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Abstract 

We present an approach to enriching the type system of ML 
with a restricted form of dependent types, where type index 
objects are drawn from a constraint domain C, leading to the 
DML(C) language schema. This allows specification and in- 
ference of significantly more precise type information, facil- 
itating program error detection and compiler optimization. 
A major complication resulting from introducing dependent 
types is that pure type inference for the enriched system is no 
longer possible, but we show that type-checking a sufficiently 
annotated program in DML(C) can be reduced to constraint 
satisfaction in the constraint domain C. We exhibit the un- 
obtrusiveness of our approach through practical examples 
and prove that DML(C) is conservative over ML. The main 
contribution of the paper lies in our language design, in- 
cluding the formulation of type-checking rules which makes 
the approach practical. To our knowledge, no previous type 
system for a general purpose programming language such 
as ML has combined dependent types with features includ- 
ing datatype declarations, higher-order functions, general 
recursions, let-polymorphism, mutable references, and ex- 
ceptions. In addition, we have finished a prototype imple- 
mentation of DML(C) for an integer constraint domain C, 
where constraints are linear inequalities (Xi and Pfenning 

1998). 

1 Introduction 

Type systems for functional languages can be broadly classi- 
fied into those for rich, realistic languages such as Standard 

ML (Milner, Tofte, and Harper 1990), Cam1 (Weis and Leroy 
1993), or Haskell!(Hudak, Peyton Jones, and Wadler 1992), 
and those for small, pure languages such as the ones under- 
lying Coq (Dowek, Felty, Herbelin, Huet, Murthy, Parent, 
Paulin-Mohring, and Werner 1993), NuPrl (Constable et al. 
1986), or PX (Hayashi and Nakano 1988). Type-checking 
in realistic languages should be theoretically decidable and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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must be practically feasible without requiring large amounts 
of type annotations. In order to achieve this, the type sys- 
tems are relatively simple and only elementary properties 
of programs can be expressed and thus checked by a com- 
piler. For instance, the error of taking the first element out 

of an empty list cannot be detected by the type system of 
ML since it does not distinguish an empty list from a non- 
empty one. Richer type theories such as the Calculus of In- 
ductive Constructions (underlying Coq) or Martin-Mf type 
theories (underlying NuPrl) allow full specifications to be 
formulated, which means that type-checking becomes unde- 
cidable or requires excessively verbose annotations. It also 
constrains the underlying functional language to remain rel- 
atively pure, so that it is possible to effectively reason about 
program properties within a type theory. 

Some progress has been made towards bridging this gap, 
for example, by extracting Cam1 programs from Coq proofs, 
by synthesizing proof skeletons from Cam1 programs (Parent 
1995), or by embedding fragments of ML into NuPrl (Kreitz, 
Hayden, and Hickey 1998). In this paper, we address the 
issue of designing a type system for practical programming 
in which a restricted form of dependent types is available, 
allowing more program invariants to be captured by types. 
We conservatively refine the type system of ML by allowing 
some dependencies, without destroying desirable properties 
of ML such as prxtical and unintrusive type-checking. 

We now present a short example from our implementa- 
tion before going into further details. A correct implemen- 
tation of the append function on lists should return a list 
of length m + n when given two lists of lengths m and n, 
respectively. This property, however, cannot be captured by 
the type system of ML. This inadequacy can be remedied if 
we introduce a restricted form of dependent types. 

The code in Figure 1 is written in the style of ML with a 
type annotation, which will be explained shortly. We assume 
that we are working over the domain of natural numbers 
with constants 0 and 1 and the addition operation +. The 
datatype ‘a list is defined and then indexed by a natural 
number, which stands for the length of a list in this case. 
The constructors of ‘a list are then assigned dependent 
types: 

nil <I ‘a list (0) states that nil is an ‘a list of 

length 0. 

cons <I (n:nat) ‘a * ‘a list(n) -> ‘a list (n+l) 
states that cons yields an ‘a list of length n+l when 
given a pair consisting of an element of type ‘a and 
an ‘a list of length n. We write Cn:nat) for the de- 
pendent function type constructor, usually written as 
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IIn : nat, which can also be seen as a universal quan- 
tifier. 

The where clause in the declaration of append is a type an- 
notation, which precisely states that append returns a list 
of length m + n when given a pair of lists of lengths m 
and n, respectively. Generally speaking, the programmer is 
responsible for refining a datatype and programs are then 
automatically checked against type annotations with respect 
to the refinement made. 

Let us consider another short example. Suppose that we 
intend to specify that an implementation of the evaluation 
function for the pure call-by-value X-calculus returns a clo- 
sure (if it terminates) when given a closed X-expression. It 
seems difficult in ML, if not impossible, to construct a type 
for closed lambda expressions. With dependent types, this 

can be done elegantly. 
The datatype lamexp in Figure 2 is a representation of X- 

expressions in de Bruijn’s notation. For instance, XzXy.z(y) 

is represented as Abs (Abs (App (Shif t (One> , One) 1. lamexp 
is indexed with a natural number n, which roughly means 
that there are at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmost n free variables in a X-expression of 
type lamexp (n> . Therefore, lamexp (0) is the type for closed 
X-expressions. A complete implementation of the evaluation 
function can be found in (Xi 1997). 

Adding dependent types to ML raises a number of theo- 
retical and pragmatic questions. We briefly summarize our 
results and design choices. 

The first question that arises is the meaning of expres- 
sions with effects when they occur as index objects to type 
families. In order to avoid these difficulties we require index 
objects to be pure. In fact, our type system is parameterized 
over a domain of constraints from which type index objects 
are drawn. We can maintain this purity and still make the 
connection to run-time values by using singleton types, such 

as int(n) which contains just the integer n. This is critical 
for practical applications such as static elimination of array 
bound checking (Xi and Pfenning 1998). 

The second question is the decidability and practicality 
of type-checking. We address this in two steps: the first step 
is to define an explicitly typed (and unacceptably verbose) 
language for which type-checking is easily reduced to con- 
straint satisfaction in C. The second step is to define an 
elaboration from DML(C), a slightly extended fragment of 
ML, to the fully explicitly typed language which preserves 
the standard operational semantics. The correctness of elab- 
oration and decidability of type-checking modulo constraint 
satisfiability constitute the main technical contribution of 
this paper. 

The third question is the interface between dependently 
annotated and other parts of a program or a library. For this 
we use existential dependent types, although they introduce 
non-trivial technical complications into the elaboration pro- 
cedure. Our experience shows that existential dependent 
types are indispensable in practice. For instance, they are 
involved in almost all the realistic examples in our experi- 
ments. 

We have so far finished developing a theoretical foun- 
dation for combining dependent types with all the major 

features in the core of ML, including datatype declarations, 
higher-order functions, general recursion, let-polymorphism, 
mutable references and exceptions. We have also imple- 

mented our design for a fragment of ML which encompasses 
all these features. The only main feature in the core of 
ML which we have not implemented is records. In addition, 
we have experimented with different constraint domains and 
applications. Many non-trivial examples are available at (Xi 

1997). For the domain of linear inequalities on integers, they 
include quicksort on arrays, mergesort on lists, a red/black 
tree implementation, a highly optimized byte copy function, 
an implementation of Knuth-Morris-Pratt’s algorithm for 

string matching and others in which array bound checks 
can be statically eliminated without excessive annotations. 
On symbolic domains we have verified the type preservation 
property for an implementation of the evaluation function 

for the pure simply typed call-by-value X-calculus. Also a 
different red/black tree implementation is verified using a fi- 
nite domain, where the constraint solver is based on model- 
checking. 

