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Dephasing enhanced transport in non-equilibrium strongly-correlated quantum systems
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1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom and

2Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
(Dated: April 27, 2015)

A key insight from recent studies is that noise, such as dephasing, can improve the efficiency of quantum
transport by suppressing coherent single-particle interference effects. However, it is not yet clear whether de-
phasing can enhance transport in an interacting many-body system. Here we address this question by analysing
the transport properties of a boundary driven spinless fermion chain with nearest-neighbour interactions sub-
ject to bulk dephasing. The many-body non-equilibrium stationary state is determined using large scale matrix
product simulations of the corresponding quantum master equation. We find dephasing enhanced transport only
in the strongly interacting regime, where it is shown to induce incoherent transitions bridging the gap between
bound dark-states and bands of mobile eigenstates. The generic nature of the transport enhancement is illus-
trated by a simple toy model, which contains the basic elements required for its emergence. Surprisingly the
effect is significant even in the linear response regime of the full system, and it is predicted to exist for any large
and finite chain. The response of the system to dephasing alsoestablishes a signature of an underlying non-
equilibrium phase transition between regimes of transportdegradation and enhancement. The existence of this
transition is shown not to depend on the integrability of themodel considered. As a result dephasing enhanced
transport is expected to persist in more realistic non-equilibrium strongly-correlated systems.

I. INTRODUCTION

Recently the effects of noise on the efficiency of quantum
transport phenomena have been scrutinised intensely by the
scientific community. This has been motivated in part by
a series of ground-breaking nonlinear spectroscopic experi-
ments on light-harvesting complexes demonstrating surpris-
ingly long-lived quantum coherence during exciton transport,
even in a warm and wet environment1–3. Yet for purely co-
herent exciton dynamics in such protein pigment networks,
transport is highly suppressed due to destructive interference
between different propagation pathways. Instead studies re-
vealed that the remarkably high transport efficiency observed
(above 95%) in fact emerges in combination with local noise,
such as dephasing, which disrupts this interference opening up
previously inhibited pathways for transmission4–10. Transport
properties in open systems can thus not only defy the tradi-
tional understanding of when quantum effects should play a
significant role, but also challenge the notion that couplings
to the environment unconditionally degrade performance.

Different effects of dephasing have been studied in net-
works populated by single particles, in scenarios such as
transport through quantum optical systems11, heat trans-
port through chains of two-level systems12, information
transmission13 and quantum information processing14. Also,
interesting phenomena have been seen to emerge from the
coexistence of particle-particle interactions and noise,such
as glassy dynamics in ordered systems15 and interaction im-
peded decoherence16,17. However, the interplay between
noise and strong correlations induced by interactions in a
many-body setting is not yet fully understood. In particu-
lar a recent cold-atom experiment showed that the time-of-
flight expansion of a strongly-interacting gas was slow in the
absence of noise and substantially increased once noise was
added18. This raises an important question as to when and
how dephasing can enhance transport in a strongly interacting
system.

FIG. 1: Spinless fermions hop with amplitudeτ across a chain, sub-
ject to a nearest-neighbour density-density interaction of strength∆,
local dephasing at a rateγ, and boundary driving that injects/ejects
fermions at a rate proportional toΓ and driving biasf . The driv-
ing process induces a forward (upper arrows) and a backward (lower
arrows) flow of particles, and the biasf determines the imbalance
between both.

Here we answer this question in the affirmative by con-
sidering a concrete example composed of spinless fermions
with nearest-neighbour interactions hopping through a tight-
binding chain, as depicted in Fig.1. This model makes an
ideal testbed for several reasons. First, it is equivalent to the
well studiedXXZspin-1/2 chain19–21, representing one of the
simplest models of strongly-correlated electron systems.Sec-
ond, the transport properties of such low-dimensional inter-
acting quantum systems remains an important open problem,
exhibiting anomalous features such as ballistic spin transport
and unusually high thermal conductivity, reported experimen-
tally in so-called spin-chain materials22–25. In addition to
solid state systems like chains of coupled quantum dots26 or
molecular wires embedded between electrodes27, understand-
ing this model is directly relevant to ion-trap28, coupled-cavity
array29, and cold-atom18,30–32 quantum systems. Of particu-
lar importance are recent seminal experiments that revealed
contact and bulk resistivity of cold fermionic atoms flowing
through a narrow mesoscopic channel between a pair of reser-
voirs with a population imbalance33,34.

Very similar to these cold-atom experiments, we con-
sider a chain attached to two unequal Markovian reservoirs
at its boundaries providing continuous incoherent driving,
along with local dephasing noise along its extension (see
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Fig. 1)35–38. We then compute the current-driving character-
istics of its non-equilibrium stationary state (NESS). Being
a homogeneous chain with transport from end to end, pre-
viously studied single-particle interference effects originating
from geometry or disorder are absent6,7,39,40. Interestingly, we
show that dephasing-enhanced transport nonetheless emerges
so long as the interactions are strong enough. In this regime
and at maximal driving, the NESS forms a cooperative many-
body quantum state possessing a long-ranged domain of parti-
cles pinned to one boundary strongly suppressing the current,
analogous to a Coulomb or Pauli blockade insulator36. De-
phasing induces incoherent transitions out of this bound state
establishing a current in a regime that would otherwise be in-
sulating. We illustrate this mechanism in a simple toy model,
in which we isolate the essential conditions for the emergence
of the effect. Surprisingly, a large current enhancement ispre-
dicted to exist in any long and finite chain even for weak driv-
ing, where the transport is diffusive in the absence of noise.
We also observe that the transport enhancement is a signa-
ture of an underlying non-equilibrium phase transition, and
demonstrate its generality beyond the integrable system con-
sidered.

The paper is organized as follows. In SectionII we describe
the system to be studied. In SectionIII we show the existence
of dephasing-assisted transport for strong interactions,which
contrasts with the transport degradation at weak interactions.
The mechanism behind this non-equilibrium phenomenon is
explained in SectionIV. An illustrative toy model containing
the basic features for the effect to emerge is described in Sec-
tion V. The signatures of a non-equilibrium phase transition
between the two transport regimes, revealed by the existence
of an optimal dephasing rate and the correlations through the
system, are presented in SectionVI. We also show in this Sec-
tion that this transition remains even if the integrabilityof the
model is broken. Finally, in SectionVII we discuss the con-
clusions of our work.

II. MODEL

We study theN site interacting spinless fermion chain de-
scribed by the Hamiltonian

H =
N−1

∑
j=1

[
1
2τ(c†

j c j+1+h.c.)+∆(n j − 1
2)(n j+1− 1

2)
]

, (1)

wherec†
j ,c j are standard fermionic creation/annihilation oper-

ators for sitej andn j = c†
j c j is the associated number operator.

