
Deploying Non-Functional Aspects by Contract

Romulo Cerqueira, Sidney Ansaloni, Orlando Loques
IC/UFF

Niterói, RJ, Brazil
{curty, ansaloni, loques}@ic.uff.br

Alexandre Sztajnberg
DICC/IME/UERJ

Rio de Janeiro, RJ, Brazil
alexszt@ime.uerj.br

Abstract

This paper presents an approach to describe, deploy and manage component-based applications having dynamic
functional and non-functional requirements, which include different types of QoS. The approach is centered on an
ADL that allows functional and non-functional requirements to be described by high-level textual contracts. The
meta information extracted from the software architecture description is used to guide configuration adaptations
required to enforce the ruling contract. The infrastructure required to automatically manage these contracts follows a
standard architectural pattern, which can be directly mapped to specific components included in a supporting
middleware. This allows designers to write a contract and to follow a standard recipe to insert the extra code required
to its enforcement in the supporting middleware. Also, the component configuration capabili ty provided by the
middleware helps to put in practice adaptations defined by a contract. Examples demonstrate how the approach and
the associated middleware can be used to configure and to support applications with adaptive QoS requirements.

1. Introduction

We present an approach to describe, deploy and manage
applications with service guaranties based on the
contract concept. This approach defines the relationship
between contracts, differentiated quality of services
(QoS), and the resource management entities. In our
proposal, differentiated quali ty of services is described
by a special language associated to an Architectural
Description Language. These descriptions are reflected
in the R-RIO framework in two ways: (a) the
mechanisms required to automatically manage these
contracts follow a standard architectural pattern, which
can be directly mapped to specific components included
in the supporting middleware; (b) R-RIO connectors
can encapsulate a set of different non-functional
aspects, and these connectors can be reconfigured at
run-time to provide adaptation capabil ities.

In the next section we present R-RIO basic
concepts. In the sequence we discuss how R-RIO
handles the configuration of non-functional aspects in
the architectural level using contracts. Then, we
illustrate the use of the R-RIO framework with a
comprehensive dynamically-adaptable application
example. Finally, we present some related works and
our concluding remarks.

2. R-RIO Framework

The Reflective-Reconfigurable Interconnectable
Objects (R-RIO) framework integrates some key
concepts of Software Architecture / Configuration
Programming (SA/CP) and Meta-Level Programming

(M-LP) approaches [1]. This integration helps to
achieve separation of concerns, software reuse and the
capabili ty of supporting dynamic configuration. R-RIO
framework includes the following elements:

a) A component model based on the concepts of
SA/CP: (i) modules, application components that
basically encapsulate functional concerns; (ii)
connectors, used at the architecture level to define
module’s interaction relationships. At the operating
level, connectors represent, mediate and handle module
interaction-domain concerns; (ii i) ports, identify access
points, through which modules and connectors provide
or require services, and are also used to explicitly bind
modules and connectors.

b) A software development methodology that
stimulates the designer to comply with a simple meta-
level programming discipline, where functional
concerns are concentrated in the modules (base level)
and non-functional concerns are encapsulated in
connectors (meta-level).

c) CBabel, an ADL used to describe: (i) application's
functional components and interaction topology, (ii)
contracts specifying non-functional aspects, and (ii i)
planned reconfigurations. An architecture described
with CBabel can be verified and compiled, resulting in
a meta-level architecture description repository used to
run and manage the architecture.

d) The Configurator, a reflective middleware [2] that
provides distributed configuration management and
executive services, used to make and control running
images from an architecture description.

3. Non-functional aspects

In various application domains we have identified
recurring non-functional aspects that should be
considered since the design-time: (a) Interaction, to
configure the characteristics of module interaction; (b)
Distribution, to configure module location, distribution
and communication; (c) Coordination, to handle
module concurrency and synchronization; and (d) QoS,
quality of service, regarding operational requirements,
such as fault tolerance, security or communication
parameters.

To specify non-functional aspects we use the
architectural contract concept. In our approach, an
architectural contract is a description where two parts
express their requirements regarding the application's
aspects, and rules for adaptation and negotiation in the
presence of context changes.

In our proposal, a functional service is considered
a specialized activity, constrained by restrictions that
usually do not permit negotiation, defined through the
specification of the application's architectural
components and their interconnection topology. Non-
functional services are defined by restrictions to
application non-specific activities that can admit some
negotiation on resource utilization. A non-functional
contract can describe the use of shared resources an
application is going to make and acceptable variations
on the availability of those resources at design-time. A
contract will be enforced at operation-time by a set of
infrastructure components that implement the contract
semantics.

