
Dependent Types in Practical Programming* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(Extended Abstract)

Hongwei Xi Frank Pfenning

Department of Computer Science and Engineering Department of Computer Science

Oregon Graduate Institute of Science and Technology Carnegie Mellon University

hongweiQcse.ogi.edu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract

We present an approach to enriching the type system of ML
with a restricted form of dependent types, where type index
objects are drawn from a constraint domain C, leading to the
DML(C) language schema. This allows specification and in-
ference of significantly more precise type information, facil-
itating program error detection and compiler optimization.
A major complication resulting from introducing dependent
types is that pure type inference for the enriched system is no
longer possible, but we show that type-checking a sufficiently
annotated program in DML(C) can be reduced to constraint
satisfaction in the constraint domain C. We exhibit the un-
obtrusiveness of our approach through practical examples
and prove that DML(C) is conservative over ML. The main
contribution of the paper lies in our language design, in-
cluding the formulation of type-checking rules which makes
the approach practical. To our knowledge, no previous type
system for a general purpose programming language such
as ML has combined dependent types with features includ-
ing datatype declarations, higher-order functions, general
recursions, let-polymorphism, mutable references, and ex-
ceptions. In addition, we have finished a prototype imple-
mentation of DML(C) for an integer constraint domain C,
where constraints are linear inequalities (Xi and Pfenning

1998).

1 Introduction

Type systems for functional languages can be broadly classi-
fied into those for rich, realistic languages such as Standard

ML (Milner, Tofte, and Harper 1990), Cam1 (Weis and Leroy
1993), or Haskell!(Hudak, Peyton Jones, and Wadler 1992),
and those for small, pure languages such as the ones under-
lying Coq (Dowek, Felty, Herbelin, Huet, Murthy, Parent,
Paulin-Mohring, and Werner 1993), NuPrl (Constable et al.
1986), or PX (Hayashi and Nakano 1988). Type-checking
in realistic languages should be theoretically decidable and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘This research was sponsored in part by the Advanced Research
Projects Agency CSTO under the title “The Fox Project: Advanced
Languages for Systems Software”, ARPA Order No. C533.

Permission to make digital or hard copies of all or part ofthis work for
personal or classroom use is granted without fee provided that copies

arc not made or distributed for prolit or commercinl ad\,anlqy and that

topics bear this notice and the full citation on the first page. To copy

otherwise. to republish. to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

POPL 99 San Antonio Texas USA

Copyright ACM 1999 l-58113-095-3/99/01...$5.00

fp@cs.cmu.edu

must be practically feasible without requiring large amounts
of type annotations. In order to achieve this, the type sys-
tems are relatively simple and only elementary properties
of programs can be expressed and thus checked by a com-
piler. For instance, the error of taking the first element out

of an empty list cannot be detected by the type system of
ML since it does not distinguish an empty list from a non-
empty one. Richer type theories such as the Calculus of In-
ductive Constructions (underlying Coq) or Martin-Mf type
theories (underlying NuPrl) allow full specifications to be
formulated, which means that type-checking becomes unde-
cidable or requires excessively verbose annotations. It also
constrains the underlying functional language to remain rel-
atively pure, so that it is possible to effectively reason about
program properties within a type theory.

Some progress has been made towards bridging this gap,
for example, by extracting Cam1 programs from Coq proofs,
by synthesizing proof skeletons from Cam1 programs (Parent
1995), or by embedding fragments of ML into NuPrl (Kreitz,
Hayden, and Hickey 1998). In this paper, we address the
issue of designing a type system for practical programming
in which a restricted form of dependent types is available,
allowing more program invariants to be captured by types.
We conservatively refine the type system of ML by allowing
some dependencies, without destroying desirable properties
of ML such as prxtical and unintrusive type-checking.

We now present a short example from our implementa-
tion before going into further details. A correct implemen-
tation of the append function on lists should return a list
of length m + n when given two lists of lengths m and n,
respectively. This property, however, cannot be captured by
the type system of ML. This inadequacy can be remedied if
we introduce a restricted form of dependent types.

The code in Figure 1 is written in the style of ML with a
type annotation, which will be explained shortly. We assume
that we are working over the domain of natural numbers
with constants 0 and 1 and the addition operation +. The
datatype ‘a list is defined and then indexed by a natural
number, which stands for the length of a list in this case.
The constructors of ‘a list are then assigned dependent
types:

nil <I ‘a list (0) states that nil is an ‘a list of

length 0.

cons <I (n:nat) ‘a * ‘a list(n) -> ‘a list (n+l)
states that cons yields an ‘a list of length n+l when
given a pair consisting of an element of type ‘a and
an ‘a list of length n. We write Cn:nat) for the de-
pendent function type constructor, usually written as

214

IIn : nat, which can also be seen as a universal quan-
tifier.

The where clause in the declaration of append is a type an-
notation, which precisely states that append returns a list
of length m + n when given a pair of lists of lengths m
and n, respectively. Generally speaking, the programmer is
responsible for refining a datatype and programs are then
automatically checked against type annotations with respect
to the refinement made.

Let us consider another short example. Suppose that we
intend to specify that an implementation of the evaluation
function for the pure call-by-value X-calculus returns a clo-
sure (if it terminates) when given a closed X-expression. It
seems difficult in ML, if not impossible, to construct a type
for closed lambda expressions. With dependent types, this

can be done elegantly.
The datatype lamexp in Figure 2 is a representation of X-

expressions in de Bruijn’s notation. For instance, XzXy.z(y)

is represented as Abs (Abs (App (Shif t (One> , One) 1. lamexp
is indexed with a natural number n, which roughly means
that there are at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmost n free variables in a X-expression of
type lamexp (n> . Therefore, lamexp (0) is the type for closed
X-expressions. A complete implementation of the evaluation
function can be found in (Xi 1997).

Adding dependent types to ML raises a number of theo-
retical and pragmatic questions. We briefly summarize our
results and design choices.

The first question that arises is the meaning of expres-
sions with effects when they occur as index objects to type
families. In order to avoid these difficulties we require index
objects to be pure. In fact, our type system is parameterized
over a domain of constraints from which type index objects
are drawn. We can maintain this purity and still make the
connection to run-time values by using singleton types, such

as int(n) which contains just the integer n. This is critical
for practical applications such as static elimination of array
bound checking (Xi and Pfenning 1998).

The second question is the decidability and practicality
of type-checking. We address this in two steps: the first step
is to define an explicitly typed (and unacceptably verbose)
language for which type-checking is easily reduced to con-
straint satisfaction in C. The second step is to define an
elaboration from DML(C), a slightly extended fragment of
ML, to the fully explicitly typed language which preserves
the standard operational semantics. The correctness of elab-
oration and decidability of type-checking modulo constraint
satisfiability constitute the main technical contribution of
this paper.

The third question is the interface between dependently
annotated and other parts of a program or a library. For this
we use existential dependent types, although they introduce
non-trivial technical complications into the elaboration pro-
cedure. Our experience shows that existential dependent
types are indispensable in practice. For instance, they are
involved in almost all the realistic examples in our experi-
ments.

We have so far finished developing a theoretical foun-
dation for combining dependent types with all the major

features in the core of ML, including datatype declarations,
higher-order functions, general recursion, let-polymorphism,
mutable references and exceptions. We have also imple-

mented our design for a fragment of ML which encompasses
all these features. The only main feature in the core of
ML which we have not implemented is records. In addition,
we have experimented with different constraint domains and
applications. Many non-trivial examples are available at (Xi

1997). For the domain of linear inequalities on integers, they
include quicksort on arrays, mergesort on lists, a red/black
tree implementation, a highly optimized byte copy function,
an implementation of Knuth-Morris-Pratt’s algorithm for

string matching and others in which array bound checks
can be statically eliminated without excessive annotations.
On symbolic domains we have verified the type preservation
property for an implementation of the evaluation function

for the pure simply typed call-by-value X-calculus. Also a
different red/black tree implementation is verified using a fi-
nite domain, where the constraint solver is based on model-
checking.

