r ∈ R. At a high level, for each time t,
our approach involves transforming and combining the
CRMs µ̃r (the nature of the transformation differing
for MNRM and TNRM)2. This forms a new CRM µ̃t
at each t, which is then normalized to give probability
measure µt. The shared regions make the CRMs {µ̃t},
and thus the NRMs {µt} dependent. In the following,
we detail the operations used in the constructions.

3.1. Mixed Normalized Random Measures

In our first construction, the CRM at time t is a
weighted combination of the independent CRMs µ̃r.
Let qrt be a nonnegative weight between region r and
time t. We define µt simply as follows:

µt(dθ) =
1

µ̃t(Θ)
µ̃t(dθ), µ̃t(dθ) =

R∑
r=1

qrtµ̃r(dθ) (3)

where µ̃t(Θ) = Zt is the normalizing constant at time
t. Note in particular that µt is a mixture of the indi-
vidual region-specific NRMs µr, with mixing weights
given by qrtµ̃r(Θ)/µ̃t(Θ). We then have:

Proposition 1 Conditioned on the qrt’s, each ran-
dom probability measure µt defined in (3) is
marginally distributed as a NRM with Lévy intensity∑R
r=1

1
qrt
νr(w/qrt, θ).

This result follows from the facts that 1) a scaled CRM
is still a CRM, and 2) a sum of independent CRMs
is still a CRM. See Appendix B for a detailed proof
using characteristic functionals of the CRMs. In our
experiments, we placed independent Gamma priors on
the qrt’s, and inferred their values from the data.

3.1.1. Comparison with related work

The spatial normalized Gamma process (SNGP) of
(Rao & Teh, 2009) is a special case of MNRM, with
the weights fixed to be binary (i.e. qrt ∈ {0, 1}, with
the actual value determined a priori). Our MNRM
is thus a generalization of the SNGP, from a normal-
ized gamma process to a general NRM, and from fixed
and binary qrt’s to arbitrary positive values that will
be inferred along with the rest of the model. On the
other hand, the SNGP imposes a spatial structure to
the qrt’s which may allow better generalization.

2We emphasize that we use r to index the independent
NRMs µr and t to index the dependent NRMs µt.
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Figure 1. Construction of dependent normalized measure
from R independent NRMs µr. In MNRM, G̃rt repre-
sents qrtµ̃r(dθ) defined in (3); while in TNRM it representsP

(b s.t. bt=1) G̃rb(dθ) as defined in (5).

3.2. Thinned Normalized Random Measures

In our previous construction, a set of weights con-
trolled the contribution of a set of CRMs to the NRM
at any time, thus forming a ‘softening’ of (Rao & Teh,
2009) (where each of the CRMs is either present or
absent). Our second construction is a different gen-
eralization of (Rao & Teh, 2009); rather than includ-
ing or excluding entire CRMs, we control whether or
not individual atoms in each of the CRMs are present
in the NRM at a given time. More precisely, to each
region-time pair (r, t) we associate a parameter qrt tak-
ing values in [0, 1].3 qrt is the subsampling rate of the
atoms in region r for time t, with each atom of re-
gion r independently assigned to time t with probabil-
ity qrt (otherwise it is thinned). We call the resulting
NRMs thinned normalized random measures (TNRM).
Define a countably infinite sequence of Bernoulli vari-
ables (zrt1, zrt2 · · · ) for each region-time pair:

zrtk ∼ Bernoulli(qrt) k = 1, 2, · · ·

Then, the probability measure at time t is given by

µt(dθ) =
1

µ̂t(Θ)
µ̂t(dθ), µ̂t(Θ) =

R∑
r=1

∞∑
k=1

zrtkwrk (4)

Again, we can show the µt’s are marginally NRMs:

Proposition 2 Conditioned on the set of qrt’s, each
random probability measure µt defined in (4) is
marginally distributed as a normalized random mea-
sure with Lévy measure

∑
r qrtνr(dw,dθ).

The intuition behind this result is that independently
thinning the atoms of a CRM maintains the property
of complete randomness. Thus, µ̂t is a CRM, and µt,

3Note that this qrt is different from that in MNRM.

which is obtained by normalizing it is an NRM. For a
formal proof, see Appendix B.

