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Abstract

Future small satellite missions require low-cost, precision reflector structures with large aperture that

can be packaged in a small envelope. Existing furlable reflectors form a compact package which —

although narrow— is too tall for many applications. An alternative approach is proposed, consisting of

a deployable ''tensegrity'' prism forming a ring structure that deploys two identical cable nets (front and

rear nets) interconnected by tension ties; the reflecting mesh is attached to the front net. The geometric

configuration of the structure has been optimized to reduce the compression in the struts of the tensegrity

prism. A small-scale physical model has been constructed to demonstrate the proposed concept. A

preliminary design of a 3 m diameter, 10 GHz reflector with a focal length to diameter ratio of 0.4 that

can be packaged within an envelope of 0.1 × 0.2 × 0.8 m3 is presented.

Nomenclature

a = radius of tube cross section

A = area

b = number of bars

D = aperture diameter

E = Young's Modulus

F = focal length

H = depth

j = number of joints

L = triangle side length

Le = effective length

m = number of independent mechanisms

N = mesh tension per unit length

r = radius of gyration

R = radius of approximating sphere

s = number of independent states of self-stress

T tension

δrms = root-mean-square surface error

θ = relative rotation between nets

ρ = density
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Introduction

There is currently a growing interest in low-cost deployable appendages for small satellites, and the

development of structures for such applications is an active area of research in the Deployable Structures

Laboratory, at Cambridge University.

The work presented in this paper was motivated by an application requiring a 3 m diameter parabolic

reflector to be launched alongside a 0.6 × 0.6 × 0.8 m3 bus, packaged within an envelope of 0.1 × 0.2 ×

0.8 m3. This reflector has a focal length to diameter ratio F/D = 0.4 and operates at a frequency of 10

GHz. Excluding inflatables, which still cannot be regarded as a mature technology, none of the existing

deployable reflector concepts can meet these requirements. It was considered that the greatest potential

for meeting the requirements with a low-cost system would be offered by an adaptation of the AstroMesh

concept [1, 2].

In the AstroMesh, see Figure 1, the reflective mesh is attached to a network of thin cables, or tapes

with high axial stiffness that approximates to a paraboloid; the cables are prestressed to form a stiff and

accurate structure. The size of the triangles forming the cable network is chosen sufficiently small to

achieve the required accuracy. This concept is known as a tension truss and was invented by Miura [3].

The forces required to prestress the cable net are provided by a series of springs, called tension ties in

Figure 1, connecting the network to an identical rear net. Both nets are connected around the edge to a

deployable ring truss with telescopic diagonals.

Note that the height of the ring truss is given by the depth of the two nets plus their separation.

Although the rear net can be made less deep, say half the depth of the front net, by accepting larger forces

on the ring, a reflector with small F/D requires a higher ring. For example, for depth H = 0.46 m and

D = 3 m an AstroMesh-type truss divided into 18 segments would have a packaged height of more than

1.2 m. An alternative ring configuration based on a pantograph with, again, 18 bays would have a height

of 0.9 m. However, this requires a much larger number of joints.

A new concept that meets these requirements is presented in the next section; then a detailed analysis

of the prestress distribution in the reflector structure is carried out, considering the effects of several

design parameters. This leads to a preferred configuration of the reflector, whose feasibility has been

demonstrated by constructing a physical model. A preliminary design of a 3 m reflector that would meet

all of the requirements of the particular application that motivated the present study is then presented.

New Concept

The proposed reflector structure is based on the tension truss concept. Like the AstroMesh, it is composed

of three main parts:

• a deployable ring structure;

• two identical cable nets (front and rear nets) connected by tension ties;

• the reflecting mesh, attached to the front net.