In addition to the hopping amplitudeτ, this Hamiltonian has
a nearest-neighbour density-density interactionn jn j+1 with
strength∆. We takeτ = 1 to set the energy scale. The dynam-
ics of the system is described by a Lindblad quantum master
equation41 (takingh̄= 1)

dρ
dt

=−i[H,ρ]+L(ρ), (2)

whereρ is the density matrix of the chain, andL is the dissi-
pator describing the coupling to the Markovian reservoirs.In

Lindblad form the dissipator is

L(ρ) = ∑
k

(

LkρL†
k −

1
2
{L†

kLk,ρ}
)

, (3)

where{., .} is the anti-commutator and the sum is over a set
of jump operatorsLk. We consider a dissipator that splits into
three partsL = LL +Ld +LR. HereLL andLR describe the
coupling to external particle reservoirs at the left and right
boundaries, respectively, each with two jump operators

L+
L,R =

√

Γ(1∓ f )/2c1,N, L−
L,R =

√

Γ(1± f )/2c†
1,N, (4)

whereΓ is the coupling strength, identical for both reservoirs,
and 0≤ f ≤ 1 is the driving bias36. We consider moderate
coupling Γ = 1 throughout this paper42. The driving pro-
cess, depicted in Fig.1, induces two pumping processes, cor-
responding to forward (left-to-right) and backward (right-to-
left) flows, thus forcing the system far-from-equilibrium.This
scheme is reminiscent of the well studied classical stochastic
exclusion model43,44. When f = 0 particles are injected and
ejected with equal rates at both boundaries, so the counter-
propagating flows cancel each other. This results in the sta-
tionary solutionρ = 1/2N to Eq. (2), irrespective of∆, thus
having no net current45. For f > 0 the forward flow is
favoured over the backward flow, raising the possibility of
a genuine NESS possessing a finite current. The remaining
contributionLd accounts for bulk dephasing in the chain and
is described by the jump operators

Ld
j =

√
γ(1−2n j), 1≤ j ≤ N, (5)

with a uniform dephasing rateγ.
By directly simulating Eq. (2) and taking the long time

limit, the stateρ(t) converges to the time-independent NESS
of the system. A solution can be computed efficiently in a con-
trolled way and accounting for significant many-body correla-
tions by applying the time evolving block decimation (TEBD)
algorithm46,47 to a matrix product operator description ofρ(t).
This highly compact representation enables the efficient eval-
uation of relevant expectation values and makes accessible
much larger system sizes than exact diagonalization or Monte
Carlo approaches48–50. Moreover TEBD can be applied effec-
tively over a large parameter range allowing us to examine the
properties of the system as a function off beyond thef ≪ 1
linear response regime. Our implementation of the numerical
method is based on the open source Tensor Network Theory
(TNT) library51.

The transport properties are analyzed by computing the cur-
rent crossing sitej from the operator

Jj = i(c†
j c j+1−h.c.), 1≤ j ≤ N−1. (6)

In the NESS the current〈Jj〉 = 〈J〉 is homogeneous through-
out the system.

III. DEPHASING ENHANCED TRANSPORT

It is known that in the weakly interacting regime|∆| < 1,
in the absence of dephasing, the system is an ideal ballistic
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FIG. 2: (a) The current-driving profiles in the weakly-interacting
regime∆ = 0.5 for increasing (as indicated by the arrow) dephas-
ing ratesγ andN = 16. (b) Identical plot to (a) but in the strongly-
interacting regime∆ = 2. Inset. The density〈n j 〉 of the system when
∆ = 2, f = 1, andN = 16, corresponding toγ = 0,0.05,1.00.

conductor for any drivingf , with a nearly flat density pro-
file 〈n j〉 and a current〈J〉 ∝ f which is independent ofN36,52.
The introduction of dephasing has been shown to induce dif-
fusive transport, where the current fulfills the diffusion equa-
tion 〈J〉 = κ∇〈n j〉, with κ the particle conductivity, and〈n j〉
features a constant gradient

∇〈n j〉=
〈nN−1〉− 〈n2〉

N−3
=

∆n
N−3

, (7)

where∆n is the density difference between opposite ends of
the system (after discarding the boundary sites). As a result
the current scales with the size of the system as

〈J〉 ∝
∆n

N−3
∼ f

N
, (8)

characteristic of an Ohmic conductor39,53. In either case the
maximum current through the chain occurs at maximal bias
f = 1, where only forward pumping is present, as might be
intuitively expected. In the non-interacting limit∆ = 0 it has
been proven rigorously that a homogeneous chain cannot ex-
hibit any dephasing enhanced end-to-end transport5,40,53; this
behaviour was also suggested for weakly-interacting systems
where|∆| < 139. In Fig. 2(a) we report the current-driving
profiles for ∆ = 0.5 showing that dephasing monotonically

FIG. 3: The current〈J〉 at f = 1, divided by the resulting density dif-
ference∆n between the ends of the system (excluding the boundary),
is plotted against the system sizeN−3 up toN = 100 sites. The data
is for dephasing ratesγ = 0.5 (×) andγ = 1.0 (�). The solid lines
show the fitting to〈J〉/∆n = κ(N− 3)−α for eachγ. These yield
κ = 1.288 andα = 0.863 forγ = 0.5, andκ = 1.228 andα = 0.958
for γ = 1.0.

degrades the current for any driving, confirming that this be-
haviour persists even in the presence of weak interactions.
Thus, in this work we focus on the strongly interacting regime
|∆|> 1.

In the absence of dephasing and for weak drivingf ≪ 1,
transport was found to be diffusive when|∆| > 152, a contro-
versial finding given that the integrability of the system iscon-
jectured to lead to ballistic transport54. However, for strong
driving f → 1 it was recently discovered36,55 that the NESS
exhibits a particle domain at the left edge of the chain irre-
spective of the sign of∆, strongly suppressing the current as
〈J〉 ∝ exp(−N), characteristic of an insulator. Consequently,
the current〈J〉 at γ = 0 exhibits non-linear behaviour with the
driving f , leading to an effect known as negative differential
conductivity (NDC) where increasing the driving eventually
decreases the current36,55. In Fig. 2(b) theγ = 0 curve shows
that this causes a near complete suppression of the current at
f = 1 for ∆ = 2. In the strongly interacting regime the sys-
tem therefore presents the intriguing property that more cur-
rent forward flows at an intermediate biasf < 1 where some
backward pumping is present.

A. Current enhancement

The main result of the present work is that for|∆| > 1 the
presence of a small bulk dephasing can significantly enhance
the particle transport. This striking behaviour is illustrated
for ∆ = 2 in Fig. 2(b) where dephasing up to a moderate rate
γ ≈ 0.5 is seen to increase the current. This enhancement in
the current is shown to occurfor any f > 0; however it is not
uniform in f , resulting in the current-driving profile changing
with γ. Specifically, aroundγ ≈ 0.3 the NDC effect is lost and
further increases inγ yield a linear profile inf . Near f = 1
dephasing therefore induces not just a quantitative increase in
the current, but rather causes a major qualitative change in
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FIG. 4: The current as a function ofγ for driving biases f =
0.1,0.2,0.3 and 0.4 (from bottom to top curve) with∆ = 2, and
N = 40. The dashed lines correspond to〈J〉∆=0 the non-interacting
analytic result53,56.

the behaviour of the system from being insulating atγ = 0
to yielding the maximal current onceγ > 0.3. In the inset
of Fig. 2(b) this change atf = 1 is shown to be coincident
with the breakdown of the particle domain at the left boundary
into a nearly linear density profile, due to the increase of the
dephasing rate. The transport at large driving and dephasing
rates therefore resembles that of a diffusive conductor. This
result is confirmed by the scaling of the current with the size
of the system, shown in Fig.3 for ∆ = 2 and dephasing rates
γ = 0.5 andγ = 1.0. The power-law fits for eachγ, which
are seen to accurately model the data, indicate sub-diffusive
transport forγ = 0.5, where the current decays slower than
1/(N−3), but has approached a diffusive behaviour onceγ =
1.0.

