
Deploying Image Deblurring across Mobile Devices: A Perspective of Quality

and Latency

Cheng-Ming Chiang∗ Yu Tseng Yu-Syuan Xu Hsien-Kai Kuo Yi-Min Tsai

Guan-Yu Chen Koan-Sin Tan Wei-Ting Wang Yu-Chieh Lin Shou-Yao Roy Tseng

Wei-Shiang Lin Chia-Lin Yu BY Shen Kloze Kao Chia-Ming Cheng

Hung-Jen Chen

MediaTek Inc., Hsinchu, Taiwan

Abstract

Recently, image enhancement and restoration have be-

come important applications on mobile devices, such as

super-resolution and image deblurring. However, most

state-of-the-art networks present extremely high computa-

tional complexity. This makes them difficult to be de-

ployed on mobile devices with acceptable latency. More-

over, when deploying to different mobile devices, there is

a large latency variation due to the difference and limita-

tion of deep learning accelerators on mobile devices. In

this paper, we conduct a search of portable network archi-

tectures for better quality-latency trade-off across mobile

devices. We further present the effectiveness of widely used

network optimizations for image deblurring task. This pa-

per provides comprehensive experiments and comparisons

to uncover the in-depth analysis for both latency and image

quality. Through all the above works, we demonstrate the

successful deployment of image deblurring application on

mobile devices with the acceleration of deep learning ac-

celerators. To the best of our knowledge, this is the first

paper that addresses all the deployment issues of image

deblurring task across mobile devices. This paper pro-

vides practical deployment-guidelines, and is adopted by

the championship-winning team in NTIRE 2020 Image De-

blurring Challenge on Smartphone Track.

1. Introduction

Deep learning based networks have achieved great suc-

cesses in image enhancement and restoration tasks [38, 57,

19, 37, 34]. Among these applications, image deblurring

have become one of the most important camera features for

mobile devices [52]. Due to the large input resolution and

the characteristic of pixel-to-pixel mapping nature, these

contemporary networks demand extremely high complex-

ity and memory footprint. This makes deploying an image

deblurring task on mobile devices a great challenge.

In recent years, deep learning communities have noticed

∗Email: jimmy.chiang@mediatek.com

the gap between network design and its deployment on mo-

bile devices. Image enhancement and restoration on smart-

phone contests have been held to shed a light upon this

problem [33, 46]. Meanwhile, deep learning accelerators

are also widely adopted in most of mobile devices [12, 10, 9,

15, 5]. Following the trend, some benchmark suites are pro-

posed to evaluate the performance of these mobile devices

[32, 49, 2, 4]. To alleviate the burden of network deploy-

ment, some papers propose light-weight network architec-

tures to reduce the complexity [31, 18, 21, 25, 30]. Another

idea is network optimization, which targets on arbitrary net-

work architectures. Among the existing technologies, quan-

tization [35] and pruning [27] are two of the most popular

techniques to optimize network performance.

However, the applicability of these optimization tech-

niques with respect to image deblurring task is rarely dis-

cussed. Furthermore, the performance of a network is

highly affected by the hardware limitations and preferences.

Therefore, network portability is another key factor to de-

ploy across a set of mobile devices. Last but not the least,

the existing benckmarking efforts lack of a realistic set-

ting to well reflect the practical use-cases, e.g., 720p High-

Definition (HD) input resolution (1280× 720).

In this paper, we compare both quality and latency in-

dex of different image deblurring networks across mobile

devices. Practical settings are adopted to reflect real user

scenarios. Our contributions are summarized as below:

• Portable Network Architectures. We conduct a

search of portable network architectures for better

quality-latency trade-off across mobile devices. This

also includes a set of practical application settings to

better reflect real user scenarios.

• Network Optimization. For image deblurring task,

we further present the effectiveness of popular network

optimizations, quantization and pruning. We demon-

strate that there exist noticeable quality drops with

8-bit quantization-aware training. With 16-bit post-

training quantization, it is capable of achieving the

same quality level as floating-point network.



• Quality and Latency across Mobile Devices. In

terms of image quality and latency, we evaluate various

image deblurring networks across mobile devices. Our

paper demonstrates the success deployment of image

deblurring application on three mobile devices (with

deep learning accelerators).

In Section 2, we describe the related work for this paper.

We will introduce detailed flow of deploying image deblur-

ring on mobile devices in Section 3. In Section 4, we show

detailed analysis from the aspect of quality and latency. The

conclusion and future work are summarized in Section 5.

2. Related Work

2.1. Image Enhancement and Restoration

In recent works, most of the image enhancement and

restoration methods share common network architectures.

U-Net [50] architecture, which is also known as encoder-

decoder structure, is widely used in many image enhance-

ment and restoration tasks [53, 22, 48, 39, 43, 19]. In im-

age denosing, Gu et al. [26] propose a top-down architec-

ture, Self-Guided Network (SGN), to better exploit multi-

scale information in images. In super resolution, there

are also quite a few representative network architectures,

such as EDSR [41], RDN [57] and DBPN [28]. Most

of these architectures keep the same scale across all op-

erations except the last one, which is responsible for up-

sampling. In image deblurring, besides U-Net architec-

ture, deformable convolution and self-attention module are

proposed to model spatially-varying deblurring process in

[47]. Recently, Kupyn et al. [37] use FPN architecture [42]

in image deblurring with Generative Adversarial Network

(GAN) based training methodology. To alleviate the com-

putational complexity of deployment, several light-weight

architectures are proposed recently [31, 18, 21, 25, 30].

