Deploying Non-Functional Aspects by Contract

Romulo Cergueira, Sidney Ansaloni, OrlandoLoques

IC/UFF
Niter6i, RJ, Brazil

{curty, ansaloni,

| oques} @c. uff. br

Alexandre Sztgjnberg
DICC/IME/UER]

Rio de Janeiro, RJ, Brazl
al exszt @ ne. uerj . br

Abstract

This paper presents an approach to describe, deploy and manage component-based applications having dynamic
functional and non-functional requirements, which include different types of QoS. The gproach is centered onan
ADL that allows functional and non-functional requirements to be described by high-level textual contracts. The
meta information extraded from the software achitecture description is used to guide cnfiguration adaptations
required to enforce the ruling contrad. The infrastructure required to automaticaly manage these mntrads follows a
standard architedural pattern, which can be directly mapped to specific components included in a supporting
middleware. This alows designers to write acontrad and to follow a standard redpe to insert the extra mde required
to its enforcement in the supporting middleware. Also, the cmponent configuration capability provided by the
middleware helps to put in pradice alaptations defined by a cntract. Examples demonstrate how the gproach and
the associated middleware can be used to configure and to support applications with adaptive QoS requirements.

1. Introduction

We present an approadch to describe, deploy and manage
applicaions with service guaranties based on the
contrad concept. This approach defines the relationship
between contracts, differentiated quality of services
(Q0S), and the resource management entities. In our
proposal, differentiated quality of services is described
by a special language associated to an Architectural
Description Language. These descriptions are reflected
in the R-RIO framework in two ways. (a) the
medhanisms required to automatically manage these
contrads follow a standard architectural pattern, which
can be directly mapped to spedfic components included
in the supporting middieware; (b) R-RIO connectors
can encgpsulate a set of different non-functional
aspects, and these mnnedors can be reconfigured at
run-time to provide adaptation capabilities.

In the next section we present R-RIO basic
concepts. In the sequence we discuss how R-RIO
handes the mnfiguration of non-functional aspeds in
the achitedural level using contrads. Then, we
illugtrate the use of the R-RIO framework with a
comprehensive dynamicdly-adaptable application
example. Finaly, we present some related works and
our concluding remarks.

2. R-RIO Framework

The Refledive-Reconfigurable Interconnedable
Objects (R-RIO) framework integrates ome key
concepts of Software Architedure / Configuration
Programming (SA/CP) and Meta-Level Programming

(M-LP) approaches [1]. This integration helps to
achieve separation of concerns, software reuse and the
cgpability of supporting dynamic configuration. R-RIO
framework includes the following elements:

a) A component model based on the mncepts of
SA/CP:. (i) modules, applicaion components that
basicdly encepsulate functional concens; (i)
connectors, used at the achitedure level to define
modul€e's interadion relationships. At the operating
level, connedors represent, mediate and handle module
interadion-domain concerns; (iii) ports, identify aaccess
points, through which modules and connectors provide
or require services, and are dso used to explicitly bind
modules and connectors.

b) A software development methodology that
stimulates the designer to comply with a simple meta-
level programming dscipline, where functional
concerns are concentrated in the modules (base level)
and non-functional concerns are encapsulated in
connectors (meta-level).

c) CBabel, an ADL used to describe: (i) applicaion's
functional components and interaction topology, (ii)
contrads spedfying non-functional aspeds, and (iii)
planned reconfigurations. An architedure described
with CBabel can be verified and compiled, resulting in
a meta-level architecture description repository used to
run and manage the achitecture.

d) The Configurator, a refledive middleware [2] that
provides distributed configuration management and
exeautive services, used to make and control running
images from an architecture description.

3. Non-functional aspects

In various applicaion domains we have identified
reaurring non-functional aspeds that should be
considered since the design-time: (a) Interaction, to
configure the characteristics of module interadion; (b)
Distribution, to configure module location, distribution
and communication; (¢) Coordination, to handle
module cncurrency and synchronization; and (d) QoS,
quality of service regarding operational requirements,
such as fault tolerance security or communicaion
parameters.

To spedfy nonfunctional aspects we use the
architedural contract concept. In our approadh, an
architedural contract is a description where two parts
express their requirements regarding the gplication’'s
aspects, and rules for adaptation and negotiation in the
presence of context changes.

In ou proposal, afunctional service is considered
a spedalized activity, constrained by restrictions that
usualy do not permit negotiation, defined through the
specificaion o the @plicaion's architectural
components and their interconnecion topology. Non-
functional services are defined by restrictions to
applicaion non-specific adivities that can admit some
negatiation on resource utilization. A non-functional
contrad can describe the use of shared resources an
application is going to make and acceptable variations
on the availability of thase resources at design-time. A
contrad will be enforced at operation-time by a set of
infrastructure components that implement the ntrad
semantics.