For a given f there is an optimal dephasing rateγopt that
maximizes the current, as shown in Fig.4. For the parameters
of this figure the enhancement at weak driving and the optimal
dephasing rate is quite significant, e.g.≈ 37% at f = 0.1. As
the driving increases so does the optimal dephasing rateγopt,
as well as the enhancement of the current, the latter being of
several orders of magnitude forf → 1. Forγ > γopt the current
is reduced because theLd contribution to Eq. (2) dominates
over the coherent hopping terms and progressively freezes out
the dynamics due to the Zeno effect41. In fact for increasingly
largeγ the NESS current converges to the exact∆= 0 solution
with dephasing53,56

〈J〉∆=0 =− 2 f
Γ
4 +

4
Γ +(N−1)γ

. (9)

This convergence, shown in Fig.4, thus indicates that the in-
teraction strength∆ becomes irrelevant for very large dephas-
ing rates.

B. Scaling with the system size

To show that the transport enhancement is not restricted to
small chains, we analyze the scaling of the optimal dephasing

FIG. 5: Optimal dephasingγopt for different sizes of the system, at
f = 0.1, ∆ = 2 andΓ = 1 (circles). The solid line corresponds to the
exponential decayγopt = γTL

opt+aexp(−N/b), with a = 0.252, b =

85.9 andγTL
opt = 0.109. Inset: Optimal current〈J〉opt as a function of

N. The solid line corresponds to the power law decay〈J〉opt= aN−b,
with a= 0.0948 andb= 0.94; asN → ∞, 〈J〉opt → 0.

rateγopt with N for weak driving f = 0.1. The results are pre-
sented in Fig.5. Althoughγopt decreases asN increases, ex-
trapolations with simple trial functions (of which an exponen-
tial decay, shown in Fig.5, gives the best description) indicate
that even whenN → ∞, γopt remains finite. However, since
the density imbalance between the boundaries of the chain
∆n is bounded,〈J〉 → 0 in the thermodynamic limit; see also
the inset of Fig.5, which shows that〈J〉opt → 0 asN → ∞.
Nevertheless, the existence of a finiteγopt in the thermody-
namic limit indicates that even in the linear response regime,
the transport can be enhanced by environmental coupling in
systems ofanyfinite size. For stronger driving both the cur-
rent enhancement andγopt become larger, as shown in Fig.4,
and the range of beneficial dephasing rates broadens. So the
dephasing-enhanced transport should emerge in mesoscopic
systems even for weak driving.

IV. ENHANCEMENT MECHANISM

We now discuss the physical mechanism underlying NDC
and the dephasing enhanced transport. Specifically, we show
that these effects arise due to an interplay between the eigen-
structure of the strongly-interacting chain Hamiltonian and
the boundary driving. As illustrated in Fig.6(a) for a small
but representative system size with very strong interactions
|∆|≫ 1, the eigen-spectrum consists of nearly flat high-energy
bands of bound states of low conductivity, separated by gaps
of order|∆| from more mobile bands of states with lower en-
ergy. As we shall now show boundary driving preferentially
populates only the most energetic bound states resulting inan
insulating NESS. The introduction of dephasing then induces
transitions to mobile current-carrying bands, thereby enhanc-
ing the conductivity.

To see this is more detail it is instructive to first consider
maximally biased drivingf = 1 in the extreme|∆| → ∞ limit.
In this case configuration states such as|10110· · ·011〉, where
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the particle occupancy on each site of the chain is explic-
itly specified, are exact eigenstates of the Hamiltonian. A
key property of the boundary driving is that it only incoher-
ently connects configurations within a quadruplet of states
|0x0〉 , |0x1〉 , |1x0〉 , |1x1〉 for any value of f , where x is
any lengthN− 2 occupancy bit string and thus defines each
quadruplet. This is illustrated in Fig.6(b). Consequently,
if x has(n− 1) 1’s the driving couples states within the to-
tal particle number sectorsn−1,n, andn+1. This structure
constrains the evolution caused by the driving processes to
shuffling population between states in these isolated quadru-
plets. At f = 1 there is one configuration|1x0〉 within each
quadruplet which, owing to it having a particle on the leftmost
site and a vacancy on the rightmost site, is entirely decoupled
from the driving (i.e. there is no action of the driving on such
a configuration), while also being the sink for all driving tran-
sitions; see Fig.6(b). The effect of this incoherent evolution
alone is thus to eventually drive all the population among the
quadruplet of states into thisdark-configuration. Of particular
relevance are the dark configurations

|Bn〉= |
n

︷ ︸︸ ︷

111· · ·111000· · ·000
︸ ︷︷ ︸

N−n

〉, (10)

which possess ann particle domain pinned to the left bound-
ary. For each particle number sectorn the state|Bn〉 is sepa-
rated from other configurations by an energy gapO(|∆|), akin
to a domain binding energy.

As we move to the limit of finite, but strong interactions
|∆| ≫ 1, hopping between configuration states results in each
configuration|Bn〉 giving rise to an eigenstate|ΨD(n)〉 of
bound particles. For each particle numbern, |ΨD(n)〉 is the
highest state in the eigenspectrum, as indicated in Fig.6(a).
Its properties are readily determined by treating hopping as a
perturbation. Specifically, to lowest-order in|2∆|−1 hopping
hybridizes, across an energy gap of∆, the state|Bn〉 with the
break-away configuration

|
n−1

︷ ︸︸ ︷

111· · ·110100· · ·000
︸ ︷︷ ︸

N−n−1

〉, (11)

where the outermost particle of the domain has escaped. As
discussed in AppendixA, the hybridization of|Bn〉 with more
distant break-away configurations decays exponentially with
the distance from the domain wall with a length scaleξ ∼
1/ ln(|2∆|). Crucially almost all of these break-away configu-
rations are dark to the driving like|Bn〉. Only the configura-
tions where either a hole or particle has reached the boundary
couple to the driving and their amplitude is exponentially sup-
pressed by this localization.

The emergence of an insulating NESS in the strongly-
interacting regime atf = 1, having a particle domain of size
N/2, and thus the domain wall farthest from the boundaries,
follows from the combination of two results in the perturbative
approach: (i) Asn→N/2, |ΨD(n)〉 becomes an exponentially
close approximation to a dark state off = 1 driving, with in-
creasingN; (ii) The boundary driving atf = 1 preferentially

FIG. 6: (a) The energy eigenspectrum of the spinless fermionHamil-
tonian governing the chain forN = 12 and∆ = 10. Energiesεν have
been shifted by1

4∆(N− 1) so that the state|ΨD(0)〉 = |00. . .00〉
has zero energy. The spectrum includes contributions from all par-
ticle number sectorsn = 0, . . . ,12; since the spectra arising from
n= 0, · · · ,5 are identical to those ofn= 7, . . . ,12, only the former are
shown in addition ton= 6. The highest lying eigenstate for each sec-
tor |ΨD(n)〉 is highlighted and seen to be isolated by a gap ofO(∆)
from eigenstates composed of break-away configurations (states with
the outermost particle of the domain breaking away, or a holeprop-
agating through the domain). The braces give an indication of the
location of mobile and flattened bands forn= 6. (b) For anyf the
driving alone incoherently connects a quadruplet of configurations
|0x0〉 , |0x1〉 , |1x0〉 , |1x1〉. The situation forf = 1 is shown where
the driving can be seen to only pump into the so-called dark config-
uration|1x0〉.

populates|ΨD(n)〉 leaving a NESS that is well approximated
by a statistical mixture

ρ =
N

∑
n=0

pn |ΨD(n)〉〈ΨD(n) | , (12)

with the probabilitypn exponentially peaked atn = N/2. In
Appendix A points (i) and (ii) are shown to arise for sizes
N ≥ 4.