In our experience, DML(C) is acceptable from the prag-
matic point of view: programs can often be annotated with
very little internal change, annotations are usually to the
point and roughly comparable to what one would find in a
typical ML program (including signatures). The resulting
constraint simplification problems can be solved efficiently

in practice. Also the annotations are mechanically verified,
and therefore can be fully trusted as program documenta-
tion.

Due to length restrictions, it is impossible to present
here all aspects of DML(C). Instead, we concentrate on its
main features. In contrast to (Xi and Pfenning 1998), this
extended abstract emphasizes the theoretical foundation of
DML(C), showing that the type system of DML(C) is sound
and type-checking in DML(C) can be made practical. We
refer the interested reader to (Xi 1998) for the details.

The remainder of the paper is organized as follows. We
present a monomorphic language ML0 in Section 2, which

is a simply typed X-calculus with general pattern match-
ing. We start with a monomorphic language simply because
the development of dependent types is largely orthogonal to
polymorphism. We then introduce the notion of constraint
domain in Section 3. We proceed to extend ML0 with uni-
versal dependent types in Section 4, leading to the language
ML:(C) parameterized over a constraint domain C. We

give the typing rules and operational semantics of ML!(C)

and show why the type system of ML:(C) can be regarded
as a restricted form of dependent types. In Section 5, we
present the rules for elaboration from DMLo(C), an exter-

nal language, into ML,“(C) and prove the correctness of the
elaboration. We explain the need for existential dependent

types in Section 6 and extend ML:(C) to MLzl’(C). We
then briefly mention in Section 7 how dependent types can
be combined with let-polymorphism and effects. In Sec-
tion 8, we sketch some interesting applications. The rest
of the paper is concerned with some related work, current
status and future research directions.

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMini-ML with Pattern Matching

We start with a monomorphic programming language (MLo)
along the lines of Mini-ML, including general pattern match-
ing which is critical in practice and whose theory in this
setting is non-trivial. Polymorphism, on the other hand, is
largely orthogonal and therefore postponed until Section 7.
There we also discuss how to extend the language with ef-
fects such as mutable references and exceptions. The syntax
of ML0 is given in Figure 3. We sssume throughout that
variables are declared at most once in a context and that
bound variables may be renamed tacitly.

We omit the typing rules and the call-by-value natural
semantics of this language, which are completely standard.
Given e,v in MLo, we write e -+o v if e evaluates to v.

215

1 cons of ‘a * ‘a list
with (* indexing the datatype zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘a list with nat *>

* ‘a list(n) -> ‘a list (n+l)

datatype ‘a list = nil

typeref ‘a list of nat

nil <I ‘a list(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I cons <I Cn:nat) ‘a

funOa>
append(ni1, ys) = ys

I append(cons(x, xs> , ys) = cons(x, appendcxs, ys))

where append <I {m:nat){n:nat) ‘a list(m) * ‘a list(n) -> ‘a list (mtn)

Figure 1: An introductory example: append

datatype lamexp = One I Shift of lamexp I Abs of lamexp I App of lamexp * lamexp

typeref lamexp of nat with

One <I Cn:nat> lamexp(n+l)
I Shift <I {n:nat) lamexp(n) -> lamexp(n+l)

I Abs <I {n:nat) lamexp(nt1) -> lamexp(n)

I App <I {n:nat) lamexp(n) * lamexp(n) -> lamexp(n)

Figure 2: Another introductory example: closed lambda expressions

3 Constraint Domains

Our enriched language will be parameterized over a domain
of constraints from which the type index objects are drawn.

Typical examples include linear inequalities over integers,

boolean constraints, or finite sets. Due to space limitations,

we only briefly sketch the interface to constraints as they

are used in our type system.
First we note that constraints themselves are typed. In

order to avoid confusion we call the types of the constraint
language index sorts. We use b for base index sorts such

as boo1 for booleans and int for integers. We use f for in-

terpreted functions symbols, p for atomic predicates (that

is, functions of sort 7 + bool) and we assume to have con-

stants such as equality G for every sort, truth values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and
I, negation 7, conjunction A, and disjunction V, all of which

are interpreted as usual.

index sorts 7 ::= bllIyi*yzI{a:ylP}

index propositions P ::= T 1 I 1 p(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

4 A P2 I A v P2

Here {a : y (P} is the subset index sort for those elements

of 7 satisfying proposition P. For instance, nat is an abbre-

viation for {o : int I a > 0). We use a for index variables,

and formulate index objects as follows.

index objects i, j ::= a I () I (i, j) 1 f(i)
index contexts 4 ::= .I(&a:rlqS,P

index constraints Cp ::= P I +I A 91 I P > Cp 1

Va : 7.9 I 3a : y.@

satisfaction relation $I=@

The satisfaction relation 4 k 0 means that cf, is satisfied in

the constraint domain under index context 4. The method

for verifying such a relation depends on the constraint do-
main. For instance, model-checking can be chosen for finite

domains.

We omit the standard sorting rules for this index lan-
guage and the standard definition of constraint satisfaction.

The index constraints listed here are the ones which re-

sult from elaboration and should therefore be practically

solvable for C in order to obtain a usable type-checker for

DML(C). This is the case, for example, for integer inequal-

ities, which our implementation solves by a variant of the
Fourier variable elimination method. Empirical results and

further references can be found in (Xi and Pfenning 1998).

4 Universal Dependent Types

We now present ML!(C), which extends ML0 with univer-

sal dependent types. Given a domain C of constraints, the
syntax of ML:(C) is given in Figure 4. Note that only the

syntax different from ML0 is present. We use 6 for base type

families, where we use a() for unindexed types.
We do not specify here how new type families or con-

structor types are actually declared, but assume only that

they can be processed into the form given above. Our im-

plementation provides both built-in and user-declared re-

finement of types as shown in the examples.
The typing rules for ML:(C) should be familiar from

a dependently typed &calculus (such as the ones underly-
ing Coq or NuPrl), except that we separate index variables,

abstractions, and applications from term variables, abstrac-

tions, and applications. The critical rule of type conversion

uses the judgment 4 I- 71 I rs which is the congruent ex-

tension of equality on index objects to arbitrary types:

4+iiii’ 4 I- ri = r; fp I- 72 I r;

f#l I- a(i) q a(i)) 4 k 71 * 72 I 7; * 7;

I$ b 7; I ri 4 I- 72 3 r; $!J,o:ykr=r’

f#J t- 7.1 + 7-z i r: + 7-i $5 I- no : 7.’ E l-h : 7.”