Although the concept is a general one, for clarity it will be explained with reference to the particular

example shown in Figure 2. Basically, this is a structure consisting of a large number of cable elements

and constant-tension springs with only six struts (compression elements).
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Figure 2(a) highlights the 18 cable elements and 6 struts that form the deployable ring structure. This

is a well-known ''tensegrity structure'' belonging to a family invented in 1948 by K. Snelson and R. Buck-

minster Fuller. The potential usefulness of deployable tensegrity structures for spacecraft applications

has been pointed out several times, and most recently in Ref. [4]. Two important features of tensegrity

structures are that:

• there is no connection between compression elements;

• the connections between compression and tension members are simple to manufacture; also their

joints are not affected by friction or dead bands, and hence behave linearly.

These features make them particularly attractive for applications requiring low-weight, low-cost deploy-

ables that can be packaged very compactly. A disadvantage of standard tensegrity structures is that they

are very flexible, due to the existence of internal mechanisms of inextensional deformation, as will be

shown next. However, the solution presented next avoids this problem.

Consider the pin-jointed structure shown in Figure 3, whose layout is identical to the ring structure

in Figure 2. The top six joints lie at the corners of a regular hexagon and the bottom six joints lie at the

corners of an identical hexagon. Consider a joint in the bottom hexagon; it is connected by bars to the

two neighbouring joints in the same hexagon, and also to two joints of the top hexagon. Note that it is

not connected to the joint directly above, but to the next and the second next joints, in an anti-clockwise

sense.

This structure has j = 12 joints and b = 24 bars. To investigate its static and kinematic properties

the extended Maxwell's rule [5] can be used

3j − b = m − s (1)

where

• m = number of independent inextensional mechanisms, and

• s = number of independent states of self-stress.

Substituting the values of j and b into Equation 1 we obtain

m − s = 12 (2)

It can be shown that this structure has one state of self-stress, s = 1, where the 6 longer bars connecting

the two hexagons are in compression and all other members are in tension. Therefore, from Equation 2 we

conclude that m = 13 and, since 6 mechanisms will involve rigid-body motions of the whole structure,

this leaves 7 internal mechanisms. These mechanisms can be stiffened by prestressing the structure, but

this will provide only a relatively small stiffness.

Because this structure can be prestressed, as explained above, a deployable version could be made

quite easily; the state of prestress requires only 6 members to carry compressive forces, all other members

are in tension and therefore —instead of using bars— cables can be used. Then, if the struts are collapsible,

the whole structure can be folded.

This structure, however, has 7 internal mechanisms, which is clearly undesirable. An alternative con-

figuration that is practically more useful is shown in Figure 4. This structure is obtained by connecting the

3



nodes of the top and bottom hexagons to two interconnected, central joints. Note that these internal joints

are not co-planar with the hexagons, thus forming two triangulated surfaces that coarsely approximate to

a curved surface. This structure is a simplified version of the new concept shown in Figure 2.

The number of joints and bars are respectively j = 14 and b = 37. Hence, Equation 1 gives

m − s = 5 (3)

and, since the same state of self-stress of the structure in Figure 3 exists also for this structure and there

is no other independent state of self-stress, s = 1 as before. Hence, m = 6 and so this structure has only

six rigid-body mechanisms. Being internally rigid, this structure is potentially useful for high-precision

applications. However, the triangulated surfaces in this example are far too coarse to support a reflective

mesh that approximates to a paraboloid. Hence, these simple triangulated surfaces will be replaced with

the net shown in Figure 5.

The layout of a triangulated net can be defined in many different ways; for example it could be

optimised such that all triangles have equal areas and are as close as possible to equilateral. The particular

layout that was chosen is based on a simple two-dimensional, regular tessellation of equilateral triangles

that is obtained by dividing each side of a hexagon into three. Then, the outermost triangles were distorted

to form a catenary-like edge for the net, to improve the force distribution. Finally, all of the nodes were

projected onto a paraboloid. Further details are given in the Appendix.

Now, consider the structure consisting of the original ring structure plus the two triangulated nets; its

static and kinematic properties are investigated as follows.