In the next section we use QoS domain examples to
illustrate our approach to treat non-functional aspects.

4. Examples

We borrowed a subset of the QML QoS language [3]
and adapted its syntax and terminology to the software
architecture description scope [1]. QoS categories
associated to different non-functional aspects are
described separately from the components. For instance,
if transport performance is critical to an application, a
Transport QoS category could be described, as shown
in figure 1.

1 QoScategory Transport {
2 protocol: enum {UDP, TCP, RTP} ;
3 technology: enum {802.11LAN, CDLS, GSM};
4 slidingWindowSize: increasing numeric ;
5 send_buf-size: increasing numeric ;
6 recv_buf_size: increasing numeric ;
7 MSS: increasing numeric ;
8 }

Figure 1. Transport QoS category

In a Virtual Terminal application a possible QoS
category, defining some of the emulation and security
required properties, could be described as in figure 2.

1 QoS category Terminal {
2 port: enum {ssh , telnet};
3 cipherType: enum {idea, arcfour};
4 auth: enum {RSA, password, both};
5 connectionAttempts: increasing numeric;
6 X11forward: enum {yes, no};
7 }

Figure 2. Terminal QoS category

Figure 3, describes an architecture, that uses a
virtual terminal facility, composed by a client and a
server module (vtServer – lines 2-4, vtClient – lines 5-
7), and its intended topology (lines 8-9).

1 module VirtualTerminal {
2 module {
3 in port (char) Recv;
4 } vtServer;
5 module {
6 out port (char) Send;
7 } vtClient;
8 instantiate vtClient at clientNode;
9 link vtClient to vtServer;
10 } vt;
11 start vt;

Figure 3. Virtual terminal functional composition

4.1 Contract with static adaptation

Considering the session establishment aspect, the
designer has to select operating parameters related to
communication and security. In our example, the first
option is to connect to the server using SSH over TCP,
and idea cryptography with password authentication. If
this is not possible (eg. the server cannot work with this
configuration), a TELNET connection over TCP can be
accepted. However, in this case, more authentication
options and a receive buffer size of at least 64 bytes are
prescribed.

The CBabel associated contract (figure 4)
describing these non-functional requirements specifies
two services: one for the secure case (lines 2-5) and the
other for the unsecured one (lines 6-9). Each of these
intended services is fully defined by an associated
profile that describes the set of required properties, each
one associated with a given QoS category; i.e., the
profile describes what should be provided by the
supporting infrastructure. In the example, the secTerm
profile (lines 15-20) describes the first operational
choice and the unsecTerm profile (lines 21-26) the
second option. Note that both of them require the TCP
protocol. The preferred order for the use of the services
is defined in the negotiation clause (lines 11-14). If
none of them can be imposed after negotiation the client

is unable to open the session. In order to enforce the
contract the middleware selects one or more connectors
to support the best available service and accordingly
configures the architecture. The middleware could
configure either a secure or unsecure connector. After
the session is established no other adaptation wil l occur.

1 contract {
2 service {
3 link vtClient.Send to vtServer.Recv
4 with profile secTerm;
5 } secure;
6 service {
7 link vtClient.Send to vtServer.Recv
8 with profile unsecTerm;
9 } unsecure;
10 negotiation {
11 secure -> unsecure;
12 unsecure -> out_of_service;
13 }
14 } vt;
15 profile {
16 Transport.protocol: TCP;
17 Terminal.port: ssh;
18 Terminal.cipherType: idea;
19 Terminal.auth: password;
20 } secTerm;
21 profile {
22 Transport.protocol: TCP;
23 Transport.recv_buf_size: > 64;
24 Terminal.port: telnet;
25 Terminal.auth: both;
26 } unsecTerm;

Figure 4. Virtual terminal QoS contract

4.2 Contract with dynamic adaptation

In a different use-case scenario, a sales-person has to
visit potential consumers and be permanently connected
to the main off ice database through a virtual terminal.
She uses a mobile device that can run a virtual terminal
client and provides communication with three possible
operating modes:

• in the range of a cordless station base, it can
operate over a regular wired telephone line;

• on the move, it can detect a cellular antenna and
reconfigure to use a cellular connection;

• when immerse in a wireless network, it can use the
available communication protocols.

For each operating mode there is an appropriate
communication interface and a sensor that detects if the
associated channel is available or not. While in
operation the supporting middleware tries to establish a
link using the best available channel. Figure 5 presents
the application’s overall architecture. The dashed lines
represent the links that can be dynamically established,
guided by the negotiation policy and depending on
resource availabil ity.