The existence of the insulating NESS described by Eq. (12)
is only possible in the absence of dephasing processes along
the chain. Since local dephasing on each site, given in Eq. (5),
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does not commute with the chain HamiltonianH this noise
process induces incoherent transitions between many-body
energy eigenstates of the system. This is characterized by an
energy dissipation rate

dEγ

dt
=−2γ∑

j

〈c†
j c j+1+h.c.〉, (13)

dependent on the kinetic energy of the state, and enables pop-
ulation to escape from the approximate dark states|ΨD(n)〉 to
the mobile bands of scattering states. It is this effect which
breaks the localization inf = 1 insulating NESS and signif-
icantly enhances the current. An optimal dephasing rateγopt
emerges due to the competition between these dephasing in-
duced transitions and the degradation of mobility of the scat-
tering states by dephasing through the Zeno effect. An in-
crease inγopt with |∆| is observed since a larger energy dissi-
pation is needed to overcome the gap.

When reducingf slightly from thef = 1 limit a small back-
ward pumping process appears in addition to the dominant
forward pumping of particles. Since particles are then injected
and ejected by the driving at both boundaries all the states of
every quadruplet become populated and there are no longer
dark configurations decoupled from the driving. A finite cur-
rent is therefore established in the NESS as the population in
the approximate dark states|ΨD(n)〉 diminishes. Nonetheless
the picture of dissipation from majority occupied bound states
to higher mobility scattering states still applies. However, in
the linear response regime, wheref → 0 and the NESS is a
diffusive conductor rather than an insulator, it is nota priori
obvious that additional dissipation induced by dephasing will
be beneficial to transport. Yet as seen in Fig.4 and Fig.5
an enhancement of the current due to dephasing for chains of
any finite size is observed forf > 0. This behaviour suggests
that even in this case, where the high-energy bound states like
|ΨD(n)〉 are only marginally populated by the driving, addi-
tional incoherent transitions bridging the numerous gaps in the
spectrum to the mobile bands still enhance transport. To help
further unravel the processes behind dephasing enhancement
and NDC we describe a simple toy model in the following
section. This model not only reproduces the basic features of
these effects in a concrete analytically tractable way, butalso
reveals that the physical mechanism underlying both effects is
the same.

V. TOY MODEL

We have seen that numerous approximate dark states,
whose occupation is favoured byf = 1 driving, cause the sta-
tionary state to become insulating. Remaining in the strongly
interacting limit we now wish to isolate the effect of such
bound states on the transport for all drivingsf , i.e. on the
complete current-driving profile. To do so we construct a
simple toy model, whose structure is motivated by consid-
ering the half-filled domain state

∣
∣BN/2

〉
and its correspond-

ing break-away configurations which eventually connect it
to the boundary driving. As such the toy model is com-
posed ofK configuration states|1〉 , |2〉 , . . . , |K〉 for some size

FIG. 7: The schematic of the toy model and its various processes
and properties. These include the nearest-neighbour coherent hop-
ping between the set of states|1〉 , |2〉 , . . . , |K〉, an energy offset∆
for state|K〉, incoherent transitions|1〉 ↔ |s〉 and |K〉 ↔ |s〉 be-
tween the boundary states and the auxiliary state|s〉, and dephasing
at a rateγ. The rates for the incoherent driving transitions1

2Γ(1± f )
are also listed.

K > 2. To mimic the interaction binding energy of
∣
∣BN/2

〉
,

we distinguish the configuration|K〉 by elevating it in en-
ergy by ∆ above the set of otherwise degenerate configura-
tions|1〉 , |2〉 , . . . , |K−1〉which model break-away states like
|11· · ·10100· · ·0〉, |11· · ·10010· · ·0〉 etc. In addition, the
states|1〉 , |2〉 , . . . , |K〉 are also coherently coupled to their
neighbours via “hopping” processes given by

Ht =
1
2

K−1

∑
k=1

(|k〉 〈k+1|+h.c.).

The current operator for the model then follows as

J =−i
K−1

∑
k=1

(|k〉 〈k+1|−h.c.),

which measures the flow within the coherently connected con-
figurations|1〉 , |2〉 , . . . , |K〉. To model the driving in the full
system, which incoherently connects one particle number sec-
tor to another, we introduce an auxiliary state|s〉 whose func-
tion is simply to be an intermediary. The jump operators de-
scribing the driving then take the form

L±
L =

√

Γ(1∓ f )/2Λ±
L , L±

R =
√

Γ(1± f )/2Λ±
R ,

whereΛ−
L = |s〉 〈1| andΛ+

R = |K〉 〈s|, with Λ+
L = (Λ−

L )
† and

Λ−
R = (Λ+

R)
†. Thus, via|s〉, the driving incoherently induces

transitions between the boundary configurations|1〉 and|K〉
with a biasf . At f = 0 driving in both directions is equal and
it is easily confirmed that the NESS isρ=1/(K+1), yielding
〈J〉 = 0 as in the case of the full spinless fermion chain. At
the opposite limit,f = 1, population is asymmetrically driven
from |1〉→ |K〉. To complete the analogy with the full system
the toy model also includes dephasing, at a rateγ, via the jump
operatorLZ =

√γΛZ where

ΛZ = 1−2|K〉〈K | ,

whose action is to scramble the phase of any superpositions
between|K〉 and the other configurations. A schematic of the
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FIG. 8: (a) The NESS current〈J〉, rescaled by∆2, for K = 20, as a
function of the drivingf and dephasingγ, described by the approxi-
mation in Eq. (14). The behaviour atf = 1 with γ is emphasized by
the additional (red) line. (b) The exact current-driving profiles of the
toy-model as a function ofγ with ∆ = 2 andK = 20.

toy model illustrating all the coherent and incoherent contri-
butions is shown in Fig.7.

Since it is inspired in the|∆| ≫ 1 regime, the toy model
does not embody the entire physics of the full system. Never-
theless it does capture the essential features of NDC and de-
phasing enhancement when|∆|≫ 1. Fundamentally, the same
mechanisms observed in such a limit apply to the more com-
plex full system when considering its entire eigen-spectrum,
even when|∆| → 1.

The current〈J〉= tr(Jρ) of the NESSρ can be solved ana-
lytically for the toy model as a function off ,γ and∆, although
the complete expression is lengthy. Since the model was moti-
vated by the perturbative limit|∆| ≫ 1 the physically relevant
part of this result is found by keeping only the lowest order
terms in∆−1. This gives

〈J〉 ≈
(K −1)

(

8γ f +(1− f ) f Γ
)

(K+1)−2(K−2) f +(K−1) f 2

(
1
∆

)2

. (14)

In Fig. 8(a) the current-driving profile〈J〉, rescaled by∆2, is
plotted forK = 20. Two key features emerge from this re-
sult. First, forγ = 0 the(1− f ) f in the numerator of Eq. (14),
which enforces zero current at thef = 0 and f = 1, causes
〈J〉 to display negative differential conductivity (NDC). More-
over, the expansion involves only even powers of∆−1, show-
ing that this behaviour is independent on the sign of∆. Sec-

FIG. 9: (a) The spectrumεν of the Hamiltonian for the toy model for
K = 20 and∆ = 2. Eigenstateν = 0 is the highlighted auxiliary state
|s〉 whose energy has been set arbitrarily. The highest-lying eigen-
stateν = K is also highlighted and is the approximate dark-state of
the model|ΨD〉. Beneath this state, separated by a gapO(|∆|), is a
band of eigenstates|Ψν〉 split by the small hopping. (b) The proba-
bility distributions| 〈k|Ψν 〉 |2 of the eigenstates over the configura-
tions |k〉 are shown. The band of eigenstates are seen to be delocal-
ized over the configurations|1〉 , |2〉 , . . . , |K−1〉 and expunged from
the boundary configuration|K〉, while the characteristic of a bound
state|ΨD〉 is predominately peaked at|K〉 with exponential tail into
the bulk.

