

DEPLOYING QoS CONTRACTS IN THE
ARCHITECTURAL LEVEL

Sidney Ansaloni1, Alexandre Sztajnberg2, Romulo C. Cerqueira1, Orlando
Loques1
1Instituto de Computação – Universidade Federal Fluminense (UFF), Rua Passo da Pátria –
Niterói – RJ – Brasil; 2Instituto de Matemática e Estatística – Universidade do Estado do Rio
de Janeiro, Rua São Francisco Xavier, 524 / 6018-D – Maracanã – RJ - Brasil

Abstract: This paper presents an approach to describe, deploy and manage software
architectures having dynamic functional and non-functional requirements. The
approach is centered on an ADL extended with high-level contracts, which are
used to specify the non-functional requirements associated to the architecture
of a given application. These contracts are also used to configure the
infrastructure required to enforce the non-functional requirements and, during
the running time, can be used to guide architecture adaptations, in order to
keep them valid in face of changes in the supporting environment. The
infrastructure required to manage the contracts follows an architectural pattern,
which can be directly mapped to specific components included in a supporting
reflective middleware. This allows designers to write a contract and to follow
standard recipes to insert the extra code required to its enforcement in the
supporting middleware.

Key words: QoS contracts ADL, architectural pattern, dynamic configuration

1. INTRODUCTION

The specification of QoS requirements and the implementation of the
corresponding management strategies for the resource providers associated
to the requirements are, generally, embedded in the application programming
in an ad-hoc manner, mixed with the application’s specific code. This lack of
modularity makes evolution and code reuse difficult, also making difficult its

2 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

verification and debugging. In this context, there is a growing interest for
handling quality of services (QoS) aspects in a specific abstraction level1, 2, 3.
This approach would allow to single out the resources to be used and the
specific mechanisms of the native system that will be required by the
application, and, if possible, turn automatic the configuration and
management of those resources.

The traditional notion of QoS is bound to communication level
performance. However, a more recent view of QoS includes characteristics
associated to application’s non-functional aspects, such as availability,
reliability, security, real-time, persistency, coordination and debugging
support. Such kind of aspect can be handled by reusable services provided
by middleware infrastructures or native systems support. This makes feasible
to design a software system based on its architectural description, which
includes the functional components, the interactions among those
components, and requirements regarding the behavior of system QoS
resources. To this end, it has to be provided a means to specify those
requirements in the context of the application’s architecture description and,
also, there has to be available an environment that allows to deploy those
requirements over the system resources. In some applications, such
environment has to include mechanisms to monitor the resources and to
manage adaptations, according to the availability of those resources, in order
to guaranty that the QoS requirements are met during run-time.

Among the available techniques to specify QoS constraints, we highlight
the concept of contracts 4. A QoS contract establishes a formal relationship
between two parts that use or provide resources, where rights, obligations
and negotiation rules over the used resources are expressed. For instance, a
parallel computing application can have a QoS contract defining rules to
replicate processing resources, in order to guaranty a maximum execution
time constraint. According to the specified contract, the application can have
its components parallelization degree automatically controlled by the
supporting environment. Thus, when the time constraint is not being met by
the present configuration, the number of replicas can be raised, if there are
available processors 5.

In the previous context, this work presents the CR-RIO framework
(Contractual Reflective - Reconfigurable Interconnectable Objects)2,5
conceived to specify and support QoS contracts, associated to the
architectural components of an application. The approach helps to achieve
separation of concerns6 facilitating the reuse of modules that implement the
computation in other application systems, and allows the non-functional
requirements to be handled separately during the system design process. The
framework includes a contract description language, which allows the
definition of a specialized view of a given software architecture. The

 3

supporting infrastructure required to impose the contracts during run-time
follows an architectural pattern that can be implemented by a standard set of
components included in a middleware. The results of our investigation point
out that the code generation of these components can be automated, except
some explicit parts of code related to specific contract and resources classes.
In this way, contracts and their respective supporting infrastructures can be
reused in different applications.