Notice that it is the application of these rules which gener-

ates constraints. For instance, the constraint 4 k (o + n) +
1 k m + n is generated in order to derive 4 I- intlist((a +

216

base types p ::= boo1 1 int 1 (other user defined datatypes)

types Q, r ::= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApI11T*ulcT-iT

patterns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ::= 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI d d IO I bl,Pd

matches ma ::= (p * e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (p * e I ma)
expressions e ::= x I () I (el, e2) I c(e)) (case e of ms) I (lam x : 7.e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI el (e2)

I let x = ei in e2 end 1 (Ax f : 7.21)
values
contexts

::= 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI c(V) I () ((m,V2) I (lam x : r.e)
: ::= . I r,z: 7

Figure 3: The syntax for ML0

families 6 ::= (family of built-in or user-declared refined types)

constructor signature S ::= * I S, c : IIai : 71. . . IIa, : ^Im.‘r + J(i)
major types P ::= a(i) I 11 (71 * 72) 1 (Tl + T2)

types r ::= p 1 (l-h: 7.T)
patterns P

..- ..- . . ’ 1 c[m] . , . [an](P)

expressions e ..- .*- . . . I c[i~] . . . [in](e) I (Aa : 7.e) I e[i]
values V

..- ..- . . . I C[il] . . . [in](v) I (Xa : 7.v)

substitutions 8 ..- ..- **.]@Zl+_,i]

Figure 4: The syntax for ML:(C)

4+ 1) z intliat(m + n) in an example below, where 4 is
m:nat,n:nat,a:nat,a+l+m.

The only significant complication arises from pattern
matching, where new index propositions P are generated.
We restrict the index arguments to constructors appearing
in patterns to index variables so that pattern matches fail
or succeed independently of the indices. This is essential to
proving the conservativity of ML,“(C) over MLe.

The judgment p J. T D (#;I’) expresses that the index
and ordinary variables in pattern p have the sorts and types
declared in 4 and l?, respectively, if we know that p must
have type r. It is defined by the following rules.

2 J- 7 b (q 2 : T) 0 J- 1 D (*; .) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

plhD(h;rl) Pz172D(+z;r2)

(p1,~2)~~l*~~D(~l,~2;rl,r2)

Assume that cons is of type

IIa : nat.int * intZiat(a) + intliat(a + 1)

since polymorphism is not available at this moment. Then
the following is derivable.

(cons[a]((x, x3)), ya) 1 intlist(m) * intlist(n)
D a:nat,a+lsm;

x : int, x.9 : intliat(a), ya : intliat(n)

The judgment for match expressions 4; l? I- ma : 71 + rz
checks independently for each case that given a subject of
type ri the case branch will have type 72. In other words,
ri + 72 is the type of match ma. The following rules are for

the derivation of such a judgment.

p .l rl D (4'; r') $,#;r,r' k- e : rz

$;ri-p*e:Tl JT~

f$;r I- (p * e) : 71 * r2 4;r I- rns :TI =s 72

f$;l?l-(p*e~ma):~l=+r~

For instance, also using the rules for expressions from
Figure 6, it can be readily verified that the following is deriv-

able.

m : nat, n : nat; append : r
I- (~44((~, 41, v4 =+-

coda + nl(b, amd4bl((~s, w4))) :
intZist(m) * intliat(n) * intliat(m + n)

where r is

IIm : nat.lln : nat.
intliat(m) * intliat(n) + intliat(m + n)

Notice that this involves deriving the following, which is
obviously true in an integer domain.

m:nat,n:nat,a:nat,a+lkm
+ (a+n)+lGm+n

The remaining typing rules for ML!(C) are in Figure 6.
We now present an example in Figure 5, which is basi-

cally an expression in ML,“(C) corresponding to a monomor-
phic version of the code in Figure 1. We also present a sug-
ared version of the expression to enhance readability but we
emphasize that there is no sugared syntax for MLb(C) in

our implementation (see Section 5).
Next we turn to the operational semantics. The critical

design decisions are that (a) indices are never evaluated,
(b) indices are never used to select branches during pattern
matches, and (c) we evaluate underneath index abstractions

217

fix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAappend : IIm : nat.k : nat.intlist(m) * intZist(n) + intlist(m + n).
Am : natAn : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnat.lam 1 : intlist(m) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi&list(n).

case 1 of

fun append CO] Cn] (nil, ys) = ys

I append [a+11 Cnl (cons Cal (x, x(t) , ys) = cons Cad (x , append [al Cnl (xs , ys> 1

where append <I {m:nat){n:nat) intlist(m) * intlist(n) -> intlist(m+n)

Figure 5: An expression in ML,“ (C) and its sugared version zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

$;I? l-e : 71 4 k 71 E 72 (ty_eq) r(z)= 7

&I? I- e : 72
4;r ~f.~f["""l (tY-4

S(c) = na : q.7 + b(i)

'(') = 6(i) (ty_cons_wo)

f$G:~ q%;rl-v:T[a:=~

4;r t c: 6(i) 4; r k c[q(~) : a(i[a := i)) (ty-cons-w)

dir k 0: 1 (ty-unit)

4; r I- el : 7l C#J; r t- e2 : 72

+;rt-(el,e2):71*T2
(ty-prod)

f$l-71:* PJ~~D(#;P) +,+‘;r,r’ke:T2 41-r2 :*

&rl-p*e:rl =3r2
(ty-match)

&rl-(p*e):TI=+-7 4;ri-m5:T137
+;rk(p*elms):71*7

(ty-mat ches)

4;r k e: 7l 4; r t- ms : 71 + 7 tty_caseJ

4; r I- (case e of ms) : T

q5,a:y;rke:T

4; r I- (Xa : y.e) : (IIa : 7.7) (ty-ilam)

4; r, z : 71 I- e : r2

4; r I- e : IIa : 7.~ C#J I- i : y (ty_iapp)

4; r I- e[i] : 7[a := i]

+;r t- (lam z : 7l.e) : 71 + ~2
(ty-lam)

W k el;;;;e;e2ELk e2 : ~1 tty_appl

f$; r I- el : 71 +;r,x : 71 i- e2 :72 (ty_let)

qi; r t- let x = el in e2 end : 72

Figure 6: Typing Rules for ML,“ (C)

Xa : y.e. We do, however, substitute for index variables

when a branch in a pattern match has been selected, or

when a dependently typed function is applied to an index

argument as in e[i]. These points together guarantee type

preservation for ML,“ (C) and conservativity over MLo.

There is no obstacle preventing the evaluation of type in-

dices at, run-time--there is simply no need to do so. Clearly,

this would change immediately if run-time type-checking be-

came necessary, but we do not intend to run DML programs

which could not be type-checked at compile-time.

For the sake of brevity, we omit the operational seman-

tics in this extended abstract. Given the remarks above, it

is straightforward to define e _)d v in the style of natural

semantics, which means e evaluates to v in ML,“ (C).

Next, we prove the central properties of ML,“ (C). The

first basic property states that dependent types are pre-

served under the operational semantics.

Theorem 4.1 (Type preservation) Given e,v in ML:(C)

such that e _)d v is derivable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf qb; I? I- e : r is derivable,

then q5; I? I- v : r is derivable.

Proof By a structural induction on the derivations of e +d

vand4;rke:r. H

The following definition and theorems detail the rela-

tionship between ML,“ (C) and MLo. Basically, MLF(C) is

a refinement of the type system of ML0 which allows us to

express more properties, but neither affects the operational

semantics nor the typing judgments already expressible in

MLo.

Definition 4.2 W e define the index erasure fin&on)I . 11

218

as follow3:

Mil ,...,iJl = 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1171 * Al = IhI1 * 117211
IIn -+ 7211 = 11~111 + 11741
llna : 7.41 = llrll
II44 . . . MWII = 4ll4)
II(lam x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 7.e)ll

~~Oyll: r.e)ll
1 1;;;” x : 11~1144)

11:: z : 7.2111
= II:11
= Ax x : llTll.1lVll

IF, x : 41 = Ilrll,~ : lldl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It maps an expression in ML:(C) into one in MLo. Note

that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa few trivial cases are omitted for the sake of brevity.