In the next sedion we use QoS domain examplesto
illustrate our approach to trea non-functional aspects.

4. Examples

We borrowed a subset of the QML QoS language [3]
and adapted its syntax and terminology to the software
architedure description scope [1]. QoS caegories
asciated to different non-functional aspects are
described separately from the amponents. For instance,
if transport performance is critica to an application, a
Transport QoS category could be described, as own
infigure 1.

1 QoScategory Transport {

2 protocol : enum {UDP, TCP, RTP} ;

3 technol ogy: enum {802. 11LAN, CDLS, GSM;
4 slidingW ndowSi ze: increasing numeric ;
5 send_buf -si ze: increasing nuneric ;

6 recv_buf _size: increasing nuneric ;

7 MBS: increasing nuneric ;

8

Figure 1. Transport QoS category

In a Virtual Terminal applicdion a possble QoS
caegory, defining some of the emulation and seaurity
required properties, could be described asin figure 2.

QoS category Term nal {

port: enum {ssh , telnet};

ci pher Type: enum {i dea, arcfour};

auth: enum {RSA, password, both};
connecti onAttenpts: increasing nuneric;
X11f orward: enum {yes, no};

~NOoO O WNBE

Figure 2. Terminal QoS category

Figure 3, describes an architedure, that uses a
virtual terminal fadlity, composed by a dient and a
server module (vtServer — lines 2-4, vtClient — lines 5-
7), andits intended topology (lines 8-9).

1 modul e Virtual Term nal {

2 modul e {

3 in port (char) Recv;

4 } vtServer;

5 modul e {

6 out port (char) Send;

7 } vtdient;

8 instantiate vtCient at clientNode;
9 link vtCient to vtServer;

10 } vt;

11 start vt;

Figure 3. Virtual terminal functional composition

4.1 Contract with static adaptation

Considering the sesgon establishment aspect, the
designer has to seled operating parameters related to
communication and seaurity. In our example, the first
option is to connect to the server using SSH over TCP,
and idea cryptography with passwvord authentication. If
thisis not possble (eg. the server cannot work with this
configuration), a TELNET connedion over TCP can be
acepted. However, in this case, more authentication
options and a recave buffer size of at least 64 bytes are
prescribed.

The CBabel associated contract (figure 4)
describing these non-functional requirements gecifies
two services. one for the secure case (lines 2-5) and the
other for the unseaured one (lines 6-9). Each of these
intended services is fully defined by an associated
profile that describes the set of required properties, each
one ssociated with a given QoS caegory; i.e, the
profile describes what should be provided by the
supporting infrastructure. In the example, the secTer m
profile (lines 15-20) describes the first operational
choice and the unsecTer m profile (lines 21-26) the
seaond option. Note that both of them require the TCP
protocol. The preferred order for the use of the services
is defined in the negotiation clause (lines 11-14). If
none of them can be imposed after negotiation the dient

is unable to open the sesson. In order to enforce the
contrad the middeware seleds one or more connedors
to support the best available service and acordingly
configures the architedure. The middleware could
configure either a secure or unseaure @nnector. After
the sesgon is establi shed no ather adaptation wil | occur.

1 contract {

2 service {

3 link vtCient.Send to vtServer. Recv
4 with profile secTerm
5 } secure;

6 service {

7 link vtCient.Send to vtServer. Recv
8 with profile unsecTerm
9 } unsecure;

10 negoti ation {

11 secure -> unsecure;

12 unsecure -> out_of _service;

13

14 } vt;

15 profile {

16 Transport. protocol: TCP;

17 Term nal . port: ssh;

18 Term nal . ci pher Type: idea;

19 Term nal . aut h: password;

20 } secTerm
21 profile {

22 Transport. protocol: TCP;

23 Transport.recv_buf_size: > 64;
24 Term nal . port: telnet;

25 Terminal . auth: bot h;

26 } unsecTerm

Figure 4. Virtual terminal QoS contract

4.2 Contract with dynamic adaptation

In a different use-case scenario, a sales-person has to
visit potential consumers and be permanently conneded
to the main dffice database through a virtual terminal.
She uses a mobil e device that can run a virtual terminal
client and provides communicaion with three possble
operating modes:

e in the range of a wrdless $ation base, it can
operate over aregular wired telephone line;

« on the move, it can deted a célular antenna and
reconfigure to use acellular connedion;

* when immerse in a wirelessnetwork, it can use the
avail able communication protocols.

For each operating mode there is an appropriate
communication interface ad a sensor that deteds if the
asciated channel is available or not. While in
operation the supporting middeware tries to establish a
link using the best available dhannel. Figure 5 presents
the gplication’s overal architedure. The dashed lines
represent the links that can be dynamicdly established,
guided by the negotiation policy and depending on
resource vailability.