ond, dephasing enhancement of〈J〉 is evident from the linear
γ term in Eq. (14) which eventually destroys the NDC effect.
However, sinceγ andΓ appear only linearly, this lowest order
expression is only valid for weak dephasing and coupling to
the boundary reservoirs. In particular the dephasing degrad-
ing behaviour expected for largeγ, due to the Zeno effect, is
not described by Eq. (14). The expression is also only valid
for K ≥ 3 because NDC is not seen forK = 2; having no di-
rect coherent coupling between the boundary configurations
where driving occurs, i.e.|1〉 and|3〉 for K = 3, is essential
for NDC to emerge. This is similar to how NDC is only seen
for N ≥ 4 in the full system, like in Fig.14(b) of AppendixA.
In Fig. 8(b) the exact current-driving profile for the toy model
is shown for∆ = 2 as a function of moderateγ’s, beyond the
applicability of Eq. (14). This confirms the wider similarity
of the response of the toy model to that observed in the full
spinless-fermion system.

Given their similar response, the toy model provides a
tractable means of unravelling the origins of NDC and dephas-
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ing enhancement in the full many-body system. The eigen-
spectrum of the toy model is plotted in Fig.9(a). By con-
struction we see that it mimics some of the features shown in
Fig. 9 for an individual number sector of the spinless fermion
system. Specifically, there is a high-lying eigenstate|ΨD〉,
separated by a gapO(|∆|) from a dense band of eigenstates.
In Fig. 9(b) the eigenstates of this band are seen to be delo-
calized over the bulk of the system excluding the boundary
configuration|K〉. In contrast, for a given sizeK, the eigen-
state|ΨD〉 has the form

|ΨD〉 ≈
K−1

∑
k=0

|2∆|−k |K− k〉 , (15)

to within O(|2∆|−2K), as seen in Fig.9(b). AsK → ∞ such an
exponentially decaying wave function is simply the discrete
analogue of the well known bound state of a 1Dδ-potential57.
Given that the amplitude for the left boundary configuration
|1〉 scales as|2∆|1−K , we see that|ΨD〉 becomes exponen-
tially close, with increasingK, to being a dark state of the
driving when f = 1.

The driving atf = 1 exclusively pumps into the configura-
tion |K〉 whose dominant overlap is with|ΨD〉. Consequently
so long asγ = 0 population gets progressively trapped in this
dark state giving rise to〈J〉 ≈ 0, characteristic of an insulat-
ing NESS. Remaining atf = 1 and switching on a non-zero
dephasing directly decoheres the exponentially decaying su-
perposition within|ΨD〉. This is equivalent to the coherent
trapping of population, caused by the energetic gap, being by-
passed by dephasing induced incoherent transitions connect-
ing |ΨD〉 directly to the delocalized band of eigenstates. Cur-
rent flow in the system is thus made possible via the ensuing
non-stationary mixture of these eigenstates. Further increases
in dephasing eventually degrades the current once the mono-
tonically decreasing mobility of the delocalized eigenstates,
caused by the Zeno effect, outweighs the flux of population
escaping from|ΨD〉. Since the toy model only has a single
approximate dark state|ΨD〉 it confirms that its existence, at
one isolated pointf = 1 andγ= 0, is alone enough to make the
current-driving profile for 0≤ f ≤ 1 exhibit NDC andγ ≥ 0
exhibit dephasing enhancement.

Another key insight from the toy model is that the emer-
gence of a non-zero current from the insulating pointf = 1
andγ= 0, involves identical physics either whenγ is increased
slightly from zero, or whenf is reduced slightly from unity.
Examining Eq. (14) at f = 1 shows that〈J〉∆2 = 2(K − 1)γ,
while for γ = 0 an expansion aboutf = 1 the current is
〈J〉∆2 = 1

4(K − 1)(1− f )Γ to lowest order. This suggests a
correspondence

γ = 1
2(1− f )

Γ
4
. (16)

Consequently, a slight decrease of driving or increase of de-
phasing induce the same decoherence process that enhances
the transport of the otherwise insulating state. A further in-
dication of this equivalence, focused on the decay in time of
the coherences between states|K −1〉 and |K〉, is presented
in AppendixB.

While successful in describing the effective single-particle
aspects of the full spinless fermion system the toy model fails
to describe several important features that are hallmark ofgen-
uine many-body physics. First, in the strongly drivenf = 1
limit at large dephasing the toy model does not display diffu-
sive transport, like that observed for the full system in Fig. 3.
This is expected since aside from configuration|K〉 the toy
model is an ordered homogeneous tight-binding system. Sec-
ond, when there is no dephasing, the full system is known to
exhibit a non-equilibrium phase transition from diffusiveto
ballistic transport at weak driving36 as |∆| → 1. As the toy
model was constructed to mimic the|∆| ≫ 1 limit it does not
capture this many-body property of the full system. In the
next section we investigate the interplay of dephasing on this
transition in the full system.

VI. SIGNATURE OF A NON-EQUILIBRIUM PHASE
TRANSITION

The results discussed in SectionIII demonstrate the exis-
tence of two transport regimes in the system with different
responses to moderate dephasing: degradation for weak inter-
actions and enhancement for strong interactions. We now dis-
cuss the transition between the two transport regimes, charac-
terize the critical interaction strength, analyze the correlations
through the system for each regime, and show that the same
regimes of response remain even when the integrability of the
system is broken.

A. Transition at |∆|= 1

The interaction strength|∆|= 1 is of particular significance
to the Hamiltonian of Eq. (1). At zero-temperature and in
the absence of magnetic field, it separates the gapless and
magnetically ordered (ferro- and antiferromagnetic) gapped
equilibrium phases. More generally, it divides a continuous
eigenspectrum for|∆| < 1 from one with numerous gaps for
|∆|> 158,59, as illustrated in Fig.6(a). In the system driven by
the jump operators of Eq. (4), it was previously observed that
|∆| ≈ 1 also separates ballistic and diffusive transport regimes
for weak driving36. However, it is nota priori clear that
|∆| = 1 necessarily separates the regimes of transport degra-
dation and enhancement by dephasing. We now show that this
is indeed the case.

In Fig. 10(a) the optimal dephasing rateγopt is shown for
weak driving as a function of∆. A threshold of∆0 ≈ 1.07 is
apparent where for|∆| < ∆0, γopt = 0, indicating dephasing-
degraded transport, while for|∆| > ∆0, γopt is non-zero, in-
dicating dephasing-enhanced transport, and increases mono-
tonically with |∆|. The latter behavior is a consequence of
the enhancement mechanism. As the interaction strength in-
creases, so do the gaps between flattened and mobile bands,
so a larger energy dissipation is required to populate the latter
and increase the current. The value of∆0 is size-dependent,
and a scaling analysis shown in Fig.10(b) demonstrates that,
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FIG. 10: (a) The optimal dephasing rateγopt as a function of∆, for
N = 40, f = 0.1 andΓ = 1. The circles indicate TEBD results, and
the solid line corresponds to the fitted functionγopt ∝ (∆−∆0)

β, with
β= 0.819 and∆0 = 1.07. The inset plots show the generic behaviour
of 〈J〉 with γ above and below∆0. (b) The scaling of∆0 with N for
f − 0.1 andΓ = 1, along with the fitted power-law shown, where
a= 3.906,b= 1.066 andc= 0.995.

to good approximation,∆0 = 1 separates the two transport
regimes in the thermodynamic limit.