In our experience, DML(C) is acceptable from the prag- 
matic point of view: programs can often be annotated with 
very little internal change, annotations are usually to the 
point and roughly comparable to what one would find in a 
typical ML program (including signatures). The resulting 
constraint simplification problems can be solved efficiently 

in practice. Also the annotations are mechanically verified, 
and therefore can be fully trusted as program documenta- 
tion. 

Due to length restrictions, it is impossible to present 
here all aspects of DML(C). Instead, we concentrate on its 
main features. In contrast to (Xi and Pfenning 1998), this 
extended abstract emphasizes the theoretical foundation of 
DML(C), showing that the type system of DML(C) is sound 
and type-checking in DML(C) can be made practical. We 
refer the interested reader to (Xi 1998) for the details. 

The remainder of the paper is organized as follows. We 
present a monomorphic language ML0 in Section 2, which 

is a simply typed X-calculus with general pattern match- 
ing. We start with a monomorphic language simply because 
the development of dependent types is largely orthogonal to 
polymorphism. We then introduce the notion of constraint 
domain in Section 3. We proceed to extend ML0 with uni- 
versal dependent types in Section 4, leading to the language 
ML:(C) parameterized over a constraint domain C. We 

give the typing rules and operational semantics of ML!(C) 

and show why the type system of ML:(C) can be regarded 
as a restricted form of dependent types. In Section 5, we 
present the rules for elaboration from DMLo(C), an exter- 

nal language, into ML,“(C) and prove the correctness of the 
elaboration. We explain the need for existential dependent 

types in Section 6 and extend ML:(C) to MLzl’(C). We 
then briefly mention in Section 7 how dependent types can 
be combined with let-polymorphism and effects. In Sec- 
tion 8, we sketch some interesting applications. The rest 
of the paper is concerned with some related work, current 
status and future research directions. 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMini-ML with Pattern Matching 

We start with a monomorphic programming language (MLo) 
along the lines of Mini-ML, including general pattern match- 
ing which is critical in practice and whose theory in this 
setting is non-trivial. Polymorphism, on the other hand, is 
largely orthogonal and therefore postponed until Section 7. 
There we also discuss how to extend the language with ef- 
fects such as mutable references and exceptions. The syntax 
of ML0 is given in Figure 3. We sssume throughout that 
variables are declared at most once in a context and that 
bound variables may be renamed tacitly. 

We omit the typing rules and the call-by-value natural 
semantics of this language, which are completely standard. 
Given e,v in MLo, we write e -+o v if e evaluates to v. 
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1 cons of ‘a * ‘a list 
with (* indexing the datatype zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘a list with nat *> 

* ‘a list(n) -> ‘a list (n+l) 

datatype ‘a list = nil 

typeref ‘a list of nat 

nil <I ‘a list(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I cons <I Cn:nat) ‘a 

funOa> 
append(ni1, ys) = ys 

I append(cons(x, xs> , ys) = cons(x, appendcxs, ys)) 

where append <I {m:nat){n:nat) ‘a list(m) * ‘a list(n) -> ‘a list (mtn) 

Figure 1: An introductory example: append 

datatype lamexp = One I Shift of lamexp I Abs of lamexp I App of lamexp * lamexp 

typeref lamexp of nat with 

One <I Cn:nat> lamexp(n+l) 
I Shift <I {n:nat) lamexp(n) -> lamexp(n+l) 

I Abs <I {n:nat) lamexp(nt1) -> lamexp(n) 

I App <I {n:nat) lamexp(n) * lamexp(n) -> lamexp(n) 

Figure 2: Another introductory example: closed lambda expressions 

3 Constraint Domains 

Our enriched language will be parameterized over a domain 
of constraints from which the type index objects are drawn. 

Typical examples include linear inequalities over integers, 

boolean constraints, or finite sets. Due to space limitations, 

we only briefly sketch the interface to constraints as they 

are used in our type system. 
First we note that constraints themselves are typed. In 

order to avoid confusion we call the types of the constraint 
language index sorts. We use b for base index sorts such 

as boo1 for booleans and int for integers. We use f for in- 

terpreted functions symbols, p for atomic predicates (that 

is, functions of sort 7 + bool) and we assume to have con- 

stants such as equality G for every sort, truth values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and 
I, negation 7, conjunction A, and disjunction V, all of which 

are interpreted as usual. 

index sorts 7 ::= bllIyi*yzI{a:ylP} 

index propositions P ::= T 1 I  1  p(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

4 A P2 I A v P2 

Here {a : y ( P} is the subset index sort for those elements 

of 7 satisfying proposition P. For instance, nat is an abbre- 

viation for {o : int I a > 0). We use a for index variables, 

and formulate index objects as follows. 

index objects i, j ::= a I () I (i, j) 1 f(i) 
index contexts 4 ::= .I(&a:rlqS,P 

index constraints Cp ::= P I +I A 91 I P > Cp 1 

Va : 7.9 I 3a : y.@ 

satisfaction relation $I=@ 

The satisfaction relation 4 k 0 means that cf, is satisfied in 

the constraint domain under index context 4. The method 

for verifying such a relation depends on the constraint do- 
main. For instance, model-checking can be chosen for finite 

domains. 

We omit the standard sorting rules for this index lan- 
guage and the standard definition of constraint satisfaction. 

The index constraints listed here are the ones which re- 

sult from elaboration and should therefore be practically 

solvable for C in order to obtain a usable type-checker for 

DML(C). This is the case, for example, for integer inequal- 

ities, which our implementation solves by a variant of the 
Fourier variable elimination method. Empirical results and 

further references can be found in (Xi and Pfenning 1998). 

4 Universal Dependent Types 

We now present ML!(C), which extends ML0 with univer- 

sal dependent types. Given a domain C of constraints, the 
syntax of ML:(C) is given in Figure 4. Note that only the 

syntax different from ML0 is present. We use 6 for base type 

families, where we use a() for unindexed types. 
We do not specify here how new type families or con- 

structor types are actually declared, but assume only that 

they can be processed into the form given above. Our im- 

plementation provides both built-in and user-declared re- 

finement of types as shown in the examples. 
The typing rules for ML:(C) should be familiar from 

a dependently typed &calculus (such as the ones underly- 
ing Coq or NuPrl), except that we separate index variables, 

abstractions, and applications from term variables, abstrac- 

tions, and applications. The critical rule of type conversion 

uses the judgment 4 I- 71 I rs which is the congruent ex- 

tension of equality on index objects to arbitrary types: 

4+iiii’ 4 I- ri = r; fp I- 72 I r; 

f#l I- a(i) q a(i)) 4 k 71 * 72 I 7; * 7; 

I$ b 7; I ri 4 I- 72 3 r; $!J,o:ykr=r’ 

f#J t- 7.1 + 7-z i r: + 7-i $5 I- no : 7.’ E l-h : 7.” 