The erasure of a program written in ML,“(C) is executed in
MLo. In general, the erasure of a DML program is executed
in ML. The next theorem guarantees that the index erasure
of a well-typed program in ML,“(C) is also well-typed in
MLo.

Theorem 4.3 If 4; l? I- e : 7 is derivable in ML,“(C), then

llrll k [IelI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 11~11 is derivable in MLo.

Proof By a structural induction on the derivation of 4; l? I-
e : 7. n

A significant consequence of Theorem 4.3 is that if an
untyped program is typable in ML:(C) then it is already
typable in MLo. This distinguishes our design from those

which aim at making more programs typable by extending
the type system of ML. Instead, our objective is to assign
more accurate types to programs.

Also we must guarantee that the operational semantics

of a program in ML:(C) is preserved when it is evaluated
in MLo. This is done by the following two theorems.

Theorem 4.4 (Soundness) If e _)d v derivable in ML:(C),
then llell +o Ilull is derivable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof By a structural induction on the derivation of e +d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2). n

The corresponding completeness property relies on the

restrictions on the form of constructor types and the index
arguments to constructors in patterns.

Theorem 4.5 (Completeness) Given 4; r I- e : r derivable

in ML!(C). If llell +O vg is derivable for some vg in MLo,

then there exists v in ML:(C) such that e _)d v and ~~v~~ =

vo.

Proof By a structural induction on the derivations of [IelI +O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v. and 4; r b e : T. w

It is a straightforward observation on the typing rules for
ML,“(C) that the following theorem holds. Therefore, if
the user does not index any types, then his code is valid in
ML,“(C) iff it is valid in MLo.

Theorem 4.6 ML,“(C) is a conservative extension of MLo.

We call the type system of ML,“(C) a restricted form of

dependent types since we view both index objects and ex-
pressions in ML:(C) as terms. In this view, the type of one
term can depend on the valve of other terms. For instance,
the type of append[m][n]((xs, ys)) depends on m and n. An
alternative is to view index objects as types, and therefore

to regard the type system of ML,“(C) as a polymorphic type
system. However, this alternative leads some (unnecessary)
complications. For instance, it is unclear which expressions
are of type i if i is an index object. A more serious problem

is how subset sorts should be treated under this alternative
view.

In a filly dependent type system such as the one which
underlies LF (Harper, Honsell, and Plotkin 1993) or Coq,
there is no differentiation between type index objects and
language expressions. In other words, the constraint domain
is the same as the language. Therefore, constraint satisfac-
tion is as difficult as program verification, which seems to be
intractable in practice. The novelty of ML:(C) is precisely
the differentiation between type index objects and language
expressions, which makes our approach practical and scal-

able.

5 Elaboration

We have so far presented an explicitly typed language ML:(C) .
This presentation has a serious drawback from a program-
mer’s point view: one would quickly be overwhelmed with

types when programming in such a setting. It then becomes
apparent that it is necessary to provide an external language
DMLo(C) together with a mapping to the internal language

ML,“(C). This mapping is called elaboration. For instance,
the declaration of (a monomorphic version of) append in

Figure 1 is to be elaborated into the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAML: (C)-expression in
Figure 5.

5.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe External Language DMLo(C)

The syntax for DMLo(C) is given as follows.

patterns p ::= x I c(P) I 0 I (Pl!P2)
matches ms ::= (p*e)I(p=FeIms)

expressions e ::= x I c(e) I () I (el,e2) I

case e of ms I el(e2) 1 lam x.e 1 lam 2 : T.e I
let 2 = el in e2 end I fix f.v I fix f : T.V 1 e : T

Note that this is basically the syntax for ML0 though types
here could be dependent types. This partially attests to the
unobtrusiveness of our enrichment.

5.2 Elaboration as Static Semantics

We illustrate the intuitions behind some elaboration rules
while presenting them. Elaboration, which incorporates
type-checking, is defined via two mutually recursive judg-
ments: one to synthesize a type where this can be done in
a most general way, and one to check a term against a type
where synthesis is not possible. A synthesizing judgment
has the form +;I’ t- e t 7 =X e’ and means that e elab-
orates into e’ with type r. A checking judgment has the
form 4; r I- e .J r =S e’ and means that e elaborates into
e’ against type 7. In general, we use e,p,ms for external
expressions, patterns and matches, and e*,p’, ms’ for their
internal counterparts.

The purpose of the first two rules is to eliminate II quan-

tifiers. For instance, let us assume that el(e2) is in the code
and a type of form Ha : 7.~ is synthesized for el; then we
must apply the rule (elab-pi-elim) to remove the II quan-
tifier in the type. We continue doing so until a major type
is reached, which must be of form ~1 + 72 (if the code is
type-correct). Note that the actual index i is not locally

219

determined, but becomes an existential variable for the con-

straint solver. The rule (elab-pi-intro) is simpler since we

check against a given dependent function type. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4,a:r;rt-eJT*e*

4; r I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 1 lla : 7.7 * (Xa : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr.e*) (elab-pi-intro)

The next rule (elab-lam) is for lambda abstraction, which

checks a lam expression against a type. The rule for the
fixed point operator is similar. We emphasize that we never

synthesize types for either lam or Ax expressions (for which
principal types do not exist in general).

4; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, x : ~~ !- e 1 rz * e*

4; r t- (lam x.e) J. Tl + 72 * (lam x : 71.6;)

The next rule (elab-app-up) is for function application,

where the interaction between the two kinds of judgments
takes place. After synthesizing a major type ~1 + ~2 for el,

we simply check e2 against 71-synthesis for e2 is unneces-
sary.

We maintain the invariant that the shape of types of vaxi-

ables in the context is always determined, modulo possible

index constraints which may need to be solved. This means

that with the rules above we can already check all normal

forms. A term which is not in normal form most often will

be a let-expression, but in any case will require a type an-

notation, as illustrated in the rule (elab-let-down) below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q3;r I- el t 71 a f3i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4; r, 2 : 71 b e2 J- 72 * eZ

4; r, x : 71 I- let x = el in e2 end J- 72 j e*

where e* = let x = ei in e; end. Even if we are checking

against a type, we must synthesize the type of el. If el is
a function or fixpoint, its type must be given, in practice

mostly by writing let x : 7 = el in e2 end which abbrevi-

ates let c = (el : T) in e2 end. The following rule allows

us to take advantage of such annotations.

” r ’ e ’ 7 * e* (elab anno up)
4;rl-(e:7)?7*e* _ -

As a result, the only types which itre required in realistic

programs are due to declarations of functions and a few cases

of polymorphic instantiation.
Moreover, in the presence of existential dependent types,

which will be introduced in Section 6, a pure ML type with-

out dependencies obtained in the first phase of type-checking
is assumed if no explicit type annotation is given. This

makes our extension truly conservative in the sense that

pure ML programs will work exactly as before, not requir-
ing any annotations.

Elaboration rules for patterns are particularly simple,

due to the constraint nature of the types for constructors.

We elaborate a pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp against a type r, yielding an in-

ternal pattern p’ and index and term contexts 4 and I’, re-

spectively. This is written as p & T + (p*; 4; l?) in Figure 7.
This judgment is used in the following rule (elab-match)

for pattern matching: the generated context 4’ is assumed

x~T=+(x;~;x:T) 0 1 1 * (0; ‘i *I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PI -1~1 3 Cpi;41;rl) ~2 4~2 * (p;;42;r2)

(Pl,p2) 4~~ ~~~ + ((p:,p4)i~l,~2;rl,r2)

S(C) = na : 7.7 -+ a(i) p 4 T =$ (p*; 4; r)

4~) 4 a(j) + (4-w); 2 : 7, i k j, 4; r)

Figure 7: The elaboration rules for patterns

into the context 4 while elaborating e. For constraint satis-

faction, the declarations in I#J’ are treated as hypotheses.