From the results discussed above it is tempting to associate
the nature of the ground state, namely gapped or gapless, with
a certain type of particle transport or response to dephasing.
This impression is misleading, as can be understood by con-
sidering a homogeneous on-site potentialB∑ j n j . This poten-
tial shifts the equilibrium quantum critical points59, but leaves
the particle transport of the steady state unaltered. The latter
occurs because the Hamiltonian and the current operator are
particle-conserving, so the sectors of different particlenum-
ber are only incoherently connected due to the driving and
the NESS is block diagonal. The internal structure of the
various particle number sectors, unmodified by the homoge-
neous on-site potential, is thus what determines the steady-
state transport through the chain, not the relative positions of
the different sectors within the eigen-spectrum60. This shows
that a qualitative change of the ground state does not imply a
change of non-equilibrium properties. Instead, it is the overall
structure of the eigen-spectrum which leads to the NDC and
dephasing-enhanced transport effects at strong interactions, as
discussed in SectionsIV andV.

B. Correlations and dephasing

Similar to equilibrium phases, the transition between the
two different transport regimes, namely of current degrada-
tion and enhancement by dephasing, can also be distinguished
from the correlations through the system. First we considera
typical two-point density-density correlation function

Ci j = 〈nin j〉− 〈ni〉〈n j〉, (17)

with sitesi and j symmetrically positioned around the centre
of the chain. This is conveniently represented asC(r) where
r = |i − j|/N is the fractional separation of the points for the
system sizeN. In Fig. 11(a)C(r) is plotted for different sizes
N in the strongly interacting regime for a moderate dephasing
rate. Finite correlations are seen to exist even for a large frac-
tional separationr. Although these correlations decay withr,
the fraction of the system they span increases withN. This
property has been argued, forγ = 0 and |∆| > 0.91, to be
evidence that the NESS possesses genuine long-range order
even in the thermodynamic limit62. Here our results indi-
cate that this long-range order persists even in the presence
of moderate dephasing, and so correlations similar to thoseat
γ = 0 exist in the dephasing enhanced NESS. The situation for
strong dephasing, shown in Fig.11(b), is markedly different.
Now correlations are smaller and diminish faster withr than at
weaker dephasing rates. In addition, the fraction of the system
over which the correlations extend diminishes asN increases,
a behavior previously observed for large dephasing ratesγ in-
dependently of the interaction strength|∆|39,53. So like the
current and density profiles, the two-point correlation func-
tions in the strongly-interacting regime become increasingly
similar to those of the weakly interacting regime for large de-
phasing, washing out the transition.

The signature of the non-equilibrium transition between
weakly- and strongly-interacting regimes with moderate de-
phasing, already suggested by two-point correlation functions,
can be refined by adopting a more general measure of corre-
lations. Specifically we compute the entropy46,52,61

S=−∑
α

λ2
α log2 λ2

α (18)

of the Schmidt coefficientsλα arising when the full NESS
density operatorρ is factorized into two half-chains as

ρ = ∑
α

λαOA
αOB

α, (19)

whereOA
α andOB

α are Hilbert-Schmidt orthogonal operators
for the two halves. Both quantum and classical correlations
between the two halves of the chain are quantified byS and
it is readily accessible from the TEBD numerics. For zero
dephasing and weak driving Fig.12 shows thatS peaks at
∆ ≈ 1. This indicates that a significant elevation in correla-
tions occurs as the NESS reorganises itself across the expected
non-equilibrium phase transition between ballistic and diffu-
sive transport in this region.

In Fig.12we also show that for finite dephasing the entropy
S monotonically decreases withγ, but interestingly the peak
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FIG. 11: The NESS density-density correlations|C(r)| across the
chain as a function of the fraction distancer about the centre for∆ =
2 and f = 0.1. In (a) a moderate dephasingγ = 0.05 was included.
The correlations are long-ranged and extend over a larger fraction
when increasingN. This evidenced by the kink, coming fromC(r)
changing sign, moving to largerr. In (b) a strong dephasingγ = 1
was present and the correlations are short-ranged as shown by their
diminishing size and extent with increasingN.

FIG. 12: The half-chain entropySas a function of∆ for differentγ’s,
f = 0.1 andN = 40. The Schmidt coefficientsλα were normalized
so the largest coefficientλ1 = 1.

is maintained for moderate rates, shifting slightly to larger
∆. Therefore the abrupt on-set of dephasing enhancement
shown in Fig.10 occurs when the many-body correlations
are strongest, indicating that it is an effect which appliesfar
beyond the effective single-particle picture of the toy model.
This distinguishing feature inS is progressively washed out

by increasing dephasing as the system becomes diffusive for
all ∆39,53,56. Despite this, the response of the system to the
dephasing processes is seen to offer an alternative and clear
signature of the underlying non-equilibrium phase transition
between two qualitatively different steady states.

C. Enhancement and integrability

The Hamiltonian in Eq. (1) describing the full system is
integrable58, so it could be considered that the dephasing en-
hancement observed in the present work is an artifact of this
property. To show this is not the case, we obtain the NESS of
the system when adding a staggered local potential

Hs = B
N

∑
j=1

(−1) jn j (20)

which breaks its integrability. Forγ = 0 this has the effect of
turning the system into a diffusive conductor in the gapless
regime|∆| < 1 for any driving, while not affecting the exis-
tence of NDC at large drivings for|∆|> 136. In Fig.13(a) we
see that for weak interactions dephasing monotonically de-
creases the current, while for strong interactions we confirm,
for a variety of field strengthsB, that dephasing-enhanced
transport occurs, as shown in Fig.13(b). Thus the existence
of NDC and dephasing enhancement, characterizing the non-
equilibrium phase transition between weakly- and strongly-
interacting regimes, is independent of integrability. Both ef-
fects arise as long as the eigen-structure of the system pos-
sesses the features discussed in SectionsIV andV, which for
the case considered in this work is valid even if the integrabil-
ity is broken, as shown in the inset of Fig.13(b).

From the eigen-structure of the non-integrable system, the
most notable features of the dephasing-enhanced transportcan
be understood. Namely, the increase of the optimal dephasing
rateγopt with B results from the splitting of the energy bands
due to the staggered potential, as shown in Fig.13(b) (com-
pare to Fig.6(a)). This split emerges from different energy
shifts of the eigen-states of the system, which depend on their
spatial distribution64. Due to the band splitting and the emer-
gence of new energy gaps, the states of wide bands of lowest
energy become harder to populate, so a larger energy dissipa-
tion is required to induce transitions towards them, and thus
to enhance the transport. In addition, note that the staggered
potential also flattens all the energy bands, reducing the con-
ductivity through the chain.

VII. CONCLUSIONS

We have presented a detailed study of the effects of de-
phasing on the transport properties of a boundary driven one-
dimensional interacting spinless fermion chain. The appear-
ance of a cooperative many-body NESS exhibiting NDC at
strong interactions provides a previously unexplored formof
dephasing enhanced transport, distinct in origin from earlier
examples in non-interacting systems. Using a toy model for
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FIG. 13: The current through the system for several staggered poten-
tial strengthsB, for N = 40, f = 0.1 andΓ = 1, with (a)∆ = 0.5 and
(b) ∆ = 2.0. Inset. Energy eigen-spectrum for one (blue) and two
(red) excitations of a chain ofN = 20, with staggered potentialB= 2
and interaction∆ = 10.

the very-strongly interacting regime, we isolated the min-
imum requirements for observing NDC and dephasing en-
hanced transport. These consist of the emergence of a gapped
eigen-structure with bands of eigenstates possessing different
mobility, and the transitions between states of different bands
induced by incoherent processes. At maximal driving and no
dephasing, approximate dark states are preferentially popu-
lated, inducing an insulating steady state. The introduction of
dephasing populates mobile bands due to energy dissipation,
turning the system into a diffusive conductor. A similar mech-
anism occurs even in the linear response regime of very large
systems, leading to a significant enhancement of the current.