2.2. Network Optimizations

Quantization. Network quantization is one of the most

effective methods for deploying networks on mobile de-

vices. Typically, quantization enables efficient integer arith-

metics by translating weights and activations of a net-

work into fixed-point (e.g., 8-bit integer) representation.

Quantization-aware training and post-training quantization

are two well-known techniques supported by TensorFlow

[35]. Post-training quantization estimates value ranges for

both weights and activations through forward pass of train-

ing data while quantization-aware training performs such

estimation in both forward and backward pass. In recent

works, both techniques demonstrate promising results on

image perception tasks [35, 29, 51, 30, 16, 14]. To the best

of our knowledge, there are limited works [20, 44] applying

quantization on image enhancement problems. To better un-

derstand the effectiveness of quantization on image deblur-

ring, this work applies the most widely used quantization

techniques and conducts a comprehensive evaluation.

Pruning. Network pruning is another widely used opti-

mization for deploying networks on mobile devices. There

are two approaches of pruning, unstructured pruning [27,

55] and structured pruning [24, 40, 56]. Unstructured prun-

ing makes the weights of a network sparse instead of chang-

ing the network architecture. Structured pruning reduces

the number of channels in the network and thus improves

latency on general devices. Most of the works focus on

image classification or segmentation [27, 55, 24, 40, 56].

Wang et al. [54] propose architecture-aware pruning to re-

duce MAC1 and memory bandwidth in super resolution [41]

and low-light enhancement [19]. In this work, we apply

pruning techniques in similar ways and show the effective-

ness on image deblurring.

2.3. Benchmark Suites & Challenges

Benchmark Suites. AI Benchmark, is a comprehensive

benchmark suite for mobile devices by Andrey et al. [32],

which evaluates both latency and accuracy among various

tasks. In AI Benchmark, the resolution for input images

are ranging from 84 × 84 to 512 × 512 (except semantic

segmentation which is not the focus of this paper). How-

ever, contemporary use-cases of image enhancement typi-

cally need larger input resolution, for example, 720p HD or

even higher resolution. MLPerf inference benchmark [49] is

one of the largest benchmark community contributed from

both academic and industry. However, image enhancement

and restoration tasks are not included for its benchmark-

ing. AIMark [2] and Antutu AI Benchmark [4] are another

two benchmark suites targeting mobile devices. Among

these two benchmark suites, platform providers are asked

to deploy test applications by using proprietary formats and

frameworks. Such benchmarking policy is quiet different

from AI Benchmark which adopts a unified framework, An-

droid Neural Networks API (NNAPI) [3].

Challenges. PIRM 2018 challenge on perceptual image

enhancement on smartphone [33] is the first image enhance-

ment challenge that evaluates latency on mobile devices.

Razer phone and Huawei P20 are used as target devices

[7], which have their latest generations with higher com-

putation capacity. NTIRE 2020 image deblurring challenge

on smartphone [46] adopts Google Pixel 4 as its target de-

vice. However, the evaluation of latency is conducted on

256 × 256 input resolution, which is far from enough to

reflect a real use-case, say HD 720p (1280× 720).

In this paper, we apply a more realistic setting for image

deblurring application and deploy it across a set of mobile

1MAC is known as multiply-accumulate. A MAC is roughly two

floating-point operations (FLOPs), used in some other papers.



U-Net*

UNet-Bilinear-PRelu

-5% MAC

-10% MAC

-20% MAC

-30% MAC

-50% MAC

8-bit

16-bit

29

30

31

32

33

400 700 1000 1300 1600 1900

P
S

N
R

 (
d
B

)

Latency (ms)

PSNR vs. Latency on OPPO Reno3 5G Phone

Step 1: Network Architectures for Quality

Step 2: Portable Operations for Latency

Step 3: Pruning for UNet-Bilinear-PRelu

Step 4: Quantization and Pruning for -5% MAC

Step 1

Step 2Step 3Step 4

Figure 1. The evolution of trade-off between PSNR and latency on OPPO Reno3 5G.

(*) means the architecture is slightly different from the original paper.

U-Net*: UNet-TransposeConv-Relu.

D2S: abbreviation of DepthToSpace. Bilinear: abbreviation of ResizeBilinear.

devices. Differentiation includes (1) We use HD 720p res-

olution (1280 × 720) to show the capability of mobile de-

vices for real use-cases. (2) We evaluate both quantitative

(PSNR2) and qualitative (visual) results to better justify the

quality measurement. (3) To create a fair comparison across

mobile devices, we adopt the unified NNAPI framework [3]

for all the evaluations, including both quality and latency.

3. Deploying Image Deblurring across Mobile

Devices

In this paper, we take image deblurring as an example for

the mobile deployment. We first introduce the problem def-

inition of blind image deblurring. Second, we elaborate the

searching procedure of portable network architecture and

its interplay between latency portability and PSNR quality.

Then, we describe the optimization techniques to further

improve performance on mobile devices. Finally, softwares

and hardwares for deploying the networks are introduced.