The complete elaboration rules for DMLo(C) are listed in

Appendix B, and they are justified by the following theorem.

Theorem 5.1 Let Z be the operational equivalence relation.

1. If q5; r i- e t r + e* is derivable, then q5; I? I- e* : T is
derivable and e P e' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.

2. Ifqi;rl-eJ_r=+e* isderivable, thenq5;rke’:ris

derivable and e g e* .

Proof (1) and (2) follow straightforwardly from a simul-
taneous structural induction on the derivations of r I- e t

r=+e* and4;I’ke$rje*. n

The description of type reconstruction as static seman-

tics is intuitively appealing, but there is still a gap between
the description and its implementation. There, elaboration

rules explicitly generate constraints, thus reduce dependent
type-checking to constraint satisfaction. This kind of trans-

formation is standard and therefore omitted here. For in-
stance, when elaborating the first and second clauses in the

function declaration in Figure 1, we generate the following
two constraints, which are obviously true.

Vn : nat.O + n L n

Vm : nat.Vn : nat.Va : nat.

a+l~m>(a+n)+l~m+n

Therefore the code is well-typed in ML,“(C). A thoroughly

explained example on elaboration and constraint generation
is available in (Xi 1998).

6 Existential Dependent Types

In practice, the constraint domain must be relatively sim-

ple to permit the implementation of an effective constraint

solver. Therefore there remain many properties of indices

which cannot be expressed. For instance, if we apply the

following filter function to a list of length n, we cannot
express the length of the resulting list since it depends on

the predicate p.

fun filter p nil = nil

I filter p (x::xs) =
if p(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthen I:: (filter p xs)

else (filter p x8)

220

Nonetheless, we know that there exists some m 5 n such
that the length of the resulting list is m, which can be ex-
pressed using an existential dependent type, also called weak
dependent sum. Also, existential types can mediate between
dependent and ordinary ML types. For instance, given a
function of ML type ‘a list -> ‘a list, we can assign to
it a dependent type which states that the function returns
a list of unknown length when applied to a list of unknown

length. This yields an approach to handling existing func-
tions such as those in a library, whose definitions may not
be available. Notice that this is crucial to support sepa-
rate compilation. However, the use of existential types to
represent ML types leads to a major loss of information at
module boundaries. We would like soon to address this issue
by exporting dependent types in signatures, extending DML
to full SML. This approach closely relates to Extended ML
(Sannella and Tarlecki 1989).

We now extend ML:(C) to ML:“(C).

types 7 ..- ..- . . . 1 (Ca : -y*T)
expressions e ::= ... I 6 I 4 I

let (a 1 z) = el in ez end

values 21 .._ ..- . . . 1 (i I v)

We need the additional typing rules (t-sig-intro) and
(t-sig-elim)

4; l? I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe : ~[a := i]
’ I- i ’ ’ (t-s&intro)

4; l? I- (i 1 e) : (Ca : 7.7)

$;rt-el:Ea:7.71 f$,a:y;r,2:71+e2:72

4; I’ k let (a I z) = el in e2 end : 72
(t-sig-elim)

where a may not occur in 72 in the latter (in addition to the
general assumption that a and x are not already declared
in 4 and I?, respectively). For instance, we can assign the
following type to the function filter:

(‘a -> bool) ->
In:nat) 'a list(n) -> Cm:nat I m<=nI 'a list(m),

where Cm:nat Im<=nl stands for

Cm: {a : not I a 5 n}.

Also, we can assign the type

([n:natl ‘a list(n)) -> [n:nat] ‘a list(n),

to any function of ML type ‘a list -> ‘a list.
We can then prove all the theorems in Section 4 for

MLfl’(C). It is also straightforward to give a sound elabo-

ration procedure from DMLo(C) to MLfYc(C). The follow-
ing is a significant rule for this purpose.

4; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr I- el t Ca : 7.~1 * e;

4; r I- let x = el in e2 end $72 + e’,

where e’ is let (a I z) = ei in eg end.
Unfortunately, this elaboration rule requires a let to be

present in the source when eliminating an existential de-
pendent type, which will not be the case in many typical
ML programs. We therefore apply the A-translation (Moggi
1989; Sabry and Felleisen 1993) before elaboration. For ex-
ample, suppose that the synthesized types of I and 1’ are Ca :
nat.intlist(a), that is, the lengths of 1 and 1’ are unknown.

If we check append((l,l’)) against Ca : nat.intlist(a), then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
append((1, 1’)) is translated to

let x = 1 in let z’ = 1’ in append((z,z’)) end end,

which is then elaborated into

let (a I x) = I in
let (a’ I 2’) = 1’ in

(a + a’ I append[a][a’]((z, z’))) end end

There are some pragmatic issues on whether A-translation

should be controlled by the programmer or applied auto-
matically. We have chosen the latter in our current imple-
mentation. Please see (Xi 1998) for details.

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPolymorphism and Effects

It is straightforward to extend ML:“(C) with polymor-
phism. We have designed a two-phase elaboration algorithm
which elaborates a program as follows.

Phase one It verifies that the index erasure of the program
is a well-typed ML program.

Phase two It then applies the elaboration algorithm for

ML:*‘(C) to the result obtained in phase one. If a
needed type annotation is unavailable, the type in-
ferred in phase one is supplied. This guarantees that

a valid ML program is always valid in DML(C).

The type system becomes unsound if dependent types are
combined directly with effects. The symptom is the same
as that of combining polymorphism with effects. Soundness
can be recovered if we adopt a value restriction, that is, we
replace the rule (ty-ilam) with the following.

4,a:y;rkv:T
4; r I- (Xa : 7.~) : (Ha : 7.~)

After this, the development is standard, which is thoroughly

explained in (Xi 1998).

8 Applications

8.1 Program Error Detection

A red/black tree is a balanced binary tree which satisfies
the following conditions: (a) all leaves are marked black
and all other nodes are marked either red or black; (b) for
every node there are the same number of black nodes on
every path connecting the node to a leaf, and this number is
called the black height of the node; (c) the two sons of every

red node are black.
In Figure 8, we define a polymorphic datatype ‘a diet,

which is essentially a binary tree with colored nodes. We
then refine the datatype with type index objects (c, bh) drawn
from the sort bool * nut, where c and bh are the color and
the black height of the root of the binary tree. The node is
black if and only if c is true. Therefore, the properties of
a red/black tree are naturally captured with this datatype
refinement. This enables the programmer to catch program
errors which lead to violations of these properties when im-
plementing an insertion or deletion operation on red/black
trees. We have indeed encountered errors caught in this way
in practice.

The types of other balanced trees such as AVL trees can
be declared similarly (see Appendix A).