In the rest of this paper, we initially describe the key elements of the
framework including the architecture description language with support to
QoS contracts. Next, we present the supporting infrastructure and, based on
an example we demonstrate the validity of the framework. Complementing
the article we present some related proposals and provide some conclusions.

2. BASIC FRAMEWORK

The CR-RIO framework integrates the software architecture paradigm,
which is centered in an architecture description language (ADL), with
concepts such as reflection and dynamic adaptation capability6, which are
generally provided in an isolated fashion in middleware proposals described
in the literature. This integration facilitates the achievement of separation of
concerns, software component reuse and dynamic adaptation capability of
applications. CR-RIO includes the following elements:

CBabel, an ADL used to describe the functional components of the
application and the interconnection topology of those components, which
follow the CR-RIO model. CBabel also caters for the description of non-
functional aspects, such as coordination, distribution, planned
reconfigurations and QoS. This set of features turns possible submitting
CBabel descriptions to formal verification procedures7. A CBabel
specification corresponds to a meta-description of an application that is
available in a repository and is used to deploy the architecture in a given
operating environment. In running time this meta-description provides the
information required to manage architectural adaptations.

An architecture-oriented component model, that allows programming
the software configuration of the application; (i) Modules, which encapsulate
the application's functional aspects; (ii) Connectors, used in the architecture
level to define relationships between modules; in the operation level
connectors mediate the interaction between modules; and (iii) Ports, which
identify access points through which modules and connectors provide or
require services; ports are fundamental to allow component linking with low
coupling.

4 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

A simple software design methodology that encourages the designer to
follow a simple meta-level programming discipline, where functional aspects
are concentrated in modules (base level) and non-functional aspects are
encapsulated in connectors (meta-level). It is worth to point out that some
QoS requirements can be directly mapped into connectors, which are
equivalent to meta-level components, and can be configured in an
application’s architecture. For example, the access to real-time
communication mechanisms, such as a real-time RMI8, could be
encapsulated into a connector and configured in different architectures.

The Configurator, a reflective element that provides services to
instantiate, execute and manage applications with distributed configurations.
The Configurator provides two APIs: configuration and architectural
reflection, through which these services are used, and a persistency
mechanism for the architecture meta-level description repository, where the
two APIs reflect their operations. The configuration API allows to
instantiate, link, stop and replace components of a running application. The
architectural reflection API allows querying the repository. A specialized
module of the application can consult the architecture's configuration and
decide to make changes under certain conditions, say, in face of resource
changes.

To specify non-functional aspects or quality of service (QoS) aspects
related to operational requirements such as processing capacity, fault
tolerance, real-time, information persistency, security or communication
CBabel employs the concept of architectural contract. In our approach, an
architectural contract is a description where two parts express their non-
functional requirements, through services and parameters, negotiation rules
and adaptation policies for different contexts. The CR-RIO framework
provides the required infrastructure to impose and manage the contracts
during run-time. Regarding QoS aspects we propose an architectural pattern
that simplifies the design and coding of specific components of the
infrastructure, consistently establishing the relationship between the
Configurator and the QoS contract supporting entities.

3. THE QOS ARCHITECTURAL PATTERN

In our proposal a functional service of an application is considered a
specialized activity, defined by a set of architectural components and theirs
interconnection topologies; with requirements that generally do not admit
negotiation1. Non-functional services are defined by restrictions to specific
non-functional activities of an application, and can admit some negotiation
including the used resources. A contract regulating non-function aspects can

 5

describe, at design time, the use of shared resources the application will
make and acceptable variations regarding the availability of these resources.
The contract will be imposed at run-time by an infrastructure composed by a
set of components that implement the semantics of the contract.

3.1 The QoS Contract Language

Our proposal incorporates concepts from the QML (QoS Markup
Language)4, which were reformulated for the context of software
architecture descriptions2. A QoS contract includes the following elements:

QoS Categories are related to specific non-functional aspects and
described separately from the components. For example, if processing and
communication performance characteristics are critical to an application,
associated categories, Processing and Transport, could be described as in
Figure 1.