3.2.1. Comparision with related work

The idea of thinning atoms is similar to (Lin et al.,
2010) for DPs and to (Chen et al., 2012) for NGGs,
but these were restricted to random probability mea-
sures with chain-structured dependence. In addition,
posterior samplers developed in these prior works were
approximate. The TNRM is also a generalization of a
very recent work (Lin & Fisher, 2012). This model
is restricted to dependent DPs, and again, the pro-
posed sampler has an incorrect equilibrium distribu-
tion (more details in Section 4.2 and Appendix E).
The TNRM is also related to an unpublished report
by (Foti et al., 2012), where they focus on differ-
ent thinning constructions of dependent CRMs. Our
focus is on NRMs; the normalization provides addi-
tional challenges. Their posterior inference is also ap-
proximate, being based on truncated representations
of the CRMs (which are restricted only to Beta and
Gamma CRMs). Finally, the TNRM can be viewed
as an alternative to the IBP compound Dirichlet Pro-
cess (Williamson et al., 2010). These are finite dimen-
sional probability measures constructed by selecting a
finite subset of an infinite collection of atoms (via the
Indian buffet process (IBP)). Our model allows this to
be infinite, allowing it to be used as a convenient build-
ing block in deeper hierarchical models. By treating
the atoms present at each time as features, we can con-
trast the TNRM with the Indian buffet process (Grif-
fiths & Ghahramani, 2011): in addition to allowing
an infinite number of possible features, TNRM allows
the number of active features to display phenomena
like power-law behaviour; this is not possible in the
IBP (Teh & Gorur, 2009; Broderick et al., 2012).

3.2.2. Interpretation as Mixture of NRMs

It is possible to represent the TNRM construction as
a mixture of NRMs. Associate the kth atom in a re-
gion r ∈ R with a binary vector br(k) of length T .
brt (k) = 1 means this atom is inherited by the NRM
µt of time t (i.e. ztrk = 1). Accordingly, we can split
each region r into 2T further subregions, each associ-
ated with atoms with a particular configuration of br.
It is easy to see that with subregion br = br1 · · · brt of
region r is associated a CRM G̃rb with Lévy measure∏T
t=1 q

bt
rt(1− qrt)1−btνr(dw,dθ), so that

µt(dθ) ∝ µ̂t(dθ) =
∑
r∈R

∑
(b s.t. bt=1)

G̃rb(dθ) (5)

Thus, the NRM at any time t can be expressed
as a mixture of a number of NRMs Grb(dθ) =
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G̃rb(dθ)/G̃rb(Θ), this number being exponential in
the number of times T . We can also see from this in-
terpretation that TNRMs can be seen as fixed-weight
(binary) MNRMs but with many more regions (2T ).
The number of components also grows linearly with
the number of regions R; we will see that this flexi-
bility improves the performance of our model without
too great an increase in complexity.

4. Posterior Inference

In the following, we consider a specific NRM viz.
the normalized generalized Gamma process (NGG)4

to demonstrate posterior inference, generalization to
other NRMs is straightforward. The generalized
Gamma process (GGP) is a CRM whose Lévy measure
is given by ν(dw,dθ) = σM

Γ(1−σ)w
−1−σe−wdwH(θ)dθ,

where 0 < σ < 1 is known as the index parameter,
M ∈ R+ is the mass parameter, and H(·) is the base
probability density. Normalizing this CRM gives a
flexible class of NRMs called NGGs, which includes
the DP as a special case, and is preferable in applica-
tions where one wishes to place less informative priors
on the number of clusters, power-law distributions on
the cluster sizes etc. Its flexibility comes without a loss
of computational tractability: the NGG is a so-called
Gibbs-type prior, whose partition probability function
(the clustering probability with the RPM integrated
out) has a convenient closed form that generalizes the
Chinese restaurant process (CRP) (see Appendix A.3).
A consequence of this is that marginal samplers are
available for both MNGG and TNGG. However, we
saw in the previous section that the number of mix-
ture components for TNGG grows exponentially with
the number of times, and this can make the marginal
sampler impractical. Consequently, we also develop
slice samplers that instantiate the underlying RPMs.
Since the marginal sampler for TNGG is impractical
in most cases, and since the slice sampler for MNGG is
an easy modification of the more complex slice sampler
for TNGG, we move their descriptions to the appendix.