221

type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘a entry = int * ‘a

datatype ‘a diet = Empty (* considered black *)
I Black of ‘a entry l ‘a diet * ‘a diet
1 Red of ‘a entry * ‘a diet * ‘a diet

typeref ‘a diet of boo1 * nat with
Empty <I ‘a dict(true, 0)

I Black <I icl:bool){cr:bool)<bh:nat)
‘a entry * ‘a dict(c1, bh) * ‘a dict(cr, bh) -> ‘a dict(true, bh+l)

I Red <I ibh:nat)
‘a entry * ‘a dict(true, bh) * ‘a dict(true, bh) -> ‘a dictcfalse, bh)

Figure 8: The red/black tree data structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8.2 Array Bound Check Elimination

We refine the built-in types: (a) for every integer n, int(n)
is a singleton type which contains only n, and (b) for every
natural number n, ‘a array(n) is the type of arrays of size n.
We then assume that the array operations sub and update
have been assigned the following types.

sub <I (n:nat) Ci:nat I i < n)
‘a array(n) * int(i) -> ‘a

update <I in:nat) Ci:nat I i < n)
‘a array(n) * int(i) * ‘a -> unit

Clearly, the array accesses through sub or update cannot
result in array bounds violations, and therefore it is unnec-
essary to insert array bound checks when we compile the
code. Please see (Xi and Pfenning 1998) for the details.

8.3 Dead Code Elimination

The following function zip zips two lists together. If the
clause zip(_, _) = raise zipException is missing, then
ML compilers will issue a warning message stating that zip
may result in a match exception. This happens if two argu-
ments of zip are of different lengths.

exception zipException
fun(,a, ‘b)

zip(ni1, nil) = nil
I zip(cons(x, x18), cons(y, ys)) =

cons((x,y), zip(xs, ys>) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zip(_, _I = raise zipException

However, this function is meant to zip two lists of equal
length. If we declare zip to be of the following dependent

type,

Cn:natI ,a list(n) * ,b list(n) ->
(,a * ‘b) list(n)

the clause zip(_, _) = raise zipException in the defini-
tion of zip can never be reached, and therefore can be safely
removed.

This leads to not only more compact but also potentially
more efficient code. For instance, if it has been verified that
the first argument of zip is non-empty, then the second argu-
ment must also be non-empty. Therefore, tag-checking can
be reduced significantly when this example is implemented.
Such examples are abundant in practice.

It will not be straightforward to extend the usual pattern
compilation algorithms to take advantage of such additional

information, and we have not yet tried this idea in a com-
piler. However, the benefit of such dead code elimination
for error detection can be readily realized. We refer the
interested reader to (Xi 1999) for further explanation.

8.4 Other Applications

There are many other potential applications of dependent
types which can be found in (Xi 1998), including facili-
tating partial evaluation, performing loop-unrolling, passing
dependent types to an assembly language, etc.

9 Related Work

Our work falls in between full program verification, either in
type theory or systems such as PVS (Owre, Rajan, Rushby,

Shankar, and Srivas 1996), and traditional type systems for
programming languages. When compared to verification,
our system is less expressive but more automatic when con-
straint domains with practical constraint satisfaction prob-
lems are chosen. Our work can be viewed as providing a
systematic and uniform language interface for a verifier in-
tended to be used as a type system during the program
development cycle. Since it extends ML conservatively, it
can be used sparingly as existing ML programs will work as
before (if there is no keyword conflict).

Most closely related to our work is the system of indexed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
types developed independently by Zenger in his forthcoming

Ph.D. Thesis (Zenger 1998) (an earlier version of which is
described in (Zenger 1997)). He works in the context of of
lazy functional programming. His language is clean and el-
egant and his applications (which significantly overlap with
ours) are compelling. In general, his approach seems to re-
quire more changes to a given Haskell program to make it
amenable to checking indexed types than is the case for our
system and ML. This is particularly apparent in the case
of existential dependent types, which are tied to data con-
structors. This has the advantage of a simpler algorithm for
elaboration and type-checking than ours, but the program
(and not just the type) has to be more explicit. Also, since
his language is pure, he does not consider a value restriction.

When compared to traditional type systems for program-
ming languages, perhaps the closest related work is refine-
ment types (Freeman and Pfenning 1991), which also aims
at expressing and checking more properties of programs that
are already well-typed in ML, rather than admitting more
programs as type correct, which is the goal of most other
research on extending type systems. However, the mecha-
nism of refinement types is quite different and incomparable

222

in expressive power: while refinement types incorporate in-
tersection and can thus ascribe multiple types to terms in a
uniform way, dependent types can express properties such
as “these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo argument lists have the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsame length” which
are not recognizable by tree automata (the basis for type
refinements). We plan to consider a combination of these
ideas in future work.

Parent (Parent 1995) proposed to reverse the process of

extracting programs from constructive proofs in Coq (Dowek,
Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring, and
Werner 1993), synthesizing proof skeletons from annotated
programs. Such proof skeletons contain “holes” correspond-
ing to logical propositions not unlike our constraint formu-
las. In order to limit the verbosity of the required anno-
tations, she also developed heuristics to reconstruct proofs
using higher-order unification. Our aims and methods are
similar, but much less general in the kind of specifications we
can express. On the other hand, this allows a richer source
language with fewer annotations and, in practice, avoids in-
teraction with a theorem prover.

Extended ML (Sannella and Tarlecki 1989) is proposed
as a framework for the formal development of programs in
a pure fragment of Standard ML. The module system of
Extended ML can not only declare the type of a function but
also the axioms it satisfies. This requires theorem proving
during extended type checking. We specify and check less
information about functions which avoids general theorem

proving. On the other hand, we currently do not address
module-level issues, although we believe that our approach
should extend naturally to signatures and functors without
much additional machinery.

Cayenne (Augustsson 1998) is a Haskell-like language in

which fully dependent types are available, that is, language
expressions can be used as type index objects. The steep

price for this is undecidable type-checking in Cayenne. We
feel that Cayenne pays greater attention to making more
programs typable than assigning programs more accurate
types. In Cayenne, the printf in C, which is not typable
in ML (see (Danvy 1998) for further details), can be made
typable, and modules can be replaced with records, but the
notion of datatype refinement does not exist. This clearly
separates our language design from that of Cayenne.

The notion of sized types is introduced in (Hughes, Pareto,
and Sabry 1996) for proving the correctness of reactive sys-
tems. Though there exist some similarities between sized

types and datatype refinement in DML(C) for some domain
C of natural numbers, the differences are also substantial.

We feel that the language presented in (Hughes, Pareto, and
Sabry 1996) is too restrictive for general programming since
the type system there can only handle (a minor variation)
of primitive recursion. On the other hand, the use of sized
types in the correctness proofs of reactive systems cannot
be achieved in DML at this moment.

Jay and Sekanina (Jay and Sekanina 1996) have intro-
duced a technique for array bounds checking based on the
notion of shape types. Shape checking is a kind of partial
evaluation and has very different characteristics and source
language when compared to DML(C), where constraints are
linear inequalities on integers. We feel that their design is
more restrictive and seems more promising for languages
based on iteration schemas rather than general recursion.

A key feature in DML(C) which does not exist in either of
the above two systems is existential dependent types, which
is indispensable in our experiment.

Finally, recent work by Pierce and Turner (Pierce and
Turner 1998) which includes some empirical studies, is based

on a similar bi-directional strategy for elaboration, although
they are concerned with the interaction of polymorphism
and subtyping, while we are concerned with dependent types.
The use of constraints for index domains is quite different
from the use of constraints to model subtyping constraints

(see, for example, (Sulzmann, Odersky, and Wehr 1997)).

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConclusion

We have extended the entire core of ML with a restricted
form of dependent types, yielding the DML(C) language
schema. This includes proving the soundness of the type
system of DML(C) and designing a type-checking algorithm.
Type annotations are required, but not overly verbose. The
algorithm has shown itself to be practical for typical pro-
grams and constraint domains, such as linear inequalities
over integers for array bounds checking (Xi and Pfenning
1998). In addition, we have finished a prototype implemen-
tation of DML(C) in which all the major features in the
core of ML except records are available. The only reason
for omitting records is that we already have tuples and we
would like to simplify the implementation. We have also ex-
perimented with integer, symbolic and finite domains. We
are currently writing a frontend for &ml-light.