3.1. Image Deblurring

In this paper, we adopt the same problem formulation,

blind image deblurring task, as used in NTIRE 2020 image

deblurring challenge on smartphone [46].

Dataset. For the training dataset, we use REDS [45] im-

age deblurring dataset which is also used in image deblur-

ring challenges of NTIRE 2020 [46]. In REDS dataset,

there are 300 videos divided into 240 sequences for train-

ing, 30 sequences for validation, and 30 sequences for test-

2Peak Signal to Noise Ratio

ing. Each sequence contains 100 frames of 1280× 720 res-

olution. For each frame, blurry image and sharp image are

given as a pair. In this paper, we treat each frame as inde-

pendent and conduct all the experiments with this setting.

3.2. Searching Portable Network Architectures

In this section, we introduce the searching of a high

PSNR quality yet portable network across mobile devices.

This includes Step 1 and Step 2 shown in Figure 1. First

of all, a set of state-of-the-art network architectures is listed

in Figure 1. For fair comparison, networks are slightly ad-

justed to match a baseline computational complexity (re-

fer to Section 4 for more detail). In Step 1, the goal is to

search for the architecture with highest quality. Hence, the

network of the highest PSNR, U-Net [50], is selected for

the next step. In Step 2, the objective turns to increase the

portability across difference mobile devices. In accelerator

hardware, optimization usually focuses on limited opera-

tions, such as convolution, pooling, activation and so on.

Therefore, a network with high quantitative or qualitative

quality can have very limited portability since its operations

are not optimized on another devices. Thankful to the strong

function approximating nature of neural network, it is possi-

ble to replace these operations by other semantically similar

and optimized ones. According to the above discussion, we

derive a set of architectures from the previous step. These

architectures are marked as purple in Figure 1 (refer to Sec-

tion 4 for more detailed discussions). To this end, one is

free to choose any of the networks according to the quality

or latency requirement.



Table 1. Hardware specification and AI-Scores [1] of the mobile devices.

Huawei Mate30 Pro 5G OPPO Reno3 5G Google Pixel 4

Chipset HiSilicon Kirin 990 5G [9] MediaTek Dimensity 1000L [10] Qualcomm Snapdragon 855 [12]

CPU

2 Cortex-A76, 2.86 GHz

2 Cortex-A76, 2.36 GHz

4 Cortex-A55, 1.95 GHz

4 Cortex-A77, 2.20 GHz

4 Cortex-A55, 2.00 GHz

1 Kryo 485 Gold Prime, 2.84 GHz

3 Kryo 485 Gold, 2.42 GHz

4 Kryo 485 Silver, 1.80 GHz

GPU Mali-G76 Mali-G77 Adreno 640

AI Engine
2 Big-Core DaVinci NPU

1 Tiny-Core DaVinci NPU

APU 3.0 (2 Big Cores,

3 Small Cores, 1 Tiny Core)
AIE CPU, AIE GPU, AIE DSP

NNAPI

Runtime

nnapi-reference, armnn,

liteadaptor
nnapi-reference, neuron-ann

nnapi-reference, google-edgutpu,

qti-default, qti-dsp, qti-gpu, qti-hta

AI-Score [1] 76,206 58,628 33,289

3.3. Optimizing Network for Deployment

As discussed in Section 3.2, the procedure searches for a

set of portable network architectures with the best quality-

latency trade-off. After that, several network optimization

techniques can be applied to further boost the performance

on mobile devices. The following paragraphs introduce how

the widely used pruning and quantization are applied to the

portable network architectures.

Pruning. We use structured pruning technique to opti-

mize networks (Step 3 in Figure 1). A structured pruning

technique similar to one mentioned in [54] is used. The

numbers of channels are adaptively pruned with respect to

the given MAC reduction target. With different level of

pruning targets, a set of pruned networks are generated and

marked orange as in Figure 1. Any choice is a trade-off

between quality and latency.

Quantization. We apply quantization-aware training and

post-training quantization techniques to demonstrate their

applicability on the image deblurring task. We extend the

evaluation to both 8-bit and 16-bit quantization, which will

be detailed in Section 4.4. Similarly, in Step 4, the quan-

tized networks provide another opportunity for trade-off.

3.4. Deploying Network: Softwares and Hardwares

As shown in Figure 2, this paper adopts TFLite for-

mat (.tflite) and TFLite Benchmark Tool [17] to evaluate

the latency on various mobile devices. NNAPI, underneath

TFLite, is a unified inference framework widely supported

by various platforms [9, 10, 12]. For fair comparison across

mobile devices as in [32], we adopt the unified NNAPI

framework to deploy the networks on mobile devices. Last,

we deploy the optimized portable networks across several

mobile devices and conduct the experimental analysis.

TFLite Benchmark Tool. TFLite Benchmark Tool [17]

can be used to evaluate the latency of a TFLite model on

both desktops and Android devices. It provides several ac-

celerations on mobile devices, e.g., XNNPACK delegate

is optimized for floating-point inference on ARM CPU,

Network Training

TFLite Converter

Android Neural Network Executor

GPU Driver

Network Development & Optimization

Network Quantization Network Pruning

Model Conversion

TFLite Benchmark Tool

TFLite Interpreter

NNAPI Runtime

NNAPI CPU 

Reference

Driver

DSP Driver
Accelerator 

Driver

GPU DSP Accelerator

Hardware

Offline

On-device

TensorFlow GraphDef (*.pb)

TensorFlow Lite (*.tflite)

CPU

GPU Backend DSP Backend
Accelerator

Backend
CPU 

Backend

Figure 2. Software stack for developing networks, optimizing net-

works, and inference on mobile devices.