Notice that it is the application of these rules which gener- 

ates constraints. For instance, the constraint 4 k (o + n) + 
1 k m + n is generated in order to derive 4 I- intlist((a + 
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base types p ::= boo1 1 int 1 (other user defined datatypes) 

types Q, r ::= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApI11T*ulcT-iT 

patterns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ::= 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI d d  IO  I bl,Pd 

matches ma ::= (p * e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (p * e I ma) 
expressions e ::= x I () I (el, e2) I c(e) ) (case e of ms) I (lam x : 7.e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI el (e2) 

I let x = ei in e2 end 1 (Ax f : 7.21) 
values 
contexts 

::= 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI c(V) I () ( (m,V2) I (lam x : r.e) 
: ::= . I r,z: 7 

Figure 3: The syntax for ML0 

families 6 ::= (family of built-in or user-declared refined types) 

constructor signature S ::= * I S, c : IIai : 71. . . IIa, : ^Im.‘r + J(i) 
major types P ::= a(i) I 11 (71 * 72) 1 (Tl + T2) 

types r ::= p 1 (l-h: 7.T) 
patterns P 

..- ..- . . ’  1 c[m] . , . [an](P) 

expressions e ..- .*- . . . I c[i~] . . . [in](e) I (Aa : 7.e) I e[i] 
values V 

..- ..- . . . I C[il] . . . [in](v) I (Xa : 7.v) 

substitutions 8 ..- ..- **. ]@Zl+_,i] 

Figure 4: The syntax for ML:(C) 

4+ 1) z intliat(m + n) in an example below, where 4 is 
m:nat,n:nat,a:nat,a+l+m. 

The only significant complication arises from pattern 
matching, where new index propositions P are generated. 
We restrict the index arguments to constructors appearing 
in patterns to index variables so that pattern matches fail 
or succeed independently of the indices. This is essential to 
proving the conservativity of ML,“(C) over MLe. 

The judgment p J. T D (#;I’) expresses that the index 
and ordinary variables in pattern p have the sorts and types 
declared in 4 and l?, respectively, if we know that p must 
have type r. It is defined by the following rules. 

2 J- 7 b (q 2 : T) 0 J- 1 D (*; .) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

plhD(h;rl) Pz172D(+z;r2) 

(p1,~2)~~l*~~D(~l,~2;rl,r2) 

Assume that cons is of type 

IIa : nat.int * intZiat(a) + intliat(a + 1) 

since polymorphism is not available at this moment. Then 
the following is derivable. 

(cons[a]((x, x3)), ya) 1 intlist(m) * intlist(n) 
D a:nat,a+lsm; 

x : int, x.9 : intliat(a), ya : intliat(n) 

The judgment for match expressions 4; l? I- ma : 71 + rz 
checks independently for each case that given a subject of 
type ri the case branch will have type 72. In other words, 
ri + 72 is the type of match ma. The following rules are for 

the derivation of such a judgment. 

p .l rl D (4'; r') $,#;r,r' k- e : rz 

$;ri-p*e:Tl JT~ 

f$;r I- (p * e) : 71 * r2 4;r I- rns :TI =s 72 

f$;l?l-(p*e~ma):~l=+r~ 

For instance, also using the rules for expressions from 
Figure 6, it can be readily verified that the following is deriv- 

able. 

m : nat, n : nat; append : r 
I- (~44((~, 41, v4 =+- 

coda + nl(b, amd4bl((~s, w4))) : 
intZist(m) * intliat(n) * intliat(m + n) 

where r is 

IIm : nat.lln : nat. 
intliat(m) * intliat(n) + intliat(m + n) 

Notice that this involves deriving the following, which is 
obviously true in an integer domain. 

m:nat,n:nat,a:nat,a+lkm 
+ (a+n)+lGm+n 

The remaining typing rules for ML!(C) are in Figure 6. 
We now present an example in Figure 5, which is basi- 

cally an expression in ML,“(C) corresponding to a monomor- 
phic version of the code in Figure 1. We also present a sug- 
ared version of the expression to enhance readability but we 
emphasize that there is no sugared syntax for MLb(C) in 

our implementation (see Section 5). 
Next we turn to the operational semantics. The critical 

design decisions are that (a) indices are never evaluated, 
(b) indices are never used to select branches during pattern 
matches, and (c) we evaluate underneath index abstractions 
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fix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAappend : IIm : nat.k : nat.intlist(m) * intZist(n) + intlist(m + n). 
Am : natAn : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnat.lam 1 : intlist(m) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi&list(n). 

case 1 of 

fun append CO] Cn] (nil, ys) = ys 

I append [a+11 Cnl (cons Cal (x, x(t) , ys) = cons Cad (x , append [al Cnl (xs , ys> 1 

where append <I {m:nat){n:nat) intlist(m) * intlist(n) -> intlist(m+n) 

Figure 5: An expression in ML,“ (C) and its sugared version zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

$;I? l-e : 71 4 k 71 E 72 (ty_eq) r(z)= 7 

&I? I-  e : 72 
4;r ~f.~f["""l (tY-4 

S(c) = na : q.7 + b(i) 

'(') = 6(i) (ty_cons_wo) 

f$G:~ q%;rl-v:T[a:=~ 

4;r t c: 6(i) 4; r k c[q(~) : a(i[a := i)) (ty-cons-w) 

dir k 0: 1 (ty-unit) 

4; r I- el : 7l C#J; r t- e2 : 72 

+;rt-(el,e2):71*T2 
(ty-prod) 

f$l-71:* PJ~~D(#;P) +,+‘;r,r’ke:T2 41-r2 :* 

&rl-p*e:rl =3r2 
(ty-match) 

&rl-(p*e):TI=+-7 4;ri-m5:T137 
+;rk(p*elms):71*7 

(ty-mat ches) 

4;r k e: 7l 4; r t- ms : 71 + 7 tty_caseJ 

4; r I- (case e of ms) : T 

q5,a:y;rke:T 

4; r I- (Xa : y.e) : (IIa : 7.7) (ty-ilam) 

4; r, z : 71 I-  e : r2 

4; r I- e : IIa : 7.~ C#J I- i : y (ty_iapp) 

4; r I- e[i] : 7[a := i] 

+;r t- (lam z : 7l.e) : 71 + ~2 
(ty-lam) 

W k el;;;;e;e2ELk e2 : ~1 tty_appl 

f$; r I- el : 71 +;r,x : 71 i- e2 :72 (ty_let) 

qi; r t-  let x = el in e2 end : 72 

Figure 6: Typing Rules for ML,“ (C) 

Xa : y.e. We do, however, substitute for index variables 

when a branch in a pattern match has been selected, or 

when a dependently typed function is applied to an index 

argument as in e[i]. These points together guarantee type 

preservation for ML,“ (C) and conservativity over MLo. 