In future work, we plan to enrich DML with module-
level constructs, that is, extend DML to full Standard ML.
Since our design explicitly separates indices from ML expres-
sions, we expect the extension to be mostly straightforward.
Another practically important extension may be the intro-
duction of limited forms of intersection types (Freeman and
Pfenning 1991), so that more than one dependent type can
be assigned to a function without code duplication.

Our primary motivation is to allow the programmer to
express more program properties through types and thus
catch more errors at compile time. We are also interested
in using this as a front-end for a certifying compiler (Necula
and Lee 1998) which propagates program properties through
a compiler where they can be used for optimizations or be
packaged with the binaries in the form of proof-carrying code

(Necula 1997). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11 Acknowledgements

We are grateful to Rowan Davies for many technical discus-
sions regarding the subject of this extended abstract. We
also would like to thank Chad Brown for proofreading a
draft and providing us with many helpful comments, and
the referees for their highly constructive suggestions.

References

Augustsson, L. (1998). Cayenne - a language with dependent
types. In Proceedings of ACM SIGPLAN International
Conference on Functional Programming, pp. 239-250.

Constable, R.. L. et al. (1986). Implementing Mathematics with
the Nuprl Proof Development System. Englewood Cliffs,
New Jersey: Prentice-Hall.

Danvy, 0. (1998, May). Functional unparsing. Technical Re-
port RS-98-12, University of Aarhus.

Dowek, G., A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Par-
ent, C. Paulin-Mohring, and B. Werner (1993). The Coq
proof assistant user’s guide. Rapport Techniques 154, IN-
RIA, Rocquencourt, France. Version 5.8.

Freeman, T. aid F. Pfenning (1991). Refinement types for ML.
In ACM SIGPLAN Conference on Progmmming Language

Design and Implementation, Toronto, Ontario, pp. 26%
277.

223

Harper, R. W., F. Honsell, and G. D. Plotkin (1993, January).
A framework for defining logics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJournal of the ACM 40(l),
143-184.

Hayashi, S. and H. Nakano (1988). PX: A Computational
Logic. The MIT Press.

Hudak, P., S. L. Peyton Jones, and P. Wadler (1992, May).
Report on the programming language Haekell, a non-strict
purely-functional programming language, Version 1.2. SIG-
PLAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANotices 27(5).

Hughes, J., L. Pareto, and A. Sabry (1996). Proving the cor-
rectness of reactive systems using sized types. In Conjer-
ence Record of 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProgramming Longuoger, pp. 410-423.

Jay, C. and M. Sekanina (1996). Shape checking of array pro-
grams. Technical Report 96.09, University of Technology,
Sydney, Australia.

Kreitz. C., M. Hayden, and J. Hickey (1998, July). A proof
environment for the development of group communication
svstems. In H. Kirchner and C. Kirchner (Eds.). 15th Znter-

national Conference on Automoted Deductiont’LNAI 1421,
Lindau, Germany, pp. 317-332. Springer-Verlag.

Milner, Ft., M. Tofte, and R. W. Harper (1990). The Definition

of Standard ML. Cambridge, Massachusetts: MIT Press.

Moggi, E. (1989). Computational lambda-calculus and mon-
ads. In Proceedings Fourth Annual Symposium on Logic in
Computer Science, pp. 14-23.

Necula, G. (1997). Proof-carrying code. In Conference Record
of 24th Annual ACM Symposium on Principle8 of Pro-

gramming Longuoges, pp. 106-119. ACM press.

Necula, G. and P. Lee (1998, June). The design and imple-
mentation of a certifying compiler. In ACM SIGPLAN ‘98

Conference on Progmmming Longuoge Design and Imple-

mentotion, pp. 333-344. ACM press.

Owre, S., S. Rajan, J. Rushby, N. Shankar, and M. Srivas
(1996, July/August). PVS: Combining specification, proof
checking, and model checking. In R. Alur and T. A. Hen-
zinger (Eds.), Proceedings of the 8th International Con-

ference on Computer-Aided Verification, CAV ‘96, New

Brunswick, NJ, pp. 411-414. Springer-Verlag LNCS 1102.

Parent, C. (1995). Synthesizing proofs from programs in the
calculus of inductive constructions. In Proceedings of the

International Conference on Mathematics for Progmms

Constructions. Springer-Verlag LNCS 947.

Pierce, B. and D. Turner (1998). Local type inference. In
Proceeding8 of the 25th Annual ACM SIGPLAN-SIGACT

Symposium on Principle8 of Programming Languages, pp.

252-265.

Sabry, A. and M. Felleisen (1993). Reasoning about programs
in continuation-passing style. LISP and Symbolic Compu-

tation 6(3/4), 289-360.

Sannella, D. and A. Tarlecki (1989, February). Toward formal
development of ML programs: Foundations and method-
ology. Technical Report ECS-LFCS-89-71, Laboratory for
Foundations of Computer Science, Depatment of Computer
Science, University of Edinburgh.

Sulzmann, M., M. Odersky, and M. Wehr (1997). Type in-
ference with constrained types. In Proceeding8 of 4th In-

ternational W orkshop on Foundations of Object-Oriented

Languages.

Weis, P. and X. Leroy (1993). Le longoge Coml. Paris: InterEd-
itions.

Xi, H. (1997, November). Some examples of DML program-
ming. Available at
http://vuu.cs.cmu.edu/‘huxi/DML/~xamplea/.

Xi, H. (1998). Dependent npeo in Pmcticol Programming. Ph.
D. thesis, Carnegie Mellon University. pp. viii+189. Forth-
coming. The current version is available as
http://wvw.cs.cmu.edu/‘hvxi/DML/thesis.ps.

Xi, H. (1999, January). Dead code elimination through de-
pendent types. In The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFirst International W orkshop on

Practical Aspects of Declomtive Language& San Antonio,
Texas. To appear.

Xi, H. and F. Pfenning (1998, June). Eliminating array bound
checking through dependent types. In Proceeding8 of ACM

SIGPLAN Conference on Progmmming Language Design
and Implementation, pp. 249-257.

Zenger, C. (1997). Indexed types. Theoretic01 Computer Sci-
ence 187, 147-165.

Zenger, C. (1998). Indisierte Qpen. Ph. D. thesis, Fakultlit fiir
Informatik, Universitgt Karlsruhe. Forthcoming.

A Further Examples

We present some additional examples for those who may
have difficulty accessing (Xi 1997), where the complete ver-

sions of these examples and some other larger ones are avail-
able.

An AVL tree is a balanced binary tree such that for every
interior node the difference between the heights of its two
sons is at most one. The data structure in Figure 9 precisely
declares the type of AVL trees.

Untyped X-expressions in de Bruijn form and an imple-
mentation of evaluation are given in Figure 10. The depe-
dent type checker verifies that no dangling de Bruijn refer-
ences can occur during evaluation of a closed X-expression.

This can be extended to verify type-safety statically, but
requires a symbolic constraint domain. Assume that we have
sorts type and context and the following constants.

unit : type

arrow : type * type -+ type

empty : context

:: : type * context + context

In Figure 11, the datatype lamexp, declared in Figure 2, is
refined to formulate the type of simply typed X-expressions.
Note that lamexp is indexed with a pair (t,ctx), where t
stands for the simple type of a X-expression and ctx records
the types of free variables in the X-expression. There-
fore the DML type of closed well-typed X-expressions is
Xi! : type.lamexp(t,empty).