01 QoScategory Processing {
02 utilization: decreasing numeric %;
03 clockFrequency: increasing numeric MHz;
04 priority: increasing numeric; }
05 QoScategory Transport {
06 delay: decreasing numeric ms;
07 bandwidth: increasing numeric Mbps; }

Figure 1. Processing and Transport QoS Categories

The Processing category (lines 1-5) represent a processing resource
where the utilization property is the used percentage of the total CPU time
(low values are preferred – decreasing), the clockFrequency property
represents the processor's operating frequency (high values are preferred –
increasing) and priority represents a priority for its utilization. The Transport
category (lines 5-7) represents the information associated to transport
resources used by clients and servers. The bandwidth property represents the
available bandwidth for the client-server connection and the delay property
represents the transmission delay of one bit between a client and the server.
The use of those categories, and of the other elements of the language
described next, is presented in Section 4.

A QoS profile quantifies the properties of a QoS Category. This
quantification restricts each property according to its description, working as
an instance of acceptable values for a given QoS Category. A component, or
a part of an architecture, can define QoS profiles in order to constrain its
operational context.

A set of services can be defined in a contract. In a service, QoS
constraints that have to be applied in the architectural level are described,

6 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

and can be associated to either (i) the application’s components or (ii) the
interaction mechanism used by these components. In that way, a service is
differentiated from others by the desired/tolerated QoS levels required by the
application, in a given operational context. A QoS constraint can be defined
by associating a specific value of a property to an architecture declaration or
associating a QoS profile to that declaration.

A negotiation clause describes a negotiation policy and acceptable
operational contexts for the services described in a contract. As a default
policy the clause establishes a preferred order for the utilization of the
services. Initially the preferable service is used. According to the described
in the clause, when a preferable service cannot be maintained anymore, the
QoS supporting infrastructure tries to deploy a service less preferable,
following the described order. The supporting infrastructure can deploy a
more preferable service again if the necessary resources are again available.

3.2 Support Architecture

CBabel described architectures and QoS contracts are stored as meta-
level information. Based on this information a set of middleware
components (see Figure 4) composing a well-defined architectural pattern2 is
used to instantiate the application and to manage the contracts.

The Global Contract Manager (GCM) interprets a contract description
and extracts its service negotiation state machine. When a negotiation is
initiated the GCM identifies which service will be negotiated first and sends
the configuration descriptions, related to each participating node, and the
associated QoS profiles to the Local Contract Managers (LCM). Each
LCM is responsible for interpreting the local configuration and activating a
Contractor to perform actions such as resources reservation and monitoring
requests. If the GCM receives a positive confirmation from all LCM
involved, the service can be attended and the application can be instantiate
with the required quality. If not, a new negotiation is attempted in order to
deploy the next possible service. If all services in the negotiation clause are
tried with no success, an out-of-service state is reached and a contract
violation message is issued to the application level. The GCM can also
initiate a new negotiation when it receives a notification informing that a
preferred service became available again.

The Contractor has several responsibilities: (a) to translate the
properties defined by the QoS profiles into services of the support system
and convey the request of those services (with adequate parameters) to the
QoS Agents; (b) when required, to map each defined interaction scheme
(link) into a connector able to match the required QoS for the actual
interaction, and (c) to receive out-of-spec notifications from the QoS Agents.

 7

The information contained in a notification is compared against the profile
and, depending on its internal programming the Contractor can try to make
(local) adjustments to the resource that provides the service. For instance, the
priority of a streamer could be raised in order to maintain a given frame
generation rate. In a case where this is not possible an out-of-profile
notification is sent to the LCM.

A QoS Agent wraps the access to system level mechanisms, providing
adequate interfaces to perform resource requests, initializes local system
services and monitors the actual values of the required properties. According
to the thresholds to be monitored, registered by the Contractor, a QoS Agent
can issue an out-of-spec notification indicating that a resource is not
available or does not meet the specification defined in the profile.