Mobile Device /
termClient

 Office database /
termServer

GSM

802.11

CDLS

Figure 5. Mobile device basic architecture

The contract for this use-case (figure 6) defines
three different services, each one associated to a
different operating mode supported by the device. The
support for each service is encapsulated in a connector.
The negotiation clause (lines 14-18) defines that the
best service is the wireless transport service. If this
service is not available, a fixTel service should be
tried and so on. Transitions between services depend on
their availability. Either when the currently used link
fails, or a preferable service becomes available, a
service adaptation can take place. Other adaptation
policies could be used, e.g., based on a reduced-cost or
bandwidth criterion.

1 contract {
2 service {
3 link vtClient.Send to vtServer.Recv
4 with Transport.technology: 802.11LAN;
5 } wireless;
6 service {
7 link vtClient.Send to vtServer.Recv
8 with Transport.technology: CDLS;
9 } fixTel;
10 service {
11 link vtClient.Send to vtServer.Recv
12 with Transport.technology: GSM;
13 } celTel;
14 negotiation {
15 wireless -> fixTel;
16 fixTel -> celTel;
17 celTel -> out_of_service;
18 };
19 } vt;

Figure 6. Mobile device QoS contract

4.3 Composing Contracts

Contracts regarding different non-functional aspects (in
the same or in different applications) can be orthogonal
and cause no interference with each other. In this case,
composing those contracts is immediate. In the general
case, the composition process can lead to conflicts on
the use of shared resources. In our proposal, the
composition of contracts can be specified combining in
a unique clause the negotiation clauses of the involved
contracts. Conflicts could be handled assigning
priorities to each of the composed contracts.

Regarding our example combining the two
contracts is trivial. Services and profiles would be part

of the same contract and the unified negotiation clause
would be described as in figure 7. We can note that both
contracts are orthogonal, given that it is not necessary to
combine states of the two sets of services in the same
negotiation chain.

1 negotiation {
2 secure -> unsecure;
3 unsecure -> out_of_service;

4 wireless -> fixTel;
5 fixTel -> celTel;
6 celTel -> out_of_service;
7 }

Figure 7. Combining contracts

4.4 Support

CBabel described architectures, functional composition
and non-functional contracts, are stored as meta-level
information (figure 8). With this information a set of
middleware components, arranged in a well -defined
architectural pattern [4], will i nteract with the
Configurator (section 2) to instantiate and bind
application components, and enforce the contracts:

Contract Manager interprets contract descriptions to
extract the service negotiation state machine. When a
negotiation is initiated, the Contract Manager identifies
which service wil l be negotiated and sends the related
configuration descriptions and the associated profiles to
the Interactor. If every service inside a negotiation
clause has been unsuccessfully tried, an out-of-service
state is reached, and a contract violation message is
returned to the user. As seen in the example, the
contract manager can also start a negotiation when a
preferable service becomes available.

The Interactor has some responsibilities: (a) translate
service profiles properties into system-level support
services and request those services with adequate
parameters to the QoS Agent in order to instantiate /

start modules with required QoS, (b) map the service
link interaction information into a connector able to
provide the required interaction QoS, (c) call the
Configurator to actually perform architectural
procedures (instantiate, link, start) on modules and
connectors with the configured resource context, and
(d) receive out-of-range notifications from the QoS
Agent. When this occurs, based on its internal
programming the Interactor can try to readapt the
resource allocation, at resource-level (for instance
changing resource parameters, if possible), or send an
out-of-service notification the Contract Manager to
initiate another architecture-level negotiation action.

QoS Agents encapsulate the access to system level
mechanisms. Their main responsibilities are to make the
actual resource allocations, initiate local system services
and to monitor required property values. According to
the monitoring thresholds registered by the Interactor,
the Agent can send back an out-of-range property
notification.

Regarding our examples, the QoS Agent is
responsible for verifying the availabili ty of the virtual
terminal properties (telnet or ssh ports, authentication,
etc.) before establishing a terminal session. The QoS
Agent also encapsulates the sensors functions,
monitoring the transport channel operation. The
Interactor is programmed to instantiate a combination of
connectors with suitable parameters and to ask the QoS
Agent to start some resource reservation procedures to
maintain transport and security options for each service.
Also, it registers with the QoS Agent the interest for
new channel-available events. When a negotiation
occurs (say, change from wireless to fixTel) the
Contract Manager sends another service request to the
Interactor that, by its turn, selects a connector
encapsulating the required transport technology
mechanism, and invokes the Configurator to
dynamically change the architecture’s composition.