There is no obstacle preventing the evaluation of type in- 

dices at, run-time--there is simply no need to do so. Clearly, 

this would change immediately if run-time type-checking be- 

came necessary, but we do not intend to run DML programs 

which could not be type-checked at compile-time. 

For the sake of brevity, we omit the operational seman- 

tics in this extended abstract. Given the remarks above, it 

is straightforward to define e _)d v in the style of natural 

semantics, which means e evaluates to v in ML,“ (C). 

Next, we prove the central properties of ML,“ (C). The 

first basic property states that dependent types are pre- 

served under the operational semantics. 

Theorem 4.1 (Type preservation) Given e,v in ML:(C) 

such that e _)d v is derivable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf qb; I? I- e : r is derivable, 

then q5; I? I-  v : r is derivable. 

Proof By a structural induction on the derivations of e +d 

vand4;rke:r. H 

The following definition and theorems detail the rela- 

tionship between ML,“ (C) and MLo. Basically, MLF(C) is 

a refinement of the type system of ML0 which allows us to 

express more properties, but neither affects the operational 

semantics nor the typing judgments already expressible in 

MLo. 

Definition 4.2 W e define the index erasure fin&on )I . 11 
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as follow3: 

Mil ,...,iJl = 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1171 * Al = IhI1 * 117211 
IIn -+ 7211 = 11~111 + 11741 
llna : 7.41 = llrll 
II44 . . . MWII = 4ll4) 
II(lam x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 7.e)ll 

~~Oyll: r.e)ll 
1 1;;;” x : 11~1144) 

11:: z : 7.2111 
= II:11 
= Ax x : llTll.1lVll 

IF, x : 41 = Ilrll,~ : lldl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It maps an expression in ML:(C) into one in MLo. Note 

that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa few trivial cases are omitted for the sake of brevity. 

The erasure of a program written in ML,“(C) is executed in 
MLo. In general, the erasure of a DML program is executed 
in ML. The next theorem guarantees that the index erasure 
of a well-typed program in ML,“(C) is also well-typed in 
MLo. 

Theorem 4.3 If 4; l? I- e : 7 is derivable in ML,“(C), then 

llrll k [IelI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 11~11 is derivable in MLo. 

Proof By a structural induction on the derivation of 4; l? I- 
e : 7. n 

A significant consequence of Theorem 4.3 is that if an 
untyped program is typable in ML:(C) then it is already 
typable in MLo. This distinguishes our design from those 

which aim at making more programs typable by extending 
the type system of ML. Instead, our objective is to assign 
more accurate types to programs. 

Also we must guarantee that the operational semantics 

of a program in ML:(C) is preserved when it is evaluated 
in MLo. This is done by the following two theorems. 

Theorem 4.4 (Soundness) If e _)d v derivable in ML:(C), 
then llell +o Ilull is derivable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Proof By a structural induction on the derivation of e +d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2). n 

The corresponding completeness property relies on the 

restrictions on the form of constructor types and the index 
arguments to constructors in patterns. 

Theorem 4.5 (Completeness) Given 4; r I- e : r derivable 

in ML!(C). If llell +O vg is derivable for some vg in MLo, 

then there exists v in ML:(C) such that e _)d v and ~~v~~ = 

vo. 

Proof By a structural induction on the derivations of [IelI +O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v. and 4; r b e : T. w 

It is a straightforward observation on the typing rules for 
ML,“(C) that the following theorem holds. Therefore, if 
the user does not index any types, then his code is valid in 
ML,“(C) iff it is valid in MLo. 

Theorem 4.6 ML,“(C) is a conservative extension of MLo. 

We call the type system of ML,“(C) a restricted form of 

dependent types since we view both index objects and ex- 
pressions in ML:(C) as terms. In this view, the type of one 
term can depend on the valve of other terms. For instance, 
the type of append[m][n]((xs, ys)) depends on m and n. An 
alternative is to view index objects as types, and therefore 

to regard the type system of ML,“(C) as a polymorphic type 
system. However, this alternative leads some (unnecessary) 
complications. For instance, it is unclear which expressions 
are of type i if i is an index object. A more serious problem 

is how subset sorts should be treated under this alternative 
view. 

In a filly dependent type system such as the one which 
underlies LF (Harper, Honsell, and Plotkin 1993) or Coq, 
there is no differentiation between type index objects and 
language expressions. In other words, the constraint domain 
is the same as the language. Therefore, constraint satisfac- 
tion is as difficult as program verification, which seems to be 
intractable in practice. The novelty of ML:(C) is precisely 
the differentiation between type index objects and language 
expressions, which makes our approach practical and scal- 

able. 

5 Elaboration 

We have so far presented an explicitly typed language ML:(C) . 
This presentation has a serious drawback from a program- 
mer’s point view: one would quickly be overwhelmed with 

types when programming in such a setting. It then becomes 
apparent that it is necessary to provide an external language 
DMLo(C) together with a mapping to the internal language 

ML,“(C). This mapping is called elaboration. For instance, 
the declaration of (a monomorphic version of) append in 

Figure 1 is to be elaborated into the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAML: (C)-expression in 
Figure 5. 

5.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe External Language DMLo(C) 

The syntax for DMLo(C) is given as follows. 

patterns p ::= x I c(P) I 0 I (Pl!P2) 
matches ms ::= (p*e)I(p=FeIms) 

expressions e ::= x I c(e) I () I (el,e2) I 

case e of ms I el(e2) 1 lam x.e 1 lam 2 : T.e I 
let 2 = el in e2 end I fix f.v I fix f : T.V 1 e : T 

Note that this is basically the syntax for ML0 though types 
here could be dependent types. This partially attests to the 
unobtrusiveness of our enrichment. 

5.2 Elaboration as Static Semantics 

We illustrate the intuitions behind some elaboration rules 
while presenting them. Elaboration, which incorporates 
type-checking, is defined via two mutually recursive judg- 
ments: one to synthesize a type where this can be done in 
a most general way, and one to check a term against a type 
where synthesis is not possible. A synthesizing judgment 
has the form +;I’ t- e t 7 =X e’ and means that e elab- 
orates into e’ with type r. A checking judgment has the 
form 4; r I- e .J r =S e’ and means that e elaborates into 
e’ against type 7. In general, we use e,p,ms for external 
expressions, patterns and matches, and e*,p’, ms’ for their 
internal counterparts. 

The purpose of the first two rules is to eliminate II quan- 

tifiers. For instance, let us assume that el(e2) is in the code 
and a type of form Ha : 7.~ is synthesized for el; then we 
must apply the rule (elab-pi-elim) to remove the II quan- 
tifier in the type. We continue doing so until a major type 
is reached, which must be of form ~1 + 72 (if the code is 
type-correct). Note that the actual index i is not locally 
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determined, but becomes an existential variable for the con- 

straint solver. The rule (elab-pi-intro) is simpler since we 

check against a given dependent function type. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4,a:r;rt-eJT*e* 

4; r I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 1 lla : 7.7 * (Xa : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr.e*) (elab-pi-intro) 

The next rule (elab-lam) is for lambda abstraction, which 

checks a lam expression against a type. The rule for the 
fixed point operator is similar. We emphasize that we never 

synthesize types for either lam or Ax expressions (for which 
principal types do not exist in general). 

4; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, x : ~~ !- e 1 rz * e* 

4; r t- (lam x.e) J. Tl + 72 * (lam x : 71.6;) 

The next rule (elab-app-up) is for function application, 

where the interaction between the two kinds of judgments 
takes place. After synthesizing a major type ~1 + ~2 for el, 

we simply check e2 against 71-synthesis for e2 is unneces- 
sary. 

We maintain the invariant that the shape of types of vaxi- 

ables in the context is always determined, modulo possible 

index constraints which may need to be solved. This means 

that with the rules above we can already check all normal 

forms. A term which is not in normal form most often will 

be a let-expression, but in any case will require a type an- 

notation, as illustrated in the rule (elab-let-down) below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q3;r I- el t 71 a f3i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4; r, 2 : 71 b e2 J- 72 * eZ 

4; r, x : 71 I- let x = el in e2 end J- 72 j e* 

where e* = let x = ei in e; end. Even if we are checking 

against a type, we must synthesize the type of el. If el is 
a function or fixpoint, its type must be given, in practice 

mostly by writing let x : 7 = el in e2 end which abbrevi- 

ates let c = (el : T) in e2 end. The following rule allows 

us to take advantage of such annotations. 

” r ’ e ’ 7 * e* (elab anno up) 
4;rl-(e:7)?7*e* _ - 

As a result, the only types which itre required in realistic 

programs are due to declarations of functions and a few cases 

of polymorphic instantiation. 
Moreover, in the presence of existential dependent types, 

which will be introduced in Section 6, a pure ML type with- 

out dependencies obtained in the first phase of type-checking 
is assumed if no explicit type annotation is given. This 

makes our extension truly conservative in the sense that 

pure ML programs will work exactly as before, not requir- 
ing any annotations. 

Elaboration rules for patterns are particularly simple, 

due to the constraint nature of the types for constructors. 

We elaborate a pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp against a type r, yielding an in- 

ternal pattern p’ and index and term contexts 4 and I’, re- 

spectively. This is written as p & T + (p*; 4; l?) in Figure 7. 
This judgment is used in the following rule (elab-match) 

for pattern matching: the generated context 4’ is assumed 

x~T=+(x;~;x:T) 0 1 1 * (0; ‘i *I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PI -1~1 3 Cpi;41;rl) ~2 4~2 * (p;;42;r2) 

(Pl,p2) 4~~ ~~~ + ((p:,p4)i~l,~2;rl,r2) 

S(C) = na : 7.7 -+ a(i) p 4 T =$ (p*; 4; r) 

4~) 4 a(j) + (4-w); 2 : 7, i k j, 4; r) 

Figure 7: The elaboration rules for patterns 

into the context 4 while elaborating e. For constraint satis- 

faction, the declarations in I#J’ are treated as hypotheses. 

The complete elaboration rules for DMLo(C) are listed in 

Appendix B, and they are justified by the following theorem. 

Theorem 5.1 Let Z be the operational equivalence relation. 

1. If q5; r i-  e t r + e* is derivable, then q5; I? I-  e* : T is 
derivable and e P e' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

2. Ifqi;rl-eJ_r=+e* isderivable, thenq5;rke’:ris 

derivable and e g e* . 

Proof (1) and (2) follow straightforwardly from a simul- 
taneous structural induction on the derivations of r I- e t 

r=+e* and4;I’ke$rje*. n 

The description of type reconstruction as static seman- 

tics is intuitively appealing, but there is still a gap between 
the description and its implementation. There, elaboration 

rules explicitly generate constraints, thus reduce dependent 
type-checking to constraint satisfaction. This kind of trans- 

formation is standard and therefore omitted here. For in- 
stance, when elaborating the first and second clauses in the 

function declaration in Figure 1, we generate the following 
two constraints, which are obviously true. 

Vn : nat.O + n L n 

Vm : nat.Vn : nat.Va : nat. 

a+l~m>(a+n)+l~m+n 

Therefore the code is well-typed in ML,“(C). A thoroughly 

explained example on elaboration and constraint generation 
is available in (Xi 1998). 

6 Existential Dependent Types 

In practice, the constraint domain must be relatively sim- 

ple to permit the implementation of an effective constraint 

solver. Therefore there remain many properties of indices 

which cannot be expressed. For instance, if we apply the 

following filter function to a list of length n, we cannot 
express the length of the resulting list since it depends on 

the predicate p. 

fun filter p nil = nil 

I filter p (x::xs) = 
if p(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthen I:: (filter p xs) 

else (filter p x8) 

220 



Nonetheless, we know that there exists some m 5 n such 
that the length of the resulting list is m, which can be ex- 
pressed using an existential dependent type, also called weak 
dependent sum. Also, existential types can mediate between 
dependent and ordinary ML types. For instance, given a 
function of ML type ‘a list -> ‘a list, we can assign to 
it a dependent type which states that the function returns 
a list of unknown length when applied to a list of unknown 

length. This yields an approach to handling existing func- 
tions such as those in a library, whose definitions may not 
be available. Notice that this is crucial to support sepa- 
rate compilation. However, the use of existential types to 
represent ML types leads to a major loss of information at 
module boundaries. We would like soon to address this issue 
by exporting dependent types in signatures, extending DML 
to full SML. This approach closely relates to Extended ML 
(Sannella and Tarlecki 1989). 

We now extend ML:(C) to ML:“(C). 

types 7 ..- ..- . . . 1 (Ca : -y*T) 
expressions e ::= ... I 6 I 4 I 

let (a 1 z) = el in ez end 

values 21 .._ ..- . . . 1 (i I v) 

We need the additional typing rules (t-sig-intro) and 
(t-sig-elim) 

4; l? I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe : ~[a := i] 
’ I- i ’ ’ (t-s&intro) 

4; l? I- (i 1 e) : (Ca : 7.7) 

$;rt-el:Ea:7.71 f$,a:y;r,2:71+e2:72 

4; I’ k let (a I z) = el in e2 end : 72 
(t-sig-elim) 

where a may not occur in 72 in the latter (in addition to the 
general assumption that a and x are not already declared 
in 4 and I?, respectively). For instance, we can assign the 
following type to the function filter: 

(‘a -> bool) -> 
In:nat) 'a list(n) -> Cm:nat I m<=nI 'a list(m), 

where Cm:nat Im<=nl stands for 

Cm: {a : not I a 5 n}. 

Also, we can assign the type 

([n:natl ‘a list(n)) -> [n:nat] ‘a list(n), 

to any function of ML type ‘a list -> ‘a list. 
We can then prove all the theorems in Section 4 for 

MLfl’(C). It is also straightforward to give a sound elabo- 

ration procedure from DMLo(C) to MLfYc(C). The follow- 
ing is a significant rule for this purpose. 

4; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr I- el t Ca : 7.~1 * e; 

4; r I- let x = el in e2 end $72 + e’, 

where e’ is let (a I z) = ei in eg end. 
Unfortunately, this elaboration rule requires a let to be 

present in the source when eliminating an existential de- 
pendent type, which will not be the case in many typical 
ML programs. We therefore apply the A-translation (Moggi 
1989; Sabry and Felleisen 1993) before elaboration. For ex- 
ample, suppose that the synthesized types of I and 1’ are Ca : 
nat.intlist(a), that is, the lengths of 1 and 1’ are unknown. 