• Number of joints: there are 6 joints in the symmetry unit of each net, hence in total

j = 2 × (1 + 6 × 6) = 74 (4)

• Number of bars: there are 15 bars in the symmetry unit of each net, plus the 24 bars of the ring

structure, hence in total

b = 2 × (15 × 6) + 24 = 204 (5)

Substituting Equations 4 and 5 into Equation 1 we obtain

m − s = 18 (6)

Since the state of self-stress described above is still statically possible, but no additional states of self-

stress have been created, s = 1. Hence, m = 19, of which 6 mechanisms are rigid-body motions and 13

are internal mechanisms. The 13 internal mechanisms can be removed by adding 13 bars to the structure,

as shown in Figure 2(c). The resulting structure has m = 6, and hence all mechanisms are rigid-body

mechanisms, and s = 1.

To transform this pin-jointed structural concept into an efficient deployable structure made from cable

elements we need to find a way of prestressing the two nets once they have taken up their fully-deployed

shape. An obvious approach, based on the AstroMesh, might be to connect corresponding nodes of the

two nets with tension ties, but it turns out that this is not an ideal solution because:
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• Large compressive forces are induced in the cables of the ring structure, which need to be counter-

acted by increasing the level of prestress of the ring; this would further increase the compression

in the struts;

• 12 of the 13 additional members shown in Figure 2(c) are not pre-tensioned;

Both of these issues can be resolved by modifying the configuration of the ring structure. Instead of

using the original configuration, where the two hexagons are directly one above the other, as highlighted

by Figure 3(b), one hexagon is rotated through a small angle θ, Figure 6. θ is defined to be positive if the

upper hexagon is rotated in anti-clockwise with respect to the bottom hexagon.

By itself, the resulting ring structure can no longer be prestressed, as s = 0 and hence, from Equation 2,

m = 12. However, when the complete reflector structure is considered, including the prestressing forces

applied by the tension ties, it is found that:

• There are only 12 internal mechanisms, and hence the additional member connecting the centres

of the two nets can be replaced with a tension tie.

• For θ = +10◦, as shown in Figure 6, all of the cables are in a state of tension.4

Figure 7 shows the force distribution in the two nets; the corresponding forces in the ring structure

are −68.8 N in the struts, +25.9 N in the cables forming the hexagons, and +39.5 N in the six cables

linking the hexagons.

Configuration of Tensegrity Reflector

In addition to studying the statical and kinematical properties of the reflector structure, it is necessary to

analyse the effect of different design parameters on the magnitude and distribution of the forces within

the structure. The aim of this study is to obtain a fairly uniform distribution of forces in the front net and

to avoid large forces in the supporting structure, particularly the struts. Hence, the configuration study

presented in this section is divided into two parts. First, the influence of the sag of the edges of the net

and of the tension tie forces on the force distribution is investigated, without considering the rest of the

structure. Then, for some particular values of the forces in the tension ties and a particular sag-to-span

ratio, the effect of the relative rotation of the hexagons on the forces in the nets and the ring structure is

investigated. A detailed description of the procedure used for generating the triangular net and a definition

of the sag-to-span ratio are given in the Appendix.

Sag-to-Span Ratio and Tension Tie Forces

Consider the cable net shown in Figure 8, where the tension ties are represented by vertical loads applied

to the joints.

First, its statical and kinematical properties will be checked. The number of joints is, see the Appendix

b = 6
3(1 + 3 × 3)

2
= 90 (7)

and the number of bars is

j = 1 + 6
3(1 + 3)

2
= 37 (8)

4Note that the forces in the outer ties have been set to twice the value of the internal ties.

5



Equation 1, yields

m − s = 21 (9)

Because the net has synclastic shape (i.e. principal curvatures of equal signs), it is obvious that no

state of self-stress is possible, hence s = 0. 21 constraints are added, 18 by fixing completely 6 joints

around the edge of the net, as shown in Figure 8. The remaining three constraints fix one edge joint both

radially and tangentially, i.e. in two perpendicular directions, and an adjacent edge joint radially. The

arrangement of these constraints is such that the three mechanisms of the structure shown in Figure 8 are

removed; these mechanisms were computed from the equilibrium matrix of the structure [6].