GPU delegate for floating-point inference on mobile GPU,

NNAPI delegate for both floating-point and 8-bit fixed-

point inference on Android devices, and Hexagon delegate

is optimized for 8-bit fixed-point inference on Qualcomm

DSP. With these tools, comprehensive latency evaluation

can be conducted on different mobile devices.

Android NNAPI. NNAPI [3] is designed for accelerating

deep learning operations on Android devices. It provides

base operators of functionality for higher-level machine

learning frameworks, such as TensorFlow Lite (TFLite) and

Caffe2. With NNAPI, platform providers can have specific

acceleration of frequently used operations for both IEEE

754 16-bit floating-point and 8-bit fixed-point data type.



Table 2. Quality, complexity, and latency of different network architectures.

Network
PSNR / SSIM

(floating-point)

MAC

(×10
9)

Latency (ms)

Huawei Mate30 Pro OPPO Reno3 5G Google Pixel 4

U-Net [50]* 31.67 / 0.899 238 542061 1946 318702

EDSR [41]* 29.24 / 0.836 249 518 1607 3468

RDN [57]* 29.40 / 0.839 243 7367 1720 Failed3

DBPN [28]* 31.23 / 0.886 242 Failed3 Failed3 Failed3

Inception-ResNetV2-FPN [37]* 28.63 / 0.830 250 221644 3245 201505

SGN [26]* 29.78 / 0.858 247 931 1705 30046

(*) means the architecture is slightly different from the original paper.
1 TRANSPOSE CONV 2D operations fall back to CPU.
2 TRANSPOSE CONV 2D, CONCATENATION and CONV 2D operations after CONCATENATION fall back to CPU.
3 ERROR: NN API returned error ANEURALNETWORKS OP FAILED.
4 MUL and RESIZE NEAREST NEIGHBOR operations fall back to CPU.
5 MUL, RESIZE NEAREST NEIGHBOR, some CONV 2D and MAP POOL 2D operations fall back to CPU.
6 SPACE TO DEPTH and DEPTH TO SPACE operations fall back to CPU.

Hardware Acceleration. This paper focuses on three

mobile devices (with deep learning accelerators) as in AI-

Score [1], including Huawei Mate30 Pro 5G, OPPO Reno3

5G, and Google Pixel 4 [6]. Table 1 summarizes the hard-

ware specification of these mobile devices. Table 1 also lists

the details of NNAPI runtime library for each platform.

4. Experiment Results

In this section, we discuss the experiment results and its

implementation details. Section 4.1 elaborates the details of

dataset, training setups and evaluation methods. The pro-

posed architecture search is discussed in Section 4.2. Sec-

tion 4.3 covers the portability discussion at operation level.

The interplay between networks and optimization methods

are discussed in Section 4.4. Last but not the least, we dis-

cuss the quality considerations in Section 4.5.

4.1. Implementation Details

In this paper, we implement and train all the networks by

TensorFlow. We crop each training image in REDS dataset

[45] into 15 patches, with 256 × 256 resolution for each

patch. A total of 360,000 pairs of training patches are pre-

pared from 240 training sequences (100 frames for each).

We follow the NTIRE 2020 image deblurring challenge on

smartphone for frame selection (1 out of every 10 frames)

[46]. As a result, a total of 300 frames in validation set are

used to calculate PSNR for quality assessment.

All networks are trained for 1M steps on a single RTX-

2080 Ti GPU with batch size 16, L1 loss, Adam optimizer

[36] and exponential decay for learning rate. We set initial

learning rate as 2× 10
−4, decay rate as 0.98, and 5K decay

steps for exponential decay. All convolutional operations

are initialized with Xavier initialization [23].

To measure the latency on mobile devices, we use

TFLite Benchmark Tool [17] with arguments use nnapi =

true, allow fp16 = true3, num runs = 10, and

3To inference floating-point networks with 16-bit floating-point data

num threads = 4. We also use taskset4 command to re-

duce the variation of CPU time between different runs.

4.2. Network Architectures for Quality

To search across different network architectures, we

compare some widely used networks in image enhance-

ment domain, including U-Net [50], Inception-ResNetV2-

FPN [37], EDSR [41], RDN [57], DBPN [28], and SGN

[26]. For fair comparison, a network’s operations and chan-

nels are slightly adjusted to match a baseline computa-

tional complexity, roughly 250×10
9 MAC. We remove up-

sampling in EDSR and RDN, since these operations were

designed for super resolution. Likewise, in DBPN, we re-

move the first up-projection unit to keep the same resolution

for input and output tensors. We exclude deformable convo-

lution and self-attention based networks [47] since no mo-

bile device supports these types of operations. Knowing that

this paper focuses on deploying the architectures on mobile

devices, any training methodology can also be applied to

the architectures of interest, e.g., GAN-based training. The

detail training settings are summarized in Section 4.1.

