
Deploying Non-Functional Aspects by Contract 

Romulo Cerqueira, Sidney Ansaloni, Orlando Loques 
IC/UFF 

Niterói, RJ, Brazil 
{curty, ansaloni, loques}@ic.uff.br 

Alexandre Sztajnberg 
DICC/IME/UERJ 

Rio de Janeiro, RJ, Brazil  
alexszt@ime.uerj.br 

 

Abstract 

This paper presents an approach to describe, deploy and manage component-based applications having dynamic 
functional and non-functional requirements, which include different types of QoS. The approach is centered on an 
ADL that allows functional and non-functional requirements to be described by high-level textual contracts. The 
meta information extracted from the software architecture description is used to guide configuration adaptations 
required to enforce the ruling contract. The infrastructure required to automatically manage these contracts follows a 
standard architectural pattern, which can be directly mapped to specific components included in a supporting 
middleware. This allows designers to write a contract and to follow a standard recipe to insert the extra code required 
to its enforcement in the supporting middleware. Also, the component configuration capabili ty provided by the 
middleware helps to put in practice adaptations defined by a contract. Examples demonstrate how the approach and 
the associated middleware can be used to configure and to support applications with adaptive QoS requirements. 

1.   Introduction 

We present an approach to describe, deploy and manage 
applications with service guaranties based on the 
contract concept. This approach defines the relationship 
between contracts, differentiated quality of services 
(QoS), and the resource management entities. In our 
proposal, differentiated quali ty of services is described 
by a special language associated to an Architectural 
Description Language. These descriptions are reflected 
in the R-RIO framework in two ways: (a) the 
mechanisms required to automatically manage these 
contracts follow a standard architectural pattern, which 
can be directly mapped to specific components included 
in the supporting middleware; (b) R-RIO connectors 
can encapsulate a set of different non-functional 
aspects, and these connectors can be reconfigured at 
run-time to provide adaptation capabil ities.  

In the next section we present R-RIO basic 
concepts. In the sequence we discuss how R-RIO 
handles the configuration of non-functional aspects in 
the architectural level using contracts. Then, we 
illustrate the use of the R-RIO framework with a 
comprehensive dynamically-adaptable application 
example. Finally, we present some related works and 
our concluding remarks. 

2.   R-RIO Framework 

The Reflective-Reconfigurable Interconnectable 
Objects (R-RIO) framework integrates some key 
concepts of Software Architecture / Configuration 
Programming (SA/CP) and Meta-Level Programming 

(M-LP) approaches [1]. This integration helps to 
achieve separation of concerns, software reuse and the 
capabili ty of supporting dynamic configuration. R-RIO 
framework includes the following elements: 

a) A component model based on the concepts of 
SA/CP: (i) modules, application components that 
basically encapsulate functional concerns; (ii) 
connectors, used at the architecture level to define 
module’s interaction relationships. At the operating 
level, connectors represent, mediate and handle module 
interaction-domain concerns; (ii i) ports, identify access 
points, through which modules and connectors provide 
or require services, and are also used to explicitly bind 
modules and connectors.  

b) A software development methodology that 
stimulates the designer to comply with a simple meta-
level programming discipline, where functional 
concerns are concentrated in the modules (base level) 
and non-functional concerns are encapsulated in 
connectors (meta-level).  

c) CBabel, an ADL used to describe: (i) application's 
functional components and interaction topology, (ii) 
contracts specifying non-functional aspects, and (ii i) 
planned reconfigurations. An architecture described 
with CBabel can be verified and compiled, resulting in 
a meta-level architecture description repository used to 
run and manage the architecture. 

d) The Configurator, a reflective middleware [2] that 
provides distributed configuration management and 
executive services, used to make and control running 
images from an architecture description.  



3.   Non-functional aspects 

In various application domains we have identified 
recurring non-functional aspects that should be 
considered since the design-time: (a) Interaction, to 
configure the characteristics of module interaction; (b) 
Distribution, to configure module location, distribution 
and communication; (c) Coordination, to handle 
module concurrency and synchronization; and (d) QoS, 
quality of service, regarding operational requirements, 
such as fault tolerance, security or communication 
parameters.  

To specify non-functional aspects we use the 
architectural contract concept. In our approach, an 
architectural contract is a description where two parts 
express their requirements regarding the application's 
aspects, and rules for adaptation and negotiation in the 
presence of context changes.  