4. EXAMPLE

During our research we developed some prototype examples to evaluate
and refine the framework. A virtual terminal in a mobile machine was used
to evaluate security and communication aspects in the context of a mobile
network9. Specifically, a static contract was used to specify security protocol
options (telnet or ssh, and cipher types) and a dynamic contract was used to
specify communication channels that can be dynamically reconfigured
(reconfiguration can be triggered by changes in available set of channels); in
this example it was also demonstrated the composition of both contracts,
which was immediately achieved joining theirs negotiation clauses. We
developed in 5 the application with real-time requirements, mentioned in the
introduction, an application with fault tolerance requirements, and the video
on demand application to be presented in the next subsections.

4.1 Video on Demand (VoD)

The scenario of the application is comprised by a server, which stores a
collection of video files in the MPEG-2 format, and by clients that connect
themselves to the server and initialize a flow to receive and display a
selected video. Each client can freeze or resume the video exhibition, in the
same way it would be done if the video were locally stored. It is assumed
that the clients can run on different platforms, from portable devices to
workstations, in which the availability of resources such as CPU capacity
and bandwidth can vary. In this context it is necessary to adapt the resources
or the application’s architecture configuration, depending on the specific
operational environment, in order to have the video being exhibited with the
expected quality.

8 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

The basic architecture of the example should fit two types of client: (i)
high processing availability, with high-speed access to the server and (ii)
medium processing availability, with dial-up modem access to the server. In
principle, clients of type (i) have enough processing and communication
resources to exhibit the video in the original MPEG-2 format. Clients of type
(ii), with limited resources, can only exhibit the video in and alternative
format, say H.261.

01 module Client_Server {
02 port provide, request;
03 module Client { out port request; } player;
04 module Server { in port provide; } server;
05 instantiate server at serverHost;
06 instantiate player;
07 link player.request to server.provide;
08 } vod;
09 start vod;

Figure 2. VoD application Architecture Description

Figure 2 presents the CBabel description of the application’s architecture,
composed by a client (player - line 3) and a server (server – line 4), and their
connection topology; communication is made effective through the player’s
request port and the server’s provide port (lines 5-7). Note that this
interconnection could be detailed, by defining a specific connector to
mediate the client-server interaction, encapsulating the necessary
communication mechanisms. However, as the non-functional restrictions
include interaction aspects, the use of connectors in this architecture will be
defined explicitly in a contract.

4.2 QoS Contract

The QoS contract of this example considers that two services can be
used: (i) the exhibition of the video in the MPEG-2 format or (ii) in the
H.261 format, according to the availability of resources at the specific client
platform. To deploy any of these services in the client’s node, the resources
to be handled are those related to the host’s processing characteristics and to
the client-server communication channel properties.

The QoS categories for processing and transport, and their properties to
specify the VoD application contract, are those presented previously in
Figure 1. In the example it is considered that the client has to have a CPU
with a minimum operating frequency of 700 MHz and a maximum of 50%
of used CPU time to exhibit video in the MPEG-2 format. The exhibition of
video with the H.261 format will demand from the CPU, by its turn, only a

 9

minimum frequency of 266 MHz and a maximum CPU time usage of 70%.
In the example we are not considering static reservation of CPU time, in
order to illustrate a contract renegotiation activity. Please note that in a
dynamic context, even with CPU reservation, a contract could be invalidated
by another contract with higher priority.

In the example, the MPEG-2 requires a bandwidth greater than 1.5 Mbps
and a transport delay lower than 50 ms to sustain an acceptable video stream,
while videos in H.261 format require a minimum bandwidth of 56 Kbps and
can tolerate delays up to 200 ms. Other transport properties could be taken
into account in this case, such as the jitter or data loss rate; for the sake of
simplicity they were not included in the Transport QoS Category.