Table 2 summarizes PSNR and MAC of the candidates

of network architectures. We also list the measured latency

of these networks on all the three target mobile devices. Ac-

cording to the quality index in Table 2, U-Net outperforms

all the counterparts by its highest PSNR. However, an inter-

esting finding is that, an unsupported operation by accelera-

tor5, e.g., TRANSPOSE CONV 2D, will cause a fallback to

NNAPI CPU-reference-implementation. This prevents the

execution from being accelerated and results in unreason-

able high latency as shown in Table 2.

type
4We use ”taskset f0” to specify using 4 big cores of CPU
5We use ”adb shell setprop debug.nn.vlog 1” to open debug option

and use ”adb shell logcat — grep -e findBestDeviceForEachOperation”

to check whether an operation is executed on CPU or accelerator



Table 3. Quality, complexity, and latency of different up-sampling and activation operations for U-Net.

Network
PSNR / SSIM

(floating-point)

MAC

(×10
9)

Latency (ms)

Huawei Mate30 Pro OPPO Reno3 5G Google Pixel 4

UNet-TransposeConv-Relu† 31.67 / 0.899
238

542061 1946 318702

UNet-TransposeConv-PRelu 31.83 / 0.903 784021 1947 323902

UNet-DepthToSpace-Relu 31.51 / 0.895
222

805 1326 26973

UNet-DepthToSpace-PRelu 31.78 / 0.900 908 1338 30603

UNet-ResizeBilinear-Relu 31.65 / 0.898
256

1184 1532 84254

UNet-ResizeBilinear-PRelu 31.87 / 0.903 1281 1503 97704

† UNet-TransposeConv-Relu is the same as U-Net [50]* in Table 2
1 TRANSPOSE CONV 2D operations fall back to CPU.
2 TRANSPOSE CONV 2D, CONCATENATION and CONV 2D operations after CONCATENATION fall back to CPU.
3 DEPTH TO SPACE operations fall back to CPU.
4 CONCATENATION and CONV 2D after CONCATENATION operations fall back to CPU.

4.3. Portable Operations for Latency

As discussed in Section 4.2, an unsupported operation

across devices can result in unreasonable high latency.

The major functionality of TRANSPOSE CONV 2D oper-

ation is for up-sampling. Hence, in order to deploy the

network across all the three mobile devices, an alterna-

tive solution is to replace such operations by other opera-

tions (with similar functionality). In this paper, we replace

TRANSPOSE CONV 2D by DEPTH TO SPACE6 and RE-

SIZE BILINEAR. The replacement is also evaluated on both

RELU and PRELU activations to show its effectiveness.

As shown in Table 3, such replacement avoids most of

the cases in which a fallback to NNAPI CPU-reference-

implementation happens. Thus, a network with better trade-

off between quality and latency can be conducted in this

way. One is free to choose any of the networks according to

the quality or latency. In this paper, UNet-ResizeBilinear-

PRelu is selected for the following experiments.

4.4. Network Optimization

According to the discussion in Section 4.3, this paper

selects UNet-ResizeBilinear-PRelu and applies network op-

timizations to further boost its performance. Experiment

results of network optimization are summarized in Table 4.

4.4.1 Quantization.

For 8-bit quantization, post-training quantization suffers a

destructive 2 dB PSNR drop. Even with quantization-aware

training, there exists at least noticeable 0.8 dB PSNR drop.

In contrast, 16-bit post-training quantization, is capable to

preserve almost the same quality as floating-point network.

In our experiments, most devices have latency improve-

ment with quantized networks except for Huawei Mate30

Pro. This is due to the lack of support for quantized RE-

SIZE BILINEAR operation in its accelerator. We suggest

6DEPTH TO SPACE is also known as pixel shuffle in some papers or

frameworks

future works to consider quantization configuration during

the stage of architecture search. Note that NNAPI does not

support 16-bit fixed-point inference. Hence, the evaluation

requires proprietary SDK provided by platform providers.

Qualcomm’s SNPE [13] supports 16-bit fixed-point infer-

ence with HTA hardware. However, the corresponding soft-

ware (HTA runtime library) is not available in Google Pixel

4. For Huawei’s HiAI SDK [8], we cannot find appropriate

information for its support of 16-bit fixed-point inference.

Therefore, we only report the results of 16-bit fixed-point

inference for MediaTek’s NeuroPilot SDK [11] in Table 4.

4.4.2 Pruning.

We apply five different settings of MAC reduction targets.

Most devices have latency improvement except Huawei

Mate30 Pro. Surprisingly, we observe over 60% latency

improvement with roughly 0.5 db PSNR drop on Google

Pixel 4 (in 30% MAC reduction setting). Hence, as a future

direction, such hardware limitations and preferences should

also be considered when searching network architectures.

Last, we combine both network pruning and quantization

for further optimization. Based on the network pruned with

5% MAC reduction, we quantize the network with 8-bit

quantization-aware training and 16-bit post-training quan-

tization. As shown in Table 4, the latency could be further

reduced when compared with quantization only.

4.5. Ablation Study of Quality

In this section, we show the impact of different network

optimization by examining visual results. The quantitative

results are also illustrated to uncover the computation errors

across different hardware implementations.