In our proposal, a functional service is considered 
a specialized activity, constrained by restrictions that 
usually do not permit negotiation, defined through the 
specification of the application's architectural 
components and their interconnection topology. Non-
functional services are defined by restrictions to 
application non-specific activities that can admit some 
negotiation on resource utilization. A non-functional 
contract can describe the use of shared resources an 
application is going to make and acceptable variations 
on the availability of those resources at design-time. A 
contract will be enforced at operation-time by a set of 
infrastructure components that implement the contract 
semantics.  

In the next section we use QoS domain examples to 
illustrate our approach to treat non-functional aspects. 

4.   Examples 

We borrowed a subset of the QML QoS language [3] 
and adapted its syntax and terminology to the software 
architecture description scope [1]. QoS categories 
associated to different non-functional aspects are 
described separately from the components. For instance, 
if transport performance is critical to an application, a 
Transport QoS category could be described, as shown 
in figure 1.  

1  QoScategory  Transport {  
2   protocol: enum {UDP, TCP, RTP} ; 
3   technology: enum {802.11LAN, CDLS, GSM}; 
4   slidingWindowSize: increasing numeric ; 
5   send_buf-size: increasing numeric ; 
6   recv_buf_size: increasing numeric ; 
7   MSS: increasing numeric ; 
8  } 

Figure 1.   Transport QoS category 

In a Virtual Terminal application a possible QoS 
category, defining some of the emulation and security 
required properties, could be described as in figure 2. 

1  QoS category Terminal {  
2   port: enum {ssh , telnet}; 
3   cipherType: enum {idea, arcfour}; 
4   auth: enum {RSA, password, both}; 
5   connectionAttempts: increasing numeric;  
6   X11forward: enum {yes, no}; 
7  } 

Figure 2.   Terminal QoS category 

Figure 3, describes an architecture, that uses a 
virtual terminal facility, composed by a client and a 
server module (vtServer – lines 2-4, vtClient – lines 5-
7), and its intended topology (lines 8-9). 

1   module VirtualTerminal { 
2      module { 
3         in port (char) Recv; 
4      } vtServer; 
5      module { 
6         out port (char) Send; 
7      } vtClient; 
8      instantiate vtClient at clientNode; 
9      link vtClient to vtServer; 
10  } vt; 
11  start vt; 

Figure 3.   Virtual terminal functional composition 

4.1   Contract with static adaptation 

Considering the session establishment aspect, the 
designer has to select operating parameters related to 
communication and security. In our example, the first 
option is to connect to the server using SSH over TCP, 
and idea cryptography with password authentication. If 
this is not possible (eg. the server cannot work with this 
configuration), a TELNET connection over TCP can be 
accepted. However, in this case, more authentication 
options and a receive buffer size of at least 64 bytes are 
prescribed. 

The CBabel associated contract (figure 4) 
describing these non-functional requirements specifies 
two services: one for the secure case (lines 2-5) and the 
other for the unsecured one (lines 6-9). Each of these 
intended services is fully defined by an associated 
profile that describes the set of required properties, each 
one associated with a given QoS category; i.e., the 
profile describes what should be provided by the 
supporting infrastructure. In the example, the secTerm 
profile (lines 15-20) describes the first operational 
choice and the unsecTerm profile (lines 21-26) the 
second option. Note that both of them require the TCP 
protocol. The preferred order for the use of the services 
is defined in the negotiation clause (lines 11-14). If 
none of them can be imposed after negotiation the client 



is unable to open the session. In order to enforce the 
contract the middleware selects one or more connectors 
to support the best available service and accordingly 
configures the architecture. The middleware could 
configure either a secure or unsecure connector. After 
the session is established no other adaptation wil l occur.  