While our discussion of the transport properties has been
focused on the NESS of the driven interacting system, it is also
highly relevant for transient dynamics. Specifically, since the
growth of a particle domain requires the propagation of holes
toward the left boundary, the increasing suppression of this
process in each successive particle number sectorn leads to an
exponentially slow convergence to the NESS36. The transient
current is effectively suppressed even for a small domainn> 5
and this is the physical reason why our numerical calculation
of the NESS forf = 1 is limited to relatively small systems
whenγ = 0. As such the existence of approximate dark states
|ΨD(n)〉 at f = 1 heavily influences the dynamics far from
stationarity and indicates that dephasing enhancement will be
significant in the transient regime as well.

For moderate dephasing the different nature of the NESS
at weak and strong interactions was revealed by the emer-
gence of large correlations, and reflects an underlying non-
equilibrium phase transition in the system. As such dephasing
enhancement as well as the NDC for|∆| → 1 are truly many-
body phenomena. A recent study has also observed both NDC
and dephasing enhancement of heat transport in the same sys-
tem with strong interactions60. These effects are also unre-
lated to integrability, suggesting that our findings will also ap-
ply to more realistic strongly correlated systems such as the
t − J or Hubbard models.

Dephasing enhancement is also expected to be found in
non-equilibrium systems with a different transport process.
The most important example corresponds to that of the ex-
pansion on an initially-trapped wave packet19,20,63. Tantalis-
ing signs of noise induced breakup of bound states and sub-
sequent increase of the expansion of a strongly-interacting
packet have already been observed in a recent cold-atom ex-
periment18. The general enhancement mechanism predicted
in the present work also provides an explanation for this result
when applied to this type of transient dynamics. Furthermore,
given the recent advances in experiments on transport of ul-
tracold atomic gases, the prospects of verifying more directly
both NDC and dephasing enhancement are promising33,34.
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Appendix A: Existence of an insulating state at f = 1 when
|∆| ≫ 1

Formally a dark state|ψ〉 of an open quantum system is a
pure state which is simultaneously an eigenstate of the Hamil-
tonianH |ψ〉 = E |ψ〉 and a zero-eigenvalue eigenstate of all
the jump operators comprising the dissipatorL(|ψ〉 〈ψ |) = 0
that describes the noise acting on the system. In this Section
we show that deep in the strongly-interacting limit|∆| ≫ 1,
with maximal driving f = 1, as indicated in Fig.14(a), there
exists a state|ΨD〉 which, as the system sizeN grows, be-
comes exponentially close to satisfying these requirements
and is thus an approximate dark state. As described in Sec-
tion IV, the demonstration consists of two parts.

1. Existence of a dark state for maximal driving f = 1

As shown in Fig. 6(b), the driving scheme of the
strongly-interacting limit|∆|→∞ couples the four eigenstates
|0x0〉 , |0x1〉 , |1x0〉 , |1x1〉, establishing a quadruplet defined
by the stringx. At f = 1 the states|1x0〉 become dark,
of which then−particle domain configurations|Bn〉 play a
prominent role. Namely, for finite but large interaction|∆|,
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FIG. 14: (a) A schematic of the system, showing the coherent hoppingτ, the nearest-neighbour density-density interaction∆, dephasingγ,
and the incoherent boundary driving in the strong driving limit f = 1 where the bias is maximal. In this case the driving incoherently pumps
particles into the system at site 1 and ejects them at siteN, both at a rateΓ. (b) ForN= 4 sites andf = 1 the complete set of driving quadruplets
and the transitions induced by coherent hopping between them from the half-filled domain state|1100〉 is shown. The vertical axis displays
the particle number sectors and energy gaps between configurations. We observe that forN = 4 one hop connects|1100〉 to |1010〉, which is a
dark configuration of its quadruplet, and a further hop is needed before it is coherently connected to a configuration thatis not dark to thef = 1
driving. This disconnection between the half-filled domainconfiguration and the driving only occurs forN ≥ 4, and so this is the smallest size
which displays NDC.

they weakly hybridize with break-away configurations, re-
sulting in the high-energy bound eigenstates|ΨD(n)〉. In
Fig.14(b) the pattern of incoherent driving transitions and co-
herent hopping forN = 4 is illustrated. Note that in this case
|B2〉= |1100〉 has no direct coherent transition to any config-
urations which couples to thef = 1 driving. It only couples
to the state|1010〉, which is also a dark configuration. More
generally, so long asN ≥ 4 andn≥ 2, the break-away config-
uration for any domain state|Bn〉 is also a dark configuration
of its own quadruplet.

We now compute the high-order corrections to the states
|Bn〉 due to hopping to build a perturbative picture of the
bound eigenstates|ΨD(n)〉. Since|∆| ≫ 1 it is instructive
to do this approximately by focusing on states describing a
single break-away particle or hole propagating away from the
domain wall at siten. These have the formc jc

†
k |Bn〉, where

1≤ j ≤ n andn< k≤N. Since the repeated action of hopping
on |Bn〉 originates around the domain wall, and is also detuned
by the gap∆, we find that hopping mixes in configurations
where the particle and/or hole have hoppedx times in total,
with an amplitude scaling asO(|2∆|−x). This indicates that
the particle/hole propagation through the empty/unit-filled re-
gions is suppressed with its distance from the domain wall.
For eachn, the eigenstate|ΨD(n)〉 is therefore predicted by

this particle-hole (ph) picture to have a domain wall that re-
mains exponentially localized at siten, within a length scale
ξ ∼ 1/ ln(|2∆|)36, and a deviationδn( j) from the perfect do-
main configuration|Bn〉 given by

δph
n ( j) =







(
1

|2∆|

)2(n− j+1)
, 1≤ j ≤ n

(
1

|2∆|

)2( j−n)
, n< j ≤ N

. (A1)

The validity of this picture is established by comparing this
to the actual density deviationδn( j) of the exact eigenstate
|ΨD(n)〉. In Fig. 15 this is done for|ΨD(N/2)〉 with N = 12
and∆ = 10, and the agreement betweenδn( j) andδph

n ( j) is
seen to be excellent everywhere but the boundaries.

Since hopping predominately connects|Bn〉 with dark-
configurations of the form|1x0〉, the leading order contribu-
tion to the amplitude in|ΨD(n)〉 for a configuration which is
not dark isO(|∆|−min(n,|n−N/2|)). This corresponds to whether
the hole or particle has the shortest path to the left or right
boundary, respectively. In the|∆| ≫ 1 limit we therefore con-
clude that the eigenstates|ΨD(n)〉, with 0≤ n ≤ N/2, form
a hierarchy of states withn, characterised by a decreasing
amplitude for any configuration to be coupled to thef = 1
boundary driving. Eigenstates|ΨD(n)〉 with a domain size
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FIG. 15: For the eigenstate|ΨD(6)〉 for N = 12 and∆ = 10 the ex-
act density deviationδn( j) from the corresponding boundary domain

configuration|Bn〉 is shown(�), along withδph
n ( j) predicted by con-

sidering single particle/hole propagation (solid line). The inset shows
a schematic of the expected exponential localization of thedomain
wall.

n scaling withN thus become exponentially close to being
zero eigenstates of thef = 1 driving with increasing system
size. Of these states the one withn= N/2, where the domain
spans exactly half the chain, has the most suppressed coupling
O(|∆|−N/2) to the driving and is thus the closest approxima-
tion of all of them to an exact dark state. Now we show that
this is precisely the state preferentially populated by thedriv-
ing process.