4.5.1 Visual Quality on Optimized Networks

Figure 3 shows visual results of quantization and pruning.

16-bit post-training quantization (PTQ) perfectly preserve



Table 4. Quality, complexity, and latency of different optimization techniques.

Network
Optimization

Type
Setting PSNR / SSIM

MAC

(×10
9)

Latency (ms)

Huawei

Mate30 Pro

OPPO

Reno3 5G

Google

Pixel 4†

UNet-

ResizeBilinear-

PRelu

None Float 31.87 / 0.903 256 1281 1503 97701

Quantization

(fixed-point)

8-bit PTQ 29.66 / 0.835

256

312202 504 21753

8-bit QAT 31.03 / 0.873 334902 488 21283

16-bit PTQ‡ 31.87 / 0.903 – 8254 –

Pruning

(floating-point)

-5% MAC 31.85 / 0.903 243 1693 1469 84191

-10% MAC 31.79 / 0.902 230 1854 1416 81891

-20% MAC 31.54 / 0.896 202 1853 1322 73131

-30% MAC 31.35 / 0.893 179 1690 1225 37561

-50% MAC 29.81 / 0.854 127 1477 1068 934

Pruning +

Quantization

(fixed-point)

-5% MAC +

8-bit QAT
31.02 / 0.872 243 285212 482 20983

-5% MAC +

16-bit PTQ
31.85 / 0.903 243 – 7984 –

PTQ, abbreviation of Post-Training Quantization; QAT, abbreviation of Quantization-Aware Training.
† In Google Pixel 4, all operations of quantized networks are executed on qti-default runtime unless fallbacks on CPU are specified.
‡ For 16-bit fixed-point inference on mobile devices, please refer to Section 4.4 for more details.
1 CONCATENATION and CONV 2D after CONCATENATION operations fall back to CPU.
2 PRELU and RESIZE BILINEAR operations fall back to CPU.
3 CONCATENATION operations fall back to CPU.
4 Latency evaluated with MediaTek NeuroPilot SDK [11].

(a) Input Patch (b) Floating-point (c) 8-bit PTQ (d) 8-bit QAT (e) 16-bit PTQ

(f) -5% MAC (g) -10% MAC (h) -30% MAC (i) -50% MAC (j) Ground Truth Patch
Figure 3. Visual results of UNet-ResizeBilinear-PRelu with network quantization and pruning. (c)(d)(e) represent different quantiza-

tion settings as in Table 4. (e)(f)(g)(h) show the results of pruning given different MAC reduction targets. The patch is cropped from

000/00000039.png in REDS validation set

the visual quality of floating-point network. However, 8-

bit post-training quantization (PTQ) and quantization-aware

training (QAT) show different levels of quantization errors.

For pruning results, the visual quality degrades with the in-

creasing of MAC reduction. When pruning the network by

50% MAC, a noticeable blurry result appears.

4.5.2 Quality Index on Mobile Devices

Table 5 shows the PSNR and per-pixel L2 error. Such cal-

culations are between the results of TensorFlow (checkpoint

format) on desktops and the results of TFLite on mobile de-

vices. In floating-point data type, 32-bit data are used in



Table 5. Error measurement on mobile devices with various data types. Evaluated on UNet-ResizeBilinear-Relu network†

.

Data Type PSNR

Comparison between results on mobile devices (TFLite) and results on Desktop (TensorFlow)

Huawei Mate30 Pro OPPO Reno3 5G Google Pixel 4

PSNR L2 Error PSNR L2 Error PSNR L2 Error

Float1 31.65 50.82 ± 0.29 1.95×10
−7 50.85 ± 0.19 1.94×10

−7 50.59 ± 0.73 2.09×10
−7

16-bit 31.65 – – 65.37 ± 0.89 6.99×10
−9 – –

8-bit 31.36 43.07 ± 1.52 1.25×10
−6 43.33 ± 1.39 1.16×10

−6 41.95 ± 1.24 1.57×10
−6

Standard deviation of PSNR is calculated with 300 validation images.
† Abnormal PSNR drops (for Floating-point setting) happen to UNet-ResizeBilinear-PRelu network on Google Pixel 4. Since the root cause is not confirmed, this table

reports the results of UNet-ResizeBilinear-Relu network for a fair comparison.
1 Floating-point data type used for mobile and desktop are 16-bit and 32-bit, respectively

0

8

16

24

32

0 1 2 3 4 5 6 7N
o
rm

a
liz

e
d
 L

a
te

n
c
y

Normalized Ratio of Total Pixels

Latency vs. Image Size on Mobile Devices

Huawei Mate30 Pro

OPPO Reno3 5G

Google Pixel 4

640x360 960x540

1280x720

1600x900

Figure 4. Latency with various input resolution. All the laten-

cies are normalized to Huawei Mate30 Pro with 360p resolution.

Note that only OPPO Reno3 5G successfully run with 1600×900

(HD+) input resolution. All devices fail to run with 1920×1080

(Full HD resolution.