This produced a statically and kinematically determinate structure (i.e. s = 0 and m = 0) that was

analysed for three sag-to-span ratios: 5, 10 and 15%. For each ratio the tension tie forces were initially

set to 1 N everywhere; this would be easy to realize in practice, with identical constant-tension springs in

all of the tension ties.

The results for a 5% sag-to-span ratio are shown in Figure 9. When the tension tie forces are all equal

to 1 N, Figure 9(a), some members are in compression. By increasing the edge tie forces the compressive

forces gradually become smaller and then tensile, Figure 9(b)–(d). An almost uniform force distribution

is obtained for edge forces of 4 N, however the largest force in the edge cable is now over 15 N.

When the sag-to-span ratio is increased to 10% there is still compression for tension tie forces of 1 N,

Figure 10(a). However, as the edge tie forces are increased to 2 N, an acceptable distribution of forces is

obtained and the edge cable forces are smaller than for the 5% sag-to-span ratio, Figure 10(b). The range

of the inner net forces is 0.75–2.69 N.

Increasing the sag-to-span ratio further, to 15%, yields no compressed elements even for the case of

uniform 1 N tension tie loads, Figure 11(a). By increasing to 2 N the forces in the edge ties gives a very

uniform force pattern, in the range 1.27–2.08 N, and the edge cable forces are slightly smaller than in the

previous case.

Although a sag-to-span ratio of 15% gives a better force pattern than the 10% ratio, the further

reduction in the surface area of the net, and hence of the reflecting surface of the reflector is not justified,

hence a value of 10% was selected.

Rotation of Hexagons

The effect of a relative rotation θ between the hexagons of the ring structure was analysed, for cable nets

with a sag-to-span ratio of 10%. The tension tie forces were taken to be 1 N on the inner joints and 2 N

on the edge joints; the corresponding force distribution for θ = 0◦ is shown in Figure 10(b). When the

hexagons are rotated, the force distribution in a symmetry unit of the net is no longer symmetric, see

Figures 12 and 13.

Net forces. Figure 12 is a plot of the variation in the forces of the inner cables with the rotation of the

hexagons. The forces in the radial cables 1, 3 and 8 are approximately constant for the range of θ displayed.

The other cable forces, except for cables 9 and 10, are in the range 0.5–1.5 N. Most importantly, cable

9 becomes compressed at θ ≈ 28◦ giving an upper limit on θ for the particular reflector configuration

studied here.

Figure 13 is a plot of the variation in the forces of the edge elements. The force in edge cable 13
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initially increases and then decreases. Edge forces 14 and 15 decrease when θ is increased. This is due

to the change in the direction of the tension tie forces.

Ring forces. The forces in the ring structure vary exponentially with θ, Figure 14. For small θ, the forces

are very large, especially in the struts, but decrease to acceptable levels for θ ≈ 10◦. Further rotation

leads to a slow decrease in force magnitudes, and for the practical limit θ = 28◦ discussed above, the

force in the lateral cables is 3.9 N.

Because the structure is kinematically determinate, its stiffness depends on the elastic properties of

its members and is independent of the prestress level. However, the cable pretensions must be sufficiently

high that all cables remain in tension under the action of any compressive loads induced by the loads.

Also shown in Figure 14 is the variation of the strut length, which is much smaller than the variation

of the forces in the struts. Of course, shorter struts are preferable, to avoid buckling.

Additional members. The 12 additional members have the function of removing all internal mechanisms,

as explained in the section New Concept. To use cable elements instead of solid bars, it must be ensured

that these elements are pre-tensioned. Here an advantage of the configuration shown in Figure 2(c) is that

the additional elements are in tension for any θ > 0, Figure 15, and the magnitude of the tension increases

almost linearly up to about 10◦. If the additional members were re-arranged, to turn in the opposite sense

about the axis of the reflector, they would be in compression for θ > 0, instead.

Other issues. Another important issue, not concerned with the force distribution within the structure, is

that the struts move closer to the centre of the reflector when θ is increased. Hence, the struts are more

likely to interfere with the tension ties. This might complicate the deployment procedure; therefore, it is

important to keep θ small.