Figure 5. Mobile device basic architecture

The contrad for this use-case (figure 6) defines
three different services, eath one @associated to a
different operating mode supported by the device The
support for each serviceis encgpsulated in a nnector.
The negatiation clause (lines 14-18) defines that the
best service is the wi r el ess transport service If this
service is nat available, a fi xTel service should be
tried and so on. Transitions between services depend on
their availability. Either when the arrently used link
fails, or a preferable service bemmes available, a
service aaptation can take place Other adaptation
policies could be used, e.g., based on a reduced-cost or
bandwidth criterion.

1 contract {

2 service {

3 link vtClient.Send to vtServer. Recv
4 with Transport.technol ogy: 802. 11LAN;
5 } wireless;

6 service {

7 link vtCient.Send to vt Server. Recv
8 wi th Transport.technol ogy: CDLS;

9

} fixTel;
10 service {
11 link vtCient.Send to vtServer. Recv
12 with Transport.technol ogy: GSM

13 } cel Tel;
14 negotiati on {

15 wireless -> fixTel;

16 fixTel -> cel Tel ;

17 cel Tel -> out _of _service;
18 };

19 } vt;

Figure 6. Mobile device QoS contract

4.3 Composing Contracts

Contrads regarding dfferent non-functional aspeds (in
the same or in dfferent applications) can be orthogonal
and cause no interference with each ather. In this case,
composing those mntrads is immediate. In the genera
case, the composition process can leal to conflicts on
the use of shared resources. In our proposal, the
composition o contrads can be spedfied combining in
a unigue dause the negatiation clauses of the involved
contrads. Conflicts could be handled assgning
priorities to eat of the cmposed contrads.

Regarding ou example combining the two
contrads is trivial. Services and profiles would be part

of the same mntrad and the unified negotiation clause
would be described asin figure 7. We can note that both
contrads are orthogonal, given that it is not necessary to
combine states of the two sets of services in the same
negatiation chain.

1 negotiation {
2 secure > unsecure;
3 unsecure -> out_of _service;
4 wireless -> fixTel;
5 fixTel > cel Tel ;
6 cel Tel > out _of _service;
73
Figure 7. Combining contracts
4.4 Support

CBabel described architecures, functional composition
and non-functional contrads, are stored as meta-level
information (figure 8). With this information a set of
middleware cmponents, arranged in a well-defined
architedural pattern [4], will interad with the
Configurator (sedion 2) to instantiate ad bind
applicaion components, and enforcethe mntrads:

Contract Manager interprets contract descriptions to
extrad the service negotiation state machine. When a
negatiation is initiated, the Contract Manager identifies
which service will be negatiated and sends the related
configuration descriptions and the associated profil es to
the Interador. If every service inside a negotiation
clause has been unsuccesgully tried, an out-of-service
state is readed, and a @ntrad violation message is
returned to the user. As seen in the example, the
contrad manager can aso start a negotiation when a
preferable service becomes avail able.

The Interactor has me responsibilities: (a) trandate
service profiles properties into system-level support
services and request those services with adequate
parameters to the QoS Agent in order to instartiate /

Configurator

|nstam|axe/
link / start

out Of Service
<0

*———>

service

Contract Imeraclor

Manager

act ual Val ue oul Of Range

termClient

start modules with required QoS, (b) map the service
link interaction information into a connedor able to
provide the required interadion QoS, (c) cdl the
Configurator to adualy perform architectura
procedures (instantiate, link, start) on modules and
connectors with the mnfigured resource ®ntext, and
(d) receive out-of-range notifications from the QoS
Agent. When this occurs, based on its internal
programming the Interador can try to realapt the
resource dlocation, at resource-llevel (for instance
changing resource parameters, if posshle), or send an
out-of-service notificaion the Contract Manager to
initiate another architedure-level negotiation adion.

QoS Agents encapsulate the acces to system level
medhanisms. Their main responsibilities are to make the
acdual resourceall ocations, initiate local system services
and to monitor required property values. According to
the monitoring thresholds registered by the Interactor,
the Agent can send badk an out-of-range property
notification.

Regarding our examples, the QoS Agent is
responsible for verifying the availability of the virtual
terminal properties (telnet or sh ports, authentication,
etc.) before establishing a terminal session. The QoS
Agent aso encgosulates the sensors functions,
monitoring the transport channel operation. The
Interador is programmed to instantiate acombination of
connectors with suitable parameters and to ask the QoS
Agent to start some resource reservation procedures to
maintain transport and seaurity options for ead service.
Also, it registers with the QoS Agent the interest for
new channel-available events. When a negotiation
occurs (say, change from wi r el ess to fi xTel) the
Contrad Manager sends another service request to the
Interador that, by its turn, selects a @nnedor
encgpsulating the required transport technology
medhanism, and invokes the Configurator to
dynamically change the achitecture’ s composition.