2. Structure of the NESS in the |∆| ≫ 1 limit

The open dynamics of particle number conserving systems
like that considered here have been studied extensively36,45

with regard to their ergodic and mixing properties, and it has
been established that a unique NESS exists for anyf . The
key property ensuring this is that for a finite hopping ampli-
tude every configuration within each particle number sector
can be reached from any other, while the incoherent ejec-
tion/injection of particles by the driving connects neighbour-
ing sectors. As a result the complete state space of the system
can be accessed. Furthermore, the NESS for this open system
will be block diagonal in the number sectors. Atf = 1 the ap-
proximate dark states|ΨD(n)〉 for each sectorn are expected
to play a prominent role due to their ability to trap population.
This can be better understood by approximating the NESS as
a statistical mixture, with probabilitiespn, of these eigenstates
in each sector as

ρ =
N

∑
n=0

pn |ΨD(n)〉〈ΨD(n) | . (A2)

The purity of the NESS in this approximation, tr(ρ2) =
∑N

n=0 p2
n, is reduced only through mixing between sectors.

The probabilitiespn are then determined by demanding that
at stationarity there is a detailed balance condition between

the incoherent transition rates connecting neighbouring num-
ber sectors (see inset of Fig.16(b)). For sectorn, as-
sumed to be frozen in the state|ΨD(n)〉, the output tran-
sition rates scale with the probability of a hole being at
the left boundary asΓ〈ΨD(n) |c1c†

1 |ΨD(n)〉 ∼ Γ|2∆|−2n, and
the probability of a particle being at the right boundary as
Γ〈ΨD(n) |c†

NcN |ΨD(n)〉 ∼ Γ|2∆|−2(N−n). Considering sec-
torsn−1, n andn+1 we then have the equality of incoming
and outgoing transitions inn as

pn

[(
1

|2∆|

)2n

+

(
1

|2∆|

)2(N−n)
]

=

pn−1

(
1

|2∆|

)2(n−1)

+ pn+1

(
1

|2∆|

)2(N−n−1)

.(A3)

These equations are solved inwards from the extremaln =
0 and n = N sectors, where|ΨD(0)〉 = |00. . .00〉 and
|ΨD(N)〉= |11. . .11〉, to give

pn = p

(
1

|2∆|

)2|n−N/2|2

, (A4)

for n = 0,1, . . . ,N and wherep = pN/2 is fixed by the nor-
malization condition∑N

n=0 pn = 1. In Fig. 16(a) these pre-
dicted probabilities of occupation for each sectorn are plot-
ted against the exact values for the NESS withN = 6 and
∆ = 10, and found to yield excellent agreement aside from
the extremal sectors. Owing to the hierarchy of approximate
dark states, this indicates that the NESS will be predominately
a mixture of|ΨD(n)〉 peaked around the “best” dark state with
n=N/2. This result also predicts that to lowest order in|∆|−1,
the purity ofρ is given by

tr(ρ2)≈ p2
N/2 ≈ 1− 1

|∆|2 + . . . , (A5)

which is independent of the size of the system. In Fig.16(b)
this prediction is plotted against the exact value of 1− tr(ρ2)
of the NESS forN = 6 as a function of∆, again showing ex-
cellent agreement even as∆ → 1.

Appendix B: Equivalence of dephasing and driving effects in the
toy model at large driving

The correspondence between a slight increase of dephasing
from zero and a slight decrease of the drivingf from unity,
indicated in Eq. (16), is confirmed in Fig.17(a) in an exact
calculation for the toy model withK = 20. This equivalence
is understood by considering the mean backward flow process
introduced when driving slightly belowf = 1. In this limit the
rate of driving from|K〉 → |s〉 taking the state out of|ΨD〉 is
given by 1

2(1− f )Γ and therefore slow. In contrast the rate of
driving |s〉 → |K〉 back is1

2(1+ f )Γ, and therefore rapid. Fo-
cusing on the dynamics of these two driving processes alone,
as in Fig.17(b), we suppose that the initial state of the system
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FIG. 16: (a) The probabilitypn on a logarithmic scale of the NESS
ρ occupying then particle sector is shown for an exact calculation
(⋄) for N = 6 and∆ = 10, and the predicted form (solid line) given
in Eq. (A4). (b) The purity 1− tr(ρ2) against∆ of the NESSρ on
a logarithmic scale for an exact calculation (×) for N = 6 and the
predicted form (solid line) given in Eq. (A5). The inset shows a
schematic of the detailed balance approximation applied tocompute
these predictions.

over the configurations|s〉 , |K −1〉 and|K〉 has the form

ρ(0) =





0 0 0
0 ρK−1(0) ρK−1,K(0)
0 ρ∗

K−1,K(0) ρK(0)



 , (B1)

where there is some coherence between|K −1〉 and|K〉, but
no population initially in|s〉. Evolving this state according
only to these driving processes yields solutions

ρs(t) = 1
2(1− f )Γ(1−e−Γt)ρK(0),

ρK(t) = e−ΓtρK(0)+ 1
2(1+ f )Γ(1−e−Γt)ρK(0),

ρK−1(t) = ρK−1(0),

ρK−1,K(t) = e−
1
4 (1− f )ΓtρK−1,K(0).

(B2)

We therefore find that for the populations the stationaryt → ∞
limit is approached at a rateΓ to give

ρs(∞) = 1
2(1− f )ΓρK(0)

ρK(∞) = 1
2(1+ f )ΓρK(0),

(B3)

while the coherenceρK−1,K(t) decay exponentially to zero at
a rate 1

4(1− f )Γ. Now, by considering only the dephasing
process we instead find that the populations are unchanged
while the coherence decays as

ρK−1,K(t) = e−2γtρK−1,K(0). (B4)

Matching of these decoherence rates again yields Eq. (16).
We therefore conclude that the emergence of a non-zero cur-
rent when reducingf from unity is, to leading order, caused
by the resulting decoherence of the dark state|ΨD〉, identical
to the effect of dephasing alone. This behaviour withf around
f = 1, combined with〈J〉 = 0 at f = 0 and the continuity of
〈J〉 with f , is already enough to imply that NDC behaviour
will be observed in the current-driving profile. Thus NDC and
dephasing enhancement are underpinned by the same mecha-
nism.

FIG. 17: (a) The NESS current〈J〉, rescaled by∆2, for K = 20 is
shown as a function of the drivingf and dephasingγ zoomed in
around the limitf = 1, γ = 0 insulating point (see Fig.8(a)). The
behaviour atf = 1 with γ is emphasized by the additional (red) line.
(b) In the strong driving limitf ∼ 1, theΛ−

R process|K〉→ |s〉 occurs
at a rate∝ (1− f ) ≪ 1 making it slow (as indicated by being faded
out), while theΛ+

R process|s〉 → |K〉 occurs at a rate∝ f ≈ 1 and so
is rapid. The dominant driving process is therefore|K〉→ |s〉→ |K〉,
which has the effect of destroying any coherence|K〉 has with other
states, such as|K−1〉.
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