Demonstration Model

To verify the feasibility of the proposed concept, a small-scale physical model was constructed, with a

diameter of 0.47 m.

The triangulated nets were constructed on paraboloidal molds of PETG (a thermo-plastic material

with the trade name of Vivak) with diameter D = 0.45 m and focal length F = 0.134 m, on which

the position of the nodes of the net had been marked with a 3-axis computer-controlled machine. The

net was made from 0.8 mm diameter Kevlar cords which had been pretensioned before being taped to

the mold; the cords were joined with Nylon loops at all cross-over points and bonded with epoxy resin.

Corresponding nodes of the two nets were connected with steel springs.

Identical Al-alloy, 30 mm long joint fittings of cylindrical shape with a diameter of 15 mm, were

attached to the six corners of each net. Holes with 2.0 mm diameter in the direction of each cord had

been drilled in the joint fittings, and all connections were made with epoxy resin. The cords of the ring

structure, consisting of 1.0 mm Kevlar cord, were connected to the same joint fittings.

The telescopic struts, 0.46 m long, were made by cutting off the sticks of six identical foldable

umbrellas. The umbrella sticks were inserted into 20 mm long, 6.4 mm diameter holes at the bottom of

the joint fittings; these holes are co-axial with the joints. Grub screws hold the joints on the umbrella

sticks.

The model works quite well, considering that it was the first time that a structure of this kind had
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been constructed in our laboratory. The model can be easily folded and deployed by hand, as shown in

Figures 16–18. However, some of the cables in the two nets remain slack after deployment and there is

some interference between the nets and the struts, because the diameter of the net—as manufactured—

turned out to be bigger than expected. Correcting these problems should be possible in a second-generation

model.

Figure 18 shows the very compact, packaged configuration of the reflector; note the elongated shape

of the package, which would permit its stowage alongside the small satellite described in the Introduction.

Preliminary Design of 3 m Reflector

The main characteristics of a reflector to meet the requirements —D = 3 m, F = 1.2 m, operation at

10 GHz— are determined in this section. In particular, an estimate of the mass of the reflector is obtained.

Network Density

The surface error of the reflector originates from a number of different sources, such as thermal distortion

of the structure, etc. Only one contribution to the overall error budget can be considered at this stage,

namely the effect of approximating the required paraboloid with a polyhedral surface. Therefore, it will

be conservatively required that the root-mean-square error δrms should be less than about 1/100 of the

wavelength.

At 10 GHz the wavelength is 30 mm and so the allowable error is 0.3 mm. For a spherical surface of

radius R, Ref. [7] obtains the following relationship between δrms and the side length, L, of the triangles

δrms =
L2

8
√

15R
(10)

For a shallow paraboloid the radius of curvature is approximately twice the focal length F , thus

R ≈ 2F (11)

For D = 3.0 m and F = 0.4 × D = 1.2 m, Equation 10 can be solved for L and yields

L = 0.15 m

Thus, the number of triangles across a 3 m diagonal of the hexagon will be 20, which means that the net

will consist of ten concentric rings of equilateral triangles (Note that the net of Figure 5 is formed by three

concentric rings). The corresponding total length of the cables to make up both nets is ≈ 300 m.

Assuming that the members of the cable nets are made from graphite composite tape (ρ =1740 kg/m3)

with a rectangular cross section of 5.0 mm by 0.2 mm, and that the weight of the joints in the net can be

accounted for by doubling the density of the tapes, the total mass of the two nets is 1.04 kg.

Mesh

The reflective mesh is knitted gold-plated Molybdenum wire with a surface density of 0.025 kg/m2. This

value is doubled to account for seams and surface treatment. Approximating the mesh area with the area

of a spherical cap, we have

A = 2πRH
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where R is the radius of the sphere, hence R = 2F = 2.4 m. H is the height of the cap, hence

H = 0.469 m. Thus, A = 7.07 m2 and the corresponding mass is 0.35 kg.