1   contract { 
2     service { 
3       link vtClient.Send to vtServer.Recv 
4                     with profile secTerm; 
5     } secure; 
6     service { 
7       link vtClient.Send to vtServer.Recv 
8                     with profile unsecTerm; 
9     } unsecure; 
10    negotiation { 
11      secure   -> unsecure; 
12      unsecure -> out_of_service; 
13    } 
14  } vt; 
15  profile { 
16     Transport.protocol: TCP; 
17     Terminal.port: ssh; 
18     Terminal.cipherType: idea; 
19     Terminal.auth: password; 
20  } secTerm; 
21  profile { 
22     Transport.protocol: TCP; 
23     Transport.recv_buf_size: > 64; 
24     Terminal.port: telnet; 
25     Terminal.auth: both; 
26  } unsecTerm; 

Figure 4.   Virtual terminal  QoS contract 

4.2 Contract with dynamic adaptation 

In a different use-case scenario, a sales-person has to 
visit potential consumers and be permanently connected 
to the main off ice database through a virtual terminal. 
She uses a mobile device that can run a virtual terminal 
client and provides communication with three possible 
operating modes: 

• in the range of a cordless station base, it can 
operate over a regular wired telephone line; 

• on the move, it can detect a cellular antenna and 
reconfigure to use a cellular connection; 

• when immerse in a wireless network, it can use the 
available communication protocols. 

For each operating mode there is an appropriate 
communication interface and a sensor that detects if the 
associated channel is available or not. While in 
operation the supporting middleware tries to establish a 
link using the best available channel. Figure 5 presents 
the application’s overall architecture. The dashed lines 
represent the links that can be dynamically established, 
guided by the negotiation policy and depending on 
resource availabil ity.  
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Figure 5.   Mobile device basic architecture 

The contract for this use-case (figure 6) defines 
three different services, each one associated to a 
different operating mode supported by the device. The 
support for each service is encapsulated in a connector. 
The negotiation clause (lines 14-18) defines that the 
best service is the wireless transport service. If this 
service is not available, a fixTel service should be 
tried and so on. Transitions between services depend on 
their availability. Either when the currently used link 
fails, or a preferable service becomes available, a 
service adaptation can take place. Other adaptation 
policies could be used, e.g., based on a reduced-cost or 
bandwidth criterion.  

1  contract { 
2    service { 
3       link vtClient.Send to vtServer.Recv 
4       with Transport.technology: 802.11LAN; 
5    } wireless; 
6    service { 
7       link vtClient.Send to vtServer.Recv 
8       with Transport.technology: CDLS; 
9    } fixTel; 
10   service { 
11      link vtClient.Send to vtServer.Recv 
12      with Transport.technology: GSM; 
13   } celTel; 
14   negotiation { 
15       wireless -> fixTel; 
16       fixTel   -> celTel; 
17       celTel   -> out_of_service; 
18   }; 
19 } vt; 

Figure 6.   Mobile device QoS contract 

4.3   Composing Contracts 

Contracts regarding different non-functional aspects (in 
the same or in different applications) can be orthogonal 
and cause no interference with each other. In this case, 
composing those contracts is immediate. In the general 
case, the composition process can lead to conflicts on 
the use of shared resources. In our proposal, the 
composition of contracts can be specified combining in 
a unique clause the negotiation clauses of the involved 
contracts. Conflicts could be handled assigning 
priorities to each of the composed contracts. 

Regarding our example combining the two 
contracts is trivial. Services and profiles would be part 



of the same contract and the unified negotiation clause 
would be described as in figure 7. We can note that both 
contracts are orthogonal, given that it is not necessary to 
combine states of the two sets of services in the same 
negotiation chain.  

1   negotiation { 
2      secure   -> unsecure; 
3      unsecure -> out_of_service; 
 

4      wireless -> fixTel; 
5      fixTel   -> celTel; 
6      celTel   -> out_of_service; 
7   } 

Figure 7.   Combining contracts 

4.4   Support 

CBabel described architectures, functional composition 
and non-functional contracts, are stored as meta-level 
information (figure 8). With this information a set of 
middleware components, arranged in a well -defined 
architectural pattern [4], will i nteract with the 
Configurator (section 2) to instantiate and bind 
application components, and enforce the contracts: 

Contract Manager interprets contract descriptions to 
extract the service negotiation state machine. When a 
negotiation is initiated, the Contract Manager identifies 
which service wil l be negotiated and sends the related 
configuration descriptions and the associated profiles to 
the Interactor. If every service inside a negotiation 
clause has been unsuccessfully tried, an out-of-service 
state is reached, and a contract violation message is 
returned to the user. As seen in the example, the 
contract manager can also start a negotiation when a 
preferable service becomes available.  