---------DtermServer

Figure 8. QoS supporting component infrastructure

5. Rdated work

QML [3], which was the main inspiration of our
contrad description language, is applied in the class
objed context, and is not directly appliceble to the
implementation level. Quartz [5] provides an API to
describe QoS requirements, through a set of parameters
that are used to seled components of the supporting
middleware. The gproach seans to be restricted to
multimedia QoS requirements and relies on services
particular to CORBA infrastructures. Our approach has
similarities with the proposals presented in [6] and [7],
which are in fad interrelated. Most of the dements of
the pattern language describe in [6] have a counterpart
in our proposal. For example, their Quality Connedor
performs functions similar to those provided by aur
Interador and QoS Agent combined. [7] proposes a
contrad pattern that could be used to provide part of the
support for dynamic adaptations required in our
middleware. Our proposal provides an integrated
framework to deploy QoS and aher non-functional
aspects, starting to handle these wncerns from the
architedural description. In addition, using our
configuration programming environment, and the
embedded architedural meta-level information, we can
hande aaptations through component (re)
configurations in a natural fashion.

6. Conclusion

We presented a unified approach to spedfy, deploy and
manage aoplications having non-functional
requirements. The gproach alows non-functional
aspects of an application, such as QoS requirements, to
be spedfied using high-level contrads expressed in an
extended ADL. Being centered on an ADL-based
configuration middleware the framework inherits al its
well-known benefits, among them the apability of
reconfiguration, which helps to execute dynamic
architecural adaptationsin behalf of a contrad.

Part of the aodification related to a non-functional
aspect can be encgpsulated in connedors, that can be
(re)configured at run-time in order to caer for the
impositions defined by the associated contrad. Also, the
infrastructure required to enforce the ntracts foll ows
an architedural pattern that can be implemented by a
standard set of components of the middleware. In this
pattern, eat component performs a well -defined role in
the support of the contract. We have evaluated the
approach through severa case studies that showed that
the code of these supporting components may change
partly according to the spedfic contract. However, we
should ndatice that the treatment of low-level details
aways has to be onsidered in any QoS aware
applicaion. We believe that our approach can help to

identify the intervening pants and make the required
adaptations more rapidly.

We have used the described approach to spedfy a
ressonable number of contrads, defined at the
architedure description level. These mntrads have
been mapped to implementations using the pattern
described in this paper. Through this activity, we have
identified some reaurrent structures inside the
components of the pattern. We think that on making
these structures explicit, and available to designers, the
task of mapping architecture-level defined contrads to
implementations can be simplified.

Acknowledgments

Romulo Cerqueira is supported by Petrobras. Orlando
Loques and Alexandre Sztgjnberg are partially funded
by CNPgq (grants PDPG-TI 552137/2002 and
552192/2002, respedively).

7. References

[1] Loques, O., Sztajnberg, A., Leite, J. and Lobosco,
M., "On the Integration o MetaLevel
Programming and Configuration Programming",
Reflection and Software Engineging, LNCS V.
1826, pp.191-210, June, 2000.

[2] Sztajnberg, A. and Loques, O., "Refledion in the
R-RIO Environment”, Workshop on Reflective
Middeware, Palisades, NY, April, 2000.

[3] Frolund, S. and Koistinen, J., "Quality-of-service
specificaions in dstributed objed systems',
Distributed Systems Engineeing, |IEE, No. 5, pp.
179-202, UK, 1998.

[4] Carvaho, S. T, Lishéa, J. and Loques, O, “A
Software Architedure Configuration Design
Pattern”, 2nd Latin American Conference on
Pattern Languages of Programming, Itaipava, RJ,
Brazl, August, 2002.

[5] SiqueiraF. Cahill, V., "Quartz: A QoS Architedure
for Open Systems', 18° Smpésio Brasileiro de
Redes de Computadores, pp. 553568, Belo
Horizonte, MG, Brazl, May, 2000.

[6] Cross J. K and Schmidt, D. ,"Quality Connedor —
A Pattern Language for Provisioning and
Managing Quality-Constrained Services in
Distributed Real-Time and Embedded Systems", 9"
Conf. on Pattern Language of Programs,
Monticdlo, Illinois, September, 2002.

[71 Zinky, J. A., Bakken, D. E., Schantz, R. E.,
"Architectural Support for Quality of Service
for CORBA Objects’, Theory and Practice of
Object Systems, John Wiley & Sons, Inc., Val.
3, No. 1, 1997.