TensorFlow inference while mobile devices use 16-bit data

for acceleration. PSNR and L2 error between 32-bit and

16-bit floating-point are about 50 dB and 1.94×10
−7, re-

spectively. For quantized data type, TensorFlow uses fake

quantitzation operations [35] to simulate the behavior of

quantization. However, the inference is still computed by

using floating-point arithmetic, which is different from the

fixed-point ones used by TFLite. As shown in the table,

the error of 8-bit data type is much larger than 16-bit and

floating-point data type. This provides an in-depth qual-

ity assessment for deploying quantized networks on mobile

devices. In general, the lower error between mobile devices

and desktops, the closer result between algorithm develop-

ment and its deployment on devices.

4.6. Discussions

Considering the differences of software and hardware

between all the three platforms, several non-trial deploy-

ment issues are reported in the previous sections. This sec-

tion summarizes all the findings and discussions.

• First of all, as listed in Table 2, the latency are

highly inconsistent when deploying the out-of-the-

box network architectures across platforms. Some of

platforms (Huawei Mate30 Pro and Google Pixel 4)

present unreasonably high latency. Fortunately, as in

Table 3, such pitfall can be partially mitigated by lever-

aging operations with better portability.

• Second, the network optimization techniques (both

quantization and pruning) do not consistently reduce

the latency across platforms. As listed in Table 4,

network optimizations cause even higher latency in

Huawei Mate30 Pro. Meanwhile, the latency of pruned

networks do not scale linearly w.r.t. MAC reduction in

Google Pixel 4.

• Last but not the least, as shown in Figure 4, the la-

tency does not scale linearly with input resolution. In

Google Pixel 4, there is a huge latency increment when

the input resolution scales to 1280× 720.

In summary, these non-trivial performance pitfalls make

mobile deployment an even challenging work. This urges

deployment-guidelines to conduct 1) portable network ar-

chitectures, 2) network optimization and 3) trade between

quality and latency across mobile devices.

5. Conclusion and Future Work

In summary, this paper conducts a search of portable net-

work architectures for better quality-latency trade-off across

mobile devices. Besides, we also present the effective-

ness of quantization and pruning for image deblurring task.

The searched portable networks are evaluated with a set of

comprehensive experiments and comparisons. Our exper-

iments and comparisons provide an in-depth analysis for

both latency and image quality. In conclusion, we demon-

strate a success deployment of image deblurring on three

mobile devices. We also suggest two promising directions

for future works (1) searching portable network architecture

while considering more device related factors, e.g., quanti-

zation, pruning and/or hardware limitation/preference, and

(2) systematic searching methodology for portable network

architecture, e.g., Network Architecture Search (NAS) for

device portability.



References

[1] AI Benchmark Performance Ranking. http:

//ai-benchmark.com/ranking.html. 4, 5

[2] AImark of Ludashi. http://www.ludashi.com/

page/aimark.php. 1, 2

[3] Android Neural Networkk API (NNAPI). https:

//developer.android.com/ndk/guides/

neuralnetworks. 2, 3, 4

[4] Antutu AI Benchmark,. 1, 2

[5] Apple A13 Bionic Chipset. https://en.wikichip.

org/wiki/apple/ax/a13. 1

[6] Comparison of Huawei Mate30 Pro 5G, OPPO Reno3

and Google Pixel 4. https://www.gsmarena.com/

compare.php3?&idPhone1=9880&idPhone2=

9942&idPhone3=9896. 5

[7] Comparison of Razer Phone and Huawei P20.

https://www.gsmarena.com/compare.php3?

idPhone1=8923&idPhone2=9107. 2

[8] Huawei HiAI SDK. https://developer.huawei.

com/consumer/en/hiai. 6

[9] Huawei Kirin 990 5G Chipset. https://en.

wikichip.org/wiki/Kirin_990. 1, 4

[10] MediaTek Dimensity 1000L 5G Chipset. https:

//en.wikichip.org/wiki/mediatek/

dimensity/1000l#Neural_processor. 1, 4

[11] MediaTek NeuroPilot SDK. https://neuropilot.

mediatek.com/. 6, 7

[12] Qualcomm Snapdragon 855 Chipset. https://en.

wikichip.org/wiki/qualcomm/snapdragon_

800/855. 1, 4

[13] Qualcomm Snapdragon Neural Processing Engine SDK.

https://developer.qualcomm.com/docs/

snpe/overview.html. 6

[14] Quantize DeepLab Model for Faster on-device Inference.

https://github.com/tensorflow/models/

blob/master/research/deeplab/g3doc/

quantize.md. 2

[15] Samsung Exynos 990 Mobile Processor. https://en.

wikichip.org/wiki/samsung/exynos/990. 1

[16] Tensorflow Detection Model Zoo. https:

//github.com/tensorflow/models/blob/

master/research/object_detection/g3doc/

detection_model_zoo.md. 2

[17] TFLite Model Benchmark Tool. https://github.

com/tensorflow/tensorflow/tree/master/

tensorflow/lite/tools/benchmark. 4, 5

[18] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

accurate, and lightweight super-resolution with cascading

residual network. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 252–268, 2018. 1,

2

[19] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.