If we check append((l,l’)) against Ca : nat.intlist(a), then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
append( (1, 1’)) is translated to 

let x = 1 in let z’ = 1’ in append((z,z’)) end end, 

which is then elaborated into 

let (a I x) = I in 
let (a’ I 2’) = 1’ in 

(a + a’ I append[a][a’]((z, z’))) end end 

There are some pragmatic issues on whether A-translation 

should be controlled by the programmer or applied auto- 
matically. We have chosen the latter in our current imple- 
mentation. Please see (Xi 1998) for details. 

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPolymorphism and Effects 

It is straightforward to extend ML:“(C) with polymor- 
phism. We have designed a two-phase elaboration algorithm 
which elaborates a program as follows. 

Phase one It verifies that the index erasure of the program 
is a well-typed ML program. 

Phase two It then applies the elaboration algorithm for 

ML:*‘(C) to the result obtained in phase one. If a 
needed type annotation is unavailable, the type in- 
ferred in phase one is supplied. This guarantees that 

a valid ML program is always valid in DML(C). 

The type system becomes unsound if dependent types are 
combined directly with effects. The symptom is the same 
as that of combining polymorphism with effects. Soundness 
can be recovered if we adopt a value restriction, that is, we 
replace the rule (ty-ilam) with the following. 

4,a:y;rkv:T 
4; r I- (Xa : 7.~) : (Ha : 7.~) 

After this, the development is standard, which is thoroughly 

explained in (Xi 1998). 

8 Applications 

8.1 Program Error Detection 

A red/black tree is a balanced binary tree which satisfies 
the following conditions: (a) all leaves are marked black 
and all other nodes are marked either red or black; (b) for 
every node there are the same number of black nodes on 
every path connecting the node to a leaf, and this number is 
called the black height of the node; (c) the two sons of every 

red node are black. 
In Figure 8, we define a polymorphic datatype ‘a diet, 

which is essentially a binary tree with colored nodes. We 
then refine the datatype with type index objects (c, bh) drawn 
from the sort bool * nut, where c and bh are the color and 
the black height of the root of the binary tree. The node is 
black if and only if c is true. Therefore, the properties of 
a red/black tree are naturally captured with this datatype 
refinement. This enables the programmer to catch program 
errors which lead to violations of these properties when im- 
plementing an insertion or deletion operation on red/black 
trees. We have indeed encountered errors caught in this way 
in practice. 

The types of other balanced trees such as AVL trees can 
be declared similarly (see Appendix A). 
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type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘a entry = int * ‘a 

datatype ‘a diet = Empty (* considered black *) 
I Black of ‘a entry l ‘a diet * ‘a diet 
1 Red of ‘a entry * ‘a diet * ‘a diet 

typeref ‘a diet of boo1 * nat with 
Empty <I ‘a dict(true, 0) 

I Black <I icl:bool){cr:bool)<bh:nat) 
‘a entry * ‘a dict(c1, bh) * ‘a dict(cr, bh) -> ‘a dict(true, bh+l) 

I Red <I ibh:nat) 
‘a entry * ‘a dict(true, bh) * ‘a dict(true, bh) -> ‘a dictcfalse, bh) 

Figure 8: The red/black tree data structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8.2 Array Bound Check Elimination 

We refine the built-in types: (a) for every integer n, int(n) 
is a singleton type which contains only n, and (b) for every 
natural number n, ‘a array(n) is the type of arrays of size n. 
We then assume that the array operations sub and update 
have been assigned the following types. 

sub <I (n:nat) Ci:nat I i < n) 
‘a array(n) * int(i) -> ‘a 

update <I in:nat) Ci:nat I i < n) 
‘a array(n) * int(i) * ‘a -> unit 

Clearly, the array accesses through sub or update cannot 
result in array bounds violations, and therefore it is unnec- 
essary to insert array bound checks when we compile the 
code. Please see (Xi and Pfenning 1998) for the details. 

8.3 Dead Code Elimination 

The following function zip zips two lists together. If the 
clause zip(_, _) = raise zipException is missing, then 
ML compilers will issue a warning message stating that zip 
may result in a match exception. This happens if two argu- 
ments of zip are of different lengths. 

exception zipException 
fun(,a, ‘b) 

zip(ni1, nil) = nil 
I zip(cons(x, x18), cons(y, ys)) = 

cons((x,y), zip(xs, ys>) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zip(_, _I = raise zipException 

However, this function is meant to zip two lists of equal 
length. If we declare zip to be of the following dependent 

type, 

Cn:natI ,a list(n) * ,b list(n) -> 
(,a * ‘b) list(n) 

the clause zip(_, _) = raise zipException in the defini- 
tion of zip can never be reached, and therefore can be safely 
removed. 

This leads to not only more compact but also potentially 
more efficient code. For instance, if it has been verified that 
the first argument of zip is non-empty, then the second argu- 
ment must also be non-empty. Therefore, tag-checking can 
be reduced significantly when this example is implemented. 
Such examples are abundant in practice. 

It will not be straightforward to extend the usual pattern 
compilation algorithms to take advantage of such additional 

information, and we have not yet tried this idea in a com- 
piler. However, the benefit of such dead code elimination 
for error detection can be readily realized. We refer the 
interested reader to (Xi 1999) for further explanation. 

8.4 Other Applications 

There are many other potential applications of dependent 
types which can be found in (Xi 1998), including facili- 
tating partial evaluation, performing loop-unrolling, passing 
dependent types to an assembly language, etc. 

9 Related Work 

Our work falls in between full program verification, either in 
type theory or systems such as PVS (Owre, Rajan, Rushby, 

Shankar, and Srivas 1996), and traditional type systems for 
programming languages. When compared to verification, 
our system is less expressive but more automatic when con- 
straint domains with practical constraint satisfaction prob- 
lems are chosen. Our work can be viewed as providing a 
systematic and uniform language interface for a verifier in- 
tended to be used as a type system during the program 
development cycle. Since it extends ML conservatively, it 
can be used sparingly as existing ML programs will work as 
before (if there is no keyword conflict). 

Most closely related to our work is the system of indexed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
types developed independently by Zenger in his forthcoming 

Ph.D. Thesis (Zenger 1998) (an earlier version of which is 
described in (Zenger 1997)). He works in the context of of 
lazy functional programming. His language is clean and el- 
egant and his applications (which significantly overlap with 
ours) are compelling. In general, his approach seems to re- 
quire more changes to a given Haskell program to make it 
amenable to checking indexed types than is the case for our 
system and ML. This is particularly apparent in the case 
of existential dependent types, which are tied to data con- 
structors. This has the advantage of a simpler algorithm for 
elaboration and type-checking than ours, but the program 
(and not just the type) has to be more explicit. Also, since 
his language is pure, he does not consider a value restriction. 