Lastly, we present a short implementation of quicksort
on lists in Figure 12, where the type guarantees that this
implementation always returns a list of length n when given
one of length n. Note that we use :: as an infix operator for
cons.

B Elaboration Rules for ML,“(C)

We present the elaboration rules in Figures 13 and 14. Note
that some rules have (obvious) side conditions, which can be
found in (Xi 1998).

224

datatype ‘a tree = empty I branch of int * ‘a * ‘a tree * ‘a tree

(* height, key, left son, right son *)

typeref ‘a tree of nat with (* the index stands for the height *)

empty <I ‘a tree(O)
I branch <I {lh:nat){rh:nat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI rh - 1 <= lh <= rh + 11

int(l+max(lh,rh)) * ‘a + ‘a tree(lh) * ‘a tree(rh) ->

‘a tree(l+max(lh,rh))

Figure 9: AVL trees

datatype lamexp =

One I Shift of lamexp I Abs of lamexp I App of lamexp * lamexp

typeref lamexp of int

with One <I Cn:nat) lamexp(n+l)

I Shift <I {n:nat) lamexp(n) -> lamexp(n+l)

I Abs <I In:nat) lamexp(n+l) -> 1amexpM

I App < I Cn:nat) 1amexpW * lamexp(n) -> lamexp(n)

datatype closure = Closure of lamexp * env

and env = Nil I Cons of closure * env

typeref env of int
with Nil <I env(0)

I Cons <I {n:nat) closure * env(n) -> env(n+l)

I Closure <I Cn:nat) lamexp(n) * env(n> -> closure

fun callbyvalue(exp) =

let

fun cbv(One, Cons(clo, env)> = clo
I cbv(Shift(exp), Cons(clo, env>) = cbvcexp, env)

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcbv(Abs(exp) , env) - Closure(Abs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(exp) , env)

I cbv(App(fexp, exp), env) =

let
val Closure(Abs(body), envl) = cbvtfexp, env)

val clo = cbvcexp, env)

in

cbv(body , Cons (clo, envl))

end
(* exhaustiveness of these cases follows from the dependent types *>

where cbv <I in:nat) lamexp(n) * env(n) -> closure

in

cbvcexp, Nil)
end

where callbyvalue <I lamexp(0) -> closure

Figure 10: Closed X-expressions and evaluation

datatype lamexp - One I Shift of lamexp I Abs of lamexp I App of lamexp * lamexp

typeref lamexp of type * context with (* index lamexp with a pair (t, ctx) *I

One <I Ct:type)Cctx:context) lamexp(t,t::ctx)

I Shift <I Ctl:type)CtZ:type)Cctx:context) lamexp(tl,ctx) -> lamexp(tl,t2::ctx)

I Abs <I Cti:type)Ct2:type)Cctx:context)

lamexp(t2,tl: :ctx) -> lamexp(arrow(tl,t2) ,ctx)

I App <I {ti:type)Ct2:type)Cctx:context)

lamexp(arrow(tl,t2) ,ctx) * lamexp(tl,ctx) -> lamexp(t2,ctx)

Figure 11: Simply-typed X-expressions

225

fun(‘a) quickSort cmp [I = [I
I quickSort cmp (x::xs) = par cmp (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl, Cl, IS)

where quickSort <I <n:nat) (‘a * ‘a -> bool) -> ‘a list(n) -> ‘a list(n)

and(‘a) par cmp (x, left, right, xs) =
case x8 of

[] => (quickSort cmp left) (D (x:: (quicksort cmp right))
I y::ys => if cmp(y, x) then par cmp (x, y::left. right, ys)

else par cmp (x, left, y::right, ys)

where par <I {p:nat){q:nat)<r:nat>

(‘a * ‘a -> boo11 ->
‘a * ‘a list(p) * ‘a list(q) * ‘a list(r) -> ‘a list(p+q+r+l)

Figure 12: Quicksort on lists

“‘L; ~~$‘T~~l~i~; “l]i ’ 7 (elab-pi-elim)
+,a:y;I~eJr=%e*

&II-eJIIIa:7.7=+(Xa:7.e*)
(elab-pi-intro)

S(c) = IIUl : 71.. . no, : 744 4 I- il : 71 . . . c$ I- i, : 7n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+;rt-ct6(i[al,... ,a, :=i1,..* in]) =+ C[il] . . . [in]
(elab-cons-wo-up)

S(c) = I-IIal : 71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . ITa, : ‘yn.7 + d(i)

f$;l? l-e$+l ,..., a,:=il ,... &1=+-e*

q!J I- il : 71 ** * q5 I- i, : -yn

+;rkc(e)ta(i[ol,... ,a, :=i1,... in]) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc[il] . . . [i,](e*)
(elab-cons-w-up)

” r ’ c~)I,t~P~(~ Ii2 ttr’ z cl’ (elab-cons-w-down)

Figure 13: Elaboration rules for ML,“(C), part I

226

+; r k () + 1 j () (elab-unit-w)
4;r~oll=+o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(elab-unit-down)

4; r b el t cdl * ei 4; r ’ e2 t p2 * e4 (elab_prod_up)

4; r I- el J. ~1 * ei
“r ’ e2 ’ T2 * e’ (elab-prod-down)

4; r k (el, e2) 4 71 * 72 * (ei, e;)

pJ~l*(p*;#;r~) ~,~‘;r,rV-e~T2+e* fji-~~:* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

#;I? k (p * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe) .J (71 * ~2) =+ (p’ * e*)
(elab-match) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4; r t- (P * e) 4 (n * ~2) * (P’ * e’) 4; r I- ms -4 (~1 * TV) =+ ms* (elab
_

4; r I- (p * e 1 ms) 4 (71 * 72) * (p’ * e ’ 1 ms*)

matches)

4; r t- e t 71 * e’ di r t- ms 5- (~1 * ~2) * ms* ~elabcase~

f$; r t- (case e of ms) J 72 * (case e* of m9’)

4; r !- (lam 2.e) 4 71 + 72 * (lam c : T l.e*)
(elab-lam) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b;r,X l:T l,X:Tke$T2=$e* & r,Z l:T1kX1$T+ei

f$; r I- (lam z : T.e) $ ~1 + 72 =S (lam z1 : ~l.let x = f3; in e’ end)
(elab-lam-anno) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4;rt-eltTl-+~2+~; ~;ri-e2iTl=$e;

4; r t- el(e2) t 72 * ei(4)
(elab-app-up)

4; r i- el(e2) t ~1 =+ e* 9 I= ~11 f ~2 (elab_app_down)

qkrl-el(e2)lp2*eL

C$;rkeltT1jei &r,x:Tlke2tT2+ez

4; r I- let z = el in e2 end t 72 3 let CE = e; in e; end
(elab-let-up) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f$;l?belt71=Sei C$;r,x :T lt -e2~T2=k-e;

4; r k let z = el in e2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAend J- ~2 =S let x = ei in e; end
(elab-let-down)

& r,f:Tt -V$T* 21*

& rk(fiXf:T.?J)fT=k+Xf:T.V*)
(elab-flx-up)

& r,f:Tk21$T+V* +;r,Z:TbZlT ’=ke*

~irt-(fixf:7.21)~7’=k.letx=(fixf:~.~*)ine*end
(elab-fix-down)

4’r ’ e ’ T * e* (elab anno-up)
& rb(e:T)tT+e* _

9; r k (e : T) t PI * e ’ 9 I= PI = ~2 (e lab_anno-dow n)

4; r k (e : 7) 1 p2 + e ’

Figure 14: Elaboration rules for ML,“(C), part II

227