01 contract {
02 service {
03 instantiate player at clientHost with cpu_01;
04 link player to server by comTransport with network_01;
05 } MPEG_video;
06 service {
07 instantiate player at clientHost with cpu_02;
08 link player to server by H-261.comTransport
09 with network_02;
10 } H-261_video;
11 negotiation {
12 MPEG_video -> H-261_video;
13 H-261_video -> out_of_service;
14 }
15 } vod;
16 profile {
17 Processing.clockFrequency >= 700;
18 Processing.utilization <= 50;
19 } cpu_01;
20 profile {
21 Processing.clockFrequency >= 266;
22 Processing.utilization <= 70;
23 } cpu_02;
24 profile {
25 Transport.delay <= 50;
26 Transport.bandwidth >= 1.5;
27 } network_01;
28 profile {
29 Transport.delay <= 200;
30 Transport.bandwidth >= 0.056; // 56 kbps
31 } network_02;

Figure 3. VoD application QoS Contract

Based on the previous requirements the application’s contract can be
described as in Figure 3. The MPEG_video service (lines 2-5) defines the
QoS constraints for the architecture parts that participate in the MPEG video

10 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

exhibition. The creation of a player component instance (line 3) in a client
machine is associated to the cpu_01 processing QoS profile. The
interconnection of the player and server ports are bound to the network_01
QoS profile (lines 25-27), being the communication provided by a connector
that encapsulates the communication transport mechanism (line 4). The
mentioned profiles specify, respectively, the constraints to the Processing
and Transport QoS Categories properties, relevant to this contract. Thus, to
create the player instance, the clockFrequency of the node has to be at least
266 MHz and then the CPU utilization has to be less than 70%. The H-
261_video service description follows a similar procedure. The cpu_02 (lines
20-23) and network_02 (lines 28-31) profiles represent the requirements for
the H.261 video exhibition. Note that, for this service, the interaction of the
components is mediated by a connector that encapsulates the MPEG-2 to H-
261 conversion mechanism. Additionally to the MPEG-2 and H.261, other
formats could be supported by using specific decoders, encapsulated in
connectors; e.g., the bitmap format that can be exhibited on PDAs and cell-
phone video matrixes.

The negotiation clause of this contract (lines 11-14) defines the priority
order between the services. The MPEG_video service has to be preferably
provided in relation to the H-261_video service. If there are no resources
available to attend any of these services, an out-of-service state is reached
and the application cannot run.

4.3 Mapping the contract into the architectural pattern

The implementation of the QoS contract of the example-application using
the proposed architectural pattern is depicted in Figure 4. Each participant
node has a running instance of the Local Contract Manager, the specific
Contractor for the VOD application and QoS Agents associated to the
resources to be controlled in each specific platform. The Configurator
(Section 2) and the Global Contract Manager can be instantiated in a node
dedicated to manage applications or in the same node were the application’s
server is running. The H-261 connector only takes part of the configuration
when the H-261_video service is deployed. It can also be observed that the
comTransport connector has a distributed implementation.

The sequence diagram presented in Figure 5 depicts the interactions
between the CR-RIO components to establish the MPEG_video service to a
player running in a node, which is connected to the server through an
Ethernet network. When starting the procedure to load the application the
Configurator and the GCM are already running. As the first step, the GCM
retrieves the associated QoS contract; all further actions are guided by this
contract. Initially the GCM creates instances (create()) of the LCM in the

 11

nodes where the application components are to be instantiated. Next, it
selects a service to be used (in this case, the MPEG_video) and initializes a
negotiation activity, sending to the LCMs the information related to this
service, including the associated QoS profiles (cpu_01 and network_01).
Each LCM extracts from the received information the QoS characteristics
that have to be considered and instantiates (create()) (a) the QoS Agents that
provide the interfaces (management and event generation) to the resources
used by the service, and (b) the application specific Contractor, that will
interpret the service information and will interact with the QoS Agents to
impose the desired properties.