Force in Springs

The tension in the mesh applies a lateral loading on the cable net to which it is attached, because the

mesh forms a small kink, of angle L/R, at the cross-over between adjacent triangles, see Figure 19(a).

To prevent the sides of the triangles from becoming significantly distorted, the tension T in the cables of

the net must be significantly larger than the transverse load.

For a preliminary estimate, T will be set equal to ten times the mesh tension N multiplied by the

triangle side length L. Taking N = 2.0 N/m the required tension in the net cables is T = 3.0 N. The

force in the tension ties that is required to obtain the specified tension T in the cables is, see Figure 19(b)

but note that only two of the six cables connected to this node are shown,

Ttie = 3TL/R = 3 × 3.0 × 0.150/2.4 = 0.56 N (12)

It is interesting to note that the average pressure on the net, given by Ttie over the corresponding area

of mesh5 is 29 N/m2. This pressure is considerably larger than the self-weight of the mesh under gravity.

Ring Structure

The cable net analysed in the section Configuration of Tensegrity Reflector consisted of only three rings

of triangles while a 3 m reflector requires ten rings. A preliminary estimate of the loads transmitted to the

ring structure by the full-size net can be obtained by assuming that each cable in the three ring reflector

represents 3.3 cables in a ten ring reflector. So, the forces in the supporting structure can be calculated by

scaling the forces applied by the three ring net, which gives equivalent forces of 8 N in the tension ties.

Table 1 lists the forces and lengths of the members of the ring structure.

Design of Struts

The struts are designed to resist Euler buckling, subject to a minimum slenderness, Le/r, of 200. Here,

Le is the effective length of the strut and r the radius of gyration. For a thin-walled tube of radius a

r =

√

I

A
=

√

πa3t

2πat
=

a
√

2

Assuming the struts to be pin-jointed at both ends, Le is the actual length, given in Table 1. Hence

Le = 2.88 m, which yields a > 0.0204 m.

Graphite fibre tubes (E = 227.5 GN/m2 and ρ = 1740 kg/m3) with an outer diameter of 42 mm and

wall thickness of 0.5 mm were selected. Their buckling load is 3.8 kN, well above the actual load. The

total length of these struts is 17.3 m and the total mass 1.96 kg.

Each strut must be collapsed to less than a quarter of its length to fit into the launch envelope. The

simplest solution at this preliminary stage is to assume that telescopic tubes will be used; for example the

scheme developed in Ref. [8] could be adopted. Hence, the mass estimated above is amplified by 50%,

to allow for tube overlap and the variation in the cross-section of the tubes; the mass of the deployment

motor, latches, cables and pulleys is estimated at 0.2 kg per strut.

5It is assumed that the surface associated with one node is twice the area of a triangle.
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Cable Dimensions

It is assumed that graphite composite tape, with a design strength of 500 N/mm2, is used also for the

cables of the ring structure. The maximum cable force is 1880 N, assuming a factor of safety of 5. Thus,

the required cross-sectional area is 3.76 mm2 and, since the total length of the cables in the ring structure

is 29.8 m, their mass is 0.19 kg.

Conclusions

The proposed reflector concept meets the requirements of a particular small satellite mission, requiring a

3 m aperture with F/D = 0.4 and operating at 10 GHz, which can be packaged as a compact bundle that

is less than 0.8 m high. It was estimated that a surface accuracy of 0.3 mm is required.

The proposed solution consists of a cable net forming triangles with side length of 0.15 mm to which

the reflective wire mesh is attached. This cable net is prestressed against an identical cable net, as in the

AstroMesh reflector. However, there are two key differences between the new concept and the AstroMesh

reflector. First, by using a tensegrity structure to deploy the cable nets, the need for mechanical joints

can be avoided thus reducing the cost and potentially increasing the geometric accuracy of the structure.