In the following, T denotes the set of times with ob-
servations, ntrk denotes the number of observations
from time t associated with the k-th atom in region r.
The superscript in n

\tl
trk indicates the previous count

excluding the lth observation at time t. stl indexes
the atom to which observation l at time t is attached,
and gtl indexes the corresponding region. Dots in the
subscript denote sums over the corresponding index,
for example, n·rk =

∑
t ntrk. For simplicity, denote

Nt = nt··. F (x|θ) is the likelihood function.

4We use dNGG, MNGG and TNGG for dNRM, MNRM
and TNRM.

4.1. The marginal sampler for MNGG

For this sampler, we follow (James, 2005) and intro-
duce a set of auxiliary variables ut ∀t ∈ T , each con-
ditionally distributed as a Gamma distribution with
shape parameter Nt, and inverse scale parameter Zt:

p(ut|Zt, others) ∝ uNt−1
t exp(−utZt) (6)

Integrating out ut gives us (1/Zt)Nt , exactly the nor-
malization constant corresponding to Nt independent
draws from µt (see equation (3)). Thus the variables ut
allow us to move the normalization constants Zt from
the denominator to the exponent. Now, integrating
out the w’s and Zt of each µt involves not much more
that looking up the characteristic functional of a CRM,
and it is not hard to see that

p(ut|others) ∝
uNt−1
t exp {−

∑
rMr (1 +

∑
t′ qrt′ut′)

σ}∏
r (1 +

∑
t′ qrt′ut′)

n·r·−σKr

If we set vt = log(ut) we get a log-concave function,
allowing easy sampling of the ut’s with a slice sam-
pler (Neal, 2003). Additionally, conditioned on the
ut’s, the cluster (and simultaneously, region) assign-
ment of each observation can be sequentially resam-
pled by a generalization of the CRP:

p(stl = k, gtl = r|others}) ∝ (7)
qrt(n

\tl
·rk−σ)

1+
P
t′ qrt′ut′

F
\tl
rk (xtl), if k already exists,

σ

(∑
r′

Mr′

(1+
P
t′ qr′t′ut′)

1−σ

)∫
Θ
F (xtl|θ)H(θ)dθ ,

where F \tlrk (xtl) =
∫
F (xtl|θrk)

∏
t′l′ 6=tl,st′l′=k,gt′l′=r

F (xt′l′ |θrk)H(θrk)dθrk/
∫ ∏

t′l′ 6=tl,st′l′=k,gt′l′=r
F (xt′l′ |θrk)

H(θrk)dθrk is the conditional density. Sampling the
other variables is easy, see Appendix C.1.1 for details.

4.2. The slice sampler for TNGG

Our second sampler is a conditional sampler that in-
stantiates (rather than integrates out) the underlying
RPM. Recall that the Lévy measure in region r is
νr(dw,dθ), and that qrt is the subsampling rate for
atoms from this region for time t. In addition to the
atoms to which observations are assigned (call this
set W ), we must also consider the remaining infinite
atoms of each νr. The following result, involving the
same auxiliary variables ut as before, tells us that these
atoms are distributed as independent Lévy processes:

Proposition 3 Given observations associated with
weights W , and auxiliary variables ut for each t ∈ T ,
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the remaining weights in region r are independent of
W , and are distributed as a CRM with Lévy measure

ν′r(dw,dθ) =
∏
t

(
1− qrt + qrte

−utw
)
νr(dw,dθ) .

Proof See Appendix B, building on (James, 2005).

Remark Proposition 3 indicates that conditioned on
observations, the remaining weights are distributed as
a CRM from a different class than the original. The
marginal samplers in (Lin et al., 2010; Lin & Fisher,
2012) implicitly assume these are the same, and are
incorrect. We elaborate on this in the appendix.