Contract

playerplayer

instantiate player
at clientHost

link player to
videoSrv by H-261.
comTransport

Configurator

Global
Contract
Manager

Local
Contract
Manager

Contractor

QoSAgent
(Transport)

MPEG-2
videoSrv H-261

notify

request

Local
Contract
Manager

Contractor

QoSAgent
(Processing)

notify

comTransport

Figure 4. Mapping the VoD application contract in the architectural pattern

In the client node, the LCM identifies the processing resources that have
to be managed (based on the instantiate ADL's primitive that creates an
instance of the player module – QoS contract, line 3). In the server node, the
local LCM identifies (based on the link ADL's primitive that interconnects
the player module to the server module – QoS contract, line 4) that it will be
responsible for the management of the transport resources (the adopted
semantics is to assign to the server side the responsibility for managing QoS
requirements that involves two peers). When the LCM instantiates a
Contractor it also sends to it the profiles that have to be attended. In the
sequence, the Contractor interacts with the QoS Agents to request resources
and to receive relevant events regarding the status of the resources. In this
example, the Processing QoS Agent verifies the operating frequency of the

12 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

CPU and is responsible for monitoring the CPU load (utilization). Also,
observe that the client-server communication channel uses some kind of
resource reservation put in effect through the Transport QoS Agent.

Global CM Local CM
at server

Contractor
at server

QoSAgent
(Transport) at server

Local CM
at client

Contractor
at client

QoSAgent
(Processing) at client

create
create

getContract

addService
addService

create

create

attach

enforceProfile
setState

reservation

notifyContractor
update

checkProfile

create
create

attach

enforceProfile

notifyContractor
update

checkProfile

ok
ok

ok
ok

Figure 5. Establishing the MPEG_video service

After the initial phase, if the required QoS profiles were imposed, a
Contractor notifies the success to its associated LCM that, by its turn,
forwards a corresponding notification to the GCM. In the example, if all
involved LCMs did return a positive confirmation, the GCM concludes that
the negotiation was successful and that the MPEG_video service can be
established. The next step is to instantiate the application’s functional
components in the context of the reserved resources and, then, to initialize its
execution. This step is performed by the Configurator (Section 2) based on
the Architecture Configurator design pattern10; see details in5. If during the
negotiation any Contractor has a resource demand denied, or if it verifies
that a QoS Agent notified an out of range value, an out-of-profile notification
is sent to the LCM that, by its turn, sends an out-of-service notification to the
GCM. In consequence the GCM selects the next service to be attempted, in
this case the H-261_video, and a new negotiation cycle begins.

In steady state, if a significant change in the monitored values is detected,
the QoS Agent notifies the registered Contractors invoking the update()
method. If the reported values do not violate the active QoS profiles, nothing

 13

has to be done. If there is a violation, the Contractor can try to locally
readapt the resource in order to keep the service; for instance, passing new
parameters to the QoS Agent. If it is not possible to readapt, the Contractor
sends an out-of-profile notification to the LCM and, in the sequence, another
service can be negotiated. To exemplify the situation let’s suppose that while
the MPEG_video is operational, new processes are admitted to the client’s
node, diminishing the available processing power to the player. This would
be captured by the Processing QoS Agent observing the increase of the
value of the utilization property. Let’s consider that the measured value
overcomes the limit of 50% defined by the cpu_01 profile, but is still lower
than the 70% limit defined by the cpu_02 profile.

The Processing QoS Agent notifies the Contractor triggering a new
negotiation. The client’s Contractor verifies that the property is out of the
cpu_01 profile specification and sends the respective LCM an out-of-profile
notification. This information is then propagated to the GCM through an out-
of-service notification. Then the GCM selects the H-261_video to be
negotiated and sends the respective information as parameters invoking to
the involved LCMs. Each LCM discontinues the current service and the
procedures to impose the new service, bound by the cpu_02 and network_02
QoS profiles are performed (similarly as in the case to deploy the initial
service). Several optimizations are feasible. For instance, when a Contractor
sends an out-of-profile notification this could be followed by the set of QoS
profiles that could be attended at that moment. Receiving this composed
information the GCM could select the next service to be negotiated,
immediately discarding the services with associated profiles out of the set.
We are investigating the use of an event support service, with composition
capability, to implement this optimization. A second optimization could be
applied when a set of services is restricted to a given node. In this case the
LCM of the given node could receive the information of all services and
profiles related to the set and manage them locally.