Learning to see in the dark. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3291–3300, 2018. 1, 2

[20] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Learn-

ing low precision deep neural networks through regulariza-

tion. arXiv preprint arXiv:1809.00095, 2018. 2

[21] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, Jixiang

Li, and Qingyuan Li. Fast, accurate and lightweight super-

resolution with neural architecture search. arXiv preprint

arXiv:1901.07261, 2019. 1, 2

[22] Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dy-

namic scene deblurring with parameter selective sharing and

nested skip connections. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3848–3856, 2019. 2

[23] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on artifi-

cial intelligence and statistics, pages 249–256, 2010. 5

[24] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,

Tien-Ju Yang, and Edward Choi. Morphnet: Fast & sim-

ple resource-constrained structure learning of deep networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1586–1595, 2018. 2

[25] Shuhang Gu, Wen Li, Luc Van Gool, and Radu Timofte. Fast

image restoration with multi-bin trainable linear units. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 4190–4199, 2019. 1, 2

[26] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.

Self-guided network for fast image denoising. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 2511–2520, 2019. 2, 5

[27] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 1, 2

[28] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1664–1673, 2018. 2, 5

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2

[30] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1, 2

[31] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and ac-

curate single image super-resolution via information distilla-

tion network. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 723–731, 2018.

1, 2

[32] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo

Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and Luc

Van Gool. Ai benchmark: All about deep learning on smart-

phones in 2019. arXiv preprint arXiv:1910.06663, 2019. 1,

2, 4

[33] Andrey Ignatov, Radu Timofte, Thang Van Vu, Tung

Minh Luu, Trung X Pham, Cao Van Nguyen, Yongwoo Kim,



Jae-Seok Choi, Munchurl Kim, Jie Huang, et al. Pirm chal-

lenge on perceptual image enhancement on smartphones:

Report. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 0–0, 2018. 1, 2

[34] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replac-

ing Mobile Camera ISP with a Single Deep Learning Model.

arXiv e-prints, page arXiv:2002.05509, Feb 2020. 1

[35] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2704–2713, 2018. 1, 2, 8

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[37] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang

Wang. Deblurgan-v2: Deblurring (orders-of-magnitude)

faster and better. In Proceedings of the IEEE International

Conference on Computer Vision, pages 8878–8887, 2019. 1,

2, 5

[38] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690,

2017. 1

[39] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli

Laine, Tero Karras, Miika Aittala, and Timo Aila.

Noise2noise: Learning image restoration without clean data.

arXiv preprint arXiv:1803.04189, 2018. 2

[40] Jiashi Li, Qi Qi, Jingyu Wang, Ce Ge, Yujian Li, Zhangzhang

Yue, and Haifeng Sun. Oicsr: Out-in-channel sparsity reg-

ularization for compact deep neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7046–7055, 2019. 2

[41] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition workshops,

pages 136–144, 2017. 2, 5

[42] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017. 2

[43] Jiaming Liu, Chi-Hao Wu, Yuzhi Wang, Qin Xu, Yuqian

Zhou, Haibin Huang, Chuan Wang, Shaofan Cai, Yifan Ding,

Haoqiang Fan, et al. Learning raw image denoising with

bayer pattern unification and bayer preserving augmentation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, pages 0–0, 2019. 2

[44] Yinglan Ma, Hongyu Xiong, Zhe Hu, and Lizhuang Ma. Ef-

ficient super resolution using binarized neural network. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, pages 0–0, 2019. 2

[45] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik

Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu

Lee. Ntire 2019 challenges on video deblurring and super-

resolution: Dataset and study. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) Work-

shops, June 2019. 3, 5

[46] Seungjun Nah, Sanghyun Son, Radu Timofte, and Ky-

oung Mu Lee. Ntire 2020 challenge on image and video

deblurring. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, June 2020. 1,

2, 3, 5

[47] Kuldeep Purohit and A. N. Rajagopalan. Region-Adaptive

Dense Network for Efficient Motion Deblurring. arXiv e-

prints, page arXiv:1903.11394, Mar. 2019. 2, 5

[48] Kuldeep Purohit, Anshul Shah, and AN Rajagopalan. Bring-

ing alive blurred moments. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6830–6839, 2019. 2

[49] Vijay Janapa Reddi, Christine Cheng, David Kanter, Pe-

ter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian

Anderson, Maximilien Breughe, Mark Charlebois, William

Chou, et al. Mlperf inference benchmark. arXiv preprint

arXiv:1911.02549, 2019. 1, 2

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 2, 3, 5, 6

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2818–2826, 2016. 2

[52] Jun Tan, Kang Yang, Shiwei Song, Tianzhang Xing, and

Dingyi Fang. Mobile-deblur: A clear image will on the smart

device. In 2017 3rd International Conference on Big Data

Computing and Communications (BIGCOM), pages 97–105.

IEEE, 2017. 1

[53] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8174–8182, 2018. 2

[54] Wei-Ting Wang, Han-Lin Li, Wei-Shiang Lin, Cheng-Ming

Chiang, and Yi-Min Tsai. Architecture-aware network prun-

ing for vision quality applications. In 2019 IEEE Interna-

tional Conference on Image Processing (ICIP), pages 2701–

2705. IEEE, 2019. 2, 4

[55] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing

energy-efficient convolutional neural networks using energy-

aware pruning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5687–

5695, 2017. 2

[56] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping

Wang. Gate decorator: Global filter pruning method for

accelerating deep convolutional neural networks. In Ad-

vances in Neural Information Processing Systems, pages

2130–2141, 2019. 2



[57] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2472–2481, 2018. 1, 2, 5