Now, we deal with the infinite atoms associated with
ν′r. We follow (Griffin & Walker, 2011), and introduce
auxiliary slice variables vtl for each observation xtl.
If xtl is assigned to atom stl in region gtl, then vtl is
defined to be uniformly distributed in [0, wgtlstl ]. Con-
sequently, conditioned on vtl, xtl can only be assigned
to atoms with weights greater than wgtlstl . From the
properties of the NGG, this is a finite set, reducing
posterior inference, conditioned on the v’s, to that of a
finite mixture model. Thus, at each iteration, for each
region r, we only have to simulate atoms (wrk, θrk)
with weights larger than the smallest vtl in that re-
gion (in fact, we simulate weights larger than a smaller
number Lr, as we explain later). As detailed in Ap-
pendix C.2.2, sampling the above variables (as well as
indicators zrtk) proceeds as follows:

• Jointly sample {(stl, gtl) ∀ t, l} as:

p(stl = k,gtl = r|others) (8)
∝ 1(wrk > vtl)1(zrtk = 1)F (xtl|θrk)

• Sample vtl uniformly on (0, wgtlstl ]:

vtl|others ∼ Uniform(0, wgtlstl) (9)

• In each region r, we sample two kinds of wrk’s,
those associated with observations (the set W ),
and those larger than the Lr (call this set W c).

– wrk ∈W : these are Gamma distributed as

wrk|others ∼ Gamma

(
n·rk − σ, 1 +

∑
t

zrtkut

)
,

– wrk ∈ W c: From Proposition 3, these are
distributed as a finite Poisson process on
[Lr,∞) × Θ with intensity

∏
t(1 − qrt +

qrte
−utw)νr(dw,dθ). We do this by thinning

samples of a Poisson process whose intensity
is pointwise larger that this intensity, for ef-
ficiency, we adaptively construct this upper-
bound following (Favaro & Teh, 2012).

• Sampling zrtk: zrtk’s are Bernoulli variables, they
equal to 1 with probability 1 if ntrk > 0, otherwise
this probability is equal to qrte

−utwrk

1−qrt+qrte−utwrk
.

The remaining variables (Mr, ut and qrt), can be sam-
pled exactly using the pseudo-marginal Metropolis-
Hastings algorithm (Andrieu & Roberts, 2009), details
in Appendix C.2.2. However by setting Lr to a small
value, we can sample from an accurate approximation
and gain significant computational savings. In Ap-
pendix C.2, we describe the exact sampler, perform a
bound analysis on the approximation, and derive the
approximate update rules listed below:

• Mr: the posterior of Mr is a Gamma distri-
bution with shape parameter K ′r + 1 and rate
parameter ξσκr + ζσL1−σ

r

∑
t qrtut, where K ′r is

number of jumps larger than the threshold Lr,
κr =

∫∞
Lr x

−1−σe−xdx and ζσ = ξσ
(1−σ) .

• ut: the posterior of ut is also Gamma
with shape parameter Nt and rate parameter∑
r

∑
k zrtkwrk + ζa

∑
r qrtMrL1−σ

r .
• qrt: the posterior of qrt is approximately a Beta

distribution with the two shape parameters as∑
k 1(zrtk = 1) + aq and

∑
k 1(zrtk = 0) + bq re-

spectively, where aq and bq are hyperparameters
for the Beta prior of qrt.

We did not find any significant difference in accuracy
between this and the true sampler, although the com-
putational benefits were significant.

5. Experiments

In the following, we applied our ideas to modelling text
documents organized in time. We focused on six mod-
els: MNGG, TNGG, HMNGG, HMNGP, HTNGG and
HSNGG. The first two are based on the mixed and
thinned constructions respectively, with each docu-
ment is assigned to its own ‘time’, thus TNGG resem-
bles focused topic models (Williamson et al., 2010).
On one hand, this disregards statistical information
that might be shared across documents from the same
true time period, on the other hand, this affords more
flexibility, since each document can have its own set
of qrt parameters. Letting G be the Dirichlet distri-
bution, F the multinomial distribution, and t span all
documents in the corpus, the generative process is as
follows:

(µt) ∼ dNGG(σ0,M0, G, {qrt}) (10)

θti ∼ µt, xti|θti ∼ F (·|θti) , (11)

where dNGG(σ0,M0, G, {qrt}) denotes the dependent
NGG constructed via MNGG or TNGG with index
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parameter σ, mass parameter M0, base distribution G
and the set of weights/subsampling rates {qrt}.