A prototype of the VoD application is presented in5. The Java Media
Framework was used to implement the functional modules. Some classes
related to the video flow were encapsulated in connectors, e.g., those
implementing RTP and the H.261 codec. The QoS architectural pattern was
implemented as a set of classes integrated to the CR-RIO framework.

It was possible to identify that the implementations of the GCM and the
LCM, directly related the application contract are reusable. The behavior of
these elements is parameterized by the QoS contract of the specific
application; in this level the manipulated information are symbolic. Each
QoS Agent has dependencies related to the resource being managed.
However, once implemented, an Agent can be reused in other applications
that have operational requirements dependent on the same kind of resource.

14 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

The Contractor, by its turn, represents the hot spot of the pattern. Its
implementation is dependent on the services and profiles to be imposed, and
also dependent on the own resources to be managed via QoS Agents. The
Contractor can also contain the code implementing specific policies to
perform local adaptations, as discussed in the end of the last section.

5. RELATED WORKS

The reflective middleware approach11 allows for the provided services to
be configured to comply with the non-functional properties of the
applications. However, the approach does not provide clear abstractions and
mechanisms to help the use of such features in the design of the architectural
level of an application. This leads to the middleware services being used in
an ad hoc fashion, usually through pieces of code intertwined to the
application’s program. The Quality Connector pattern provides a
methodology for the re-allocation of resources in response to context
changes in the execution environment12. However, it requires access to the
source code of every application and/or to the infrastructure’s components in
order to instrument them. Our approach, that includes configuration-
programming mechanisms, is more transparent regarding the access to the
source code of the application. The Quality Objects (QuO)3 provides a
framework for the development of distributed applications with QoS
requirements, based on CORBA. In QuO, the specification of such
requirements is associated to method invocations, through a contract
description language, allowing only adaptations at this level. Our proposal
considers services with differentiated quality in diverse levels, from the
interface (or connection) level, in which services are encapsulated into
connectors (similar to the QuO approach), to the architectural level, in which
the service provision can involve the reconfiguration of the application’s
topology. The proposal described in13 includes basic mechanisms to collect
status information associated to non-functional services. It also suggests an
approach to manage non-functional requirements in the architectural level, in
a way quite similar to ours. CR-RIO complements this proposal providing an
explicit methodology based on contracts and proposing extra mechanisms to
deploy and manage these contracts. More details are available in5.

6. CONCLUSION

We presented a unified approach to specify, deploy and manage
applications having non-functional requirements. The approach helps to

 15

achieve separation of concerns and software reuse by allowing non-
functional aspects of an application, such as QoS requirements, to be
specified separately using high-level contracts expressed in an extended
ADL. Being centered on an ADL-based configuration middleware the
framework inherits all its well-known benefits, among them the capability of
reconfiguration, which facilitates to execute dynamic architectural
adaptations on behalf of a contract. Part of the coding, related to a non-
functional requirement, can be encapsulated in connectors, which can be
(re)configured during running time in order to cater for the impositions
defined by the associated contract. The infrastructure required to enforce the
contracts follows an architectural pattern that is implemented by a standard
set of components of the middleware. In this pattern, each component
performs a well-defined role in the support of the contract. We think that
making these structures explicit and available to designers, the task of
mapping architecture-level defined contracts to implementations can be
simplified. The approach has been evaluated through several case studies
that showed that the code of these supporting components can be
automatically generated, excepting some localized pieces related to
specificities of the particular QoS requirement under consideration.
However, we should notice that the treatment of low-level details always has
to be considered in any QoS aware application. Our approach can help to
identify the intervening hot spots and to make adaptations more rapidly.

In our proposal, the composition of contracts can be specified combining
in a unique clause the negotiation clauses of the involved contracts9.
Contracts regarding different non-functional aspects (in the same or in
different applications) can be orthogonal and cause no interference with each
other; in this case, composing those contracts is immediate. In the general
case, the composition process can lead to conflicts on the use of shared
scarce resources. Conflicts can be handled applying a suitable decision
policy to the set of involved contracts; already assigned resources could then
be retaken in order to satisfy the preferred contracts.