The Interactor has some responsibilities: (a) translate 
service profiles properties into system-level support 
services and request those services with adequate 
parameters to the QoS Agent in order to instantiate / 

start modules with required QoS, (b) map the service 
link interaction information into a connector able to 
provide the required interaction QoS, (c) call the 
Configurator to actually perform architectural 
procedures (instantiate, link, start) on modules and 
connectors with the configured resource context, and 
(d) receive out-of-range notifications from the QoS 
Agent. When this occurs, based on its internal 
programming the Interactor can try to readapt the 
resource allocation, at resource-level (for instance 
changing resource parameters, if possible), or send an 
out-of-service notification the Contract Manager to 
initiate another architecture-level negotiation action.  

QoS Agents encapsulate the access to system level 
mechanisms. Their main responsibilities are to make the 
actual resource allocations, initiate local system services 
and to monitor required property values. According to 
the monitoring thresholds registered by the Interactor, 
the Agent can send back an out-of-range property 
notification. 

Regarding our examples, the QoS Agent is 
responsible for verifying the availabili ty of the virtual 
terminal properties (telnet or ssh ports, authentication, 
etc.) before establishing a terminal session. The QoS 
Agent also encapsulates the sensors functions, 
monitoring the transport channel operation. The 
Interactor is programmed to instantiate a combination of 
connectors with suitable parameters and to ask the QoS 
Agent to start some resource reservation procedures to 
maintain transport and security options for each service. 
Also, it registers with the QoS Agent the interest for 
new channel-available events. When a negotiation 
occurs (say, change from wireless to fixTel) the 
Contract Manager sends another service request to the 
Interactor that, by its turn, selects a connector 
encapsulating the required transport technology 
mechanism, and invokes the Configurator to 
dynamically change the architecture’s composition. 

InteractorContract
Manager

Contract

service 

actualValue outOfRange

 outOfService

QoSAgent

instantiate/
link / start

Configurator

termClient termServer

GSM

802.11

CDLS

 

Figure 8.   QoS supporting component infrastructure



5.   Related work 

QML [3], which was the main inspiration of our 
contract description language, is applied in the class-
object context, and is not directly applicable to the 
implementation level. Quartz [5] provides an API to 
describe QoS requirements, through a set of parameters 
that are used to select components of the supporting 
middleware. The approach seems to be restricted to 
multimedia QoS requirements and relies on services 
particular to CORBA infrastructures. Our approach has 
similarities with the proposals presented in [6] and [7], 
which are in fact interrelated. Most of the elements of 
the pattern language describe in [6] have a counterpart 
in our proposal. For example, their Quality Connector 
performs functions similar to those provided by our 
Interactor and QoS Agent combined. [7] proposes a 
contract pattern that could be used to provide part of the 
support for dynamic adaptations required in our 
middleware. Our proposal provides an integrated 
framework to deploy QoS and other non-functional 
aspects, starting to handle these concerns from the 
architectural description. In addition, using our 
configuration programming environment, and the 
embedded architectural meta-level information, we can 
handle adaptations through component (re) 
configurations in a natural fashion.  

6.   Conclusion 

We presented a unified approach to specify, deploy and 
manage applications having non-functional 
requirements. The approach allows non-functional 
aspects of an application, such as QoS requirements, to 
be specified using high-level contracts expressed in an 
extended ADL. Being centered on an ADL-based 
configuration middleware the framework inherits all i ts 
well -known benefits, among them the capabil ity of 
reconfiguration, which helps to execute dynamic 
architectural adaptations in behalf of a contract.  

Part of the codification related to a non-functional 
aspect can be encapsulated in connectors, that can be 
(re)configured at run-time in order to cater for the 
impositions defined by the associated contract. Also, the 
infrastructure required to enforce the contracts follows 
an architectural pattern that can be implemented by a 
standard set of components of the middleware. In this 
pattern, each component performs a well -defined role in 
the support of the contract. We have evaluated the 
approach through several case studies that showed that 
the code of these supporting components may change 
partly according to the specific contract. However, we 
should notice that the treatment of low-level details 
always has to be considered in any QoS aware 
application. We believe that our approach can help to 

identify the intervening points and make the required 
adaptations more rapidly. 

We have used the described approach to specify a 
reasonable number of contracts, defined at the 
architecture description level. These contracts have 
been mapped to implementations using the pattern 
described in this paper. Through this activity, we have 
identified some recurrent structures inside the 
components of the pattern. We think that on making 
these structures explicit, and available to designers, the 
task of mapping architecture-level defined contracts to 
implementations can be simpli fied. 
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