The remaining models specify the organization of doc-
uments into time-periods by adding another layer to
the hierarchy. In particular, we used our dNGG con-
structions to produce an RPM µt for each time-period
t; each document in time period t then had a distri-
bution over topics drawn from an NGG with base-
measure µt, replacing (11) by

{µti}|µt ∼ NGG(σ,M, µt)

θtij ∼ µti, xtij |θtij ∼ F (·|θtij) , (12)

Both HMNGG and HTNGG follow this construction,
with the dependent NGGs produced by mixing and
thinning respectively. HMNGP is the same as HM-
NGG but with the NGG replaced with a Gamma
process (GP). HSNGG denotes the spatial normalized
generalized Gamma process (Rao & Teh, 2009), a spe-
cial case of HMNGG with qrt ∈ {0, 1}. We also com-
pare our models with the popular hierarchical Dirichlet
process (HDP), furthermore, we generalize the HDP
to the HNGG (Appendix D), where the construction
is the same as HDP but using NGGs instead of DPs.

5.1. Synthetic data

In our first experiment, we generated 3000 observa-
tions from a hierarchical Pitman-Yor topic model (Du
et al., 2010). We set the vocabulary size to 100, and
used the following generative process

G0 ∼ PY(α0, d0, G), Gt ∼ PY(αt, dt, G0) t = 1, 2, 3
θtj ∼ Gt, xtj ∼ F (·|θtj) j = 1, · · · , 3000

The base measure G over topic distributions was a
100-dimensional symmetric Dirichlet with parameter
0.1, while F (·|θ) is the 100-dimensional discrete distri-
bution. The concentration parameters αi, i = 0, · · · , 3
were set to 1, 3, 4 and 5 respectively, while all discount
parameters di were set to 0.5. Following the genera-
tive process described above, we then split the data at
each time into 30 documents of 100 words each, and
modelled the resulting corpus using the HMNGG and
HTNGG described in (12). The Pitman-Yor process
(which is not an NRM) exhibits a power-law behavior,
and the purpose of this experiment is to demonstrate
the flexibility of the NGG over the DP. Accordingly, we
compare the performance of HMNGG and HTNGG on
this dataset against their dDP equivalences, the HM-
NGP and the HTNGP (obtained by replacing the gen-
eralized Gamma process with the Gamma process in
the constructions). We set the number of regions equal
to the number of times, and sampled all the model pa-

rameters (placing Gamma(0.1, 0.1) priors on all scalars
in R+, and Beta(0.5, 0.5) priors on all scalars in [0, 1]).

We plot the predictive likelihood on a 20% held-out
dataset in Figure 2. We see that both HMNGG
and HTNGG outperform their non-power-law variants
HMNGP and HTNGP in terms of predictive likeli-
hoods. The inferred parameter σ is around 0.2 (a value
of 0 recovers the Gamma process). Furthermore, HT-
NGG gets higher likelihoods than HMNGG, in this
case, this follows from the added flexibility afforded
by allowing the thinning of individual atoms.

500 1000 1500 2000
−3.85

−3.8

−3.75

−3.7
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x 10
4

 

 

HMNGG:  70.0/18.1

HMNGP:  502.9/13.2

HTNGG:  32.6/9.7

HTNGP:  334.8/18.8

ESS

Figure 2. Power-law distribution modeling with different
models. HMNGG and HTNGG have higher likelihoods
than their non-power-law versions.

5.2. Topic Modelling

Datasets Next, we considered four real-world docu-
ment datasets, viz. ICML, TPAMI, Person and NIPS.
The first 2 corpora consisted of abstracts obtained
from the ICML and PAMI websites; ICML contained
765 documents from 2007-2011 with a total of about
44K words, and a vocabulary size of about 2K; TPAMI
had 1108 documents from 2006-2011, with total of 91K
words and vocabulary size of 3K. The Person dataset
was extracted from Reuters RCV1 using the query
person under Lucene,and contained 8616 documents,
1.55M words and a vocabulary size of 60K. It spanned
the period 08/96 to 08/97. The NIPS corpus consisted
of proceedings over the years 1987 to 2003 (Globerson
et al., 2007). It was not postprocessed, and has 2483
documents, 3.28M words and vocabulary size 14K.

Parameter Setting and Evaluation In modelling
these datasets, for MNGG and TNGG (where we dis-
regard the years associated with each document and
assign it to its own time), we set the number of regions
to be 20; in the other models these were set equal to
the number of years. The Dirichlet base distribution
was symmetric with parameter 0.3, and as in the previ-
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Table 1. Train perplexities and test perplexities for different models on ICML, TPAMI, Person and NIPS datasets.