InteractorContract
Manager

Contract

service

actualValue outOfRange

 outOfService

QoSAgent

instantiate/
link / start

Configurator

termClient termServer

GSM

802.11

CDLS

Figure 8. QoS supporting component infrastructure

5. Related work

QML [3], which was the main inspiration of our
contract description language, is applied in the class-
object context, and is not directly applicable to the
implementation level. Quartz [5] provides an API to
describe QoS requirements, through a set of parameters
that are used to select components of the supporting
middleware. The approach seems to be restricted to
multimedia QoS requirements and relies on services
particular to CORBA infrastructures. Our approach has
similarities with the proposals presented in [6] and [7],
which are in fact interrelated. Most of the elements of
the pattern language describe in [6] have a counterpart
in our proposal. For example, their Quality Connector
performs functions similar to those provided by our
Interactor and QoS Agent combined. [7] proposes a
contract pattern that could be used to provide part of the
support for dynamic adaptations required in our
middleware. Our proposal provides an integrated
framework to deploy QoS and other non-functional
aspects, starting to handle these concerns from the
architectural description. In addition, using our
configuration programming environment, and the
embedded architectural meta-level information, we can
handle adaptations through component (re)
configurations in a natural fashion.

6. Conclusion

We presented a unified approach to specify, deploy and
manage applications having non-functional
requirements. The approach allows non-functional
aspects of an application, such as QoS requirements, to
be specified using high-level contracts expressed in an
extended ADL. Being centered on an ADL-based
configuration middleware the framework inherits all i ts
well -known benefits, among them the capabil ity of
reconfiguration, which helps to execute dynamic
architectural adaptations in behalf of a contract.

Part of the codification related to a non-functional
aspect can be encapsulated in connectors, that can be
(re)configured at run-time in order to cater for the
impositions defined by the associated contract. Also, the
infrastructure required to enforce the contracts follows
an architectural pattern that can be implemented by a
standard set of components of the middleware. In this
pattern, each component performs a well -defined role in
the support of the contract. We have evaluated the
approach through several case studies that showed that
the code of these supporting components may change
partly according to the specific contract. However, we
should notice that the treatment of low-level details
always has to be considered in any QoS aware
application. We believe that our approach can help to

identify the intervening points and make the required
adaptations more rapidly.

We have used the described approach to specify a
reasonable number of contracts, defined at the
architecture description level. These contracts have
been mapped to implementations using the pattern
described in this paper. Through this activity, we have
identified some recurrent structures inside the
components of the pattern. We think that on making
these structures explicit, and available to designers, the
task of mapping architecture-level defined contracts to
implementations can be simpli fied.

Acknowledgments

Romulo Cerqueira is supported by Petrobras. Orlando
Loques and Alexandre Sztajnberg are partially funded
by CNPq (grants PDPG-TI 552137/2002 and
552192/2002, respectively).

7. References

[1] Loques, O., Sztajnberg, A., Leite, J. and Lobosco,
M., "On the Integration of Meta-Level
Programming and Configuration Programming",
Reflection and Software Engineering, LNCS V.
1826, pp.191-210, June, 2000.

[2] Sztajnberg, A. and Loques, O., "Reflection in the
R-RIO Environment", Workshop on Reflective
Middleware, Palisades, NY, April, 2000.

[3] Frolund, S. and Koistinen, J., "Quality-of-service
specifications in distributed object systems",
Distributed Systems Engineering, IEE, No. 5, pp.
179-202, UK, 1998.

[4] Carvalho, S. T, Lisbôa, J. and Loques, O, “A
Software Architecture Configuration Design
Pattern” , 2nd Latin American Conference on
Pattern Languages of Programming, Itaipava, RJ,
Brazil, August, 2002.

[5] Siqueira F. Cahill , V., "Quartz: A QoS Architecture
for Open Systems", 18o Simpósio Brasileiro de
Redes de Computadores, pp. 553-568, Belo
Horizonte, MG, Brazil, May, 2000.

[6] Cross, J. K and Schmidt, D. ,"Quality Connector –
A Pattern Language for Provisioning and
Managing Quality-Constrained Services in
Distributed Real-Time and Embedded Systems", 9th
Conf. on Pattern Language of Programs,
Monticello, Illinois, September, 2002.

[7] Zinky, J. A., Bakken, D. E., Schantz, R. E.,
"Architectural Support for Quality of Service
for CORBA Objects", Theory and Practice of
Object Systems, John Wiley & Sons, Inc., Vol.
3, No. 1, 1997.