When compared to traditional type systems for program- 
ming languages, perhaps the closest related work is refine- 
ment types (Freeman and Pfenning 1991), which also aims 
at expressing and checking more properties of programs that 
are already well-typed in ML, rather than admitting more 
programs as type correct, which is the goal of most other 
research on extending type systems. However, the mecha- 
nism of refinement types is quite different and incomparable 
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in expressive power: while refinement types incorporate in- 
tersection and can thus ascribe multiple types to terms in a 
uniform way, dependent types can express properties such 
as “these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo argument lists have the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsame length” which 
are not recognizable by tree automata (the basis for type 
refinements). We plan to consider a combination of these 
ideas in future work. 

Parent (Parent 1995) proposed to reverse the process of 

extracting programs from constructive proofs in Coq (Dowek, 
Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring, and 
Werner 1993), synthesizing proof skeletons from annotated 
programs. Such proof skeletons contain “holes” correspond- 
ing to logical propositions not unlike our constraint formu- 
las. In order to limit the verbosity of the required anno- 
tations, she also developed heuristics to reconstruct proofs 
using higher-order unification. Our aims and methods are 
similar, but much less general in the kind of specifications we 
can express. On the other hand, this allows a richer source 
language with fewer annotations and, in practice, avoids in- 
teraction with a theorem prover. 

Extended ML (Sannella and Tarlecki 1989) is proposed 
as a framework for the formal development of programs in 
a pure fragment of Standard ML. The module system of 
Extended ML can not only declare the type of a function but 
also the axioms it satisfies. This requires theorem proving 
during extended type checking. We specify and check less 
information about functions which avoids general theorem 

proving. On the other hand, we currently do not address 
module-level issues, although we believe that our approach 
should extend naturally to signatures and functors without 
much additional machinery. 

Cayenne (Augustsson 1998) is a Haskell-like language in 

which fully dependent types are available, that is, language 
expressions can be used as type index objects. The steep 

price for this is undecidable type-checking in Cayenne. We 
feel that Cayenne pays greater attention to making more 
programs typable than assigning programs more accurate 
types. In Cayenne, the printf in C, which is not typable 
in ML (see (Danvy 1998) for further details), can be made 
typable, and modules can be replaced with records, but the 
notion of datatype refinement does not exist. This clearly 
separates our language design from that of Cayenne. 

The notion of sized types is introduced in (Hughes, Pareto, 
and Sabry 1996) for proving the correctness of reactive sys- 
tems. Though there exist some similarities between sized 

types and datatype refinement in DML(C) for some domain 
C of natural numbers, the differences are also substantial. 

We feel that the language presented in (Hughes, Pareto, and 
Sabry 1996) is too restrictive for general programming since 
the type system there can only handle (a minor variation) 
of primitive recursion. On the other hand, the use of sized 
types in the correctness proofs of reactive systems cannot 
be achieved in DML at this moment. 

Jay and Sekanina (Jay and Sekanina 1996) have intro- 
duced a technique for array bounds checking based on the 
notion of shape types. Shape checking is a kind of partial 
evaluation and has very different characteristics and source 
language when compared to DML(C), where constraints are 
linear inequalities on integers. We feel that their design is 
more restrictive and seems more promising for languages 
based on iteration schemas rather than general recursion. 

A key feature in DML(C) which does not exist in either of 
the above two systems is existential dependent types, which 
is indispensable in our experiment. 

Finally, recent work by Pierce and Turner (Pierce and 
Turner 1998) which includes some empirical studies, is based 

on a similar bi-directional strategy for elaboration, although 
they are concerned with the interaction of polymorphism 
and subtyping, while we are concerned with dependent types. 
The use of constraints for index domains is quite different 
from the use of constraints to model subtyping constraints 

(see, for example, (Sulzmann, Odersky, and Wehr 1997)). 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConclusion 

We have extended the entire core of ML with a restricted 
form of dependent types, yielding the DML(C) language 
schema. This includes proving the soundness of the type 
system of DML(C) and designing a type-checking algorithm. 
Type annotations are required, but not overly verbose. The 
algorithm has shown itself to be practical for typical pro- 
grams and constraint domains, such as linear inequalities 
over integers for array bounds checking (Xi and Pfenning 
1998). In addition, we have finished a prototype implemen- 
tation of DML(C) in which all the major features in the 
core of ML except records are available. The only reason 
for omitting records is that we already have tuples and we 
would like to simplify the implementation. We have also ex- 
perimented with integer, symbolic and finite domains. We 
are currently writing a frontend for &ml-light. 

In future work, we plan to enrich DML with module- 
level constructs, that is, extend DML to full Standard ML. 
Since our design explicitly separates indices from ML expres- 
sions, we expect the extension to be mostly straightforward. 
Another practically important extension may be the intro- 
duction of limited forms of intersection types (Freeman and 
Pfenning 1991), so that more than one dependent type can 
be assigned to a function without code duplication. 

Our primary motivation is to allow the programmer to 
express more program properties through types and thus 
catch more errors at compile time. We are also interested 
in using this as a front-end for a certifying compiler (Necula 
and Lee 1998) which propagates program properties through 
a compiler where they can be used for optimizations or be 
packaged with the binaries in the form of proof-carrying code 

(Necula 1997). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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A Further Examples 

We present some additional examples for those who may 
have difficulty accessing (Xi 1997), where the complete ver- 

sions of these examples and some other larger ones are avail- 
able. 

An AVL tree is a balanced binary tree such that for every 
interior node the difference between the heights of its two 
sons is at most one. The data structure in Figure 9 precisely 
declares the type of AVL trees. 

Untyped X-expressions in de Bruijn form and an imple- 
mentation of evaluation are given in Figure 10. The depe- 
dent type checker verifies that no dangling de Bruijn refer- 
ences can occur during evaluation of a closed X-expression. 

This can be extended to verify type-safety statically, but 
requires a symbolic constraint domain. Assume that we have 
sorts type and context and the following constants. 

unit : type 

arrow : type * type -+ type 

empty : context 

:: : type * context + context 

In Figure 11, the datatype lamexp, declared in Figure 2, is 
refined to formulate the type of simply typed X-expressions. 
Note that lamexp is indexed with a pair (t,ctx), where t 
stands for the simple type of a X-expression and ctx records 
the types of free variables in the X-expression. There- 
fore the DML type of closed well-typed X-expressions is 
Xi! : type.lamexp(t,empty). 

Lastly, we present a short implementation of quicksort 
on lists in Figure 12, where the type guarantees that this 
implementation always returns a list of length n when given 
one of length n. Note that we use :: as an infix operator for 
cons. 