Datasets ICML TPAMI Person NIPS
Models train test train test train test train test
HDP 580± 6 1017± 8 671± 6 1221± 6 4541± 33 5962± 43 1813± 27 1956± 18

HNGG 575± 5 1057± 8 671± 6 1262± 11 4565± 60 5999± 54 1713± 13 1878± 11
TNGG 681± 23 1071± 6 701± 38 1327± 3 5815± 122 7981± 36 2990± 57 3231± 2
MNGG 569± 6 1056± 9 644± 6 1272± 12 4560± 63 6013± 66 1612± 3 1920± 5
HSNGG 550± 5 1007± 8 643± 3 1237± 22 4324± 77 5733± 66 1406± 5 1679± 8
HTNGG 572± 7 945± 7 642± 4 1174± 9 4196± 29 5527± 47 1377± 5 1635± 3
HMNGG 535± 6 1001± 10 608± 4 1199± 10 4083± 36 5488± 44 1366± 8 1618± 5
HMNGP 561± 10 995± 14 634± 10 1208± 8 4118± 45 5519± 41 1370± 3 1634± 4

ous section, weak Gamma and Beta priors were placed
appropriately on all nonnegative scalars.

To evaluate the models, we computed perplexity scores
on a held-out test dataset. In all cases, 20% of the
original data sets was held-out, following the stan-
dard dictionary hold-out method (50% of the held-
out documents was used to estimate topic probabili-
ties) (Rosen-Zvi et al., 2004). Test perplexity was cal-
culated over 10 repeated runs with random initializa-
tion, we report mean values and standard deviations.
In each run 2000 cycles were used as burn-in, followed
by 1000 cycles to collect samples for perplexity calcula-
tion. To avoid complications resulting from the differ-
ent representations used by the marginal and slice sam-
pler, we calculated perplexities after first transforming
the representation of the slice sampler to those in the
marginal sampler. In other words, given the state of
the slice sampler, we determined the induced partition
structure, and used this to calculate prediction prob-
abilities (calling the same piece of code).

Quantitative comparison for different models
We calculated both training and test perplexities for
the models specified above, these are shown in Ta-
ble 1. We see that HMNGG and HTNGG perform
best, achieving significant lower perplexities than the
others. While HTNGG is more flexible than HMNGG,
it performs sightly worse when the datasets becomes
large; this is more obvious when comparing MNGG
and TNGG. Part of the reason for this is the com-
plex posterior structure for the thinned models, so
that the samplers are often stuck in local optima, re-
sulting in much worse perplexities. Interestingly, HM-
NGP (without the power-law property) does not per-
form much worse than HMNGG, indicating topic dis-
tributions in topic models might not follow an obvi-
ous power-law behavior. This coincides with the sam-
pled value of the index parameter σ (around 0.01).
Thus it is not surprising that HDP is comparable to
HNGG: slightly better in small datasets, but a bit

worse in large datasets. Moreover, the simple MNGG
and TNGG do much worse than HMNGG and HT-
NGG, emphasizing the importance of statistical infor-
mation shared across documents in the same year.

Topic evolutions Figure 3 is a posterior sample,
showing the evolution of 12 randomly selected topics
on the NIPS dataset for HMNGG and HTNGG. In all
cases, we calculated the proportion of words assigned
to the topic k in region r at each time t (i.e. ntrkntr·

), and
the predictive probabilities for each topic at each time.
The latter is defined for MNGG to be proportional to
qrt(n

\tl
·rk−σ)

1+
P
t′ qrt′ut′

(see equation 7), and for TNGG to be
proportional to qrtwrk (see equation 8) by integrating
out vtl and zrtk. We see (as we expect) HMNGG gen-
erating smoother topic proportions over time (topics
in HTNGG can die and then be reborn later because
of the thinning mechanism).

Marginal vs slice sampler We next compare the
performance of the marginal and slice samplers for
MNGG, HMNGG and HTNGG. The marginal sampler
for TNGG could not handle datasets with more than
even 2 times. Instead, we had to divide each dataset
into two times (the first and the second halves, call
the resulting datasets as 2-time datasets), and treat
these as the only covariates available. We emphasize
that we do this only for a comparison with our slice
sampler, which can handle more complex datasets (the
slice sampler was used in the previous sections). Ta-
ble 2 shows the average effective sample sizes and run-
ning times over 5 repeated runs for the two samplers
on the original datasets and the 2-time datasets. On
the original datasets, in MNGG, the marginal sam-
pler generally obtains larger ESS values than the slice
sampler; while it is opposite for HMNGG. Regarding
to the running time, the marginal sampler is more effi-
cient in small datasets (i.e., ICML and TPAMI), while
they are comparable in the other datasets. The rea-
son for this is that in small datasets, a large amount
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Figure 3. Topic evolutions on NIPS dataset for 12 randomly chosen topics learned by HMNGG (left) and HTNGG (right),
respectively. The two curves correspond to word proportions within each topic (blue) and prediction probabilities (red)
for each time. HTNGG tends to produce less smooth topic proportions over time.