Currently, we are investigating the specification of individual contracts
for clients and servers14. This intends to allow each client to specify what it
requires and each server to specify what it is committed to provide. This
capability would permit to make decisions regarded to a component
instantiation taking into account the availability of resources at its
instantiation time. Besides providing the flexibility required to the support of
dynamic architectures, this would allow managing conflicts through lower
granularity interventions. We are also working towards giving a formal
semantics to the QoS contracts, using Rewriting Logic, in the same line as
presented in7 for the CBabel ADL. With the results of that experience we

16 S. Ansaloni, A. Sztajnberg, R. C. Cerqueira, O. Loques

plan to produce a set of guide-lines to allow the formal verification of the
QoS contracts in the architectural level.

ACKNOWLEDGMENTS

Orlando Loques is partially supported by CNPq (grant PDPG-TI
552137/2002) and Alexandre Sztajnberg is partially supported by CNPq
(grant PDPG-TI 552192/2002 and Faperj APQ1 E26/171430-02).

REFERENCES

1. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D., “Making Components Contract
Aware”, IEEE Computer, 32(7), July, 1999.

2. Cerqueira, R. C., "A Methodology to Describe and Implement Contracts for Services with
Differentiated Quality in Distributed Architectures ", Masters Dissertation, IC/UFF, 2002.

3. Loyall, J. P., Rubel, P., Atighetchi, M., Schantz, R., Zinky, J. “Emerging Patterns in
Adaptive, Distributed Real-Time, Embedded Middleware”, 9th Conference on Pattern
Language of Programs, Monticello, Il., September, 2002.

4. Frolund, S. and Koistinen, J., "Quality-of-Service Specifications in Distributed Object
Systems", Distributed Systems Engineering, IEE, No. 5, pp. 179-202, UK, 1998.

5. Ansaloni, S., “An Architectural Pattern to Describe and Implement Qos Contracts”,
Masters Dissertation, Instituto de Computação, UFF, May, 2003.

6. Loques, O., Sztajnberg, A., Leite, J., Lobosco, M., “On the Integration of Configuration
and Meta-Level Programming Approaches”, in Reflection and Software Engineering V.
1826, LNCS, pp. 191-210, Springer-Verlag, Heidelberg, Germany, June, 2000.

7. Braga, C. and Sztajnberg, A., “Towards a Rewriting Semantics to a Software Architecture
Description Language”, 6th Workshop on Formal Methods, Brasil, October, 2003.

8. Borg, A. and Wellings, A., “A Real-Time RMI Framework for the RTSJ”, Proceedings of
the15th Euromicro Conference on Real-Time Systems, Porto, Portugal, July, 2003.

9. Cerqueira , R. C., Ansaloni, S., Loques, O.G. and Sztajnberg, A., “Deploying Non-
Functional Aspects by Contract”, 2nd Workshop on Reflective and Adaptive Middleware,
Middleware2003 Companion, pp.90-94, Rio de Janeiro, Brasil, June, 2003.

10. Carvalho, S. T, Lisbôa, J. and Loques, O, “A Design Pattern for Software Architecture
Configuration”, 2nd Latin American Conference on Pattern Languages of Programming,
RJ, Brasil, August, 2002.

11. Kon, F. et alii, “The Case for Adaptive Middleware”, Communications of the ACM, pp.
33-38, Vol. 45, No. 6, June, 2002.

12. Cross J.K. and Schmidt, D., “Quality Connector: A Pattern Language for Provisioning and
Managing Quality-Constrained Services in Distributed Real-Time and Embedded
Systems”, 9th Conf. on Pattern Language of Programs, Monticello, Illinois, Sep., 2002.

13. Garlan, D., Schmerl, B. R. and Chang, J., “Using Gauges for Architecture-Based
Monitoring and Adaptation”, Work. Conference on Complex and Dynamic Systems
Architecture, December, 2001.

14. Sztajnberg, A. and Loques, O., “Bringing QoS to the Architectural Level”, ECOOP 2000
Workshop on QoS on Distributed Object Systems, Cannes.