Second, the geometric configuration of the structure has been optimized by rotating the two cable nets

about the axis of the reflector, which has the effect of substantially reducing the compression carried

by the struts of the tensegrity structure. Thus, it has been possible to design a 3 m diameter precision

structure with a mass conservatively estimated at 6.3 kg, see Table 2.

The proposed concept has been shown to be feasible by constructing a simple demonstrator, but it

should be noted that several important issues —such as the attachment of the reflector to the spacecraft,

the deployment sequence of the reflector, and the feasibility of non-symmetric, i.e. offset configurations—

could not be addressed in this preliminary study.

More generally, it is noted that cable-and-strut deployable structures, of which the reflector structure

concept proposed in this paper is an example, suffer a mass penalty in comparison with articulated

structures. This is because they have to be prestressed after deployment, which leads to an increase in

the cross-sectional dimensions of the compression members. This penalty is offset by the reduced cost

and mass of the joints, but for this approach to be competitive it is essential to reduce the additional

compression in the struts.
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Appendix: Cable Net Generation

This appendix describes the procedure used for generating the two triangulated cable nets of paraboloidal

shape. The procedure is applicable to nets forming any regular, m-sided polygon and is illustrated in

Figure 20. The symmetry unit is subdivided into n × n triangles and all nodes are projected onto the
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required paraboloidal surface, Figure 20(c).

The total number of triangles t, elements b and joints j are respectively

t = mn2 (13)

b = m
n(1 + 3n)

2
(14)

j = 1 + m
n(1 + n)

2
(15)

The subdivision is defined by m, n, and the circumscribed radius, R. The edge sag-to-span ratio,

Figure 21, is defined as

δ

2R0 tanα
(16)

where δ is the sag, α = π/m, and R0 the inscribed radius. Note that the span used in the definition,

2R0 tanα, is different from the distance between the outer vertices which is 2R tanα.

Given the sag-to-span ratio, R0 is calculated by subtracting from R the following lengths, Figure 21

∆1 = R
1 − cos α

cos α
(17)

∆2 =
δ

cos α
(18)

From Equations 16–18, the relation between R and R0 is written as

R

R0

=
1 + 2ρ tanα

cos α
(19)

The radius R is divided into n equal parts, corresponding to n−1 rings of identical triangles. In the outer

ring, the triangles are distorted along the edge. The edge joints are equidistantly positioned on a circular

arc with radius r and opening angle γ, Figure 21

r =
δ2 + R2 sin2 α

2δ
(20)

γ = 2 arccos
r − δ

r
(21)

The horizontal projection of the length of the edge elements is 2r sin (γ/2n). It should also be noted that

for odd values of n the actual two-dimensional sag of the edge elements will be slightly less than δ, as

shown in Figure 21 for n = 3.
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Figure 1: AstroMesh concept (from Thomson 1997).
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Figure 2: New furlable reflector concept.
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(a) (b)

Figure 3: Hexagonal tensegrity module; (a) three-dimensional view; (b) top view.
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Figure 4: Hexagonal tensegrity module with interconnected front and rear triangulated structures.
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Figure 5: Layout of front and rear nets.

17



front net

rear net

tension ties

struts

ring cords

θ > 0

Figure 6: Complete structure, but without additional 12 members.
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Figure 8: Loads applied to cable net.
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(a)
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Figure 16: (a) Top and (b) bottom views of model structure, expanded.
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Figure 17: Side view of model structure, expanded.
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Figure 18: Model structure, folded.
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Element Force (N) Length (m)

Horizontal cable 310 1.50

Lateral cable 376 1.96

Strut −712 2.88

Table 1: Forces and lengths of elements of ring structure.

Element Quantity Unit mass Mass (kg)

Net cables 300 m 0.0087 kg/m 1.04

Struts 17.3 m 0.170 kg/m 2.94

Ring cables 29.8 m 0.0066 kg/m 0.19

Motors and latches 6 0.20 kg/item 1.20

Connections 12 0.050 kg/item 0.60

Mesh 7.07 m2 0.050 kg/m2 0.35

Total 6.32

Table 2: Mass estimates for 3 m diameter reflector.
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