Table 2. Comparison of effective sample sizes and run times for marginal and slice sampler (subscript s). Subscript 2 in
the datasets means the 2-time datasets. over 5 repeated runs. a/b/c | t in the table means the average ESS among all the
chosen statistics is a, the median is b, the minimum is c, and the running time for the 1000 cycles is t.

ICML TPAMI Person NIPS
Models ESS | Time ESS | Time ESS | Time ESS | Time
MNGG 243.3/202.5/4.4|234s 252.4/231.9/3.7| 285s 402.5/401.4/1.5|1.5h 314.8/376.1/1.5|3.3h
MNGGs 201.2/122.0/26.9|760s 205.1/131.9/23.5|813s 321.5/291.8/11.3|2.9h 228.4/110.6/2.2|2.2h
TNGGs 115.2/90.0/4.5|555s 135.7/113.0/11.1|592s 300.6/231.3/3.2|3.3h 223.8/107.7/1.1|1.4h
HMNGG 99.1/70.3/2.6|91s 171.5/80.4/5.1|176s 213.0/246.5/1.9|3.3h 282.1/198.2/4.3|9.4h
HMNGGs 150.7/117.7/4.6|97s 194.3/180.9/6.5|227s 293.3/358.6/2.0|3.5h 346.1/467.2/1.7|10.4h
HTNGGs 82.8/80.1/4.7|126s 92.5/105.1/5.4|312s 184.9/226.3/6.1|4.1h 225.4/210.2/3.4|11.9h

ICML2 TPAMI2 Person2 NIPS2

HMNGG 57.4/52.5/7.3|66s 59.4/56.3/6.7|89s 119.4/102.0/3.1|1.0h 111.1/73.8/3.3|1.5h
HMNGGs 125.4/112.5/15.0|69s 142.0/125.6/10.6|91s 212.9/212.0/5.9|1.1h 205.2/203.0/5.5|1.9h
HTNGG 50.3/46.9/3.0|71s 55.3/58.4/4.3|95s 144.8/170.6/4.2|1.3h 119.1/130.0/2.8|2.3h
HTNGGs 94.9/90.9/4.0|76s 116.0/107.8/3.4|106s 153.2/113.5/2.7|1.1h 176.1/151.0/3.3|1.9h

of the running time in the slice sampler was used in
sampling the extra atoms (which is unnecessary in the
marginal sampler), while in large datasets, the time
for sampling word allocations starts to become signifi-
cant. In the 2-time datasets, we observe that the slice
sampler obtains larger ESS values than its marginal
sampler in both HMNGG and HTNGG, with compa-
rable running times. We repeat that for HTNGG, the
slice sampler is applicable for any number of times,
while the marginal sampler is computationally infeasi-
ble even for a moderately large number of times.

6. Conclusion

We proposed two classes of dependent normalized ran-
dom measures for the nonparametric modeling of de-
pendent probability measures, the mixed normalized
random measure and the thinned normalized random

measure. Our construction involves weighting and
thinning independent CRMs, before combining and
normalizing them. We developed two different MCMC
algorithms for posterior inference, a marginal and a
slice sampler. In our experiments, our models showed
significantly superior performance compared to related
dependent nonparametric models such as HDP and
SNGP, with the simpler MNRM performing better on
complex data. We also find the slice sampler gener-
ally mixes better than the marginal sampler in both
models. Interesting future work includes extending our
framework to allow each atom to have its own thinning
probability, as well as allowing marginal RPMs in the
broader class of Poisson-Kingman processes, which in-
cludes the Pitman-Yor process as a special case. More-
over, our models can be applied not just for time-series
in topic modelling but also to allow sparsity of proba-
bilities, for instance (Williamson et al., 2010).
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