B Elaboration Rules for ML,“(C) 

We present the elaboration rules in Figures 13 and 14. Note 
that some rules have (obvious) side conditions, which can be 
found in (Xi 1998). 
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datatype ‘a tree = empty I branch of int * ‘a * ‘a tree * ‘a tree 

(* height, key, left son, right son *) 

typeref ‘a tree of nat with (* the index stands for the height *) 

empty <I ‘a tree(O) 
I branch <I {lh:nat){rh:nat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI rh - 1 <= lh <= rh + 11 

int(l+max(lh,rh)) * ‘a + ‘a tree(lh) * ‘a tree(rh) -> 

‘a tree(l+max(lh,rh)) 

Figure 9: AVL trees 

datatype lamexp = 

One I Shift of lamexp I Abs of lamexp I App of lamexp * lamexp 

typeref lamexp of int 

with One <I Cn:nat) lamexp(n+l) 

I Shift <I {n:nat) lamexp(n) -> lamexp(n+l) 

I Abs <I In:nat) lamexp(n+l) -> 1amexpM 

I App < I Cn:nat) 1amexpW * lamexp(n) -> lamexp(n) 

datatype closure = Closure of lamexp * env 

and env = Nil I Cons of closure * env 

typeref env of int 
with Nil <I env(0) 

I Cons <I {n:nat) closure * env(n) -> env(n+l) 

I Closure <I Cn:nat) lamexp(n) * env(n> -> closure 

fun callbyvalue(exp) = 

let 

fun cbv(One, Cons(clo, env)> = clo 
I cbv(Shift(exp), Cons(clo, env>) = cbvcexp, env) 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcbv(Abs(exp) , env) - Closure(Abs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(exp) , env) 

I cbv(App(fexp, exp), env) = 

let 
val Closure(Abs(body), envl) = cbvtfexp, env) 

val clo = cbvcexp, env) 

in 

cbv(body , Cons (clo, envl)) 

end 
(* exhaustiveness of these cases follows from the dependent types *> 

where cbv <I in:nat) lamexp(n) * env(n) -> closure 

in 

cbvcexp, Nil) 
end 

where callbyvalue <I lamexp(0) -> closure 

Figure 10: Closed X-expressions and evaluation 

datatype lamexp - One I Shift of lamexp I Abs of lamexp I App of lamexp * lamexp 

typeref lamexp of type * context with (* index lamexp with a pair (t, ctx) *I 

One <I Ct:type)Cctx:context) lamexp(t,t::ctx) 

I Shift <I Ctl:type)CtZ:type)Cctx:context) lamexp(tl,ctx) -> lamexp(tl,t2::ctx) 

I Abs <I Cti:type)Ct2:type)Cctx:context) 

lamexp(t2,tl: :ctx) -> lamexp(arrow(tl,t2) ,ctx) 

I App <I {ti:type)Ct2:type)Cctx:context) 

lamexp(arrow(tl,t2) ,ctx) * lamexp(tl,ctx) -> lamexp(t2,ctx) 

Figure 11: Simply-typed X-expressions 
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fun(‘a) quickSort cmp [I = [I 
I quickSort cmp (x::xs) = par cmp (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl, Cl, IS) 

where quickSort <I <n:nat) (‘a * ‘a -> bool) -> ‘a list(n) -> ‘a list(n) 

and(‘a) par cmp (x, left, right, xs) = 
case x8 of 

[] => (quickSort cmp left) (D (x:: (quicksort cmp right)) 
I y::ys => if cmp(y, x) then par cmp (x, y::left. right, ys) 

else par cmp (x, left, y::right, ys) 

where par <I {p:nat){q:nat)<r:nat> 

(‘a * ‘a -> boo11 -> 
‘a * ‘a list(p) * ‘a list(q) * ‘a list(r) -> ‘a list(p+q+r+l) 

Figure 12: Quicksort on lists 

“‘L; ~~$‘T~~l~i~; “l]i ’ 7 (elab-pi-elim) 
+,a:y;I~eJr=%e* 

&II-eJIIIa:7.7=+(Xa:7.e*) 
(elab-pi-intro) 

S(c) = IIUl : 71.. . no, : 744 4 I- il : 71 . . . c$ I- i, : 7n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+;rt-ct6(i[al,... ,a, :=i1,..* in]) =+ C[il] . . . [in] 
(elab-cons-wo-up) 

S(c) = I-IIal : 71 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . ITa, : ‘yn.7 + d(i) 

f$;l? l-e$+l ,..., a,:=il ,... &1=+-e* 

q!J I- il : 71 ** * q5 I- i, : -yn 

+;rkc(e)ta(i[ol,... ,a, :=i1,... in]) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc[il] . . . [i,](e*) 
(elab-cons-w-up) 

” r ’ c~)I,t~P~(~ Ii2 ttr’ z cl’ (elab-cons-w-down) 

Figure 13: Elaboration rules for ML,“(C), part I 
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+; r k () + 1 j () (elab-unit-w) 
4;r~oll=+o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(elab-unit-down) 

4; r b el t cdl * ei 4; r ’ e2 t p2 * e4 (elab_prod_up) 

4; r I- el J. ~1 * ei 
“r ’ e2 ’ T2 * e’ (elab-prod-down) 

4; r k (el, e2) 4 71 * 72 * (ei, e;) 

pJ~l*(p*;#;r~) ~,~‘;r,rV-e~T2+e* fji-~~:* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

#;I? k (p * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe) .J  (71 *  ~2) =+ (p’ * e*) 
(elab-match) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4; r  t- (P * e) 4 (n * ~2) * (P’ * e’) 4; r  I- ms -4 (~1 * TV) =+ ms* (elab 
_ 

4; r  I- (p * e 1 ms) 4 (71 * 72) *  (p’ *  e ’ 1 ms*) 

matches) 

4; r t- e t 71 * e’ di r t- ms 5- (~1 * ~2) * ms* ~elabcase~ 

f$; r t- (case e of ms) J 72 * (case e* of m9’) 

4; r !- (lam 2.e) 4 71 + 72 * (lam c : T l.e* ) 
(elab-lam) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b;r,X l:T l,X:Tke$T2=$e*  & r,Z l:T1kX1$T+ei 

f$; r I- (lam z : T.e) $  ~1 + 72 =S (lam z1 : ~l.let x = f3; in e’  end) 
(elab-lam-anno) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4;rt-eltTl-+~2+~; ~;ri-e2iTl=$e; 

4; r t- el(e2) t 72 * ei(4) 
(elab-app-up) 

4; r i- el(e2) t ~1 =+ e* 9 I= ~11 f ~2 (elab_app_down) 

qkrl-el(e2)lp2*eL 

C$;rkeltT1jei &r,x:Tlke2tT2+ez 

4; r I- let z = el in e2 end t 72 3 let CE = e; in e; end 
(elab-let-up) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f$;l?belt71=Sei C$;r,x :T lt -e2~T2=k-e; 

4; r k let z = el in e2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAend J- ~2 =S let x = ei in e; end 
(elab-let-down) 

& r,f:Tt -V$T* 21*  

& rk(fiXf:T.?J)fT=k+Xf:T.V* ) 
(elab-flx-up) 

& r,f:Tk21$T+V*  +;r,Z:TbZlT ’=ke*  

~irt-(fixf:7.21)~7’=k.letx=(fixf:~.~*)ine*end 
(elab-fix-down) 

4’r ’  e ’  T * e* (elab anno-up) 
& rb(e:T)tT+e*  _ 

9; r k  (e : T) t  PI  *  e ’ 9  I= PI  = ~2 (e lab_anno-dow n) 

4; r k  (e : 7) 1  p2 + e ’ 

Figure 14: Elaboration rules for ML,“(C), part II 
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